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Synchronization

A Universal Concept in Nonlinear Sciences
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Power Grids



Intended Solution:

stable synchronized behaviour
along the whole network of
networks



How to control such networks?
Pinning Control (which nodes?)
Highly Non-trivial Task
Monster blackouts

Failing of Control!!!



Man-Made: Germany Papenburg:
Monster Black-Out 04-11-2006

* Meyer Werft in Papenburg

* Newly built ship Norwegian Pearl
length: 294 m, width: 33 m

» Cut one line of the power grid

« Black-out In
Germany ( > 10 Mio people)
France (5 Mio people)
Austria, Belgium, Italy, Spain



Danger of cyberattacks on the
energy supplying systems

(G7 ministers — May 12, 2015)

Challenge for Complex Systems
Science
(Physics, Mathematics,
Engineering,Computer Science...)



Stability



Alexandr Mikhailovich Lyapunov

* Lyapunov was the first to consider modifications
necessary in nonlinear systems to the linear
theory of stability based on linearizing near a
point of equilibrium

* The equilibrium x¢ of the system is said to be

Lyapunov stable, if for every (V € > 0) and (V
t,), there exists a & = d(ty, €) > 0 such that,

If [X(ty)-Xs|< O, then |x(1)-x¢|< €, for every t > 0.
« Extension to asymptotical and exponential
stability



Stability of Networks

Synchronizability —
Master Stability Formalism

Pecora&Carrol (1998) —

based on local stability



Small world network with Roessler oscillators
i =F(r) + K ) Ay[H(rj) — H(ri)] = F(r;) — K ) LijH(r;).
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Chaotic Rossler oscillators, N = 100
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Main Result: SW-Network best synchronizable

for most random SW-networks
Puzzle!



MSF — local stability
(Lyapunov stability)

How to go beyond (not
only small perturbations)?

Lyapunov Functions?



Engineering Term:

Transient Stability



Network s Basin Stability

basin volume of a state (regime)

measures likelihood of return to
this state (regime)

Nature Physics 9, 89 (2013)



Network's Basin Stability

basin volume of a state (regime) measures the
likelihood of

- arrival at this state (regime)
quantifies its relevance (M. Girvan, 2006)
- return to this state after a random perturbation
quantifies its stability
( Menck, Heitzig, Marwan, Kurths:
Nat. Phys., 2013)



Normalized Network’'s Basin
Stability

B - Synchronous state’s basin of attraction

B={xeS|®:(x)—1}

Q - Subset of state space S covering the system’s (weak)
attractor

Seng = Vol(BN Q)/Vol(Q) € [0, 1]

Normalized Basin Stability



Bernoulli-like experiment

- T experiments (different initial
conditions — randomly distributed)

- M states converge to I
-Estimate M/ T

= standard error .- 2528

- T=500 =>» error < 0.023
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Supplementary Figure S1: Basin Stability in Rossler networks. Expected basin stability (S)
versus p. [ he grey shade indicates & one standard deviation. The dashed line shows an exponential
fitted to the ensemble results for p > 0.15. Solid lines are guides to the eye. a: N = 100, b:

N=200.
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Synchronizability and basin stability
inWatts-Strogatz (WS) networks

of chaotic oscillators.

a: Expected synchronizability R versus the
WS model's parameter p.

The scale of the y-axis was reversed to
indicate improvement upon increase in p.
b: Expected basin stability S versus p. The
grey shade indicates one standard
deviation.

The dashed line shows an exponential
fitted to the ensemble results for p > 0.15.
Solid lines are guides to the eye. The plots
shown were obtained for N = 100
oscillators of Roessler type, each having on
average k = 8 neighbours. Choices of
larger N and different k produce results that
are qualitatively the same.
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Analysis of Power Grids

Single generator’'s dynamics

h =

w = —aw+ P — Ksin(f — 0:4)

>

~"
::1)11':1115

0 and w - phase and angular frequency of the generator’s
voltage vector in a reference frame that co-
rotates with the grid’s rated frequency

-> w =0 synchrony

P — net power input
- aw -damping
P.... - power flow to the grid across the transmission line



« Basins of attraction of 4,

Frequency
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Fig. 1. (color online). Parameter space and state space of the one-machine infinite bus
system. In the left panel (a), red indicates the area of stable fixed point. In the yellow area,
the oscillator either converges to stable fixed point or rotates periodically depending crucially
on initial values of # and 6. White area indicates the existence of stable limit cycle. (b): Basin
of attraction of the stable fixed point 6 is indicated in the green area with a = 0.1, P = 0.5

and K = 1. The stable fixed point and saddle are also plotted in red. The saddle is at the
right side of the stable fixed point.




Power Grid Model

(92. = W

N
w; = —ow;+ P;— Z K sin(0; — 0;)

j=1

f; and w; denote phase and frequency of the generator at node 1
Node i net generator if £ > 0
Node i net consumerif £ <0

@; - damping constant
P; - net power input



Main Question:
How stable is the synchronized
regime”?

Stability even in case of large
perturbations at one node

=» Concept of basin stability
Nature Commun. 5, 3969 (2014)



Single-Node Basin Stability

S; € 10, 1]

Probability that the grid will return to its
synchronous state after node | has been hit by a
random large perturbation

Single node basin stability 5 := Vol(5:1 Q)/Vel(Q) € [0, 1

v € B with 6; = 0] and w; = 0 for all j # i}

......



Perturbed Initial Conditions only
at Node |
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Application to the
Scandinavian Power Grid

Figure 4: Northern European Power Grid. The grid has N = 236 nodes and E = 320
transmission lines. The load scenario was chosen randomly, with squares (circles) depicting
N/2 net consumers with P, = —P (net generators with P, = +P). The colour scale
indicates how large a node’s basin stability S; 1s. Insets [-III show re-computed basin
Sla-l]lilit}' values after 27 lines have been added 1 order to *heal’ dead trees I see Meth nﬁls}.
New lines are coloured red. Our simulation parameters, « = 0.1, P = 1, and K = 8,
imply the simplifying assumptions that all generators in the grid are of the same making
and that all transmission lines are of the same voltage and impedance. These assumptions
enable us to focus on the effects of the (unweighted) topology. For details, see Methods.



First Conclusions

« Concept of basin stability enables important
new insights and principles for the design of
(Smart) Power Grids

* Dead ends and dead trees strongly diminish
stability (trouble makers) =» to be avoided

» ,Healing” dead ends by addition of a few
transmission lines enhances substantially
stability

* For the Scandinavian power grid: addition of 27
lines (8 % of the total) suffice to substantially
improve stability — rather low-cost solution)




Power grids with losses

T
Hipi =P, — D;p; — E Pi; .

j=1

P, = K;; (sin (i) +sin (@; — @ — @i ))

A

Complex Admittance  Y;, = —iK;; exp(ic;)

WA N N T N A BT BT \&L&h

X reactance V.. — 1
R resistance *J R +iXqy




| oss-free correct?

* In most power grid studies considered (as
above):.

a =0 (because R =0)

« But in reality:
a = 0.24 — high-voltage power grids

a =14 — medium voltage...



Crucial question:

Which consequences have
losses for solutions and
stability?



FIG. 1: Network models. a The Scandinavian

(extra-)high voltage transmission grid. b A circle
topology with coupling to next-nearest neighbours, i.e.
a coupling radius of R = 2. In both cases, squares
denote net consumers and circles net producers.




New multistability occurs

Shift of limit cycle:
wl’c = W]e— % sin(a)

Strongly change the basin structure of the
solitory (periodic) solution

Even flips signs of rotation =» exotic
oscillates in opposite dir. solitary state

Further solutions appear




(a) Scandinavian grid
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FIG. 2: Phase space cross sections. Cross section of the phase space corresponding to phase ¢, and phase

velocity wy. of a randomly chosen node of a the Scandinavian power grid and b the circle topology (both with

standard parametrisation and control, see Methods). Each point belongs to the sync basin (), the basin of a

solitary state rotating naturally (M) or in the basin of an exotic solitary state (W). Other asymptotic states are
marked in grey (m). Further parametrisations are given in SI




Average Singel Node Basin
Stability (ABSB) in dependence
on the loss a

(realistic perturbations)



(a) ASBS - Scandinavian (b) ASBS - Circle (c) global BS - Circle
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FIG. 3: Basin stability. The top row shows the average single node basin stability ASBS (a, b) and the global
basin stability BS (c) of three types of asymptotic regimes: synchronisation (---), exotic solitaries (—) and the
union of normal and exotic solitaries (----). Simulations were performed with standard parametrisation and control




» EXxotic solitary solutions found analytically
via a mean field approach

* Appear through a homoclinic bifurcation

» Losses are realistic and have to be
included (even in high voltage power
grids)

* Losses induce new exotic solitary waves

* They pose a challenge for control

Nat Comm 2020



Outlook

« Sampling-based approaches as basin stability,
survivabllity, threshold stability, stochastic basin
stability are promising

 Many open problems:

- Prove the techniques - mathematical
foundation

- include time-varying price feedback

- include renewable components (wind, sun)
- design for islands (not only diesel)

- transient dynamics
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