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Why use NEMS ??!

!  Alternate:  superconducting systems (Josephson junctions)!
!  Need low temperatures ( below TC , typ. few K )!
!  Difficult to track multi-GHz dynamics;  !

h/2e = 484 MHz/µV  (Vthresh typ. 10’s of µV)!
!  Voltages (µV-scale) are a complete mismatch for !

conventional electronics (V-scale; cannot embed)!
!  Solely permits realization of rotators (phase oscillators)!

!  NEMS  (!!)!
!  Ultralow intrinsic dissipation �high Q resonators!
!  Completely controllable:  frequency,  intrinsic nonlinearity,  dissipation!
!  Straightforward to track fast system dynamics (1-1000 MHz)!
!  Easy to controllably couple; can realize extremely large ensembles!
!  Complete freedom to design arbitrary array architecture!
!  Co-integration with CMOS in progress;  gain, feedback � oscillators!
!  Ability to transition from classical to quantum dynamics (…need to cool to millikelvin temperatures)!

!  Alternate:  analog electronics!
!  Ultralow dissipation tunable elements unavailable!
!  Simple, controllable nonlinear anharmonic response unavailable!
!  Difficult to achieve fast, tunable response:  witness MEMS oscillators!

!
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Structure and function of interdependent networks

Each network is a complex system with emergent behaviors



Behaviors not predicted a priori from the constituent equations of 
motion. 

Synchronization and 
pattern formation. 

Phase transitions
“Tipping points”

Cascading failures. 

What are emergent collective behaviors? 



Where is the complexity? 

In the nodal dynamics?

Statistical 
Physics 

Control theory and 
non-linear dynamics

In the network structure?

In both! 



Today’s topics:

q Decoupled synchronized states
• Interplay of nodal dynamics and network structure

q Cluster synchronization on hypergraphs
• Systems with higher-order coupling, beyond dyadic
• The projection onto dyadic matrices is sufficient for 

analyzing full synchronization, but not cluster 
synchronization.

• Formulation in terms of node- and edge-clusters. 

q Cascading dynamics on oscillator networks 
• The BTW sandpile model meets Kuramoto



Decoupled states:   Phase-amplitude oscillators
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Described by slow-time envelope 
dynamics Ai(t)

Nanoelectromechanical membrane, with a “Duffing”-like non-linearity

Experimental collaboration with Micheal
Roukes and Matt Matheny at Caltech

ARO MURI No. W911NF-13-1-0340



8-node of ring NEMs oscillators



Decoupled NN with emergent NNN order

Interplay of nodal dynamics and coupling structure lead to 
decoupled states on ring of N=4m, m ∈ ℤ.

Average |Ai|=1



Matheny et al., “Exotic states in a simple network of nanoelectromechanical
oscillators”, Science, 363, March 8, 2019. 

Emergent couplings of higher order 



Linear stability calculations

Symmetry subgroups of nodal dynamics and coupling structure 
constrain the Jacobian:  

Ring of 4m,    m ∈ ℤ

• Unstable for phase-only oscillators.

• Stable for phase-amplitude oscillators. 

• Although average |Ai| = 1,  fluctuations are necessary to stabilize the system!

Emenheiser, et al., arXiv:2010.09131



Admissibility and stability of decoupled states in general
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Decoupled synchronization 
on ring networks

Cluster synchronization 
on hypergraphs

Hypergraphs – beyond dyadic coupling

• Hypergraph coupling: Hyperedges 
representing higher-order interactions 
(dyadic, triadic, etc.)

• Challenge: Hyperedges of all order 
contribute to the dynamics and the  
stability calculations. 

Example higher-order interactions: 
• Chemical reactions
• Co-authorship networks



Cluster synchronization on hypergraphs

Anastasiya Salova, R.D., arXiv:2101.05464

Cluster synchronization: 

Nodes can be divided up into distinct groups 
where the dynamical trajectories within a 
group are identical, but distinct from all the 
other groups.  

2 cluster state

Anastasiya Salova, R.D., arXiv:2107.13712



The hypergraph may support multiple states

2 cluster state 4 cluster state 8 cluster state

• How do we find the admissible clusters? 

• How do we calculate their stability properties? 



Hypergraph:  Incidence matrices of all orders

Incidence matrices

(Can equivalently formulate in terms of adjacency tensors A(m))
e.g., Battiston et al., Phys. Reports 2020. 

4 cluster state
Dyadic Triadic

Node evolution: 



Dyadic projection of the hypergraph

Projecting the interactions for each order m onto a dyadic adjacency matrix 

Useful in analyzing the admissibility and stability of full synchronization:
• Gambuzza, et al., Nature Communications 12(1), 2021.
• Lucas, et al., Phys. Rev. Research 2:033410, 2020.
• Carletti, et al., J of Phys: Complexity 1(3):035006, 2020.
• Ferraz de Arruda et al., Communications Physics, 4(1), 2021.

But not sufficient for more complex dynamics like cluster synchronization on general 
hypergraphs:



The projection is not always unique

Two non-isomorphic hypergraphs 
(with only triadic interactions) Same projection, 𝒜(3)

Distinct dynamical processes:



Symmetries of the projection versus the hypergraph

Structural symmetries of the system (orbital partitions) let us determine 
many of the admissible states.  

Not all the symmetries of the projection (b) are symmetries of the original hypergraph (a)



The solution – organize by edge clusters

6 types of dyadic 
edge-clusters

2 types of triadic 
edge-clusters

For K-cluster state

Node clusters: C1 to CK

Node cluster trajectories: s1 to sK

For each order m there are Km different edge clusters

Edge clusters: C1
(m) to CKm

(m) for each order m 
Edge cluster trajectories: 



Admissible patterns of cluster synchronization

Equitable partitions of node and edge 
clusters:

External equitable partitions if Laplacian-
like coupling 

The partition is equitable if each node in a 
given node cluster gets the same input from 
each edge cluster over all edge orders



Stability calculations

Instead of defining one single projection A(m) for each order m, define a 
projected adjacency matrix for each edge cluster of order m>2

I(3)
1 = I(3)

2 =

k denotes the k-th, m-th order edge cluster



Stability calculations

Jacobian organized by edge-clusters and their trajectories 

Ej – cluster indicator matrix for which nodes are in node cluster j. 

All node clusters (first term) and all edge clusters of all orders (second term) 
contribute to linear stability calculation.  



Stability calculations, cont

Simultaneously block-diagonalizing this set of matrices block-diagonalizes the Jacobian.



Example: Layered hypergraph (multiple edge types)

Anastasiya Salova, R.D., arXiv:2101.05464 Anastasiya Salova, R.D., arXiv:2107.13712

https://github.com/asalova/hypergraph-cluster-sync



BTW sandpile model used to model power grid and brain networks 

Oscillator networks exhibit cascading failures



Self-organized criticality



Sandpile models on networks



Self-organized criticality

Extreme events often referred to as “Black Swans” 



SOC in power grids and the brain? 

But this neglects the oscillatory nature of the nodes!

Guram Mikaberidze

arXiv:2112.00104

Initial goal: Leverage interaction to maximize 
synchronization and minimize large cascades.



Coupled BTW-KM dynamics. Each node has:
• Phase 𝜙i (KM)
• Capacity ci (BTW)
• Load si (BTW)

Oscillator dynamics:  The Kuramoto model 

Time evolution of the phase of 
oscillator i

Synchronization phase 
transition at critical coupling



BTW -> KM 
• If a node topples during a cascade its phase is reset at random at the 

end of the cascade. 

KM -> BTW 
• Assume a node out-of-sync with its neighbors is more vulnerable so 

lower its capacity to hold load. 
• This creates endogenous cascade seeds. 

Coupled BTW-KM 



Explicit dynamical rules

• Uniform oscillator frequencies (for now)



Emergent periodic oscillations

3-regular random graphs 

• r(t) is the Kuramoto order parameter

• S is the total load on the system



Emergent 3-phase oscillations

Cascade size distribution in 
each of the three phases 



Self-amplifying cascades kick off a DK

Exponential growth in subsequent size:
“cascade of cascades” 

At the tipping point, a large cascade desynchronizes many nodes, causing an even
larger cascade at the next step. 



Poorly understood, massive events caused by nonlinear 
amplifying mechanisms. (Introduced by D. Sornette, 2009.)

Beyond “Black Swans” -> Dragon Kings



• Bubbles in financial markets; sizes 
of cities; failures in engineered 
systems & nuclear accidents, etc. 

• Self-amplifying mechanism, 
endogenous nature

• Far more likely than Black Swans 
and equally massive

• Theory in its infancy:
– Conjecture: needs 

homogeneous elements with 
large coupling

• Dragon kings have predictability 

Dragon Kings



Analytic calculations

(1) The location of the tipping point 

(2) The frequency of the DK cycle (3) The cascade distribution 
in the buildup phase 

(4) The thermodynamic limit

Guram Mikabiredze and R.D., arXiv:2112.00104



Let oscillator frequency depend inversely on load – more load spins slower

Next steps 1: Different coupling from BTW to Kuramoto



• Local sync drives capacities higher 
• Higher capacity which causes higher dispersion in frequencies
• Frequency dispersion destabilizes the synchrony.

Next steps 1: Different coupling from BTW to Kuramoto



Next steps 2: Theory of Dragon Kings
Dragon Kings as an absorbing-state phase transition.
Slow driving and small dissipation cause self-organized DK cycles.  

Self-organization around a (a) 1st order and a (b) second order phase transition.



• Complex co-evolving networks:
• New phenomena & emergent timescales 
• Long-time oscillations – opportunity to self-organize (e.g., beta-

waves in neuronal networks, correlations among generators in the 
power grid).  

• Modeling layered networks with inhibitory and excitatory layers 
(e.g., the visual cortex)

• Distributed control:
• How are existing sandpile control schemes disrupted by the oscillatory 

degree of freedom?
• Interventions to nodal frequencies for sandpile control (e.g., explosive 

sync reveals interplay of nodal frequency distribution and network 
topology). 

More opportunities? 



Conclusions/Opportunities

Interplay of nodal dynamics and network structure
• Decoupled synchronized states 

Hypergraph dynamics:
• Higher order interactions
• Organizing by edge clusters organizes calculations and simplifies stability 

calculations.

Cascades on oscillator networks
• Coupling the oscillatory and cascading dynamics leads to new emergent 

behaviors and emergent timescales. 


