Coherence and Concentration in Tightly-Connected Networks

Enrique Mallada

ARO-Sponsored Workshop
Synchronization in Natural and Engineering Systems
March 30, 2022
Acknowledgements

Hancheng Min

Yan Jiang

Petr Vorobev

Andrey Bernstein

Fernando Paganini

Mar 30 2022

Enrique Mallada (JHU)
Coherence in Power Networks

• Studied since the 70s
 • Podmore, Price, Chow, Kokotovic, Verghese, Pai, Schweppe,…

• Enables aggregation/model reduction
 • Speed up transient stability analysis

• Many important questions
 • How to identify coherent modes?
 • How to accurately reduce them?
 • What is the cause?

• Many approaches
 • Timescale separations (Chow, Kokotovic,)
 • Krylov subspaces (Chaniotis, Pai ‘01)
 • Balanced truncation (Liu et al ‘09)
 • Selective Modal Analysis (Perez-Arriaga, Verghese, Schweppe ‘82)
This talk

Goal: Characterize the coherence response from a frequency domain perspective
Outline

• Characterization of Coherent Dynamics [Min, M ‘21]

• Reduced-Order Model of Coherent Response [Min, Paganini, M ‘21]

• Grid-forming Frequency Shaping Control [Jiang, Bernstein, Vorobev, M ‘21]
Coherence and Concentration in Tightly-Connected Networks

Hancheng Min and Enrique Mallada

Coherence in networked dynamical systems

Block Diagram:

Node dynamics: \(g_i(s), i = 1, 2, \ldots, n \)

Symmetric Real Network Laplacian: \(L \)

\[
L = V \Lambda V^T, \quad V = \begin{bmatrix} \frac{1}{\sqrt{n}} \end{bmatrix}, V_{\perp} \\
\Lambda = \text{diag}\{0, \lambda_2(L), \ldots, \lambda_n(L)\}
\]

Coupling dynamics: \(f(s) \)

Examples:

• Consensus Networks:

\[
g_i(s) = \frac{1}{s} \\
f(s) = 1
\]

• Power Networks (2nd order generator):

\[
g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}} \\
f(s) = \frac{1}{s}
\]
Coherence in networked dynamical systems

Block Diagram:

1. When does this network exhibit coherence?
2. What is the exact coherent dynamics of this network?

1. Coherence can be understood as a low rank property the closed-loop transfer matrix
2. It emerges as the effective algebraic connectivity increases
3. The coherent dynamics is given by the harmonic mean of nodal dynamics

\[
\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s) \right)^{-1}
\]
Network Coherence: Homogeneous Case

Assume homogeneity: \(g_i(s) = g(s), \ i = 1, \ldots, n \)

Eigendecomposition \(L = V \Lambda V^T \)
Network Coherence: Homogeneous Case

Assume homogeneity:
\[g_i(s) = g(s), \quad i = 1, \ldots, n \]
Assume homogeneity: \(g_i(s) = g(s), \ i = 1, \ldots, n \)

Merge forward path \(V^TV = I \)
Network Coherence: Homogeneous Case

Assume homogeneity: \(g_i(s) = g(s), \ i = 1, \cdots, n \)
Network Coherence: Homogeneous Case

Assume homogeneity: \(g_i(s) = g(s), \ i = 1, \ldots, n \)
Network Coherence: Homogeneous Case

Assume homogeneity: \(g_i(s) = g(s), \ i = 1, \cdots, n \)

The transfer matrix from input \(u \) to output \(y \):

\[
T(s) = V \text{diag} \left\{ \frac{1}{g^{-1}(s) + f(s)\lambda_i(L)} \right\}_{i=1}^n V^T
\]

\[
V = \left[\frac{1}{\sqrt{n}}, V_\perp \right], \ \lambda_1(L) = 0
\]

\[
T(s) = \frac{1}{n} g(s) \mathbf{1}\mathbf{1}^T + V_\perp \text{diag} \left\{ \frac{1}{g^{-1}(s) + f(s)\lambda_i(L)} \right\}_{i=2}^n V_{\perp}^T
\]

Coherent dynamics

independent of the network structure

Dynamics dependent of

the network structure
Network Coherence: Homogeneous Case

\[T(s) = \frac{1}{n} g(s) \mathbf{1} \mathbf{1}^T + V_{\perp} \text{diag} \left\{ \frac{1}{g^{-1}(s) + f(s) \lambda_i(L)} \right\} V^T \]

The rank-one property of the coherent dynamics leads to:

- **Input aggregation**, for any given input vector \(u(s) \):
 \[
y(s) = \frac{1}{n} g(s) \mathbf{1} \mathbf{1}^T u(s) = \frac{1}{n} g(s) \mathbf{1} \left(\sum_{i=1}^{n} u_i(s) \right)
 \]

- **Output synchronization**, given any two nodes \(i \) and \(j \):
 \[
y_i(s) - y_j(s) = \frac{1}{n} g(s) \mathbf{1} \mathbf{1}^T u(s) - \frac{1}{n} g(s) \mathbf{1} \mathbf{1}^T u(s) = 0
 \]

The **rank-one** coherence dynamics effectively synchronizes the response of every node to that of \(\bar{y}(s) = \frac{1}{n} g(s) \sum_{j=1}^{n} u_j(s) \).
Network Coherence: Homogeneous Case

\[T(s) = \frac{1}{n} g(s) \mathbf{1}\mathbf{1}^T + V_\perp \text{diag} \left\{ \frac{1}{g^{-1}(s) + f(s)\lambda_i(L)} \right\} V^T \]

The effect of non-coherent dynamics vanishes as:

- The algebraic connectivity \(\lambda_2(L) \) of the network increases
- The \(s \)-region of interest gets close to a pole of \(f(s) \)

For almost any \(s_0 \in \mathbb{C} \)

\[
\lim_{\lambda_2(L) \to +\infty} \left\| T(s_0) - \frac{1}{n} g(s_0) \mathbf{1}\mathbf{1}^T \right\| = 0
\]

For \(s_0 \in \mathbb{C} \), a pole of \(f(s) \)

\[
\lim_{s \to s_0} \left\| T(s) - \frac{1}{n} g(s) \mathbf{1}\mathbf{1}^T \right\| = 0
\]

Our frequency-dependent coherence measure \(\| T(s) - \frac{1}{n} g(s) \mathbf{1}\mathbf{1}^T \| \) is controlled by the effective algebraic connectivity \(|f(s)| \lambda_2(L) \)
Network Coherence: Heterogeneous Case
Network Coherence: Heterogeneous Case

The transfer matrix from input u to output y:

$$T(s) = V \left(V^T \text{diag}\{g_i^{-1}(s)\} V + f(s)\Lambda \right)^{-1} V^T$$
The transfer matrix from input u to output y:

$$T(s) = V \left(V^T \text{diag} \{ g_i^{-1}(s) \} V + f(s) \Lambda \right)^{-1} V^T$$

Coherent Dynamics?
Network Dependent?
Informed guess for coherent dynamics: $\bar{g}(s)$

Block Diagram:

Dynamics for node i

$$y_i(s) = g_i(s)(u_i(s) - d_i(s)), \quad i = 1, \ldots, n$$

Assume all nodes output are identical as the result of coherence

$$g_i^{-1}(s)\bar{y}(s) = u_i(s) - d_i(s), \quad i = 1, \ldots, n$$

Average equations from $i = 1$ to n:

$$\left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)\bar{y}(s) = \frac{1}{n} \sum_{i=1}^{n} u_i(s) - \frac{1}{n} \sum_{i=1}^{n} d_i(s)$$

Harmonic mean of all $g_i(s)$

Coherent Dynamics:

$$\bar{y}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} u_i(s)$$

$$\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

Harmonic mean of all $g_i(s)$
Network Coherence: Heterogeneous Case

\[T(s) = \frac{1}{n} \bar{g}(s) \mathbb{1} \mathbb{1}^T + T(s) - \frac{1}{n} \bar{g}(s) \mathbb{1} \mathbb{1}^T \]

\[\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s) \right)^{-1} \]

The effect of non-coherent dynamics vanishes as:

- For almost any \(s_0 \in \mathbb{C} \)
 \[\lim_{\lambda_2(L) \to +\infty} \left\| T(s_0) - \frac{1}{n} \bar{g}(s_0) \mathbb{1} \mathbb{1}^T \right\| = 0 \]
 \[\lim_{s \to s_0} \left\| T(s) - \frac{1}{n} \bar{g}(s) \mathbb{1} \mathbb{1}^T \right\| = 0 \]

- For \(s_0 \in \mathbb{C} \), a pole of \(f(s) \)

Excluding zeros: the limit holds at zero, but by different convergence result

We can further prove uniform convergence over a compact subset of complex plane, if it doesn’t contain any zero nor pole of \(\bar{g}(s) \)

Extensions for random network ensembles, \(g_i(s) := g(s, w_i) \) (\(w_i \) random), then \(\bar{g}(s) = (E_w [g^{-1}(s, w)])^{-1} \)

Convergence of transfer matrix is related to time-domain response by Inverse Laplace Transform
Connection to Time Domain

If $\bar{g}(s)$ and $T(s)$ stable ($||\bar{g}||_{\infty}, ||T||_{\infty} \leq \gamma$), then there is $\bar{\lambda} = O(\gamma/\varepsilon)$ such that:

- **ε-approximation**, for any network L, with $\lambda_2(L) \geq \bar{\lambda}$

 \[
 \sup_{t>0} |y_i(t) - \bar{y}(t)| \leq \varepsilon
 \]

 where $\bar{y}(t)$ is the coherence dynamics response:
 \[
 y(s) = \bar{g}(s) \frac{1}{n} \sum_{i=1}^{n} u_i(s)
 \]

- **element-wise coherence**, for any pair of nodes i and j

 \[
 \sup_{t>0} |y_i(t) - y_j(t)| \leq 2\varepsilon
 \]
Example: Icelandic Power Grid

- Iceland power network: 189 buses, 35 generators, load 1.3GW (PSAT)

\[g_i(s) = \frac{1}{m_is + d_i + \frac{r_i^{-1}}{\tau_is + 1}} \]

\[f(s) = \frac{1}{s} \]
Example: Effect of Network Algebraic Connectivity \(\lambda_2(L) \uparrow \)

Coherent dynamics acts as a more accurate version of the Center of Inertia (CoI)
Example: Sinusoidal Disturbances: $\sin(\omega_d t)$

$\omega_d \uparrow$
Outline

• Characterization of Coherent Dynamics [Min, M ‘21]

• Reduced-Order Model of Coherent Response [Min, Paganini, M ’21]

• Grid-forming Frequency Shaping Control [Jiang, Bernstein, Vorobev, M ‘21]
Accurate Reduced-Order Models for Heterogeneous Coherent Generators

Hancheng Min, Fernando Paganini, and Enrique Mallada

IEEE Control Systems Letters, 2021
Aggregation of Coherent Generators

\[g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}} \]

- \(m_i \): inertia
- \(d_i \): damping coefficient
- \(r_i^{-1} \): droop coefficient
- \(\tau_i \): turbine time constant

Disturbance \(u_1 \)

Angular velocity \(w_i \)

Coherent group of \(n \) generators
Aggregation of Coherent Generators

\[
g_i(s) = \frac{1}{m_i s + d_i + \frac{r_i^{-1}}{\tau_i s + 1}}
\]

Question: How to choose the different parameters of \(\hat{g}(s) \)?

\[
\hat{g}(s) = \frac{1}{\hat{m} s + \hat{d} + \hat{r}^{-1}}
\]

\[
\sum_{i=1}^{n} u_i \rightarrow \hat{w}
\]

Answer: Use instead

\[
\hat{g}(s) = \frac{1}{n \bar{g}(s)} = \left(\sum_{i=1}^{n} g_i^{-1}(s) \right)^{-1}
\]
Challenges on Aggregating Coherent Generators

For generator dynamics given by a swing model with turbine control:

\[g_i(s) = \frac{1}{m_is + d_i + \frac{r_i^{-1}}{\tau_is + 1}} \]

The aggregate dynamics:

\[\hat{g}(s) = \frac{1}{\hat{m}s + \hat{d} + \sum_{i=1}^{n} \frac{r_i^{-1}}{\tau_is + 1}} \]

high-order if \(\tau_i \) are heterogeneous

Need to find a low-order approximation of \(\hat{g}(s) \)
When time constants are heterogeneous:

\[
\frac{r_1^{-1}}{\tau_1 s + 1} \quad \vdots \quad \frac{r_n^{-1}}{\tau_n s + 1}
\]

Aggregating heterogeneous turbine dynamics

\[
\frac{\hat{r}^{-1}}{\tau s + 1}
\]

Time constant \(\tau \) is chosen by:
- Optimization: Germond’78, Guggilam’18
- Weighted harmonic mean: Ourari’06

Drawbacks:
- the order of overall approximation model is restricted to 2nd order
- the only “decision variable” is the time constant
- does not consider the effect of inertia or damping in the approx.
Our Approach

Leverage weighted balance truncation to build a hierarchy of approximations

\[
\hat{g}(s) = \frac{1}{\hat{m}s + \hat{d} + \sum_{i=1}^{n} \frac{r_i^{-1}}{\tau_i s + 1}}
\]

\[
\tilde{g}_k(s) = \frac{1}{\tilde{m}s + \tilde{d} + \tilde{g}_{tb,k-1}(s)}
\]

The case \(k = 3 \), leads to a more flexible approximation
Comparison with (Some) Existing Methods

By essentially relaxing the restrictions on reduced order model:
- increase the model order to 3rd order,
- reduction on closed-loop dynamics,
our proposed models outperform models by conventional approach.
Outline

• Characterization of Coherent Dynamics [Min, M ‘21]
• Reduced-Order Model of Coherent Response [Min, Paganini, M ‘21]
• Grid-forming Frequency Shaping Control [Jiang, Bernstein, Vorobev, M ‘21]
Storage-Based Frequency Shaping Control
Yan Jiang, Eliza Cohn, Petr Vorobev, Member, IEEE, and Enrique Mallada, Senior Member, IEEE

IEEE Transactions on Power Systems, 2021

Grid-forming frequency shaping control
Yan Jiang¹, Andrey Bernstein², Petr Vorobev³, and Enrique Mallada¹

IEEE Control Systems Letters, 2021
Grid-following Frequency Shaping Control

Key idea: use model matching control (at each bus/area)

\[u_i \rightarrow \frac{1}{f_i ms + d} \rightarrow \frac{1}{f_i ms + d} \rightarrow w_i \]

\[f_i \frac{r^{-1}}{r + 1} \rightarrow \frac{f_i c_{fs}(s)}{\tau s + 1} \rightarrow w_i \]

\[c_{fs}(s) := \frac{A_1 s^2 + A_2 s + A_3}{\tau s + 1} \]

\[A_1 = \tau (a - m) \]
\[A_2 = b\tau + a - m \]
\[A_3 = b - r_g - d \]

Leads to CoI Frequency \(\bar{w} \) with:

RoCoF:
\[\|\dot{\bar{w}}\|_\infty = \frac{1}{\sum_i f_i} \frac{\sum_i u_{0i}}{a} \]

Steady-state:
\[\bar{w}(\infty) = \frac{1}{\sum_i f_i} \frac{\sum_i u_{0i}}{b} \]

[TPS 21] Jiang, Cohn, Vorobev, M, Storage-based frequency shaping control, IEEE Transactions on Power Systems, under review
Trading off Control Effort and RoCoF

[TPS 21] Jiang, Cohn, Vorobev, M. Storage-based frequency shaping control, IEEE Transactions on Power Systems, accepted
Trading off Control Effort and RoCoF

Challenge: Solution Limited to Grid-following Inverters

[TPS 21] Jiang, Cohn, Vorobev, M, Storage-based frequency shaping control, IEEE Transactions on Power Systems, accepted
Grid-forming Frequency Shaping Control

Key idea: use model matching control on coherent dynamics

\[\sum_i u_i \rightarrow \hat{g}(s) = \left(\sum_{i \in G} g_i^{-1}(s) + \sum_{i \in I} h_i^{-1}(s) \right)^{-1} \rightarrow \bar{w} \]

Generation:
\[g_i(s) = \frac{1}{m_is + d_i + \frac{r_i^{-1}}{\tau_is+1}}, \quad i \in G \]

Inverters:
\[h_i(s) = \frac{1}{m_is + d_i + c_i(s)}, \quad i \in I \]

\[a := \sum_{i \in G} m_i + \sum_{i \in I} m_i \]
\[b := \sum_{i \in G} (d_i + r_i^{-1}) + \sum_{i \in I} d_i \]
\[\sum_i c_i(s) = \sum_{i \in G} \frac{r_i^{-1}\tau_is}{\tau_is+1} \]

RoCoF:
\[||\dot{\bar{w}}||_\infty = \frac{\sum_i u_{0i}}{a} \]

Steady-state:
\[\bar{w}(\infty) = \frac{\sum_i u_{0i}}{b} \]

Summary

- Frequency domain characterization of **coherent dynamics**, as a low rank property of the transfer function.

- **Coherence is a frequency dependent** property:
 - Effective algebraic connectivity $f(s)\lambda_2(L)$
 - Disturbance frequency spectrum

- We use frequency **weighted balanced truncation** to suggest possible improvements to obtain accurate reduced order model of aggregated dynamics of coherent generators:
 - increase model complexity (3rd order/two turbines)
 - model reduction on closed-loop dynamics

- Grid-forming Frequency Shaping Control
Thanks!

Related Publications:
• Min, M, “Coherence and Concentration in Tightly Connected Networks,” submitted
• Min, Paganini, M, “Accurate Reduced Order Models for Coherent Synchronous Generators,” L-CSS 2021
• Jiang, Bernstein, Vorobev, M, “Grid-forming Frequency Shaping Control,” L-CSS 2021

Enrique Mallada
mallada@jhu.edu
http://mallada.ece.jhu.edu
Backup Slides

Numerical Examples
Modal Decomposition
Coherence