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ABSTRACT OF THE DISSERTATION

Coordination and competition in optimal dispatch: distributed
algorithms, saddle-point dynamics, and iterative bidding

by

Ashish Kumar Cherukuri

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2017

Professor Jorge Cortés, Chair

The share of renewable energy generation in meeting our electricity needs

is growing by the day. A majority of these renewables have small generation ca-

pacity and they are geographically distributed. It is for this reason that they are

often termed as distributed energy resources (DERs). In addition to the capac-

ity constraint, DERs’ generation is highly variable and uncertain. The current

electricity grid, on the other hand, was designed for centralized bulk generation.

Therefore, regulating authorities like the Independent System Operator (ISO) or

the Regional Transmission Organization (RTO) find it quite challenging to seam-

lessly integrate these DERs into the current grid, without affecting the quality of

service to consumers. As one of the measures of tackling this issue, regulating

xviii



authorities envision a hierarchical architecture where, at the lower layer, different

sets of distributed energy resources (DERs) coordinate their response under an

aggregator and, at the upper layer, the ISO interacts (through a market) with the

aggregators to solve the optimal dispatch problem. In this scenario, aggregators

function as virtual, large-capacity generators. While the DERs under one aggre-

gator can cooperate among themselves, the aggregators compete with each other

in the market. Given this context, this thesis designs and analyzes coordination

among DERs and competition among aggregators.

Specifically, the thesis can be divided into three parts. The first part fo-

cusses on the static and the dynamic optimal dispatch problems, where the aim

for a set of DERs is to plan their generation so as to meet a particular load, min-

imize the total cost of generation, and respect individual constraints. For these

optimization problems we design a suit of Laplacian-gradient based distributed

algorithmic solutions and study their performance. The second part studies the

asymptotic convergence and robustness properties of the saddle-point dynamics.

This dynamics serves as the backbone of numerous distributed algorithms for net-

work constrained optimization problems, including the dispatch problem. Finally,

the third part investigates an electricity market designed for optimal dispatch

among the aggregators. We design and analyze an iterative bid update scheme

for the aggregators, discussing the advantages of this scheme using rationality and

robustness arguments.
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Chapter 1

Introduction

Traditional electricity grid was designed for the case where few bulk gener-

ators produce power at certain location; transmission lines carry that power over

long distances at high voltage; and distribution system distributes this power to

end-users by stepping down the voltage to a nominal value. In the past decade,

and more so in the future, environmental concerns have fueled technological ad-

vancements in renewable energy sources and their share in total power generation

has only increased. These renewables, unlike the bulk generators, have small ca-

pacity with uncertain and variable generation and are geographically distributed

– the reason why they are commonly referred to as distributed energy resources

(DERs). Since the grid was designed for bulk generation, integrating DERs into it

while ensuring secure, reliable, and cost-effective power provision is a major chal-

lenge that the central regulating authorities like the Independent System Operator

(ISO) or the Regional Transmission Organization (RTO) are concerned with.

One of the main ingredients of grid operation is the planning of generation

based on the predicted load. This planning occurs at various stages. First, the

generation levels at every hour of the next day is decided for the available gen-

erators. This planning is termed as the day-ahead dispatch. Then, this planned

generation is adjusted every 15 minutes while the day progresses. This is com-

monly referred to as the economic dispatch or the optimal dispatch. Even at this

level, the generation and load are not exactly same at all times, at which point,

lower-level, primary and secondary controllers adjust the power at a faster time

1
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scale to maintain the balance between generation and load. In this thesis our fo-

cus will be on the higher-level of planning, that is, the day-ahead dispatch and the

optimal dispatch.

After the deregulation of the power generation, the well-established way

for carrying out optimal dispatch has been through a market clearing. Here, gen-

erators bid into a market regulated by the ISO and based on the clearing done

by the ISO, each generator gets a signal for the amount of generation requested.

ISO operates various markets: day-ahead dispatch, real-time dispatch, regulation

services, etc. For the dispatch markets, clearing is done by the ISO based on

minimizing the payments made to the generators and ensuring secure and reliable

power provision. Thus, the market clearing process is essentially finding the so-

lution of a constrained optimization problem. Since traditionally there were few

generators involved in power provision, solving this optimization problem was not

too difficult. But renewables are more in number with low capacity and uncer-

tain and volatile generation. This in turn makes the market clearing a very large

stochastic optimization problem which is very difficult to solve. In order to han-

dle this problem, the California ISO has recently proposed a hierarchical dispatch

model [CAI15], shown in Figure 1.1. In this architecture, the distributed energy

resource providers (DERPs), also known as aggregators, work as virtual power

providers. Each of them either owns or has contracts with a group of DERs.

DERPs compete with each other to provide power in the day-ahead and spot mar-

kets based on the number and variety of DERs available to each of them. On

getting a load-demand signal from the market outcome, these DERPs then try to

find a cost-effective way of meeting this load while coordinating among the DERs.

Therefore, in the top-level of the hierarchy DERPs compete with each other and

at the bottom-level DERs try to coordinate with each other. Since the number of

DERs and DERPs is going to be big, there is a need to devise efficient and scalable

coordination and competition for this network to ensure reliable and cost-efficient

power supply. This is the central theme of this thesis.

The thesis can be divided into three parts. The first part (Chapter 3,

Chapter 4, and Chapter 5) focusses on the static and the dynamic optimal dis-
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ISO/RTO

DERs

DERs

DERs

Aggregators/DERPs

Figure 1.1: Hierarchical network architecture to facilitate power dispatch in the
future grid.

patch problems for the DERs. Here, the aim for a set of DERs is to plan their

generation so as to meet a particular load requested by an aggregator, minimize

the total cost of generation, and respect individual constraints. For these optimiza-

tion problems we design a suit of Laplacian-gradient based distributed algorithmic

solutions and study their performance. The second part (Chapter 6, Chapter 7,

and Chapter 8) studies the asymptotic convergence and robustness properties of

the saddle-point dynamics. This dynamics serves as the backbone of numerous

distributed algorithms for network constrained optimization problems, including

the dispatch problem. Finally, the third part (Chapter 9) investigates an electricity

market designed for optimal dispatch among the aggregators. We design and ana-

lyze an iterative bid update scheme for the aggregators, discussing the advantages

of this scheme using rationality and robustness arguments.
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1.1 Literature review

1.1.1 Distributed economic dispatch

The (static) ED problem has been traditionally solved in a centralized man-

ner, see e.g. [CR90] and references therein. Given the expected high density of dis-

tributed energy resources (DERs) in the future electricity grid [Far10], the nature

of the solution methodologies to the ED problem has shifted to distributed ones.

While there exists a broad variety in the assumptions made, a majority of these

works rely on the specific form of the solutions of the optimization problem and

propose consensus-based algorithms. Many works consider convex, quadratic cost

functions for the power generators and perform consensus over their incremen-

tal costs under undirected [ZC12, KH12] or directed [DGCH12, BDL+14] com-

munication topologies. The work [LCA+12] considers linear cost functions and

focuses on the design of a heterogeneous network architecture for faster conver-

gence of the consensus scheme. Some works consider general convex cost func-

tions, like we do in this thesis, but either do not consider capacity constraints

on the generators [MDC12], assume the initial power allocation to meet the to-

tal load [PQP14], or require feedback on the power mismatch from the shift in

frequency due to primary droop control [ZLW+14]. Along with load and capacity

constraints, [BDL+14, LV14] consider transmission losses, and [BDN+14] addition-

ally take into account valve-point loading effects and prohibited operating zones.

However, these constraints make the problem nonconvex and prevent these works

from obtaining theoretical guarantees on the algorithm convergence properties.

In [DGH12], the authors propose best-response dynamics for a potential-game for-

mulation of the nonconvex ED problem, but the implementation requires all-to-all

communication among the generators. [XB06, JJ09] introduce distributed methods

to solve resource allocation problem very similar to the ED problem, but without

taking into account individual agent constraints. Instead, these are incorporated in

the formulation of [SKJ12], but the proposed algorithm arrives at suboptimal solu-

tions of the optimization problem. Our work is also related with the literature on

distributed optimal frequency control in power networks [ZTLL14, MZL, LZC16]
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dealing with primary and secondary control (tightly connected with the physical

network and its dynamics over short time horizons), while we focus here on tertiary

control (which allows for longer time horizons and more flexibility in planning).

Regarding the information on the total load, there is a wide variety in the scenarios

considered: in [DGCH12] a few randomly selected generators have this knowledge,

in [ZYC11, KH12, LCA+12, BDL+14, LV14] each generator knows the load de-

mand at the bus it is connected to and algorithms are devised to aggregate this

information. None of the approaches mentioned above study scenarios where the

set of generator units varies over time, which normally results in violations of the

load requirements. The iterative algorithms in [DGH11] solve asymptotically the

problem of finding a feasible (not necessarily optimal) power allocation for the ED

problem. The algorithmic solutions that we provide in this thesis either find a

feasible allocation in finite time or asymptotically track a time-varying load signal.

Hence, these algorithms can handle unit addition and deletion.

As argued in [XE10, IXJ11], the dynamic version of the ED problem, termed

dynamic economic dispatch (DED), results in better grid control as it optimally

plans generation across a time horizon, specifically taking into account ramp lim-

its and variability of renewable sources. A majority of solution methods to the

DED problem are again centralized [XE10] with recent works employing model

predictive control (MPC)-based algorithms [IXJ11, XZE11]. The work [LWZ+13]

proposes a Lagrangian relaxation method to solve the DED problem, but the im-

plementation requires a central coordinator that communicates with all generators.

MPC methods have also been employed in [HMMD13] for the dynamic economic

dispatch with storage (DEDS) problem, which adds storage units to the DED prob-

lem to lower the total cost and smooth out the generation profile across time. The

stochastic version of the DEDS problem adds uncertainty in demand and genera-

tion by renewables. Algorithmic solutions for this problem emphasize on breaking

down the complexity to speed up convergence for large-scale problems and include

stochastic MPC [ZH14], dual decomposition [ZGG13], and optimal condition de-

composition [SRK15] methods. The work [ZKG16] proposes an ADMM-based

algorithm to solve a variation of the DEDS problem where optimal electrical ve-
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hicle charging is the goal. The above-mentioned methods for the DEDS problem

are either centralized or need a central coordinator. On the other hand, [KCLB13]

proposes an ADMM-based distributed algorithm to find the optimizer of a gen-

eral time-coupled dispatch problem. In comparison, the algorithm proposed in

this thesis (see Chapter 5) is robust to load variations and intermittent generator

commitment.

Our work on distributed solutions for dispatch problems is also related

to the emerging body of research on distributed optimization, see e.g., [ZM12,

NOP10, JRJ09] and references therein. In this class of problems, each agent in

the network maintains, communicates, and updates an estimate of the complete

solution vector. This is a major difference with respect to our setting, where each

unit optimizes over and communicates its own local variable, and these variables

are tied in together through a global constraint.

1.1.2 Saddle-point dynamics

In constrained optimization problems, the pioneering works [AHU58, Kos56]

popularized the use of the primal-dual dynamics to arrive at the saddle points of

the Lagrangian. This class of primal-dual dynamics is often alternatively termed

as the saddle-point dynamics. For inequality constrained problems, this dynamics

is modified with a projection operator on the dual variables to preserve their non-

negativity. This results into a dynamical system with discontinuous right-hand

side. Therefore, to analyze the asymptotic properties of the trajectory of this

dynamics, the standard Lyapunov or LaSalle-based stability results for nonlinear

systems, see e.g. [Kha02], are not directly applicable. This observation is at the

basis of the direct approach to establish convergence taken in [AHU58], where the

evolution of the distance of the solution of the primal-dual dynamics to an arbi-

trary primal-dual optimizer is approximated using power series expansions and its

monotonic evolution is concluded by analyzing the local behavior around a sad-

dle point of the terms in the series. Various instances of this argument are also

combined to provide a global convergence result. Instead, [FP10] takes an indirect

approach to establish asymptotic convergence based on the use of classical notions
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such as invariant sets and LaSalle functions. This work models the primal-dual

dynamics as a hybrid automaton, as defined in [LJS+03], and employs a LaSalle

Invariance Principle to establish the asymptotic convergence of the solutions. This

approach to establish convergence is appealing because of its conceptual simplicity

and the versatility of Lyapunov-like methods in characterizing other properties of

the dynamics. However, the hybrid automaton that corresponds to the primal-dual

dynamics is in general not continuous, thereby not satisfying a key requirement

of the invariance principle stated in [LJS+03]. In Chapter 7, we give an example

that illustrates this point. Subsequently, we provide an alternative proof strategy

to arrive at the same convergence results of [FP10] using the tools of projected

dynamical systems [NZ96].

In the context of distributed control and multi-agent systems, an important

motivation to study saddle-point dynamics comes from network optimization prob-

lems where the objective function is an aggregate of each agents’ local objective

function and the constraints are given by a set of conditions that are locally com-

putable at the agent level. Because of this structure, the saddle-point dynamics

of the Lagrangian for such problems is inherently amenable to distributed imple-

mentation. This observation explains the emerging body of work that, from this

perspective, looks at problems in distributed convex optimization [WE11, GC14,

DE14], distributed linear programming [RC15], and applications to power net-

works [ME13, ZP14, ZTLL14], wireless systems [CLCD07, FP10, CL12, FP14],

and bargaining problems [RC16]. The work [KP87] shows an interesting appli-

cation of the saddle-point dynamics to find a common Lyapunov function for a

linear differential inclusion. In game theory, it is natural to study the convergence

properties of saddle-point dynamics to find the Nash equilibria of two-person zero-

sum games [BO82, GC13, RBS16]. A majority of these works assume the function

whose saddle points are sought to be convex-concave in its arguments. Our fo-

cus in Chapter 6 is on the asymptotic stability of the min-max saddle points

under the saddle-point dynamics for a wider class of functions, and without any

nonnegativity-preserving projection on individual variables. We explicitly allow

for the possibility of a continuum of saddle points, instead of isolated ones, and
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wherever feasible, on establishing convergence of the trajectories to a point in the

set. The issue of asymptotic convergence, even in the case of standard gradient

systems, is a delicate one when equilibria are a continuum [AK06]. In such scenar-

ios, convergence to a point might not be guaranteed, see e.g., the counter example

in [PdM82]. Our results in Chapter 6 are complementary to those in [HL14],

which focus on the characterization of the asymptotic behavior of the saddle-point

dynamics when trajectories do not converge to saddle points and instead show

oscillatory behaviour.

Most of the results mentioned in the previous paragraphs regarding con-

vergence of saddle-point dynamics rely on global strict convexity-concavity of the

function for which the dynamics is written. The results in Chapter 8 relaxes this

assumption and thereby generalizes these results. Specifically, we show that global

convergence of the projected saddle-point dynamics can be guaranteed under local

strong convexity-concavity assumptions. Furthermore, if traditional assumptions

do hold, then a stronger notion of convergence, that also implies robustness, is

guaranteed: if strong convexity-concavity holds globally, the dynamics admits a

Lyapunov function and in the absence of projection, the dynamics is ISS, admitting

an ISS Lyapunov function. In the context of distributed optimization, the recent

work [NC16] employs a (strict) Lyapunov function approach to ensure asymptotic

convergence of saddle-point-like dynamics.

1.1.3 Competition in electricity markets

The study of competition in electricity markets is a classical topic [Sto02,

KS04]. Extensively studied models are supply function, Bertrand (price) and

Cournot (capacity) bidding, see [JT11, TJ13, CBW16], respectively, and refer-

ences therein. These studies analyze the properties of the game that different

bidding models result into by determining the existence of the Nash equilibrium of

the game and estimating its efficiency. Some works [LS05, HR07, BCKS10, NP10],

on the other hand, propose iterative algorithms for the players that compute the

Nash equilibrium of the game. However, these algorithms either require generators

to have some information about other generators (cost functions or bids) or assume
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that the demand of each generator is a continuous function of the bids. Our work

does not make any such assumptions, which also rules out the possibility of using

various other Nash equilibrium learning algorithms, such as best-response [BGJ10],

fictitious play [FL98], and extremum seeking [FKB12, SJS12]. In a related set of

works [WGMM12, SCA16], decentralized generation planning is achieved by as-

suming the generators to be price-takers and designing iterative schemes based on

dual-decomposition [PC07]. In our work, however, we consider a strategic scenario

where generators bid into the market and are hence price-setters. The work [FD16]

proposes an iterative auction algorithm for a market where both generators and

consumers are strategic but does not provide convergence guarantees for the gen-

erated bid sequences. The paper [PG16], closer in spirit to our work, proposes an

iterative method for the generators to find the Nash equilibrium assuming they

do not have any information about each other. At each iteration, the generators

send to the ISO the gradient of their cost functions at a certain generation value

and the ISO then adjusts these generation values so that social welfare is maxi-

mized. An important difference between this setup and ours is that the market

clearing strategy in there elucidates truthful bidding of gradient information by

the generators.

The electricity market game considered in Chapter 9 belongs to the broader

class of multi-leader-single-follower games [LM10, PF05]. The Nash equilibria of

such games can be thought of as optimizers of mathematical programs with equi-

librium constraints (MPEC) [LPR96], that are traditionally solved in a centralized

manner [FDM05]. The work [ZL14] provides a distributed method to find the

equilibria of an MPEC problem but requires the follower’s (the ISO in our case)

optimization to have a unique solution for each action of the leaders (the gen-

erators). This is in general not the case for electricity markets. The results of

Chapter 9 broadly relates to the recent developments in the area of “learning in

games”, see e.g., [HMC15, LSET16], and references therein. Learning mechanisms

proposed in there do not apply directly to the electricity market setting as they

do not consider network constraints for allocation of goods.
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1.2 Contributions

1.2.1 Distributed economic dispatch

We start in Chapter 3 with the formulation of the (static) ED problem for

a group of generator units that communicate over an arbitrary weight-balanced,

strongly connected digraph. The optimization problem is convex as the individual

cost functions are smooth and convex, the load satisfaction is a linear constraint,

and the individual generators’ capacities prescribe convex inequality constraints.

Our formulation is a simplification of the ED problem in its full generality, which

in practice may have additional constraints that make it nonconvex. However,

our developments show that obtaining a provably correct algorithmic solution for

the formulation here of the ED problem given the performance requirements (dis-

tributed, convergent irrespective of initial condition, able to handle time-varying

loads, and robust to intermittent power generation) is challenging.

The contributions of Chapter 3 are threefold. The first contribution per-

tains to the relaxed economic dispatch (rED) problem, which is the ED problem

without bounds on the individual generators’ capacity. We introduce the dis-

tributed Laplacian-gradient dynamics, establish its exponential convergence to the

set of solutions of the rED problem, and characterize the associated rate. As a

by-product of our analysis, we establish the anytime nature of this algorithm and

its convergence under jointly strongly connected communication topologies. Our

second contribution concerns the ED problem. We use a nonsmooth exact penalty

function to transform the problem, which has generators’ capacity bounds, into an

equivalent optimization with no such constraints. The resulting formulation resem-

bles the rED problem, and this leads us to the design of the distributed Laplacian-

nonsmooth-gradient dynamics. This algorithm provably converges to the solutions

of the ED problem, and is also anytime and robust to switching communication

topologies that remain strongly connected. Our third contribution deals with the

distributed allocation of the load to the network of generators while respecting

the capacity bounds. We propose the three-phase strategy determine feasible

allocation, that only involves message passing between generator units over a
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spanning tree. The first phase maintains a spanning tree over the units present

in the network, the second phase determines the capacity of each subtree to allo-

cate additional power, and the third phase allocates power to each individual unit,

respecting the constraints, to meet the overall load. Our algorithm terminates

in finite time and can be used for the initialization of the Laplacian-nonsmooth-

gradient dynamics and to handle scenarios with power imbalances caused by the

addition or deletion of generators.

Chapter 4 builds and generalizes the results of Chapter 3. Our first contribu-

tion is the design of a centralized algorithm, termed “load mismatch + Laplacian-

nonsmooth-gradient” dynamics, that solves the ED problem starting from any

initial power allocation. This strategy has two components: one component seeks

to optimize the network generation cost while keeping constant the total power

generated; the other component is a feedback correction term driven by the error

between the desired total load and the network generation. This latter term is

responsible for ensuring that the algorithm trajectories asymptotically satisfy the

load satisfaction constraint irrespective of the initial power allocation. These ob-

servations set the basis for our second contribution, which is the synthesis of a dis-

tributed coordination algorithm, termed “dynamic average consensus + Laplacian-

nonsmooth-gradient” dynamics, with the same convergence guarantees. Our de-

sign consists of two coupled dynamical systems: a dynamic average consensus

algorithm to estimate the mismatch between generation and desired load in a dis-

tributed fashion and distributed Laplacian-nonsmooth-gradient that employ these

estimates to dynamically allocate the unit generation levels. Our third contribu-

tion is the development of a refined version of the LaSalle Invariance Principle for

differential inclusions. Our final contribution is the formal characterization of the

robustness properties of the distributed algorithm. Building on the observation

that the mismatch dynamics between network generation and total load are expo-

nentially convergent and input-to-state stable, we establish the algorithm ability

to track time-varying loads and its robustness in scenarios with intermittent power

generation.

Chapter 5 gives the formulation of the DEDS problem for a group of DERs
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communicating over a weight-balanced strongly connected digraph. The decision

variables are the power to be injected into the grid and power to be sent to storage

by each DER at each time slot. Using exact penalty functions, we reformulate

the problem as an equivalent optimization with equality constraints but without

inequality ones. The structure of the modified problem guides our main contri-

bution of this chapter: the design of the provably-correct distributed strategy

termed “dynamic average consensus (dac) + Laplacian nonsmooth gradient (L∂)

+ nonsmooth gradient (∂)” dynamics to solve the DEDS problem starting from

any initial condition. As in “dynamic average consensus + Laplacian-nonsmooth-

gradient” dynamics, the algorithm consists of two interconnected systems. A first

block allows DERs to track, using dac, the mismatch between the current total

power injected and the load for each time slot of the planning horizon. A second

block has two components, one that minimizes the total cost while keeping the to-

tal injection constant (using Laplacian-nonsmooth-gradient dynamics on injection

variables and nonsmooth-gradient dynamics on storage variables) and an error-

correcting component that uses the mismatch signal estimated by the first block

to adjust, exponentially fast, the total injection towards the load at each time slot.

1.2.2 Saddle-point dynamics

We start in Chapter 6 with the definition of the saddle-point dynamics

for continuously differentiable functions of two (vector) variables, which we term

saddle functions. The saddle-point dynamics consists of gradient descent of the

saddle function in the first variable and gradient ascent in the second variable.

The aim of Chapter 6 is to characterize the asymptotic convergence properties

of the saddle-point dynamics to the set of min-max saddle points of the saddle

function. Assuming this set is nonempty, our contributions can be understood

as a catalog of complementary conditions on the saddle function that guarantee

that the trajectories of the saddle-point dynamics are proved to converge to the

set of saddle points, and possibly to a point in the set. We broadly divide our

results in two categories, one in which the saddle function has convexity-concavity

properties and the other in which it does not. For the first category, our starting
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result considers saddle functions that are locally convex-concave on the set of saddle

points. We show that asymptotic stability of the set of saddle points is guaranteed if

either the convexity or concavity properties are strict, and convergence is pointwise.

Furthermore, motivated by equality constrained optimization problems, our second

result shows that the same conclusions on convergence hold for functions that

depend linearly on one of its arguments if the strictness requirement is dropped.

For the third and last result in this category, we relax the convexity-concavity

requirement and establish asymptotic convergence for strongly jointly quasiconvex-

quasiconcave saddle functions. Moving on to the second category of scenarios,

where functions lack convexity-concavity properties, our first condition is based on

linearization. We consider piecewise twice continuously differentiable saddle-point

dynamics and provide conditions on the eigenvalues of the limit points of Jacobian

matrices of the saddle function at the saddle points that ensure local asymptotic

stability of a manifold of saddle points. Our convergence analysis is based on a

general result of independent interest on the stability of a manifold of equilibria

for piecewise smooth vector fields that we state and prove using ideas from center

manifold theory. The next two results are motivated by the observation that

saddle functions exist in the second category that do not satisfy the linearization

hypotheses and yet have convergent dynamics. In one result, we justify convergence

by studying the variation of the function and its Hessian along the proximal normal

directions to the set of saddle points. Specifically, we assume polynomial bounds for

these variations and derive an appropriate relationship between these bounds that

ensures asymptotic convergence. In the other result, we assume the saddle function

to be linear in one variable and indefinite in another, where the indefinite part

satisfies some appropriate regularity conditions. When discussing each of the above

scenarios, we extend the conditions to obtain global convergence wherever feasible.

Various examples throughout the chapter justify the complementary character of

the hypotheses in our results.

Chapter 7 studies the projected saddle-point dynamics (also termed as the

primal-dual dynamics). This dynamics has a discontinuous right-hand side. We

first show using the help of an example that the proof of convergence provided in the
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literature [FP10] is not rigorous. Based on this observation, the main contribution

of Chapter 7 is a novel proof strategy. We show that the primal-dual dynamics is

a particular case of a projected dynamical system and, using results from [NZ96],

we establish that Caratheodory solutions exist, are unique, and are continuous

with respect to the initial condition. Using these properties, we show that the

omega-limit set of any solution of the primal-dual dynamics is invariant under the

dynamics. Finally, we employ the invariance principle for Caratheodory solutions

of discontinuous dynamical systems from [BC06] to show that the primal-dual

optimizers are globally asymptotically stable under the primal-dual dynamics and

that each solution of the dynamics converges to an optimizer.

Chapter 8 defines the projected saddle-point dynamics for a differentiable

convex-concave saddle function. The dynamics has three components: gradient de-

scent, projected gradient ascent, and gradient ascent of the saddle function, where

each gradient is with respect to a subset of the arguments of the function. This

unified formulation encompasses all forms of the saddle-point dynamics discussed

in the previous paragraphs. Our contributions of this chapter are fivefold that

shed light on the effect that the convexity-concavity of the saddle function has

on the convergence attributes of the projected saddle-point dynamics. Our first

contribution is a novel characterization of the omega-limit set of the trajectories

of the projected saddle-point dynamics in terms of the diagonal Hessian blocks

of the saddle function. To this end, we use the distance to a saddle point as a

LaSalle function, express the Lie derivative of this function in terms of the Hessian

blocks, and show it is nonpositive using second-order properties of the saddle func-

tion. Building on this characterization, our second contribution establishes global

asymptotic convergence of the projected saddle-point dynamics to a saddle point

assuming only local strong convexity-concavity of the saddle function. Our third

contribution identifies a novel Lyapunov function for the projected saddle-point dy-

namics for the case when strong convexity-concavity holds globally and the saddle

function can be written as the Lagrangian of a constrained optimization problem.

This discontinuous Lyapunov function can be interpreted as multiple continuously

differentiable Lyapunov functions, one for each set in a particular partition of the
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domain determined by the projection operator of the dynamics. Interestingly, the

identified Lyapunov function is the sum of two previously known and indepen-

dently considered LaSalle functions. When the saddle function takes the form

of the Lagrangian of an equality constrained optimization, then no projection is

present. In such scenarios, if the saddle function satisfies global strong convexity-

concavity, our fourth contribution establishes input-to-state stability (ISS) of the

dynamics with respect to the saddle point by providing an ISS Lyapunov function.

Our fifth contribution uses this function to design an opportunistic state-triggered

implementation of the saddle-point dynamics. We show that the trajectories of this

discrete-time system converge asymptotically to the saddle points and that execu-

tions are Zeno-free, i.e., that the difference between any two consecutive triggering

times is lower bounded by a common positive quantity.

1.2.3 Iterative bidding in electricity markets

We start in Chapter 9 with the definition of an inelastic electricity market

where the ISO seeks to find the production levels that solve the DC optimal power

flow (DC-OPF) problem for a group of strategic generators which do not share

their cost functions. Consequently, the ISO cannot solve the DC-OPF problem

by itself. However, each generator submits a bid to the ISO specifying the price

per unit of electricity at which the generator is willing to provide power. Given

these bids, the ISO decides how much production to allocate to each generator

so that the cost of generation is minimized, the loads are met, and the network

flow constraints are satisfied. The resulting Bertrand competition model defines

the game among the generators, where the actions are the bids and the payoffs

are the profits. We define the concept of the efficient Nash equilibrium, that is,

the Nash equilibrium at which the generators are willing to produce the amount

that corresponds to the optimizer of the DC-OPF problem. Our first contribution

in this chapter gives two set of conditions that ensure existence and uniqueness,

respectively, of an efficient Nash equilibrium for the inelastic electricity market

game. Our second contribution is the design of the Bid Adjustment Algo-

rithm along with its correctness analysis. This algorithm can be understood as
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“learning via repeated play”, where generators are “myopically selfish”, changing

their bid at each iteration with the aim of maximizing their own payoff. Along

the execution, the only information available to the generators is their bid and the

amount of generation that the ISO request from them. In particular, generators

are not aware of the number of other generators, their costs, bids, or payoffs. We

show that this decentralized iterative scheme is guaranteed to take the bids of the

generators to any neighborhood of the unique efficient Nash equilibrium provided

the stepsizes are chosen appropriately. Further, we establish that the convergence

rate is linear. Our third contribution analyzes the robustness properties of the

Bid Adjustment Algorithm. Specifically, we establish that the convergence

is not affected by affine disturbances, thus showing that deviations in stepsizes by

the generators can be handled gracefully. Additionally, we show that there is no

incentive for any individual generator to deviate from the algorithm by using an

alternative bid update scheme. Finally, we also show that, if at each generator

bus there is at least one generator running the Bid Adjustment Algorithm,

then there is no incentive for other generators connected to the network to not

follow the algorithm, i.e., this adjustment scheme becomes a rational choice for

all generators. These properties provide a sound justification for why the group

generators would adopt this iterative bid adjustment scheme to solve the DC-OPF

problem.

1.3 Organization

Chapter 2 collects the notation and some preliminaries used throughout

this thesis. Chapter 3 introduces the problem of economic dispatch and proposes

an anytime distributed algorithm for solving it. Chapter 4 provides a robust,

initialization-free, distributed algorithm for the economic dispatch problem. Con-

sequently, these algorithms are leveraged upon in Chapter 5 to design a distributed

algorithm for the dynamic economic dispatch problem with storages. Chapter 6

studies the asymptotic properties of the saddle-point dynamics. Chapter 7 ana-

lyzes the convergence properties of the primal-dual dynamics using the concepts
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of projected dynamical systems. Chapter 8 gives a Lyapunov function for the

saddle-point dynamics and analyzes the input-to-state properties of the dynamics

using this tool. Chapter 9 defines an electricity market setup and investigates the

properties of an iterative bid adjustment scheme. Finally, Chapter 10 summarizes

our contributions and outlines important future research directions.



Chapter 2

Preliminaries

This section introduces basic concepts and preliminaries from graph theory,

nonsmooth analysis, proximal calculus, saddle points, constrained optimization,

and dynamical systems. We begin with some notational conventions.

2.1 Notation

Let R, R≥0, R≤0, R>0, Z≥0, and Z≥1 be the set of real, nonnegative real,

nonpositive real, positive real, nonnegative integer, and positive integer numbers,

respectively. The 2- and ∞-norms on Rn and their respective induced norms on

Rn×n are denoted with ‖·‖ and ‖·‖∞, respectively. Let Bδ(x) = {y ∈ Rn | ‖y−x‖ <
δ} be the open ball centered at x ∈ Rn with radius δ > 0. The notation [n] stands

for the set {1, . . . , n}. For a set D, its cardinality is represented by |D|. For

a set S ⊂ Rn, its interior, closure, and boundary are denoted by int(S), cl(S),

and bd(S), respectively. The distance of a point x ∈ Rn to the set S ⊂ Rn

in 2-norm is ‖x‖S = infy∈S ‖x − y‖. The projection of x onto a closed set S
is defined as the set projS(x) = {y ∈ S | ‖x − y‖ = ‖x‖S}. When S is also

convex, projS(x) is a singleton for any x ∈ Rn. For x ∈ Rn, xi ∈ R denotes its

i-th component. Given vectors x, y ∈ Rn, x ≤ y if and only if xi ≤ yi for all

i ∈ [n]. For x ∈ Rn and y ∈ Rm, (x; y) ∈ Rn+m denotes its concatenation. Let

0n = (0, . . . , 0) ∈ Rn, 1n = (1, . . . , 1) ∈ Rn, and In ∈ Rn×n be the identity matrix.

18
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Denote [u]+ = max{0, u} for u ∈ R. For scalars a, b ∈ R, the operator [a]+b is

[a]+b =

a, if b > 0,

max{0, a}, if b = 0.

For vectors a, b ∈ Rn, [a]+b denotes the vector whose i-th component is

[ai]
+
bi
, i ∈ [n]. For r ∈ R, let Hr = {x ∈ Rn | 1>nx = r}. For h > 0, y ∈ Rnh

and k ∈ [h], y(k) ∈ Rn contains the nk − n + 1 to nk components of y (and so

y = (y(1); y(2); . . . ; y(h))). We use the notation Ck for a function being k ∈ Z≥1

times continuously differentiable. For a real-valued function V : Rn → R and

α > 0, we denote the sublevel set of V by V −1(≤ α) = {x ∈ Rn | V (x) ≤ α}.
Given two sets X and Y , a set-valued map f : X ⇒ Y associates to each point in

X a subset of Y . Given a set-valued map f : Rn ⇒ Rm and a matrix A ∈ Rp×m,

their composition h = Af : Rn ⇒ Rp is the set-valued map defined by h(x) =

{z ∈ Rp | z = Ay with y ∈ f(x)}. For a matrix A ∈ Rn×n, we use A � 0, A � 0,

A � 0, and A ≺ 0 to denote that A is positive semidefinite, positive definite,

negative semidefinite, and negative definite, respectively. The eigenvalues of A

are λi(A) for i ∈ [n]. For a symmetric matrix A ∈ Rn×n, λmin(A) and λmax(A)

denote the minimum and maximum eigenvalue of A. The range and null spaces of

A are denoted by range(A) and null(A), respectively. The Kronecker product of

A ∈ Rn×m and B ∈ Rp×q is A⊗ B ∈ Rnp×mq. Given two sets A1,A2 ⊂ Rn, we let

A1 +A2 = {x+ y | x ∈ A1, y ∈ A2}.
A set S ⊂ Rn is path connected if for any two points a, b ∈ S there exists a

continuous map γ : [0, 1]→ S such that γ(0) = a and γ(1) = b. A set Sc ⊂ S ⊂ Rn

is an isolated path connected component of S if it is path connected and there exists

an open neighborhood U of Sc in Rn such that U ∩ S = Sc.
For a real-valued function F : Rn × Rm → R, (x, y) 7→ F (x, y), we denote

by ∇xF and ∇yF the column vector of partial derivatives of F with respect to

the first and second arguments, respectively. Higher-order derivatives follow the

convention ∇xyF = ∂2F
∂x∂y

, ∇xxF = ∂2F
∂x2

, and so on. The restriction of f : Rn → Rm

to a subset S ⊂ Rn is denoted by f|S. The Jacobian of a C1 map f : Rn → Rm at

x ∈ Rn is denoted by Df(x) ∈ Rm×n. Finally, a vector field f : Rn → Rn is said
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to be piecewise C2 if it is continuous and there exists

• a finite collection of disjoint open sets D1, . . . ,Dm ⊂ Rn, referred to as

patches, whose closure covers Rn, that is, Rn = ∪mi=1cl(Di), and

• a finite collection of C2 functions {fi : Dei → Rn}mi=1 where, for each i ∈ [m],

Dei is open with cl(Di) ⊂ Dei , such that f|cl(Di) and fi take the same values

over cl(Di).

2.2 Graph theory

We present here notions from algebraic graph theory [BCM09]. A directed

graph (or digraph) is a pair G = (V , E), with V the vertex set and E ⊆ V × V
the edge set. A path is a sequence of vertices connected by edges. A digraph is

strongly connected if there is a path between any pair of vertices. The sets of out-

and in-neighbors of vi are, respectively, N+
vi

= {vj ∈ V | (vi, vj) ∈ E} and N−vi =

{vj ∈ V | (vj, vi) ∈ E}. A weighted digraph G = (V , E ,A) is composed of a digraph

(V , E) and an adjacency matrix A ∈ Rn×n
≥0 with aij > 0 if and only if (vi, vj) ∈ E .

The weighted out- and in-degree of vi are, respectively, dout(vi) =
∑n

j=1 aij and

din(vi) =
∑n

j=1 aji. The Laplacian matrix is L = Dout − A, where Dout is the

diagonal matrix with (Dout)ii = dout(i), for i ∈ {1, . . . , n}. Note that L1n = 0. If G
is strongly connected, then 0 is a simple eigenvalue of L. G is undirected if L = L>.

G is weight-balanced if dout(v) = din(v), for all v ∈ V if and only if 1>n L = 0 if

and only if Ls = (L + L>)/2 ≥ 0. An undirected graph is weight-balanced. If G is

weight-balanced and strongly connected, then 0 is a simple eigenvalue of Ls, and

x>Lsx ≥ λ2(Ls)
∥∥x− 1

n
(1>nx)1n

∥∥2
, ∀x ∈ Rn, (2.1)

with λ2(Ls) the smallest non-zero eigenvalue of Ls.
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2.3 Nonsmooth analysis and proximal calculus

We introduce notions from nonsmooth analysis following [Cor08]. A map

f : Rn → Rm is locally Lipschitz at x ∈ Rn if there exist δx, Lx > 0 such that

‖f(y1) − f(y2)‖ ≤ Lx‖y1 − y2‖ for any y1, y2 ∈ Bδx(x). If f is locally Lipschitz

at every x ∈ K ⊂ Rn, then we simply say that f is locally Lipschitz on K.
The map f is Lipschitz on K ⊂ Rn if there exists a constant L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y‖ for any x, y ∈ K. Note that if f is locally Lipschitz on

Rn, then it is Lipschitz on every compact set K ⊂ Rn. The map f is locally bounded

if for each x ∈ Rn there exists constants Mx, εx > 0 such that ‖f(y)‖ ≤Mx for all

y ∈ Bεx(x). The right directional derivative of f at x in the direction v ∈ Rn is

f ′(x; v) = lim
h→0+

f(x+ hv)− f(x)

h
,

when this limit exists. The generalized directional derivative of f at x in the

direction v ∈ Rn is defined as

f o(x; v) = lim sup
y→x,h→0+

f(y + hv)− f(y)

h
.

A function f : Rn → R is regular at x ∈ Rn if, for all v ∈ Rn, the right and

generalized directional derivatives of f at x in the direction of v coincide. Con-

tinuously differentiable and convex functions are both regular. A set-valued map

H : Rn ⇒ Rn is upper semicontinuous at x ∈ Rn if, for all ε ∈ (0,∞), there exists

δ ∈ (0,∞) such that H(y) ⊂ H(x) + Bε(0) for all y ∈ Bδ(x). Also, H is locally

bounded at x ∈ Rn if there exist ε, δ ∈ (0,∞) such that ‖z‖ ≤ ε for all z ∈ H(y)

and y ∈ Bδ(x). H is locally bounded if it is so at each point in Rn. Given a locally

Lipschitz function f : Rn → R, let Ωf be the set (of measure zero) of points where

f is not differentiable. The generalized gradient of f , denoted as ∂f : Rn ⇒ Rn, is

∂f(x) = co{ lim
i→∞
∇f(xi) | xi → x, xi /∈ S ∪ Ωf},

where co denotes convex hull and S ⊂ Rn is any set of measure zero. The set-

valued map ∂f is locally bounded, upper semicontinuous, and takes non-empty,
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compact, and convex values. A critical point x ∈ Rn of f satisfies 0 ∈ ∂f(x). For

a locally Lipschitz f : Rn × Rm → R, (x, y) 7→ f(x, y), the partial generalized

gradient with respect to x and y are ∂xf and ∂yf , respectively.

Next we present notions on proximal calculus following [CLSW98]. Given

a closed set E ⊂ Rn and a point x ∈ Rn\E , the distance from x to E is,

dE(x) = miny∈E ‖x− y‖. (2.2)

We let projE(x) denote the set of points in E that are closest to x, i.e., projE(x) =

{y ∈ E | ‖x − y‖ = dE(x)} ⊂ E . For y ∈ projE(x), the vector x − y is a proximal

normal direction to E at y and any nonnegative multiple ζ = t(x − y), t ≥ 0 is

called a proximal normal (P -normal) to E at y. The distance function dE might

not be differentiable in general (unless E is convex), but is globally Lipschitz and

regular [CLSW98, p. 23]. In the case of the square of the distance function, one

can compute [CLSW98, p. 99] the generalized gradient as,

∂d2
E(x) = co{2(x− y) | y ∈ projE(x)}. (2.3)

2.4 Saddle points and convex-concave functions

Here we review notions of convexity, concavity, and saddle points

from [BV09]. A function f : X → R is convex if

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′),

for all x, x′ ∈ X (where X is a convex domain) and all λ ∈ [0, 1]. A convex

differentiable f satisfies the following first-order convexity condition

f(x′) ≥ f(x) + (x′ − x)>∇f(x),

for all x, x′ ∈ X . A C2 function f is locally strongly convex at x ∈ X if f is

convex and ∇2f(x) � mI for some m > 0. Moreover, a C2 function f is strongly

convex if ∇2f(x) � mI for all x ∈ X for some m > 0. A function f : X → R
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is concave, locally strongly concave, or strongly concave if −f is convex, locally

strongly convex, or strongly convex, respectively. Following [Jov96], a function f

is strongly quasiconvex with parameter s > 0 over a convex set D ⊂ X if for all

x, x′ ∈ D and all λ ∈ [0, 1] we have,

max{f(x), f(x′)} − f(λx+ (1− λ)x′) ≥ sλ(1− λ)‖x− x′‖2.

A function f is strongly quasiconcave with parameter s > 0 over the set D if −f
is strongly quasiconvex with parameter s over D.

A function F : X×Y → R is locally convex-concave at a point (x̃, ỹ) ∈ X×Y
if there exists an open neighborhood U of (x̃, ỹ) such that for all (x̄, ȳ) ∈ U , the
functions x 7→ F (x, ȳ) and y 7→ F (x̄, y) are convex over U ∩ (X ×{ȳ}) and concave

over U ∩ ({x̄} × Y), respectively. If in addition, either x 7→ F (x, ỹ) is strictly

convex in an open neighborhood of x̃, or y 7→ F (x̃, y) is strictly concave in an

open neighborhood of ỹ, then F is locally strictly convex-concave at (x̃, ỹ). F is

locally (resp. locally strictly) convex-concave on a set S ⊂ X ×Y if it is so at each

point in S. F is (globally) convex-concave if in the local definition U = X × Y .
When the space X × Y is clear from the context, we refer to this property as F

being convex-concave in (x, y). Finally, F is globally strictly convex-concave if it is

convex-concave and for any (x̄, ȳ) ∈ X × Y , either x 7→ F (x, ȳ) is strictly convex

or y 7→ F (x̄, y) is strictly concave. Note that this notion is different than saying

that F is both strictly convex and strictly concave. The function F is locally jointly

strongly quasiconvex-quasiconcave at a point (x̃, ỹ) ∈ X × Y if there exist s > 0

and an open neighborhood U of (x̃, ỹ) such that for all (x̄, ȳ) ∈ U , the function

x 7→ F (x, ȳ) is strongly quasiconvex with parameter s over U ∩ (X × {ȳ}) and the

function y 7→ F (x̄, y) is strongly quasiconvex with parameter s over U ∩ ({x̄}×Y).

F is locally jointly strongly quasiconvex-quasiconcave on a set S ⊂ X × Y if it

is so at each point in S. F is globally jointly strongly quasiconvex-quasiconcave

if in the local definition U = X × Y . A C2 function F is locally strongly convex-

concave at a point (x, y) if it is convex-concave and either ∇xxF (x, y) � mI or

∇yyF (x, y) � −mI for some m > 0. Finally, F is globally strongly convex-concave

if it is convex-concave and either x 7→ F (x, y) is strongly convex for all y ∈ Y or
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y 7→ F (x, y) is strongly concave for all x ∈ X .
A point (x∗, y∗) ∈ X × Y is a local min-max saddle point of a C1 function

F : X × Y → R if there exist open neighborhoods Ux∗ ⊂ X of x∗ and Uy∗ ⊂ Y of

y∗ such that

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗), (2.4)

for all y ∈ Uy∗ and x ∈ Ux∗ . The point (x∗, y∗) is a global min-max saddle point

of F if Ux∗ = X and Uy∗ = Y . Min-max saddle points are a particular case

of the more general notion of saddle points. We focus here on min-max saddle

points motivated by problems in constrained optimization and zero-sum games,

whose solutions correspond to min-max saddle points. With a slight abuse of

terminology, throughout this treatise we refer to the local min-max saddle points

simply as saddle points. We denote by Saddle(F ) the set of saddle points of F .

From (2.4), for (x∗, y∗) ∈ Saddle(F ), the point x∗ ∈ X (resp. y∗ ∈ Y) is a local

minimizer (resp. local maximizer) of the map x 7→ F (x, y∗) (resp. y 7→ F (x∗, y)).

The set of saddle points of a convex-concave function F is convex. Each saddle

point is a critical point of F , that is, ∇xF (x∗, y∗) = 0 and ∇yF (x∗, y∗) = 0.

Additionally, if F is C2, then ∇xxF (x∗, y∗) � 0 and ∇yyF (x∗, y∗) � 0. Also, if

∇xxF (x∗, y∗) ≺ 0 and ∇yyF (x∗, y∗) � 0, then the inequalities in (2.4) are strict.

2.5 Constrained optimization and exact penalty

functions

We introduce some notions on constrained optimization and exact penalty

functions following [BV09, Ber75]. Consider

minimize f(x), (2.5a)

subject to g(x) ≤ 0m, h(x) = 0p, (2.5b)



25

where f : Rn → R, g : Rn → Rm, and h : Rn → Rp, with p ≤ n, are continuously

differentiable. The refined Slater condition is satisfied by (2.5) if there exists x ∈ Rn

such that h(x) = 0p, g(x) ≤ 0m, and gj(x) < 0 for all nonaffine functions gj. The

optimization (2.5) is convex if f and g are convex and h is affine. For convex

optimization problems, the refined Slater condition implies that strong duality

holds. A point x ∈ Rn is a Karush-Kuhn-Tucker (KKT) point of (2.5) if there

exist Lagrange multipliers λ ∈ Rm
≥0, ν ∈ Rp such that

g(x) ≤ 0m, h(x) = 0p, λ>g(x) = 0,

∇f(x) +
m∑
j=1

λj∇gj(x) +

p∑
k=1

νk∇hk(x) = 0n.

If the optimization (2.5) is convex and strong duality holds, then a point is a

solution of (2.5) if and only if it is a KKT point. The problem (2.5) satisfies

the strong Slater condition with ρ ∈ R>0 and xρ ∈ Rn if g(xρ) ≤ −ρ1m and

h(xρ) = 0p. Under this condition, the following result provides a bound on a

Lagrange multiplier corresponding to any primal-dual optimizer.

Lemma 2.5.1. (Bound on Lagrange multiplier [HUL93, Remark 2.3.3]): If (2.5)

satisfies the strong Slater condition with parameter ρ ∈ R>0 and feasible point

xρ ∈ Rn, then any primal-dual optimizer (x, λ, ν) of (2.5) satisfies

‖λ‖∞ ≤
f(xρ)− f(x)

ρ
.

Next, in the presence of inequality constraints in (2.5), we are interested in

using exact penalty function methods to eliminate them while keeping the equality

constraints. Following [Ber75], consider the nonsmooth exact penalty function

f ε : Rn → R,

f ε(x) = f(x) +
1

ε

m∑
j=1

[gj(x)]+
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with ε > 0, and define the minimization problem

minimize f ε(x), (2.6a)

subject to h(x) = 0p. (2.6b)

Note that, if f is convex, then f ε is convex (given that t 7→ 1
ε
[t]+ is convex).

Therefore, if the problem (2.5) is convex, then the problem (2.6) is convex as well.

The following result, see e.g. [Ber75, Proposition 1], identifies conditions under

which the solutions of the optimization problems (2.5) and (2.6) coincide.

Proposition 2.5.2. (Equivalence between (2.5) and (2.6)): Assume that the prob-

lem (2.5) is convex, has nonempty and compact solution set, and satisfies the re-

fined Slater condition. Then, (2.5) and (2.6) have exactly the same solutions if
1
ε
> ‖λ‖∞, for some Lagrange multiplier λ ∈ Rm

≥0 of the problem (2.5).

Note that a Lagrange multiplier for (2.5) exists because the refined Slater

condition holds, and hence every solution is a KKT point. The next result char-

acterizes the solutions of a class of optimization problems. The proof is straight-

forward.

Lemma 2.5.3. (Solution form for a class of constrained optimization problems):

Consider the problem

minimize
n∑
i=1

fi(xi), (2.7a)

subject to 1>nx = xl, (2.7b)

where {fi : R→ R}ni=1 are continuous, locally Lipschitz, and convex. Let f : Rn →
Rn, f(x) = (f1(x1), . . . , fn(xn)). A point x∗ is a solution of (2.7) if and only if

there exists µ ∈ R such that

µ1n ∈ ∂f(x∗) and 1>nx
∗ = xl. (2.8)
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2.6 Dynamical systems

We gather here some useful tools that aid in the analysis of dynamical sys-

tems studied in this thesis. These tools include basic notions of discontinuous dy-

namical systems and differential inclusions [BC06, NZ96, Cor08] and specific results

on dynamic average consensus [KCM15b] and input-to-state stability [LSW95].

2.6.1 Discontinuous dynamical systems

Let f : Rn → Rn be Lebesgue measurable and locally bounded and consider

the differential equation

ẋ = f(x). (2.9)

A map γ : [0, T )→ Rn is a (Caratheodory) solution of (2.9) on the interval [0, T ) if

it is absolutely continuous on [0, T ) and satisfies γ̇(t) = f(γ(t)) almost everywhere

in [0, T ). The words solution and trajectory are used interchangeably for any

system. A set S ⊂ Rn is invariant under (2.9) if every solution starting from any

point in S remains in S. For a solution γ of (2.9) defined on the time interval

[0,∞), the omega-limit set Ω(γ) is defined by

Ω(γ) = {y ∈ Rn | ∃{tk}∞k=1 ⊂ [0,∞) with lim
k→∞

tk =∞ and lim
k→∞

γ(tk) = y}.

If the solution γ is bounded, then Ω(γ) 6= ∅ by the Bolzano-Weierstrass theo-

rem [Lan93, p. 33]. These notions allow us to characterize the asymptotic conver-

gence properties of the solutions of (2.9) via invariance principles. Given a contin-

uously differentiable function V : Rn → R, the Lie derivative of V along (2.9) at

x ∈ Rn is LfV (x) = ∇V (x)>f(x). The next result is a simplified version of [BC06,

Proposition 3] which will be of use in our later chapters.

Proposition 2.6.1. (Invariance principle for discontinuous Caratheodory sys-

tems): Let S ⊂ Rn be compact and invariant. Assume that, for each point x0 ∈ S,
there exists a unique solution of (2.9) starting at x0 and that its omega-limit set

is invariant too. Let V : Rn → R be a continuously differentiable map such that

LfV (x) ≤ 0 for all x ∈ S. Then, any solution of (2.9) starting at S converges to
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the largest invariant set in cl({x ∈ S | LfV (x) = 0}).

2.6.2 Projected dynamical systems

Projected dynamical systems are a particular class of discontinuous dy-

namical systems. Let K ⊂ Rn be a closed convex set. Given a point y ∈ Rn, the

(point) projection of y onto K is projK(y) = argminz∈K ‖z − y‖. The set projK(y)

is a singleton and the map projK is Lipschitz on Rn with constant L = 1 [Cla83,

Proposition 2.4.1]. Given x ∈ K and v ∈ Rn, the (vector) projection of v at x with

respect to K is

ΠK(x, v) = lim
δ→0+

projK(x+ δv)− x
δ

.

Given a vector field f : Rn → Rn and a closed convex polyhedron K ⊂ Rn, the

associated projected dynamical system is

ẋ = ΠK(x, f(x)), x(0) ∈ K. (2.10)

Note that at any point x in the interior of K, we have ΠK(x, f(x)) = f(x). At any

boundary point of K, the projection operator restricts the flow of the vector field

f such that the solutions of (2.10) remain in K. Therefore, in general, (2.10) is

a discontinuous dynamical system. The next result summarizes conditions under

which the (Caratheodory) solutions of the projected system (2.10) exist, are unique,

and continuous with respect to the initial condition.

Proposition 2.6.2. (Existence, uniqueness, and continuity with respect to the

initial condition [NZ96, Theorem 2.5]): Let f : Rn → Rn be Lipschitz on a closed

convex polyhedron K ⊂ Rn. Then,

(i) (existence and uniqueness): for any x0 ∈ K, there exists a unique solution

t 7→ x(t) of the projected system (2.10) with x(0) = x0 defined over the

domain [0,∞),

(ii) (continuity with respect to the initial condition): given a sequence of points

{xk}∞k=1 ⊂ K with limk→∞ xk = x, the sequence of solutions {t 7→ γk(t)}∞k=1
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of (2.10) with γk(0) = xk for all k, converge to the solution t 7→ γ(t) of (2.10)

with γ(0) = x uniformly on every compact set of [0,∞).

2.6.3 Differential inclusions

A differential inclusion on Rn is

ẋ ∈ H(x), (2.11)

where H : Rn ⇒ Rn is a set-valued map. A (Caratheodory) solution of (2.11) on

[0, T ] ⊂ R is an absolutely continuous map x : [0, T ] → Rn that satisfies (2.11)

for almost all t ∈ [0, T ]. If H is locally bounded, upper semicontinuous, and takes

non-empty, compact, and convex values, then existence of solutions is guaranteed.

The set of equilibria of (2.11) is Eq(H) = {x ∈ Rn | 0 ∈ H(x)}. A set S ⊂ Rn is

weakly (resp., strongly) positively invariant under (2.11) if, for each x ∈ S, at least
a solution (resp., all solutions) starting from x is (resp., are) entirely contained

in S. For dynamics with uniqueness of solution, both notions coincide and are

referred as positively invariant.

Given a locally Lipschitz function f : Rn → R, the set-valued Lie derivative

LHf : Rn ⇒ R of f with respect to (2.11) is

LHf(x) = {a ∈ R | ∃v ∈ H(x) such that ζ>v = a for all ζ ∈ ∂f(x)}.

For a trajectory t 7→ ϕ(t), ϕ(0) ∈ Rn of (2.11), the evolution of f along it satisfies

d

dt
f(ϕ(t)) ∈ LHf(ϕ(t))

for almost all t ≥ 0. Next, we characterize the asymptotic properties of (2.11).

Theorem 2.6.3. (LaSalle Invariance Principle for differential inclusions): Let H :

Rn ⇒ Rn be locally bounded, upper semicontinuous, with non-empty, compact, and

convex values. Let f : Rn → R be locally Lipschitz and regular. If S ⊂ Rn is

compact and strongly invariant under (2.11) and maxLHf(x) ≤ 0 for all x ∈ S,
then the solutions of (2.11) starting at S converge to the largest weakly invariant
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set M contained in S ∩ {x ∈ Rn | 0 ∈ LHf(x)}. Moreover, if the set M is finite,

then the limit of each solution exists and is an element of M .

In Section 4.5 we develop a novel refinement of the LaSalle Invariance Prin-

ciple for differential inclusions which is suitable for the analysis of the coordination

algorithms presented in Chapter 4.

2.7 Dynamic average consensus

Here, we introduce notions on dynamic average consensus follow-

ing [KCM15b]. Consider n ∈ Z≥1 agents communicating over a strongly connected,

weight-balanced digraph G whose Laplacian is denoted as L. Each agent is associ-

ated with a state xi ∈ R and an input signal t 7→ ui(t) ⊂ R that is measurable and

locally essentially bounded. The aim is to provide distributed dynamics such that

the state of each agent xi(t) tracks the average signal 1
n

∑n
i=1 ui(t) asymptotically.

This can be achieved via the dynamics Xdac : R2n → R2n,

ẋ = −αx− βLx− v + νu,

v̇ = αβLx,

where α, β, ν > 0 are design parameters and v ∈ Rn is an auxiliary state. If the

initial condition satisfies 1>n v(0) = 0 and the time-derivatives of the input signals

are bounded, then one can show, cf. [KCM15b, Corollary 4.1], that the error signal

t 7→
∣∣xi(t)− 1

n

∑n
i=1 ui(t)

∣∣ is ultimately bounded for each i ∈ [n]. Moreover, this

error vanishes if the input signal converges to a constant value.

2.8 Input-to-state stability

Here, we review the notion of input-to-state stability (ISS) follow-

ing [LSW95]. A function α : R≥0 → R≥0 is class K if it is continuous, strictly

increasing, and α(0) = 0. The set of unbounded class K functions are called K∞
functions. A function β : R≥0 × R≥0 → R≥0 is class KL if for any t ∈ R≥0,
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x 7→ β(x, t) is class K and for any x ∈ R≥0, t 7→ β(x, t) is continuous, decreasing

with β(x, t)→ 0 as t→∞. Consider a system

ẋ = f(x, u), (2.13)

where x ∈ Rn is the state, u : R≥0 → Rm is the input that is measurable and

locally essentially bounded, and f : Rn × Rm → Rn is locally Lipschitz. Assume

that starting from any point in Rn, the trajectory of (2.13) is defined on R≥0 for

any given control. Let Eq(f) ⊂ Rn be the set of equilibria of the unforced system.

Then, the system (2.13) is input-to-state stable (ISS) with respect to Eq(f) if there

exists β ∈ KL and γ ∈ K such that each trajectory t 7→ x(t) of (2.13) satisfies

‖x(t)‖Eq(f) ≤ β(‖x(0)‖Eq(f), t) + γ(‖u‖∞)

for all t ≥ 0, where ‖u‖∞ = ess supt≥0‖u(t)‖ is the essential supremum (see [Lan93,

p. 185] for the definition) of u. This notion captures the graceful degradation of

the asymptotic convergence properties of the unforced system as the size of the

disturbance input grows. One convenient way of showing ISS is by finding an ISS-

Lyapunov function. An ISS-Lyapunov function with respect to the set Eq(f) for

system (2.13) is a differentiable function V : Rn → R≥0 such that

(i) there exist α1, α2 ∈ K∞ such that for all x ∈ Rn,

α1(‖x‖Eq(f)) ≤ V (x) ≤ α2(‖x‖Eq(f)); (2.14)

(ii) there exists a continuous, positive definite function α3 : R≥0 → R≥0 and

γ ∈ K∞ such that

∇V (x)>f(x, v) ≤ −α3(‖x‖Eq(f)) (2.15)

for all x ∈ Rn, v ∈ Rm for which ‖x‖Eq(f) ≥ γ(‖v‖).

Proposition 2.8.1. (ISS-Lyapunov function implies ISS): If (2.13) admits an

ISS-Lyapunov function, then it is ISS.



Chapter 3

Anytime distributed dynamics for

ED problem

In this chapter, we introduce the economic dispatch (ED) problem where a

group of generators with generation costs described by smooth, convex functions

seek to determine generation levels that respect individual constraints, meet a

specified load, and minimize the total generation cost. Our aim will be to design

distributed algorithms that asymptotically converge to the solutions of the ED

problem, are anytime, i.e., generate executions that are feasible at any time and

have monotonically decreasing cost, and handle unit addition and deletion.

3.1 Problem statement

Consider a network of n ∈ Z≥1 power generator units whose communication

topology is represented by a strongly connected and weight-balanced digraph G =

(V , E ,A). Each generator corresponds to a vertex and an edge (i, j) represents the

capability of unit j to transmit information to unit i. The power generated by unit

i is Pi ∈ R. Each generator i ∈ [n] has a cost function fi : R → R≥0, assumed to

be convex and continuously differentiable. The total cost incurred by the network

32
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with the power allocation P = (P1, . . . , Pn) ∈ Rn is given by f : Rn → R≥0 as

f(P ) =
n∑
i=1

fi(Pi).

The function f is also convex and continuously differentiable. The generators

must meet a total power load Pl ∈ R>0, i.e.,
∑n

i=1 Pi = Pl, while at the same

time minimizing the total cost f(P ). We assume that at least one generator knows

the total load. Each generator has upper and lower limits on the power it can

produce, Pm
i ≤ Pi ≤ PM

i for i ∈ [n]. We neglect any transmission losses and any

constraints on the amount of power flow along transmission lines. Formally, the

economic dispatch (ED) problem is

minimize f(P ), (3.1a)

subject to 1>nP = Pl, (3.1b)

Pm ≤ P ≤ PM . (3.1c)

We refer to (3.1b) as the load condition and to (3.1c) as the box constraints. We

let FED = {P ∈ Rn | Pm ≤ P ≤ PM and 1>nP = Pl} denote the feasibility set

of (3.1). Since FED is compact, the set of solutions of (3.1) is compact. Moreover,

since the constraints (3.1b) and (3.1c) are affine, feasibility of the ED problem

implies that the refined Slater condition is satisfied and strong duality holds. Note

that PM ∈ FED implies FED is a singleton set, i.e., FED = {PM}. Similarly

Pm ∈ FED implies FED = {Pm}. Without loss of generality, we assume that PM

and Pm are not feasible points.

A simpler version of this problem is the relaxed economic dispatch (rED)

problem, where the total cost is optimized with the load condition but without the

box constraints. Formally,

minimize f(P ), (3.2a)

subject to 1>nP = Pl. (3.2b)
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We let FrED = {P ∈ Rn | 1>nP = Pl} denote the feasibility set of (3.2). Our

objective is to design distributed procedures that allow the network to solve the

ED problem. In Section 3.2 we present an algorithmic solution to the rED problem

and then build on it in Section 3.3 to solve the ED problem.

Remark 3.1.1. (Power system implications): In the power system literature,

the cost function of a generator is usually quadratic and convex, and generator

capacities have minimum and maximum bounds, see e.g. [Gai03]. In our algorithm

design, we assume that (1) generators exchange information about the cost function

or its gradient with their neighbors, and (2) one or more generators know the

value of the total load. Both assumptions are reasonable in numerous scenarios.

Regarding (1), generators can be categorized in families where each family’s cost

function is defined by a finite number of parameters. Hence, neighboring units

only need to communicate their category and parameters. Regarding (2), we have

in mind hierarchical dispatch scenarios where a higher-level planner assigns loads

to each microgrid, consisting of a group of generators, and communicates it to a

unit in each group, see [LP04]. At the lower level, each microgrid executes our

algorithms to arrive at an optimum dispatch allocation. •

3.2 Distributed algorithmic solution to the relaxed

economic dispatch problem

Here we introduce a distributed algorithm to solve the rED problem (3.2).

Consider the Laplacian-gradient dynamics

Ṗ = −L∇f(P ), (3.3)

where L is the Laplacian of G. This dynamics is distributed in the sense that

each generator only requires information from its out-neighbors. Specifically, if

each generator knows the cost function of its neighbors, then they interchange

messages that contain their respective power levels. Else, if such knowledge is

not available, (3.3) can be executed by neighboring generators exchanging their



35

respective gradient information.

Theorem 3.2.1. (Convergence of the Laplacian-gradient dynamics): Consider

the rED problem (3.2) with f : Rn → R≥0 radially unbounded. Then, the feasi-

ble set FrED is positively invariant under the dynamics (3.3) and all trajectories

starting from FrED converge to the set of solutions of (3.2).

Proof. We use the shorthand notation XL-g : Rn → Rn to refer to (3.3). We first

establish that the total power generated by the network is conserved,

LXL-g(1
>
nP ) = 1>nXL-g(P ) = −(1>n L)∇f(P ) = 0, (3.4)

where we have used that G is weight-balanced in the last equality. As a conse-

quence, FrED is positively invariant under (3.3). Next, we show that f is mono-

tonically nonincreasing,

LXL-gf(P ) = −∇f(P )>Ls∇f(P ) ≤ 0, (3.5)

where we have used that G is weight-balanced in the inequality. Given P0 ∈ Rn,

let

f−1(≤ f(P0)) = {P ∈ Rn | f(P ) ≤ f(P0)}.

Note that this sublevel set is closed, and since f is radially unbounded, bounded.

Then, the set WP0 = f−1(≤ f(P0)) ∩ FrED is closed, bounded, and from (3.4)

and (3.5), positively invariant. The application of the LaSalle Invariance Principle,

cf. Theorem 2.6.3, implies that the trajectories starting in WP0 converge to the

largest invariant set M contained in {P ∈ WP0 | LXL-gf(P ) = 0}. From (3.5)

and the fact that G is weight-balanced and strongly connected, we deduce that

LXL-gf(P ) = 0 implies ∇f(P ) ∈ span{1n}, and hence P ∈ Eq(XL-g). Since

1>nP0 = Pl by hypothesis, we conclude that M = Eq(XL-g)∩FrED, which precisely

corresponds to the set of solutions of (3.2), cf. Lemma 2.5.3.

Remark 3.2.2. (Initialization of (3.3)): To solve the rED problem, the Laplacian-

gradient dynamics (3.3) requires an initial condition satisfying the load constraints.

Such initialization can be performed in various ways. If each unit knows Pl and n,
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then the network can start from (Pl/n)1n. If only one unit knows Pl, it can start

from Pl while the others start from 0. •

The proof of Theorem 3.2.1 reveals that the load condition is satisfied at

all times and the total cost is monotonically decreasing until convergence. Both

facts imply that (3.3) is anytime, i.e., its trajectories are feasible solutions at any

time before convergence, and they become better as time elapses.

Proposition 3.2.3. (Convergence rate of the Laplacian-gradient dynamics): Un-

der the hypotheses of Theorem 3.2.1, further assume that there exist k,K ∈ R>0

such that kIn � ∇2f(P ) � KIn for P ∈ Rn. Then, the dynamics (3.3) converges

to the unique solution of (3.2) exponentially fast with rate greater than or equal

to kλ2(Ls).

Proof. Uniqueness of the solution to (3.2) follows from noting that strong convexity

implies strict convexity. Let P opt ∈ Rn denote the unique optimizer and let V :

FrED ⊂ Rn → R, V (P ) = f(P )− f(P opt). Note that V (P ) ≥ 0, and V (P ) = 0 if

and only if P = P opt. From (3.5),

LXL-gV (P ) ≤ −λ2(Ls)‖∇f(P )− 1

n
(1>n∇f(P ))1n‖2,

where we have used (2.1). For convenience, let e(P ) = ∇f(P ) − 1
n
(1>n∇f(P ))1n.

Using the fact that f is strongly convex, for P, P ′ ∈ FrED, we have

f(P ′) ≥ f(P ) + e(P )>(P ′ − P ) +
k

2
‖P ′ − P‖2. (3.6)

For fixed P , the minimum of the right-hand side is f(P ) − 1
2k
‖e(P )‖2, and hence

f(P ′) ≥ f(P ) − 1
2k
‖e(P )‖2. In particular, for P ′ = P opt, this yields V (P ) ≤

1
2k
‖e(P )‖2. Combining this with the bound on LXL-gV above, we get

LXL-gV (P ) ≤ −2kλ2(Ls)V (P ),

which implies that, along any trajectory t 7→ P (t) of (3.3), one has V (P (t)) ≤
V (P (0))e−2kλ2(Ls)t. Our next objective is to relate the magnitude of V at P with
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‖P − P opt‖. From ∇2f(P ) � KIn, one has f(P ′) ≤ f(P ) + ∇f(P )>(P ′ − P ) +

K
2
‖P ′ − P‖2

2. Minimizing both sides over P ′ ∈ FrED,

V (P ) ≥ 1

2K
‖e(P )‖2. (3.7)

Having established the relation between V (P ) and ‖e(P )‖, our final step consists of

establishing the relation between the magnitudes of e(P ) and P−P opt. Using (3.6)

for P ′ = P opt, one has

f(P opt) ≥ f(P ) + e(P )>(P opt − P ) +
k

2
‖P opt − P‖2

≥ f(P )− ‖e(P )‖‖P opt − P‖+
k

2
‖P opt − P‖2.

Since f(P opt) ≤ f(P ) for any P ∈ FrED, we get ‖P − P opt‖2 ≤ 2
k
‖e(P )‖2. Com-

bining this with (3.7), we get

‖P − P opt‖2
2 ≤

8

k2
KV (P ). (3.8)

To obtain an upper bound, we use the fact that f is convex, and hence f(P opt) ≥
f(P ) +∇f(P )>(P opt − P ). Rearranging,

V (P ) ≤ ∇f(P )>(P − P opt) = e(P )>(P − P opt)

implying V (P )2 ≤ ‖e(P )‖2‖P − P opt‖2. Using (3.7), we get

V (P ) ≤ 2K‖P − P opt‖2. (3.9)

Finally, along any trajectory t 7→ P (t), using (3.8) and (3.9) with P = P (0), we

obtain ‖P (t)− P opt‖2 ≤ 16K2

k2
‖P (0)− P opt‖2e−2kλ2(Ls)t, as claimed.

Proposition 3.2.3 opens up the possibility of selecting the edge weights of the

communication digraph G to maximize the rate of convergence of the Laplacian-

gradient dynamics (3.3).

Remark 3.2.4. (Comparison with the center-free algorithm): The work [XB06]
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proposes the center-free algorithm to solve the rED problem (termed there op-

timal resource allocation problem). This algorithm essentially corresponds to a

discrete-time implementation of the Laplacian-gradient dynamics (3.3). The con-

vergence analysis of the center-free algorithm relies on two assumptions. First,

∇2f needs to be globally upper and lower bounded (in particular, this implies that

f is strongly convex). Second, the Laplacian must satisfy a linear matrix inequality

that constrains the choice of weights. In contrast, no such conditions are required

here to establish the convergence of (3.3). In addition, the guaranteed rate of

convergence of the center-free algorithm vanishes once the upper bound on ∇2f

reaches a certain finite value for a fixed weight assignment unlike the one obtained

in Proposition 3.2.3 for (3.3). •

We next characterize the convergence of (3.3) when the topology is switch-

ing under a weaker form of connectivity.

Proposition 3.2.5. (Convergence of the Laplacian-gradient dynamics under

switching topology): Let Ξn be the set of weight-balanced digraphs over n ver-

tices. Denote the communication digraph of the group of units at time t by G(t).

Let t 7→ G(t) ∈ Ξn be piecewise constant and assume there exists an infinite se-

quence of contiguous, nonempty, uniformly bounded time intervals over which the

union of communication graphs is strongly connected. Then, the dynamics

Ṗ = −L(G(t))∇f(P ), (3.10)

starting from an initial power allocation P0 satisfying 1>nP0 = Pl converges to the

set of solutions of (3.2).

The proof is similar to that of Theorem 3.2.1 using that (i) the load con-

dition is preserved along (3.10), (ii) f is a common Lyapunov function, and

(iii) infinite switching implies convergence to the invariant set characterized by

∇f ∈ span{1n}, the set of solutions of the rED problem.
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3.3 Distributed algorithmic solution to the eco-

nomic dispatch problem

Here we propose a distributed algorithm to solve the ED problem. We

first develop an alternative formulation of this problem without inequality con-

straints using an exact penalty function approach. This allows us to synthesize

our distributed dynamics mimicking the algorithm design of Section 3.2.

3.3.1 Exact penalty function formulation

We first show that, unlike the rED problem, there might be no network-

wide agreement on the gradients of the local objective functions at the solutions

of the ED problem.

Lemma 3.3.1. (Solution form for the ED problem): For any solution P opt of the

ED problem (3.1), there exist ν ∈ R, λm, λM ∈ Rn
≥0 with ‖λm‖∞, ‖λM‖∞, 2|ν| ≤

2 maxP∈FED
‖∇f(P )‖∞ such that

∇fi(P opt
i ) =


−ν + λmi if P opt

i = Pm
i ,

−ν if Pm
i < P opt

i < PM
i ,

−ν − λMi if P opt
i = PM

i .

Proof. The Lagrangian for the ED problem (3.1) is L(P, λm, λM , ν) = f(P ) +

(λm)>(Pm − P ) + (λM)>(P − PM) + ν(1>nP − Pl). A point P opt is a solution

of (3.1) iff there exist ν ∈ R, λm, λM ∈ Rn
≥0 satisfying the KKT conditions

Pm − P opt ≤ 0n, (λm)>(Pm − P opt) = 0, (3.11a)

P opt − PM ≤ 0n, (λM)>(P opt − PM) = 0, (3.11b)

1>nP
opt = Pl, ∇f(P opt)− λm + λM = −ν1n. (3.11c)

Now, consider the partition of [n] associated to P opt,

I0(P opt) = {i ∈ [n] | Pm
i < P opt

i < PM
i },
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I+(P opt) = {i ∈ [n] | P opt
i = PM

i },
I−(P opt) = {i ∈ [n] | P opt

i = Pm
i }.

If i ∈ I0(P opt), then (3.11a)-(3.11b) imply λmi = λMi = 0, and hence ∇fi(P opt
i ) =

−ν by (3.11c). If i ∈ I+(P opt), then (3.11a)-(3.11b) imply λmi = 0, λMi > 0, and

hence ∇fi(P opt
i ) = −ν − λMi by (3.11c). Finally, if i ∈ I−(P opt), then (3.11a)-

(3.11b) imply λmi > 0, λMi = 0, and hence ∇fi(P opt
i ) = −ν + λmi by (3.11c).

To establish the bounds on the multipliers, we distinguish between whether (a)

I0(P opt) is non-empty or (b) I0(P opt) is empty. In case (a), from (3.11), ν =

−∇fi(P opt
i ) for all i ∈ I0(P opt), and therefore |ν| ≤ ‖∇f(P opt)‖∞. In case (b),

from (3.11), we get ν ≤ −∇fj(P opt
j ) for all j ∈ I+(P opt). Similarly, we obtain

ν ≥ −∇fk(P opt
k ) for all k ∈ I−(P opt). Therefore, −∇fk(P opt

k ) ≤ ν ≤ −∇fj(P opt
j )

for all j ∈ I+(P opt) and k ∈ I−(P opt). Since I0(P opt) is empty and by assumption

Pm, PM 6∈ FED, both I−(P opt) and I+(P opt) are non-empty. Therefore, we obtain

|ν| ≤ ‖∇f(P opt)‖∞. This inequality, together with (3.11c) and the fact that either

λmi or λMi is zero for each i ∈ [n], implies ‖λm‖∞, ‖λM‖∞ ≤ 2‖∇f(P opt)‖∞ ≤
2 maxP∈FED

‖∇f(P )‖∞.

Our next step is to provide an alternative formulation of the ED problem

that is similar in structure to that of the rED problem. We do this by using an

exact penalty function method to remove the box constraints. Specifically, let

f ε(P ) =
n∑
i=1

fi(Pi) +
1

ε

( n∑
i=1

([Pi − PM
i ]+ + [Pm

i − Pi]+)
)
.

Note that this corresponds to a scenario where generator i ∈ [n] has local cost

given by

f εi (Pi) = fi(Pi) +
1

ε

(
[Pi − PM

i ]+ + [Pm
i − Pi]+

)
. (3.12)

This function is convex, locally Lipschitz, and continuously differentiable in R
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except at Pi = Pm
i and Pi = PM

i . Its generalized gradient ∂f εi : R ⇒ R is given by

∂f εi (Pi) =



{∇fi(Pi)− 1
ε
} if Pi < Pm

i ,

[∇fi(Pi)− 1
ε
,∇fi(Pi)] if Pi = Pm

i ,

{∇fi(Pi)} if Pm
i < Pi < PM

i ,

[∇fi(Pi),∇fi(Pi) + 1
ε
] if Pi = PM

i ,

{∇fi(Pi) + 1
ε
} if Pi > PM

i .

As a result, the total cost f ε is convex, locally Lipschitz, and regular. Its gen-

eralized gradient at P ∈ Rn is ∂f ε(P ) = ∂f ε1(P1) × · · · × ∂f εn(Pn). Consider the

optimization

minimize f ε(P ), (3.13a)

subject to 1>nP = Pl. (3.13b)

We next establish the equivalence of (3.13) with the ED problem.

Proposition 3.3.2. (Equivalence between (3.1) and (3.13)): The solutions

of (3.1) and (3.13) coincide for ε ∈ R>0 such that

ε <
1

2 maxP∈FED
‖∇f(P )‖∞

. (3.14)

Proof. Observe the parallelism between (3.1) and (2.5) on one side and (3.13)

and (2.6) on the other. Recall that, for the ED problem (3.1), the set of

solutions is nonempty and compact, and the refined Slater condition is satis-

fied. Thus, from Proposition 2.5.2, the solutions of (3.13) and (3.1) coincide if
1
ε
> ‖λm‖∞, ‖λM‖∞ for some Lagrange multipliers λm and λM . From Lemma 3.3.1,

there exists λm and λM satisfying ‖λm‖∞, ‖λM‖∞ ≤ 2 maxP∈FED
‖∇f(P )‖∞. Thus,

if ε < 1
2 maxP∈FED

‖∇f(P )‖∞ , then
1
ε
> 2 maxP∈FED

‖∇f(P )‖∞ ≥ ‖λm‖∞, ‖λM‖∞ and

the claim follows.
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3.3.2 Laplacian-nonsmooth-gradient dynamics

Here, we propose a distributed algorithm to solve the ED problem. Our

design builds on the alternative formulation (3.13). Consider the Laplacian-

nonsmooth-gradient dynamics

Ṗ ∈ −L∂f ε(P ). (3.15)

The set-valued map −L∂f ε is non-empty, takes compact, convex values, and is

locally bounded and upper semicontinuous. Therefore, existence of solutions is

guaranteed (cf. Section 2.6.3). Moreover, this dynamics is distributed in the

sense that, to implement it, each generator only requires information from its out-

neighbors. When convenient, we denote the dynamics (3.15) by XL-n-g : Rn ⇒ Rn.

The next result establishes the strongly positively invariance of FED.

Lemma 3.3.3. (Invariance of the feasibility set): The feasibility set FED is strongly

positively invariant under the Laplacian-nonsmooth-gradient dynamics (3.15) pro-

vided that ε ∈ R>0 satisfies (with dout
max = maxi∈V d

out(i))

ε <
min(i,j)∈E aij

2dout
max maxP∈FED

‖∇f(P )‖∞
. (3.16)

Proof. We begin by noting that, if ε satisfies (3.16), then there exists α > 0 such

that

ε <
min(i,j)∈E aij

2dout
max maxP∈FαED

‖∇f(P )‖∞
, (3.17)

where FαED = {P ∈ Rn | 1>nP = Pl and Pm − α1n ≤ P ≤ PM + α1n}. Now,

we reason by contradiction. Assume that FED is not strongly positively invariant

under the Laplacian-nonsmooth-gradient dynamics XL-n-g. This implies that there

exists a boundary point P̄ ∈ bd(FED), a real number δ > 0, and a trajectory

t 7→ P (t) obeying (3.15) such that P (0) = P̄ and P (t) 6∈ FED for all t ∈ (0, δ).

Without loss of generality, assume that P (t) ∈ FαED for all t ∈ (0, δ). Now, using

the same reasoning as in the proof of Theorem 3.2.1, it is not difficult to see that

the load condition is preserved along XL-n-g. Therefore, trajectories can only leave

FED by violating the box constraints. Thus, without loss of generality, there must
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exist a unit i such that Pi(0) = PM
i and Pi(t) > PM

i for all t ∈ (0, δ). This means

that there must exist t → ζ(t) ∈ −L∂f ε(P (t)) and δ1 ∈ (0, δ) such that ζi(t) ≥ 0

a.e. in (0, δ1). Next we show that this can only happen if Pj(t) ≥ PM
j for all

j ∈ N+
i . Since Pi(t) > PM

i for t ∈ (0, δ1), then ∂fi(Pi(t)) = {∇fi(Pi(t)) + 1
ε
}.

Therefore,

ζi(t) = −
∑
j∈N+

i

aij

(
∇fi(Pi(t)) +

1

ε
− ηj(t)

)
,

where ηj(t) ∈ ∂fj(Pj(t)). Note that if Pj(t) ≥ PM
j , then ηj(t) ≤ ∇fj(Pj(t)) + 1

ε
,

whereas if Pj(t) < PM
j , then ηj(t) ≤ ∇fj(Pj(t)). For convenience, denote this

latter set of units by N+
i . Now, we can upper bound ζi(t) by

ζi(t) ≤ −
∑
j∈N+

i

aij

(
∇fi(Pi(t))−∇fj(Pj(t))

)
− 1

ε

∑
j∈N+

i

aij

≤ 2 maxP∈FαED
‖∇f(P )‖∞dout

max −
1

ε

∑
j∈N+

i

aij < 0,

where the last inequality follows from (3.17). Hence, ζi(t) ≥ 0 only if Pj(t) ≥ PM
j

for all j ∈ N+
i and so the latter is true on (0, δ1) by continuity of the trajectories.

Extending the argument to the neighbors of each j ∈ N+
i , we obtain an interval

(0, δ2) ⊂ (0, δ1) over which all one- and two-hop neighbors of i have generation

levels greater than or equal to their respective maximum limits. Recursively, and

since the graph is strongly connected and the number of units finite, we get an

interval (0, δ̄) over which P (t) ≥ PM , which implies P (0) = PM , contradicting the

fact that PM 6∈ FED.

We next build on this result to show that the dynamics (3.15) asymptoti-

cally converges to the set of solutions of (3.1).

Theorem 3.3.4. (Convergence of the Laplacian-nonsmooth-gradient dynamics):

For ε satisfying (3.16), all trajectories of the dynamics (3.15) starting from FED

converge to the set of solutions of the ED problem (3.1).

Proof. Our proof strategy relies on the LaSalle Invariance principle for differential



44

inclusions (cf. Theorem 2.6.3). Recall that the function f ε is locally Lipschitz and

regular. Furthermore, the set-valued map P 7→ XL-n-g(P ) = −L∂f ε(P ) is locally

bounded, upper semicontinuous, and takes non-empty, compact, and convex values.

The set-valued Lie derivative LXL-n-gf
ε : Rn ⇒ R of f ε along (3.15) is

LXL-n-gf
ε(P ) = {−ζ>Lζ | ζ ∈ ∂f ε(P )}. (3.18)

Since G is weight-balanced −ζ>Lζ = −ζ>Lsζ ≤ 0, which implies

maxLXL-n-gf
ε(P ) ≤ 0 for all P ∈ Rn. From Lemma 3.3.3, the compact set FED

is strongly positively invariant under XL-n-g. Therefore, the application of Theo-

rem 2.6.3 yields that all evolutions of (3.15) starting in FED converge to the largest

weakly invariant setM contained in FED∩{P ∈ Rn|0 ∈ LXL-n-gf
ε(P )}. From (3.18)

and the fact that G is weight-balanced, we deduce that 0 ∈ LXL-n-gf
ε(P ) if and only

if there exists µ ∈ R such that µ1n ∈ ∂f ε(P ). Using Lemma 2.5.3, this is equiv-

alent to P ∈ FED being a solution of (3.13). This implies that M corresponds to

the set of solutions of (3.13). Finally, since (3.16) implies (3.14), Proposition 3.3.2

guarantees that the solutions of (3.1) and (3.13) coincide.

Since, FED is strongly positively invariant under XL-n-g, f ε is nonincreas-

ing along XL-n-g (cf. proof of Theorem 3.3.4), and f ε and f coincide on FED,

the Laplacian-nonsmooth-gradient dynamics is an anytime algorithm for the ED

problem (3.1). Because these properties do not depend on the specific graph, the

convergence properties of (3.15) are the same if the communication topology is

time-varying as long as it remains weight-balanced and strongly connected. Note

that, following the discussion of Remark 3.1.1, the Laplacian-nonsmooth-gradient

dynamics can be employed in a hierarchical way for scenarios where a set of buses

form the communication network and each bus is connected to a group of genera-

tors and/or loads. At the top level, a copy of the dynamics would be implemented

over the set of buses (with the cost function for each bus being the aggregated

cost of the generators attached to it) and, at a lower level, a copy of the dynamics

is executed in each bus among the generators connected to it. Finally, the ini-

tialization procedures of Remark 3.2.2 do not work for (3.15) because of the box
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constraints. The iterative algorithms in [DGH11] provide initialization procedures

that only converge asymptotically to a feasible point in FED. We address this issue

next.

Remark 3.3.5. (Robustness against initialization errors): Both the Laplacian-

gradient and the Laplacian-nonsmooth-gradient dynamics preserve the total power

generated by the system. Thus, if they are initialized with an error in load satisfac-

tion, the dynamics ensures that the error stays constant while the system evolves.

In this sense, these dynamics are robust. In Chapter 4, we will design a dynamics

that has a more desirable property of driving the error to zero. •

3.4 Algorithm initialization and robustness against

generator addition and deletion

The distributed dynamics proposed in Sections 3.2 and 3.3 rely on a proper

initialization of the power levels of the units to satisfy the load condition, which

remains constant throughout the execution. However, the latter is no longer the

case if some generators leave the network or new generators join it. For the rED

problem, this issue can easily be resolved by prescribing that the power of each unit

leaving the network is compensated with a corresponding increase in the power of

one of its neighbors, and that new generators join the network with zero power.

However, for the ED problem, the presence of the box constraints makes the design

of a distributed solution more challenging. This is the problem we address here.

Interestingly, our strategy, termed determine feasible allocation, can also

be used to initialize the dynamics (3.15).

We assume that the communication topology among the generators is undi-

rected and connected at all times. A unit deletion event corresponds to re-

moving the corresponding vertex, and all edges associated with it. A unit ad-

dition event corresponds to adding a vertex, and some additional edges asso-

ciated with it. At any given time, the communication topology is represented

by Gevents = (Vevents, Eevents).
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3.4.1 Algorithm rationale and informal description

Here, we provide an informal description of the three-phase determine

feasible allocation strategy that allows units to collectively adjust their pow-

ers in finite time to meet the total load while satisfying the box constraints.

(i) Phase 1 (tree maintenance): This phase maintains a spanning rooted

tree Troot whose vertices are, at any instant of time, the generators present in the

network. When a unit enters the network, it sets its power to zero (all units fall

into this case when this procedure is run to initialize (3.15)) and is assigned a

token of the same value. A unit that leaves the network transfers a token with

its power level to one of its neighbors. Every unit i, except the root, resets its

current generation to Pi + P tkn
i , where P tkn

i is the summation of the tokens of i

(with default value zero if no token is received). The root adds Pl to its token if

the algorithm is executed for the initialization of (3.15). With these levels, the

network allocation might be unfeasible and sums Pl − P tkn
root.

(ii) Phase 2 (capacity computation): Each unit i aggregates the difference

between the current generation and the lower and upper limits, respectively, for

all the units in the subtree Ti of Troot that has i as its root. Mathematically,

Cm
i =

∑
j∈Ti(Pj − Pm

j ) and CM
i =

∑
j∈Ti(P

M
j − Pj). These values represent the

collective capacity of Ti to decrease or increase, respectively, the total power of the

network while satisfying the box constraints. If −Cm
root ≤ P tkn

root ≤ CM
root does not

hold, then the root declares that the load cannot be met.

(iii) Phase 3 (feasible power allocation): The root initiates the distribution

of P tkn
root, starting with itself and going down the tree until the leaves. Each unit

gets a power value from its parent, which it distributes among itself (respecting its

box constraints) and its children, making sure that the ulterior assignments down

the tree are feasible.

We next provide a formal description and analysis of phases 2 and 3. Re-

garding the tree maintenance in phase 1, we do not enter into details given the

ample number of solutions in literature, see e.g. [Lyn97]. We only mention that

the root can be arbitrarily selected, the tree can be built via any tree construc-

tion algorithm, and addition and deletion events can be handled via tree repairing
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algorithms [ACK08, SC12].

3.4.2 The get capacity strategy

Here, we describe the get capacity strategy that does capacity compu-

tation of phase 2. The method assumes that each unit i knows the identity of its

parent parenti and children childreni in the tree Troot, and hence is distributed.

Informally,

[Informal description]: The leaves of the tree start by sending their
capacities Pi − Pm

i and PM
i − Pi to their parents. Each unit, i, upon

receiving the capacities of all its children, adds them along with its own
to get Cm

i and CM
i , and sends the value to its parent. The routine ends

upon reaching the root.

Algorithm 1: get capacity
Executed by: generators i ∈ Vevents

Data : Pi, Pm
i , P

M
i , parenti, childreni

Initialize : ~Cm
i = ~CM

i := −∞1|childreni|
if childreni is empty then

Cm
i = Pi − Pm

i , C
M
i := PM

i − Pi
else

Cm
i = CM

i := −∞
end

1 if childreni is empty then send (Cm
i , C

M
i ) to parenti

2 while (Cm
i , C

M
i ) = (−∞,−∞) do

3 if message (Cm
j , C

M
j ) received from child j then

4 update ~Cm
i (j) = Cm

j and ~CM
i (j) = CM

j

5 if (~Cm
i (k), ~CM

i (k)) 6= (−∞,−∞) for all k ∈ childreni then
6 set (Cm

i , C
M
i ) = (Pi − Pm

i + Sum(~Cm
i ), PM

i − Pi + Sum(~CM
i ))

7 if i is not root then
8 send (Cm

i , C
M
i ) to parenti

9 end
10 end
11 end
12 end

Algorithm 1 formally describes get capacity. The next result summarizes

its properties. The proof is straightforward.
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Lemma 3.4.1. (Correctness of get capacity): Starting from the spanning tree

Troot over Gevents and P ∈ R|Vevents|, the algorithm get capacity terminates in

finite time, with each unit i ∈ Vevents having the following information:

(i) the capacities Cm
i =

∑
k∈Ti Pk−Pm

k and CM
i =

∑
k∈Ti P

M
k −Pk of the subtree

Ti, and

(ii) the capacities Cm
j , C

M
j of the subtrees {Tj}j∈childreni stored in ~Cm

i ,
~CM
i ∈

R|childreni|.

Note that the capacities Cm
i and CM

i are non-negative if all units in the

subtree Ti satisfy the box constraints. However, this might not be the case due

to the resetting of generation levels in phase 1 to account for unit addition and

deletion.

Lemma 3.4.2. (Bounds on feasible power allocations to subtree): Given P ∈
R|Vevents|, the following holds

(i) Cm+ CM ≥ 0 if PM≥Pm (same holds with strict signs)

(ii) for each i ∈ |Vevents|, the additional power P gv
i ∈ R can be further allocated to

the units in Ti respecting their box constraints if and only if −Cm
i ≤ P gv

i ≤
CM
i .

Proof. Fact (i) follows from noting that Cm
i =

∑
k∈Ti(Pk − Pm

k ) =
∑

k∈Ti(P
M
k −

Pm
k )− CM

i . Regarding fact (ii), P gv
i can be allocated among the units in Ti while

satisfying the box constraints for each of them iff
∑

k∈Ti P
m
k ≤

∑
k∈Ti Pk + P gv

i ≤∑
k∈Ti P

M
k . That is, adding P gv

i to the current generation of Ti gives a value that

falls between the collective lower and upper limits of Ti. Rearranging the terms

yields the desired result.

3.4.3 Algorithm: feasibly allocate

Here, we describe the feasibly allocate strategy that implements the

feasible allocation computation of phase 3. Before this strategy is executed, the

generation levels computed in phase 1 are unfeasible because their sum is Pl−P tkn
root
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and does not satisfy the load condition. Additionally, because of unit addition

and deletion, some might not be satisfying their box constraints. The feasibly

allocate strategy addresses both issues. The procedure assumes that each unit

i knows parenti, childreni, and the capacities Cm
i , CM

i , ~Cm
i , and ~CM

i obtained in

get capacity, and is therefore distributed. Informally,

[Informal description]: The root initiates the algorithm by setting
P gv

root = P tkn
root. Each unit i, upon initializing P gv

i , computes its change in
power generation (P chg

i ∈ R) and the power to be allocated among its
children (~P chg

i ∈ R|childreni|). The unit sets its generation to Pi + P chg
i

and sends ~P chg
i (j) to child j ∈ childreni. The strategy ends at the

leaves.

Algorithm 2 gives a formal description of feasibly allocate. The next

result establishes its correctness.

Proposition 3.4.3. (Correctness of feasibly allocate): Let P tkn
root ∈ R with

−Cm
root ≤ P tkn

root ≤ CM
root. Then, the feasibly allocate strategy ends in finite time

at an allocation P+ ∈ R|Vevents| satisfying the box constraints, Pm
i ≤ P+

i ≤ PM
i ,

i ∈ Vevents, and the load condition, Pl =
∑

i∈Vevents P
+
i .

Proof. By Lemma 3.4.2(ii), −Cm
root ≤ P tkn

root ≤ CM
root implies that P tkn

root can be allo-

cated to the units in T . In turn, by the same result, for a unit i, −Cm
i ≤ P gv

i ≤ CM
i

implies existence of a decomposition P chg
i ∈ R and ~P chg

i ∈ R|childreni| with

P chg
i + Sum(~P chg

i ) = P gv
i , (3.19a)

−myP dm
i ≤ P chg

i ≤ myP dM
i , (3.19b)

−~Cm
i ≤ ~P chg

i ≤ ~CM
i , (3.19c)

where we denote myP dm
i = Pi−Pm

i and myP dM
i = PM

i −Pi. Equation (3.19b) cor-

responds to the box constraints being satisfied for unit i if assigned the additional

power P chg
i to generate. Equation (3.19c) ensures that a feasible allocation exists

for the subtree of each of its children. We compute P chg
i and ~P chg

i in two steps.

First, we find the portion of power that ensures feasibility for i and its children.
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Algorithm 2: feasibly allocate
Executed by: generators i ∈ Vevents

Data : Pi, Pm
i , PM

i , parenti, childreni, ~Cm
i , ~CM

i

Initialize : P chg
i := −∞, ~P chg

i := −∞1|childreni|, myP dm
i := Pi − Pm

i ,
myP dM

i := PM
i − Pi

1 while P chg
i = −∞ do

2 if i root or message ~P chg
parenti

(i) from parenti then
3 if i root then P gv

i =P tkn
root else P

gv
i = ~P chg

parenti(i)

4 set P chg
i = argminx∈[−myPdm

i ,myPdM
i ] |x|

5 for j ∈ childreni do
6 set ~P chg

i (j) = argminx∈[− ~Cm
i (j), ~CM

i (j)] |x|
7 end
8 set P gv

i = P gv
i − P chg

i − Sum(~P chg
i )

9 if P gv
i ≥ 0 then

10 set X = min{P gv
i ,myP dM

i − P chg
i }

11 set (P chg
i , P gv

i ) = (P chg
i +X,P gv

i −X)
12 for j ∈ childreni do
13 set X=min{P gv

i , ~CM
i (j)− ~P chg

i (j)}
14 set (~P chg

i (j), P gv
i )=(~P chg

i (j)+X,P gv
i −X)

15 end
16 end
17 else
18 set X = max{P gv

i ,−myP dm
i − P chg

i }
19 set (P chg

i , P gv
i ) = (P chg

i +X,P gv
i −X)

20 for j ∈ childreni do
21 set X=max{P gv

i ,−~Cm
i (j)− ~P chg

i (j)}
22 set (~P chg

i (j), P gv
i )=(~P chg

i (j)+X,P gv
i −X)

23 end
24 end
25 set Pi = Pi + P chg

i

26 send ~P chg
i (j) to each j ∈ childreni

27 end
28 end
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This is done via

ai = argminx∈[−myPdm
i ,myPdM

i ] |x| ,
~bi(j) = argminx∈[− ~Cm

i (j), ~CM
i (j)] |x| , for j ∈ childreni.

Observe that P chg
i = ai and ~P chg

i = ~bi satisfy (3.19b) and (3.19c) but not neces-

sarily (3.19a). The second step takes care of this shortcoming by defining Xi ∈ R
and ~Yi ∈ R|childreni| as

P chg
i = ai +Xi, ~P chg

i = ~bi + ~Yi.

In these new variables, (3.19) reads as

Xi + Sum(~Yi) = P gv
i − ai − Sum(~bi), (3.20a)

−myP dm
i − ai ≤ Xi ≤ myP dM

i − ai, (3.20b)

−~Cm
i −~bi ≤ ~Yi ≤ ~CM

i −~bi. (3.20c)

Adding the lower limits of (3.20b) and (3.20c) yields −Cm
i −ai−Sum(~bi), where we

use Cm
i = myP dm

i +Sum(~Cm
i ). Similarly, the upper limits sum CM

i − ai−Sum(~bi).

Therefore, with −Cm
i ≤ P gv

i ≤ CM
i , (3.20) is solvable by unit i with knowledge

of P gv
i , myP dm

i , myP dM
i , ~Cm

i , and ~CM
i . Note that the lower limits of (3.20b)

and (3.20c) are nonpositive and the upper ones are nonnegative. Therefore, if

P gv+
i ≥ 0, feasibly allocate considers first unit i and then its children sequen-

tially and assigns the maximum power each can take (bounded by the upper limit

of (3.20b) and (3.20c)) as Xi and ~Yi until there is no more to allocate. Similarly

if P gv+
i < 0 negative values are assigned (lower bounded by lower limits of (3.20b)

and (3.20c)). For unit i, this corresponds to steps 10-11 (if P gv+
i ≥ 0) or 18-19

(if P gv+
i < 0) of Algorithm 2. For the children, this corresponds to steps 12-14 (if

P gv+
i ≥ 0) or steps 20-22 (if P gv+

i < 0) of Algorithm 2. Consequently, the resulting

power allocation P+ = P + P chg satisfies Pm ≤ P+ ≤ PM because (3.19b) holds
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for each unit i ∈ Vevents. Additionally,

∑
i∈Vevents

P chg
i = P chg

root +
∑

i∈Vevents\root

P chg
i

= P chg
root +

∑
i∈childrenroot

~P chg
root = P gv

root,

where we use that (3.19a) holds for each i ∈ Vevents in the second and third inequali-

ties. Since P gv
root = P tkn

root and
∑

i∈Vevents Pi = Pl−P tkn
root, we get

∑
i∈Vevents P

+
i = Pl.

Remark 3.4.4. (Trade-offs between additional information and network-wide

computation): When dealing with the addition and deletion of generators, it is

conceivable that, depending on the nature of the events, agents may use algo-

rithmic implementations that do not involve the whole network in determining

a feasible allocation. As an example, consider a scenario where network changes

occur in a localized manner and do not affect substantially the network genera-

tion capacity. Then, one could envision that a feasible allocation could be found

involving only a small set of generators in the computation of capacities and the

allocation of the mismatch. Such localized solutions are prone to failure when faced

with more extreme events (e.g., a large change to the overall network generation

capacity caused by topological changes). Instead, the determine feasible al-

location strategy is guaranteed to find a feasible allocation whenever it exists.

•

3.5 Simulations

Here, we illustrate the application of the Laplacian-nonsmooth-gradient dy-

namics to solve the ED problem (3.1) and the use of the determine feasible

allocation strategy to handle unit addition and deletion. The dynamics (3.15)

is simulated with a first-order Euler discretization. The optimizers are computed

using an sdp solver in the YALMIP toolbox.
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Figure 3.1: Evolution of the power allocation (a) and the network cost (b) under
the Laplacian-nonsmooth-gradient dynamics in the IEEE 118 bus test case. The
stepsize of the Euler time-discretization is 2.5× 10−3 and ε = 0.006.

IEEE 118 bus

Consider the ED problem for the IEEE 118 bus test case [IEE]. This test

case has 54 generators, with quadratic cost functions for each unit i, fi(Pi) =

ai + biPi + ciP
2
i , whose coefficients belong to the ranges ai ∈ [6.78, 74.33],

bi ∈ [8.3391, 37.6968], and ci ∈ [0.0024, 0.0697]. The load is Pl = 4200 and

the capacity bounds vary as Pm
i ∈ [5, 150] and PM

i ∈ [150, 400]. The com-

munication topology is a directed cycle with the additional bi-directional edges

{1, 11}, {11, 21}, {21, 31}, {31, 41}, {41, 51}, with all weights equal to 1. Fig. 3.1

depicts the execution of (3.15). Note that as the network converges to the opti-

mizer while satisfying the constraints, the total cost is monotonically decreasing.

Unit addition and deletion

Consider six power generators initially communicating over the graph in

Fig. 3.2(a). The units implement (3.15) starting from the allocation P0 =

(1.15, 2.75, 1.5, 3.35, 1.25, 2) that meets the load Pl = 12 and quickly achieve a

close proximity of the optimizer (0.94, 2, 2.4, 2.61, 1.35, 2.7). After 0.75 seconds,

unit 7 joins the network and unit 3 leaves it, with the resulting topology shown in

Fig. 3.2(b). The network then employs the determine feasible allocation
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Figure 3.2: (a) Initial communication topology with all edge weights equal to 1.
(b) Communication topology after the addition of unit 7 and deletion of unit 3.
Generation levels at the end of Phase 1 of the determine feasible allocation
strategy are in parentheses. The tree is depicted via edges with dots. When leaving,
unit 3 transfers its power as a token to unit 4 and hence, after token addition, 4’s
generation becomes 5.01 (higher than its maximum capacity). Unit 7 enters with
zero power. Thus, all units except 4 have zero token value. Unit 1, being the
root of the tree, sets P tkn

1 = 0. (c) State after the execution of get capacity.
For each unit i, (Cm

i , C
M
i ) are indicated in parentheses. Unit 1 initiates feasibly

allocate to distribute P gv
1 = 0. (d) State at the end of feasibly allocate,

with values of the power distributed to the units in parentheses. These values sum
up to 0, and when added to their respective generation levels in (b) result into the
allocation P+

0 = (0.9, 2.05, 3.5, 1.35, 2.7, 1.5) that satisfies the load condition and
the box constraints.
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Table 3.1: Coefficients of the quadratic cost function fi(Pi) = ai + biPi + ciP
2
i

and lower Pm
i and upper PM

i generation limits for each unit i.
Unit ai bi ci Pm

i PM
i

1 1 4 5 0.9 1.5
2 1 2 3 2 3.6
3 4 4 1 1 2.4
4 2 3 2 2.5 3.5
5 1 0 5 1.1 1.6
6 1 1 1 1 2.7
7 2 2 1 1.5 3

strategy, whose execution is illustrated in Fig. 3.2(b)-3.2(d), and finds the new

feasible allocation (0.9, 2.05, 3.5, 1.35, 2.7, 1.5) from which (3.15) is re-initialized.

Table 3.1 gives the cost function and the box constraints for each unit. Fig. 3.3

shows the evolution of the power allocations and the total cost. The network

asymptotically converges to the optimizer (0.9, 2, 2.5, 1.1, 2.7, 2.8). In Fig. 3.3(a),

the discontinuity at t = 0.75s corresponds to the determine feasible allo-

cation strategy handling the addition and deletion. Note also the jump in the

cost. The network eventually obtains a lower cost than the one before the events

because the added unit 7 incurs a lower cost when producing the same power as

the deleted unit 3.
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Figure 3.3: Time evolutions of the power allocation and the network cost
under the Laplacian-nonsmooth-gradient dynamics. The network of 6 gener-
ators with topology depicted in Fig. 3.2(a) converges towards the optimizer
(0.94, 2, 2.4, 2.61, 1.35, 2.7) when, at t = 0.75s, unit 3 (red line) leaves and unit 7
(brown line) gets added. After executing the determine feasible allocation
strategy to find a feasible power allocation, the network with topology depicted in
Fig. 3.2(b) evolves along the Laplacian-nonsmooth-gradient dynamics to arrive at
the optimizer (0.9, 2, 2.5, 1.1, 2.7, 2.8). The stepsize of the Euler time-discretization
is 2.5× 10−5 and ε = 0.006.



Chapter 4

Robust distributed dynamics for ED

problem

In Chapter 3, we introduced a distributed anytime algorithm that finds a

solution of the ED problem asymptotically. The algorithm required proper initial-

ization, that is, a power allocation that is feasible. In Section 3.4, we addressed

this problem partly by providing a finite-time convergent algorithm that finds a

feasible initial condition. However, in the case that the power demand is a time-

varying signal or the number of generators participating in the dispatch changes

often, the finite-time convergent routine needs to be executed over and over again.

To overcome this problem, this chapter presents a robust distributed algorithmic

solution for the ED problem which converges from any initial power allocation.

4.1 Problem statement

This section will recall the definition of the economic dispatch problem that

we defined in Section 3.1. Consider n ∈ Z≥1 power generators communicating over

a strongly connected and weight-balanced digraph G = (V , E ,A). Each generator

corresponds to a vertex in the digraph and an edge (i, j) represents the ability

of generator j to send information to generator i. The cost of power generation

for unit i is measured by fi : R → R≥0, assumed to be convex and continuously

differentiable. Representing the power generated by unit i by Pi ∈ R, the total

57
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cost incurred by the network with the power allocation P = (P1, . . . , Pn) ∈ Rn is

measured by f : Rn → R≥0 as

f(P ) =
n∑
i=1

fi(Pi).

Note that f is convex and continuously differentiable. The generators aim to

minimize the total cost f(P ) while meeting the total power load Pl ∈ R>0, i.e.,∑n
i=1 Pi = Pl. Each generator has an upper and a lower limit on the power it

can produce, Pm
i ≤ Pi ≤ PM

i for i ∈ [n]. Formally, the economic dispatch (ED)

problem is

minimize f(P ), (4.1a)

subject to 1>nP = Pl, (4.1b)

Pm ≤ P ≤ PM . (4.1c)

The constraint (4.1b) is the load condition and (4.1c) are the box constraints. The

set of allocations satisfying the box constraints is FB = {P ∈ Rn | Pm ≤ P ≤ PM}.
Further, we denote the feasibility set of (4.1) as FED = FB∩HPl = {P ∈ Rn | Pm ≤
P ≤ PM and 1>nP = Pl} and the set of solutions as F∗ED. Since FED is compact,

F∗ED is compact. Note that PM ∈ FED implies FED = {PM}. We assume that PM

and Pm are not feasible.

Our aim is to design a distributed algorithm that allows the team of gener-

ators to solve the ED problem (4.1) starting from any initial condition, can handle

time-varying loads, and is robust to intermittent power generation.

Remark 4.1.1. (Additional practical constraints): We do not consider here, for

simplicity, other constraints on the ED problem such as transmission losses, trans-

mission line capacities, valve-point loading effects, ramp rate limits, and prohibited

operating zones. As our forthcoming treatment will show, the design and analysis

of algorithmic solutions to the ED problem without these additional constraints

is already quite challenging given our performance requirements. Nevertheless,

Remark 4.3.5 later comments on how to adapt our algorithm to deal with more
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general scenarios. •

Our design strategy relies on the following reformulation of the ED problem

without inequality constraints that was developed in Chapter 3. Consider the

modified ED problem

minimize f ε(P ), (4.2a)

subject to 1>nP = Pl, (4.2b)

where the objective function is

f ε(P ) =
n∑
i=1

fi(Pi) +
1

ε
(
n∑
i=1

([Pi − PM
i ]+ + [Pm

i − Pi]+)).

This corresponds to each generator i ∈ [n] having the modified local cost

f εi (Pi) = fi(Pi) +
1

ε
([Pi − PM

i ]+ + [Pm
i − Pi]+).

Note that f εi is convex, locally Lipschitz, and continuously differentiable on R ex-

cept at Pi = Pm
i and Pi = PM

i . Moreover, the total cost f ε is convex, locally

Lipschitz, and regular. According to Proposition 3.3.2, the solutions to the origi-

nal (4.1) and the modified (4.2) ED problems coincide for ε ∈ R>0 such that

ε <
1

2 maxP∈FED
‖∇f(P )‖∞

. (4.3)

Throughout this chapter, we will assume that ε satisfies this condition. Recall that

P ∗ ∈ Rn is a solution of (4.2) if and only if there exists µ ∈ R such that

µ1n ∈ ∂f ε(P ∗) and 1>nP
∗ = Pl. (4.4)

4.2 Robust centralized algorithmic solution

This section presents a robust strategy to make the network power allo-

cation converge to the solution set of the ED problem starting from any initial
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condition. Even though this algorithm is centralized, its design provides enough

insight to tackle later the design of a distributed algorithmic solution. Consider the

“load mismatch + Laplacian-nonsmooth-gradient” (abbreviated lm+L∂) dynamics,

represented by the set-valued map Xlm+L∂ : Rn ⇒ Rn,

Ṗ ∈ −L∂f ε(P ) +
1

n
(Pl − 1>nP )1n, (4.5)

where L is the Laplacian associated to the strongly connected and weight-balanced

communication digraph G. For each generator, the first term seeks to minimize the

total cost while leaving unchanged the total generated power. The second term

is a feedback element that seeks to drive the units towards the satisfaction of the

load. The first term is computable using information from its neighbors but the

second term requires them to know the aggregated state of the whole network,

which makes it not directly implementable in a distributed manner. The next

result shows that the trajectories of (4.5) converge to the set of solutions of the

ED problem.

Theorem 4.2.1. (Convergence of the trajectories of Xlm+L∂ to the solutions of the

ED problem): The trajectories of (4.5) starting from any point in Rn converge to

the set of solutions of (4.1).

Proof. Our proof strategy proceeds by applying the refined LaSalle Invariance Prin-

ciple for differential inclusions established later in Section 4.5, cf. Proposition 4.5.1.

Consider the following function V1 : Rn → R≥0,

V1(P ) =
1

2
(Pl − 1>nP )2.

The set-valued Lie derivative of V1 along Xlm+L∂ is

LXlm+L∂V1(P ) = {−(Pl − 1>nP )2} = {−2V1(P )}.

Thus, starting at any P (0) ∈ Rn, the trajectory of Xlm+L∂ satisfies V1(P (t)) =

V1(P (0))e−2t and its omega-limit set (provided the trajectory is bounded, a fact

that we assume is true for now and establish later) is contained in HPl . In the
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notation of Proposition 4.5.1, HPl plays the role of the closed submanifold S of Rn.

We next show that the hypotheses of this result hold. In the notation of the

Lemma 4.5.3, the function f ε, the map (P, ζ) 7→ −Lζ, and the set-valued map

P ⇒ −L∂f ε(P ) play the role of W , g, and F , respectively (our choice of F is

because Xlm+L∂ takes the form Ṗ ∈ −L∂f ε(P ) on S = HPl). Notice that ζ 7→ −Lζ
is a continuous map and, since G is strongly connected and weight-balanced, we

have ζ>(−Lζ) = −1
2
ζ>(L+L>)ζ ≤ 0 for any ζ ∈ ∂f ε(P ). Therefore, Lemma 4.5.3(i)

is satisfied. Moreover, if ζ>(−Lζ) = 0 for some ζ ∈ ∂f ε(P ), then ζ ∈ span{1n}.
Since for P ∈ HPl , we have

LXlm+L∂f
ε(P ) = {−ζ>Lζ | ζ ∈ ∂f ε(P )},

we deduce 0 ∈ LXlm+L∂f
ε(P ), i.e., Lemma 4.5.3(ii) holds. The application of

Lemma 4.5.3 then yields that Proposition 4.5.1(ii) holds too. In addition, from

the above analysis, note that if 0 ∈ LXlm+L∂f
ε(P ) for some P ∈ HPl , then there

exists µ ∈ R such that µ1n ∈ ∂f ε(P ) and, from (4.4), P is a solution of (4.1).

Therefore, {P ∈ HPl | 0 ∈ LXlm+L∂f
ε(P )} is the set of solutions of the ED problem

and belongs to a level set of f ε, which establishes that Proposition 4.5.1(i) also

holds.

To be able to apply Proposition 4.5.1 and conclude the proof, it remains to

show that the trajectories of Xlm+L∂ are bounded. We reason by contradiction, i.e.,

assume there exists a trajectory t 7→ P (t), P (0) ∈ Rn of Xlm+L∂ such that ‖P (t)‖ →
∞. From the analysis above, we know that along this trajectory 1>nP (t)→ Pl and

f ε(P (t))→∞ (as f ε is radially unbounded). Therefore, there exist a sequence of

times {tk}∞k=1 with tk →∞ such that for all k ∈ Z≥1,

∣∣1>nP (tk)− Pl
∣∣< 1

k
and maxLXlm+L∂f

ε(P (tk))>0. (4.6)

This implies that there exists a sequence {ζk}∞k=1 with ζk ∈ ∂f ε(P (tk)) such that,

for all k ∈ Z≥1,

− ζ>k Lζk +
1

n
(Pl − 1>nP (tk))(1

>
n ζk) > 0
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⇒ −ζ>k
(L + L>

2

)
ζk +

1

nk

∣∣1>n ζk∣∣ > 0 (4.7)

⇒ −λ2(L + L>)

2

∥∥∥ζk − 1

n
(1>n ζk)1n

∥∥∥2

+
1

nk

∣∣1>n ζk∣∣ > 0,

where we have used (4.6) in the first implication and (2.1) in the second. Next, we

consider two cases depending on whether (a)
∣∣1>n ζk∣∣ is bounded or (b)

∣∣1>n ζk∣∣→∞.

In case (a), taking the limit k →∞ in the last inequality of (4.7), we get

lim
k→∞

∥∥∥ζk − 1

n
(1>n ζk)1n

∥∥∥ = 0. (4.8)

Since, ‖P (t)‖ → ∞ and 1>nP (t)→ Pl, there exist i, j ∈ [n] such that Pi(tk)→∞
and Pj(tk) → −∞. Let P ∗ ∈ F∗ED and µ1n ∈ ∂f ε(P ∗) for some µ ∈ R. Then,

without loss of generality, we assume that P ∗i ≤ Pi(tk) ≤ Pi(tk+1) and P ∗j ≥
Pj(tk) ≥ Pj(tk+1) for all k. This fact along with the expression of ∂f εi : R ⇒ R,

∂f εi (Pi) =



{∇fi(Pi)− 1
ε
} if Pi < Pm

i ,

[∇fi(Pi)− 1
ε
,∇fi(Pi)] if Pi = Pm

i ,

{∇fi(Pi)} if Pm
i < Pi < PM

i ,

[∇fi(Pi),∇fi(Pi) + 1
ε
] if Pi = PM

i ,

{∇fi(Pi) + 1
ε
} if Pi > PM

i .

gives us the following property for all k ∈ Z≥1,

min ∂f εi (Pi(tk)) ≥ µ, max ∂f εj (Pj(tk)) ≤ µ, (4.9a)

min ∂f εi (Pi(tk+1)) ≥ max ∂f εi (Pi(tk)), (4.9b)

max ∂f εj (Pj(tk+1)) ≤ min ∂f εj (Pj(tk)). (4.9c)

Note that the limit (4.8) yields limk→∞ |(ζk)i − (ζk)j| = 0. On the other hand,

from (4.9b)-(4.9c), we obtain |(ζk)i − (ζk)j| ≤ |(ζk+1)i − (ζk+1)j| for all k. There-

fore, we obtain (ζk)i = (ζk)j for all k and from (4.9a), we get µ = (ζk)i = (ζk)j for

all k. From (4.9b)-(4.9c), this further implies that µ ∈ ∂f εi (x) for all x ∈ [P ∗i ,∞)

and that µ ∈ ∂f εj (x) for all x ∈ (−∞, P ∗j ]. Using this fact, one can construct an
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unbounded set of solutions to the ED problem in the following manner. First, fix

all the components of P ∗ except i and j. Now pick any x ∈ R≥0 and consider

P ∗i + x and P ∗j − x. From what we have reasoned so far, all such points that we

obtain by varying x are solutions to the ED problem as they satisfy (4.4). This

contradicts the fact that F∗ED is bounded.

In case (b), assume without loss of generality that 1>n ζk →∞ (the argument

for 1>n ζk → −∞ follows similarly). As reasoned above, there exists j ∈ [n] such

that Pj(tk) → −∞ and there exists µ ∈ R such that (ζk)j ≤ µ for all k ∈ Z≥1.

Using this fact, we upper bound the left hand side of the inequality (4.7) by

− λ2(L + L>)

2

∥∥∥ζk − 1

n
(1>n ζk)1n

∥∥∥2

+
1

nk
(1>n ζk)

≤ −λ2(L + L>)

2

(
(ζk)j −

1

n
(1>n ζk)

)2

+
1

nk
(1>n ζk)

≤ −λ2(L + L>)

2

(
µ− 1

n
(1>n ζk)

)2

+
1

nk
(1>n ζk), (4.10)

where the last inequality is valid for all but a finite number of k. Hence, as

1>n ζk →∞, there is k̄ ∈ Z≥1 such that the expression in (4.10) is negative for k ≥ k̄,

contradicting (4.7). Thus, we conclude the trajectories are bounded.

From the proof above, it is interesting to note that the feedback term (4.5)

drives the mismatch between generation and load to zero at an exponential rate, no

matter what the initial power allocation. This is a good indication of its robustness

properties: time-varying loads or scenarios with generators going down and coming

back online can be handled as long as the rate of these changes is lower than the

exponential rate of convergence associated to the load satisfaction. We provide a

formal characterization of these properties for the distributed implementation of

this strategy in the next section.

4.3 Robust distributed algorithmic solution

This section presents a distributed strategy to solve the ED problem starting

from any initial power allocation. We build on the centralized design presented
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in Section 4.2. We also formally characterize the robustness properties against

addition and deletion of generators and time-varying loads.

Given the discussion on the centralized nature of the dynamics (4.5), the

core idea of our design is to employ a dynamic average consensus algorithm that

allows each unit in the network to estimate the mismatch in load satisfaction. In

dynamic average consensus (cf. Section 2.7), each agent has access to a time-

varying input signal and interacts with its neighbors in order to track the average

of the input signals across the network. For our specific case, we assume the total

load Pl is only known to one generator r ∈ [n] (its specific identity is arbitrary).

Following Section 2.7, consider

ż = −αz − βLz − v + ν2(Pler − P ),

v̇ = αβLz,

where er ∈ Rn is the unit vector along the r-th direction and α, β, ν2 > 0 are design

parameters. Note that this algorithm is distributed over the communication graph

G. For each i ∈ [n], zi plays the role of an estimator associated to i which aims to

track the average signal t 7→ 1
n
(Pl−1>nP (t)). This observation justifies substituting

the feedback term in (4.5) by z ∈ Rn, giving rise to the “dynamic average consensus

+ Laplacian-nonsmooth-gradient” dynamics, abbreviated dac+L∂ for convenience,

mathematically represented by the set-valued map Xdac+L∂ : R3n ⇒ R3n,

Ṗ ∈ −L∂f ε(P ) + ν1z, (4.12a)

ż = −αz − βLz − v + ν2(Pler − P ), (4.12b)

v̇ = αβLz, (4.12c)

where ν1 > 0 is a design parameter. Unlike (4.5), this algorithm is distributed, as

each agent only needs to interact with its neighbors to implement it.

Remark 4.3.1. (Comparison with finite-time initialization approach): Our dis-

tributed solution for the ED problem proposed in Chapter 3 involved initializing

the generation levels inside the feasibility set FED using a finite-time message pass-
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ing algorithm. This finite-time initialization approach is best suited for scenarios

with a fixed set of participating generators. In the presence of intermittent gen-

eration, every time a generator joins or leaves the network, the generators have

to stop the dynamics, execute the finite-time algorithm, and then re-run the dy-

namics. This approach, however, cannot deliver perfect tracking of continuously

time-varying loads. In contrast, the dac+L∂ dynamics does not suffer from these

limitations, as discussed later in Section 4.3.2. •

4.3.1 Convergence analysis

Here we characterize the asymptotic convergence properties of the dac+L∂

dynamics. We start by establishing an important fact on the omega-limit set of

any trajectory of (4.12) with initial condition in Rn × Rn ×H0.

Lemma 4.3.2. (Characterizing the omega-limit set of the trajectories of the

dac+L∂ dynamics): The omega-limit set of any trajectory of (4.12) with initial

condition (P0, z0, v0) ∈ Rn × Rn ×H0 is contained in HPl ×H0 ×H0.

Proof. From (4.12c), note that 1>n v̇ = 0. Since v0 ∈ H0, this implies that 1>n v(t) =

0 for all t ≥ 0. Now, define ζ(t) = 1>nP (t)− Pl and note that

ζ̇(t) = 1>n Ṗ (t) = ν11
>
n z(t),

where we have used (4.12a), and

ζ̈(t) = ν11
>
n ż(t)

= ν11
>
n (−αz(t)− βLz(t)− v(t) + ν2(Plek − P (t))

= −ν1α(1>n z(t))− ν1ν2ζ(t) = −αζ̇(t)− ν1ν2ζ(t),

where we have used (4.12b). We write this system as a first-order one by defining

x1 = ζ and x2 = ζ̇ to get [
ẋ1

ẋ2

]
=

[
0 1

−ν1ν2 −α

][
x1

x2

]
. (4.13)
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Evaluating the Lie derivative of the positive definite, radially unbounded function

V2(x1, x2) = ν1ν2x
2
1 +x2

2 along the above dynamics and applying the LaSalle Invari-

ance Principle [Kha02], we deduce that x1(t) → 0 and x2(t) → 0 as t → ∞, that

is, 1>nP (t)→ Pl and 1>n z(t)→ 0. Since the system (4.13) is linear, the convergence

is exponential.

The next result builds on this fact and Proposition 4.5.1 to establish that

the trajectory of power allocations under (4.12) converges to the solution set of

the ED problem.

Theorem 4.3.3. (Convergence of the dac+L∂ dynamics to the solutions of ED

problem): For α, β, ν1, ν2 > 0 with

ν1

βν2λ2(L + L>)
+
ν2

2λmax(L>L)

2α
< λ2(L + L>), (4.14)

the trajectories of (4.12) starting from any point in Rn ×Rn ×H0 converge to the

set F∗aug = {(P, z, v) ∈ F∗ED × {0} × Rn | v = ν2(Pler − P )}.

Proof. Our proof strategy is based on the refined LaSalle Invariance Principle for

differential inclusions established in Proposition 4.5.1. Before justifying that all its

hypotheses are satisfied, we reformulate the expression for the dynamics to help

simplify the analysis. Consider first the change of coordinates, (P, z, v) 7→ (P, z, v̄),

with v̄ = v − ν2(Pler − P ). The set-valued map Xdac+L∂ then takes the form

Xdac+L∂(P, z, v̄) = {(−Lζ + ν1z,−(α + βL)z − v̄,
(αβL + ν1ν2)z − ν2Lζ) ∈ R3n | ζ ∈ ∂f ε(P )}.

The change of coordinates shifts the equilibrium of the consensus dynamics to the

origin. Under the additional change of coordinates (P, z, v̄) 7→ (P, ξ1, ξ2), with

[
ξ1

ξ2

]
=

[
I 0

αI I

][
z

v̄

]
, (4.15)
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the set-valued map Xdac+L∂ takes the form

Xdac+L∂(P, ξ1, ξ2) = {(−Lζ + ν1ξ1,−βLξ1 − ξ2, (4.16)

ν1ν2ξ1 − αξ2 − ν2Lζ) ∈ R3n | ζ ∈ ∂f ε(P )}.

This extra change of coordinates makes it easier to identify the candidate Lyapunov

function V3 : R3n → R≥0,

V3(P, ξ1, ξ2) = f ε(P ) +
1

2
(ν1ν2‖ξ1‖2 + ‖ξ2‖2).

For convenience, denote the overall change of coordinates by D : R3n → R3n,

(P, ξ1, ξ2) = D(P, z, v) = (P, z, v + αz − ν2(Pler − P )).

Our analysis now focuses on proving that, in the new coordinates, the trajectories

of (4.12) converge to the set

Faug = D(F∗aug) = F∗ED × {0} × {0}.

Note that D(HPl×H0×H0) = HPl×H0×H0 and therefore, from Lemma 4.3.2, the

omega-limit set of a trajectory t 7→ (P (t), ξ1(t), ξ2(t)) starting in D(Rn×Rn×H0)

belongs to HPl ×H0 ×H0.

Our next step is to show that the hypotheses of Proposition 4.5.1 are satis-

fied where HPl ×H0×H0 and V3 play the role of the closed submanifold S of R3n

and the function W , respectively. To do so, we resort to Lemma 4.5.3. Define the

continuous function g : R3n × R3n → R3n by

g(P, ξ1, ξ2, ζ̂) = (−Lζ̂1 + ν1ξ1,−βLξ1 − ξ2, ν1ν2ξ1 − αξ2 − ν2Lζ̂1),

and note that the dynamics (4.16) can be expressed as Xdac+L∂(P, ξ1, ξ2) =

{g(P, ξ1, ξ2, ζ̂) | ζ̂ ∈ ∂V3(P, ξ1, ξ2)}. For (P, ξ1, ξ2) ∈ HPl × H0 × H0 and
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ζ̂ ∈ ∂V3(P, ξ1, ξ2),

ζ̂>g(P, ξ1, ξ2, ζ̂) = −ζ>Lζ + ν1ζ
>ξ1 − βν1ν2ξ

>
1 Lξ1 − α‖ξ2‖2 − ν2ξ

>
2 Lζ, (4.17)

where we have used that ζ = ζ̂1 ∈ ∂f ε(P ), ζ̂2 = ν1ν2ξ1, and ζ̂3 = ξ2. Since the

digraph G is strongly connected and weight-balanced, we apply (2.1) and the fact

that 1>n ξ1 = 0 to bound the above expression as

− 1

2
λ2(L + L>)‖η‖2 + ν1η

>ξ1 −
1

2
βν1ν2λ2(L + L>)‖ξ1‖2

− α‖ξ2‖2 − ν2ξ
>
2 Lη = γ>Mγ,

where η = ζ − 1
n
(1>n ζ)1n, γ> = [η>, ξ>1 , ξ

>
2 ], and

M =


−1

2
λ2(L + L>)I 1

2
ν1I −1

2
ν2L
>

1
2
ν1I −1

2
βν1ν2λ2(L + L>)I 0

−1
2
ν2L 0 −αI

 .
Reasoning with the Schur complement [BV09], M ∈ R3n×3n is negative definite if

− 1

2
λ2(L + L>)I −

[
1
2
ν1I −1

2
ν2L
>
] [−1

2
βν1ν2λ2(L + L>)I 0

0 −αI

]−1 [
1
2
ν1I

−1
2
ν2L

]

= −1

2
λ2(L + L>)I +

ν1

2βν2λ2(L + L>)
I +

ν2
2

4α
L>L,

is negative definite. This latter fact is implied by (4.14). As a consequence,

ζ̂>g(P, ξ1, ξ2, ζ̂) ≤ 0 and so, Lemma 4.5.3(i) holds. Moreover, ζ̂>g(P, ξ1, ξ2, ζ̂) = 0

if and only if η = ξ1 = ξ2 = 0, which means ζ ∈ span{1n}. Using this fact

along with the definition of the set-valued Lie derivative and the characterization

of optimizers (4.4), we deduce that ζ̂>g(P, ξ1, ξ2, ζ̂) = 0 if and only if (a) 0 ∈
LXdac+L∂V3(P, ξ1, ξ2) and (b) P is a solution of the ED problem. Fact (a) implies

that Lemma 4.5.3(ii) holds and hence, Proposition 4.5.1(ii) holds too. Fact (b)

implies that over the set HPl × H0 × H0, we have 0 ∈ LXdac+L∂V3(P, ξ1, ξ2) if and

only if (P, ξ1, ξ2) ∈ Faug. Since, Faug belongs to a level set of V3, we conclude that
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Proposition 4.5.1(i) holds too.

To be able to apply Proposition 4.5.1 and conclude the proof, it remains to

show that the trajectories starting from D(Rn × Rn ×H0) are bounded. We rea-

son by contradiction, i.e., assume there exists a trajectory t 7→ (P (t), ξ1(t), ξ2(t)),

with initial condition (P (0), ξ1(0), ξ2(0)) ∈ D(Rn × Rn × H0) of Xdac+L∂ such

that ‖(P (t), ξ1(t), ξ2(t)‖ → ∞. Since V3 is radially unbounded, this implies

V3(P (t), ξ1(t), ξ2(t)) → ∞. Additionally, from Lemma 4.3.2, we know that

1>nP (t) → Pl and 1>n ξ1(t) → 0. Thus, there exists a sequence of times {tk}∞k=1

with tk →∞ such that for all k ∈ Z≥1,

∣∣1>n ξ1(tk)
∣∣ < 1/k, (4.18a)

maxLXdac+L∂V3(P (tk), ξ1(tk), ξ2(tk)) > 0. (4.18b)

Note that (4.18b) implies that there exists a sequence {ζk}∞k=1 with ζk ∈ ∂f ε(P (tk))

such that

− ζ>k Lζk + ν1ζ
>
k ξ1(tk) − βν1ν2ξ1(tk)

>Lξ1(tk) − α‖ξ1(tk)‖2 − ν2ξ2(tk)
>Lζk > 0,

for all k ∈ Z≥1, where we have used the fact that an element of LXdac+L∂V3(P, ξ1, ξ2)

has the form given in (4.17). Letting ηk = ζk − 1
n
(1>n ζk)1n, we use (2.1) to deduce

from the above inequality that

− 1

2
λ2(L + L>)‖ηk‖2 + ν1η

>
k ξ1(tk) +

1

n
ν1(1>n ζk)(1

>
n ξ1(tk))

− 1

2
βν1ν2λ2(L + L>)‖ξ1(tk)−

1

n
(1>n ξ1(tk))1n‖2

− α‖ξ1(tk)‖2 − ν2ξ2(tk)
>Lηk > 0.

Further, using the expression

‖ξ1(tk)−
1

n
(1>n ξ1(tk))1n‖2 = ‖ξ1(tk)‖2 − 1

n
(1>n ξ1(tk))

2,
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the inequality can be rewritten as

γ>k Mγk +
1

n
ν1(1>n ζk)(1

>
n ξ1(tk)) +

βν1ν2

2n
λ2(L + L>)(1>n ξ1(tk))

2 > 0,

where γ>k = [η>k , ξ1(tk)
>, ξ2(tk)

>]. Using now the bound (4.18a), we arrive at the

inequality,

γ>k Mγk +
ν1

nk

∣∣1>n ζk∣∣+
βν1ν2

2nk2
λ2(L + L>) > 0. (4.19)

Next, we consider two cases, depending on whether the sequence {P (tk)} is

(a) bounded or (b) unbounded. In case (a), the sequence {(ξ1(tk), ξ2(tk))}
must be unbounded. Since M is negative definite, we have γ>k Mγk ≤
λmax(M)‖(ξ1(tk), ξ2(tk))‖2. Thus, (4.19) implies that

λmax(M)‖(ξ1(tk), ξ2(tk))‖2 +
ν1

nk

∣∣1>n ζk∣∣+
βν1ν2

2nk2
λ2(L + L>) > 0.

Now, from the expression of ∂f ε, since {P (tk)} is bounded, the sequence {ζk} must

be bounded. Combining these facts with λmax(M) < 0, one can find k̄ ∈ Z≥1 such

that the above inequality is violated for all k ≥ k̄, which is a contradiction. For

case (b), we use the bound γ>k Mγk ≤ λmax(M)‖ηk‖2 to deduce from (4.19) that

λmax(M)‖ηk‖2 +
ν1

nk

∣∣1>n ζk∣∣+
βν1ν2

2nk2
λ2(L + L>) > 0.

One can then use a similar argument as laid out in the proof of Theorem 4.2.1,

considering the two cases of
∣∣1>n ζk∣∣ being bounded or unbounded, arriving in both

cases at similar contradictions. This concludes the proof.

Note that as a consequence of the above result, the dac+L∂ dynamics do not

require any specific pre-processing for the initialization of the power allocations.

Each generator can select any generation level, independent of the other units, and

the algorithm guarantees convergence to the solutions of the ED problem.

Remark 4.3.4. (Distributed selection of algorithm design parameters): The con-

vergence of the dac+L∂ dynamics relies on a selection of the parameters α, β, ν1

and ν2 ∈ R>0 that satisfy (4.14). Checking this inequality requires knowledge of
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the spectrum of matrices related to the Laplacian matrix, and hence the entire

network structure. Here, we provide an alternative condition that implies (4.14)

and can be checked by the units in a distributed way. Let nmax be an upper bound

on the number of units, dout
max be an upper bound on the out-degree of all units,

and amin be a lower bound on the edge weights,

n ≤ nmax, maxi∈V d
out(i) ≤ dout

max, min(i,j)∈E aij ≥ amin. (4.20)

A straightforward generalization of [Moh91, Theorem 4.2] for weighted graphs gives

rise to the following lower bound on λ2(L + L>),

4amin

n2
max
≤ λ2(L + L>). (4.21)

On the other hand, using properties of matrix norms [Ber05, Chapter 9], one can

deduce

λmax(L>L) = ‖L‖2 ≤ (
√
n‖L‖∞)2 ≤ (2

√
ndout

max)2 ≤ 4nmax(dout
max)2. (4.22)

Using (4.21)-(4.22), the left-hand side of (4.14) can be upper bounded by

ν1

βν2λ2(L + L>)
+
ν2

2λmax(L>L)

2α
≤ ν1n

2
max

4aminβν2

+
2ν2

2nmax(dout
max)2

α
.

Further, the right-hand side of (4.14) can be lower bounded using (4.21). Putting

the two together, we obtain the new condition

ν1n
2
max

4aminβν2

+
2ν2

2nmax(dout
max)2

α
<

4amin

n2
max

, (4.23)

which implies (4.14). The network can ensure that this condition is met in various

ways. For instance, if the bounds nmax, dout
max, and amin are not available, the

network can implement distributed algorithms for max- and min-consensus [RB08]

to compute them in finite time. Once known, any generator can select α, β, ν1

and ν2 satisfying (4.23) and broadcast its choice. Alternatively, the computation

of the design parameters can be implemented concurrently with the determination
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of the bounds via consensus by specifying a specific formula to select them that

is guaranteed to satisfy (4.23). Note that the units necessarily need to agree on

the parameters, otherwise if each unit selects a different set of parameters, the

dynamic average consensus would not track the average input signal. •

Remark 4.3.5. (Distributed loads and transmission losses): Here we expand on

our observations in Remark 4.1.1 regarding the inclusion of additional constraints

on the ED problem. Our algorithmic solution can be easily modified to deal with

the alternative scenarios studied in [ZYC11, KH12, BDL+14, LV14], where each

generator has the knowledge of the load at the corresponding bus that it is con-

nected to and the total load is the aggregate of these individual loads. Mathe-

matically, denoting the load demanded at generator bus i by PL
i ∈ R, the total

load is given by Pl =
∑n

i=1 P
L
i . For this case, replacing the vector Pler by PL in

the dac+L∂ dynamics (4.12b) gives an algorithm that solves the ED problem for

the load Pl. Our solution strategy can also handle transmission losses as modeled

in [BDL+14], where it is assumed that each generator i can estimate the power loss

in the transmission lines adjacent to it. With those values available, the generator

could add them to the quantity PL
i , which would make the network find a power

allocation that takes care of the transmission losses. •

4.3.2 Robustness analysis

In this section, we study the robustness properties of the dac+L∂ dynamics

in the presence of time-varying load signals and intermittent power unit generation.

Our analysis relies on the exponential stability of the mismatch dynamics between

total generation and load established in Lemma 4.3.2, which implies that (4.13) is

input-to-state stable (ISS) [Kha02, Lemma 4.6], and consequently robust against

arbitrary bounded perturbations. The following result provides an explicit, ex-

ponentially decaying, bound for the evolution of any trajectory of (4.13). While

the rate of decay can also be determined by computing the eigenvalues of matrix

defining the dynamics, here we employ a Lyapunov argument to obtain also the

value of the gain associated to the rate.
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Lemma 4.3.6. (Convergence rate of the mismatch dynamics (4.13)): Let R ∈
R2×2 be defined by

R =
1

2αν1ν2

[
α2 + ν1ν2 + (ν1ν2)2 α

α 1 + ν1ν2

]
.

Then R � 0 and any trajectory t 7→ x(t) of the dynamics (4.13) satisfies ‖x(t)‖ ≤
c1e
−c2t‖x(0)‖, where c1 =

√
λmax(R)/λmin(R) and c2 = 1/2λmax(R).

Proof. Let A ∈ R2×2 be the system matrix of (4.13). Then, one can see that

A>R+RA = −I, i.e., V4(x) = x>Rx is a Lyapunov function for (4.13). Note that

λmin(R)‖x‖2 ≤ V4(x) ≤ λmax(R)‖x‖2. (4.24)

From the Lyapunov equation, we have LAxV4(x) = −‖x‖2 ≤ − 1
λmax(R)

V4(x), which

implies V4(x(t)) ≤ e−1/λmax(R)V4(x(0)) along any trajectory t 7→ x(t) of (4.13).

Again using (4.24), we get

‖x(t)‖2 ≤ λmax(R)

λmin(R)
e−1/λmax(R)‖x(0)‖2,

which concludes the claim.

In the above result, it is interesting to note that the convergence rate is inde-

pendent of the specific communication digraph (as long as it is weight-balanced).

We use next the exponentially decaying bound obtained above to illustrate the

extent to which the network can collectively track a dynamic load (which corre-

sponds to a time-varying perturbation in the mismatch dynamics) and is robust

to intermittent power generation (which corresponds to perturbations in the state

of the mismatch dynamics).

Tracking dynamic loads

Here we consider a time-varying total load given by a twice continuously

differentiable trajectory R≥0 3 t 7→ Pl(t) and show how the total generation of the

network under the dac+L∂ dynamics tracks it. We assume the signal is known to
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an arbitrary unit r ∈ [n]. In this case, the dynamics (4.13) take the following form

[
ẋ1

ẋ2

]
=

[
0 1

−ν1ν2 −α

][
x1

x2

]
+

[
0

−αṖl − P̈l

]
.

Using Lemma 4.3.6, one can compute the following bound on any trajectory of the

above system

‖x(t)‖ ≤ c1e
−c2t‖x(0)‖+

c1

c2

sup
s∈[0,t]

∣∣∣αṖl(s) + P̈l(s)
∣∣∣ .

In particular, for a signal with bounded Ṗl and P̈l, the mismatch between gener-

ation and load, i.e., x1(t) is bounded. Also, the mismatch has an ultimate bound

as t → ∞. The following result summarizes this notion formally. The proof is

straightforward application of Lemma 4.3.6 following the exposition of input-to-

state stability in [Kha02].

Proposition 4.3.7. (Power mismatch is ultimately bounded for dynamic load un-

der the dac+L∂ dynamics): Let R≥0 3 t 7→ Pl(t) be twice continuously differentiable

and such that

sup
t≥0

∣∣∣Ṗl(t)∣∣∣ ≤ d1, sup
t≥0

∣∣∣P̈l(t)∣∣∣ ≤ d2,

for some d1, d2 > 0. Then, the mismatch 1>nP (t)− Pl(t) between load and genera-

tion is bounded along the trajectories of (4.12) and has ultimate bound c1
c2

(αd1+d2),

with c1, c2 given in Lemma 4.3.6. Moreover, if Ṗl(t)→ 0 and P̈l(t)→ 0 as t→∞,

then 1>nP (t)→ Pl(t) as t→∞.

Robustness to intermittent power generation

Here, we characterize the algorithm robustness against unit addition and

deletion to capture scenarios with intermittent power generation. Addition and

deletion events are modeled via a time-varying communication digraph, which we

assume remains strongly connected and weight-balanced at all times. When a unit

stops generating power (deletion event), the corresponding vertex and its adjacent
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edges are removed. When a unit starts providing power (addition event), the

corresponding node is added to the digraph along with a set of edges. Given the

intricacies of the convergence analysis for the dac+L∂ dynamics, cf. Theorem 4.3.3,

it is important to make sure that the state v remains in the set H0, irrespectively

of the discontinuities caused by the events. The following routine makes sure that

this is the case.

trajectory invariance: When a unit i joins the network at time
t, it starts with vi(t) = 0. When a unit i leaves the network at time t,
it passes a token with value vi(t) to one of its in-neighbors j ∈ N in(i),
who resets its value to vj(t) + vi(t).

The trajectory invariance routine ensures that the dynamics (4.13) are the

appropriate description for the evolution of the load satisfaction mismatch. This,

together with the ISS property established in Lemma 4.3.6, implies that the mis-

match effect in power generation caused by addition/deletion events vanishes ex-

ponentially fast. In particular, if the number of addition/deletion events is finite,

then the set of generators converge to the solution of the ED problem. We formalize

this next.

Proposition 4.3.8. (Convergence of the dac+L∂ dynamics under intermittent

power generation): Let nmax be the maximum number of generators that can con-

tribute to the power generation at any time. Let Σnmax be the set of digraphs that

are strongly connected and weight-balanced and whose vertex set is included in

[nmax]. Let σ : [0,∞)→ Σnmax be a piecewise constant, right-continuous switching

signal described by the set of switching times {t1, t2, . . . } ⊂ R≥0, with tk ≤ tk+1,

each corresponding to either an addition or a deletion event. Denote by Xσ
dac+L∂ the

switching dac+L∂ dynamics corresponding to σ, defined by (4.12) with L replaced

by L(σ(t)) for all t ≥ 0, and assume agents execute the trajectory invariance

routine when they leave or join the network. Then,

(i) at any time t ∈ {0} ∪ {t1, t2, . . . }, if the variables (P (t), z(t)) for the gen-

erators in σ(t) satisfy
∣∣1>nP (t)− Pl

∣∣ ≤ M1 and
∣∣1>n z(t)

∣∣ ≤ M2 for some

M1,M2 > 0, then the magnitude of the mismatch between generation and
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load becomes less than or equal to ρ > 0 in time

tρ =
1

c2

ln
(c1(M1 + ν1M2)

ρ

)
,

provided no event occurs in the interval (t, t+ tρ);

(ii) if the number of events is finite, say N , then the trajectories of Xσ
dac+L∂ con-

verge to the set of solutions of the ED problem for the group of generators

in σ(tN) provided (4.14) is met for σ(tN).

Note that the generators can ensure that the condition (4.14), required for

the convergence of the dac+L∂ dynamics, holds at all times even under addition and

deletion events, if they rely on verifying that (4.23) holds and the bounds (4.20)

are valid for all the topologies in Σnmax .

4.4 Simulations in a IEEE 118 bus system

This section illustrates the convergence of the dac+L∂ dynamics to the

solutions of the ED problem (4.1) starting from any initial power allocation and its

robustness properties. We consider the IEEE 118 bus system [IEE], that consists

of 54 generators. The cost function of each generator i is quadratic, fi(Pi) =

ai + biPi + ciP
2
i , with coefficients belonging to the ranges ai ∈ [6.78, 74.33], bi ∈

[8.3391, 37.6968], and ci ∈ [0.0024, 0.0697]. The communication topology is the

digraph G described in Table 4.1.

We choose the design parameters as ν1 = 1, ν2 = 1.3, α = 10, β = 40, ε =

0.0086, which satisfy the conditions (4.3) and (4.14) for G. The total load is 4600

for the first 150 seconds and 4200 for the next 150 seconds, and is known to unit 3.

Figure 4.1(a)-(c) depicts the evolution of the power allocation, total cost, and

the mismatch between the total generation and load under the dac+L∂ dynamics

starting at the initial condition (P (0), z(0), v(0)) = (0.5 ∗ (Pm + PM), 0, 0). Note

that the generators initially converge to a power allocation that meets the load

4600 and minimizes the total cost of generation. Later, with the decrease in desired

load to 4200, the network decreases the total generation while minimizing the total
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Table 4.1: Definition of the digraphs G, Ĝ, Ĝ\{4,11,25,45}, and Ĝ\{4,25,27}.
G digraph over 54 vertices consisting of a directed cycle through ver-

tices 1, . . . , 54 and bi-directional edges {(i, id54(i + 5)), (i, id54(i +
10)), (i, id54(i + 15)), (i, id54(i + 20))} for each i ∈ [54], where
id54(x) = x if x ∈ [54] and x − 54 otherwise. All edge weights
are 0.1.

Ĝ obtained from G by replacing the directed cycle with an undirected
one keeping the edge weights same

Ĝ\{4,11,25,45} obtained from Ĝ by removing the vertices {4, 11, 25, 45} and the
edges adjacent to them

Ĝ\{4,25,27} obtained from Ĝ by removing the vertices {4, 25, 27} and the edges
adjacent to them

cost. Figure 4.1(d)-(f) shows the performance of the ratio-consensus algorithm

from [DGCH12] for the same initial condition and communication topology. One

can observe that the dac+L∂ dynamics shows better transient behavior when the

load changes.
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Figure 4.1: Evolution of the power allocation, the total cost, and the total mis-
match between generation and load under the dac+L∂ dynamics (a)-(c) and the
ratio-consensus algorithm (d)-(f) from [DGCH12] for the IEEE 118 bus example.
The communication topology is G, the load is initially 4600 and later 4200. For
dac+L∂, the parameters are ν1 = 1, ν2 = 1.3, α = 10, β = 40, and ε = 0.0086. Both
algorithms converge to the optimizer but dac+L∂ shows better transient behavior
when the load changes at t = 150s.

Next, we consider a time-varying total load given by a constant plus a sinu-

soid, Pl(t) = 4300+100 sin(0.05t). With the same communication topology, design
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Figure 4.2: Performance of the dac+L∂ dynamics for the IEEE 118 bus system
under time-varying load and generator addition and deletion. Keeping the commu-
nication topology, design parameters, and the initial condition same, plots (a)-(c)
show the evolution of the power allocation, total cost, and the total mismatch un-
der the dynamics for the time-varying load given by Pl(t) = 4300 + 100 sin(0.05t).
In the last case (d)-(f), the parameters remain the same, the communication graph
is initially the graph Ĝ. At t = 100s, units {4, 11, 25, 45} leave the network, re-
sulting in the communication topology Ĝ\{4,11,25,45}, and the remaining agents run
the trajectory invariance routine. Later, at t = 200s, units {11, 45} join the
network while unit 27 leaves it, resulting in the communication topology Ĝ\{4,25,27}.
After implementing the trajectory invariance routine, the dac+L∂ algorithm
eventually converges to an optimizer of the ED problem for the network Ĝ\{4,25,27}.
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parameters, and initial condition as above, Figure 4.2 (a)-(c) illustrates the behav-

ior of the network under the dac+L∂ dynamics. As established in Proposition 4.3.7,

the total generation tracks the time-varying load signal and the mismatch between

these values has an ultimate bound. Additionally, to illustrate how that the mis-

match vanishes if the load becomes constant, we show in Figure 4.3 a load signal

that consists of short bursts of sinusoidal variation that decay exponentially. The

difference between generation and load becomes smaller and smaller as the load

tends towards a constant signal.

Our final scenario considers addition and deletion of generators. The initial

communication topology is the undirected graph Ĝ described in Table 4.1. The

design parameters and the initial condition are the same as above. The total load

is 4200 and is same at all times. For the first 100 seconds, the power allocations

converge to a neighborhood of a solution of the ED problem for the set of gener-

ators in Ĝ. At time t = 100s, the units {4, 11, 25, 45} stop generating power and

leave the network. We select these generators because of their substantial impact

in the total power generation. After this event, the resulting communication graph

is Ĝ\{4,11,25,45}, cf. Table 4.1. The generators implement the trajectory invari-

ance routine, after which the dac+L∂ algorithm drives the mismatch to zero and

minimizes the total cost. At t2 = 200s, another event occurs, the units {11, 45} get
added to the network while the generator 27 leaves. The resulting communication

topology is Ĝ\{4,25,27}, cf. Table 4.1. After executing the trajectory invari-

ance routine, the algorithm converges eventually to the optimizers of the ED

problem for the set of generators in Ĝ\{4,25,27}, as shown in Figure 4.2(d)-(f). This

example illustrates the robustness of the dac+L∂ dynamics against intermittent

generation by the units, as formally established in Proposition 4.3.8. In addition

to the presented examples, we also successfully simulated scenarios of the kind

described in Remark 4.3.5, where the total load is not known to a single generator

and is instead the aggregate of the local loads connected to each of the generator

buses, but we do not report them here for space reasons. We have also observed in

multiple simulations that the dac+L∂ dynamics respects the box constraints along

its trajectories if they are satisfied at the initial condition.
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Figure 4.3: Evolution of the total power generation for the IEEE 118 bus example
under the dac+L∂ dynamics for the communication digraph G, design parameters
ν1 = 1, ν2 = 1.3, α = 10, β = 40 and ε = 0.0086, and time-varying total load. The
example depicts the input-to-state stability of the mismatch dynamics.

4.5 Refined LaSalle Invariance Principle for differ-

ential inclusions

In this section we provide a refinement of the LaSalle Invariance Principle

for differential inclusions, see e.g., [Cor08], by extending the results of [AE10] for

differential equations. Our motivation for developing this refinement comes from

the need to provide the necessary tools to tackle the convergence analysis of the

coordination algorithms presented in Sections 4.2 and 4.3. Nevertheless, the results

stated here are of independent interest.

Proposition 4.5.1. (Refined LaSalle Invariance Principle for differential inclu-

sions): Let F : Rn ⇒ Rn be upper semicontinuous, taking nonempty, convex, and

compact values at every point x ∈ Rn. Consider the differential inclusion ẋ ∈ F (x)

and let t 7→ ϕ(t) be a bounded solution whose omega-limit set Ω(ϕ) is contained in

S ⊂ Rn, a closed embedded submanifold of Rn. Let O be an open neighborhood of

S where a locally Lipschitz, regular function W : O → R is defined. Assume the

following holds,

(i) the set E = {x ∈ S | 0 ∈ LFW (x)} belongs to a level set of W ,

(ii) for any compact set M ⊂ S with M∩ E = ∅, there exists a compact neigh-

borhood Mc of M in Rn and δ < 0 such that supx∈Mc
maxLFW (x) ≤ δ.
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Then, Ω(ϕ) ⊂ E.

Before proceeding with the proof of the result, we establish an auxiliary

result.

Lemma 4.5.2. Under the hypotheses of Proposition 4.5.1, the sets Ω(ϕ) and E
have nonempty intersection.

Proof. By contradiction, assume Ω(ϕ) ∩ E = ∅. Then, using the hypothesis (ii) in

Proposition 4.5.1, there exists δ < 0 such that supx∈Ω(ϕ) maxLFW (x) ≤ δ. Let

x ∈ Ω(ϕ). Since this set is weakly positively invariant, there exists a trajectory

t 7→ ϕ̃(t) of the differential inclusion with ϕ̃(0) = x such that ϕ̃(t) ∈ Ω(ϕ). Since
d
dt
W (ϕ̃(t)) ∈ LFW (ϕ̃(t)) for almost all t ≥ 0, we get W (ϕ̃(t))−W (x) ≤ δt. This

is in contradiction with the fact that t 7→ ϕ̃(t) belongs to the compact set Ω(ϕ),

where W is lower bounded.

We are now ready to prove Proposition 4.5.1.

Proof of Proposition 4.5.1. We consider two cases, depending on whether the set

Ω(ϕ) (a) is or (b) is not contained in a level set of W . In case (a), given any

x ∈ Ω(ϕ), there exists a trajectory of F starting at x that remains in Ω(ϕ) (because

of the weak positive invariance of the omega-limit set). If x 6∈ E , then by the

hypotheses (ii), there exists a compact neighborhood Mx of x in Rn and δ < 0

such that supy∈Mx
LFW (y) ≤ δ. Since Ω(ϕ) ⊂ S, the trajectory of F starting at

x remains in the setMx ∩S for a finite time, say t1. Over the time interval [0, t1],

we have W (t) −W (0) ≤ δt. This, however, is in contradiction with the fact that

the trajectory belongs to Ω(ϕ) which is contained in a level set of W . Therefore,

x ∈ E , and since this point is generic, we conclude Ω(ϕ) ⊂ E .
Next, we consider case (b) and reason by contradiction, i.e., assume that

Ω(ϕ) is not contained in E (see Figure 4.4). Given ε > 0, let Bε ⊂ O be a

compact neighborhood of Ω(ϕ) in Rn such that d(Bε,Ω(ϕ)) ≤ ε. Let U be an

open neighborhood of E in Rn and define Uε = U ∩ Bε. Note that Uε is nonempty

because Ω(ϕ) ∩ E is nonempty by Lemma 4.5.2. Since Ω(ϕ) is not contained in a

level set of W but E is by hypotheses (i), we can choose P ∈ Ω(ϕ) \ E such that
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Figure 4.4: Illustration (adapted from [AE10, Figure 1]) depicting various ele-
ments involved in the case (b) of the proof of Proposition 4.5.1.

W (P ) 6= W (E). Without loss of generality, assume W (P ) < W (E) (the reasoning

is analogous for the other case). Select an open neighborhood UP of P in Rn and

define UPε = UP ∩ Bε. Define the following quantities

bm = inf
x∈Uε

W (x), bPM = sup
x∈UPε

W (x).

Note that the neighborhoods U and UP can be chosen such that the set Ω(ϕ) \
(U ∪ UP ) is nonempty, compact, and its intersection with E is empty. Along with

this, one can select ε in such a way that bm > bPM and from assumption (ii) we get

sup
x∈Bε\(U∪UP )

maxLFW (x) ≤ δ < 0, (4.25)

(in the case W (P ) > W (E), we would reason with the quantities bM =

supx∈UεW (x) and bPm = infx∈UPε W (x)). Since Ω(ϕ) is the omega-limit set of ϕ and

Bε is a compact neighborhood of Ω(ϕ), there exists t1 > 0 such that ϕ(t1) ∈ UPε
and ϕ(t) ∈ Bε for all t ≥ t1. Moreover, since Ω(ϕ) ∩ E is nonempty, there must

also exist t2 > t1 such that ϕ(t2) ∈ Uε. From continuity of the trajectory we

deduce that there exist times t∗1, t∗2 ∈ (t1, t2), t∗1 < t∗2 such that ϕ(t∗1) and ϕ(t∗2)

lie on the boundary of the compact set Bε \ (Uε ∪ UPε ), with ϕ(t∗1) belonging to
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the closure of UPε and ϕ(t∗2) to the closure of Uε. However, this is not possible

as W (ϕ(t∗2)) ≥ bm > bPM ≥ W (ϕ(t∗1)) and, in the interval [t∗1, t
∗
2], the trajectory

belongs to Bε \ (Uε ∪ UPε ), where the function W can only decrease due to (4.25),

which is a contradiction.

Here we present an auxiliary result that aids the proof of Proposition 4.5.1.

Lemma 4.5.3. (Continuity property of set-valued Lie derivatives): Let W : Rn →
R be a locally Lipschitz and regular function. Let g : Rn×Rn → Rn be a continuous

function and define the set-valued map F : Rn ⇒ Rn by F (x) = {g(x, ζ) | ζ ∈
∂W (x)}. Assume that

(i) S is an embedded submanifold of Rn such that ζ>g(x, ζ) ≤ 0 for all x ∈ S
and all ζ ∈ ∂W (x),

(ii) for any x ∈ S, if ζ>g(x, ζ) = 0 for some ζ ∈ ∂W (x), then x ∈ E = {z ∈
S | 0 ∈ LFW (z)}.

Then, for any compact set M ⊂ S with M ∩ E = ∅, there exists a compact

neighborhoodMc ofM in Rn and δ < 0 such that supx∈Mc
maxLFW (x) ≤ δ.

Proof. We reason by contradiction, i.e., assume that for all compact neighborhoods

Mc ofM in Rn and all δ < 0, we have

sup
x∈Mc

maxLFW (x) > δ.

Note that this implies that supx∈Mc
maxLFW (x) ≥ 0. Now, for each k ∈ Z≥1,

consider the compact neighborhoodMk =M+B 1
k
(0) ofM. From the above, we

deduce the existence of a sequence {xk}∞k=1 with xk ∈Mk such that

lim
k→∞

maxLFW (xk) = ` ≥ 0. (4.26)

Since the whole sequence belongs to the compact set M1, there exists a subse-

quence, which we denote with the same indices for simplicity, such that

lim
k→∞

xk = x̃ ∈M. (4.27)
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From (4.26), there exists a sequence ζk ∈ ∂W (xk) such that

lim
k→∞

ζ>k g(xk, ζk) ≥ 0. (4.28)

Since ∂W is upper semicontinuous with compact values, the set ∂W (M1) is com-

pact, cf. [AC84, Proposition 3, p. 42]. This implies that the sequence {ζk} belongs
to the compact set ∂W (M1) and hence, there exists a subsequence, denoted again

by the same indices for simplicity, such that ζk → ζ̃. Now since ∂W is upper

semicontinuous and takes closed values, we deduce from [AC84, Proposition 2, p.

41] that ζ̃ ∈ ∂W (x̃). From (4.27) and (4.28), since g is continuous, we obtain

ζ̃>g(x̃, ζ̃) ≥ 0. By assumption (i), this implies ζ̃>g(x̃, ζ̃) = 0. Assumption (ii) then

implies x̃ ∈ E , which together with (4.27) contradictsM∩ E = ∅.
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Chapter 5

Robust distributed dynamics for

DEDS problem

With the context of previous two chapters in mind, our objective here is

to provide a distributed algorithmic solution to the dynamic economic dispatch

problem with storage.

5.1 Problem statement

Consider a network of n ∈ Z≥1 distributed energy resources (DERs) whose

communication topology is a strongly connected and weight-balanced digraph

G = (V , E ,A). For simplicity, assume DERs to be generator units. In our dis-

cussion, DERs can also be flexible loads (where the cost function corresponds to

the negative of the load utility function). An edge (i, j) represents the capability

of unit j to transmit information to unit i. Each unit i is equipped with stor-

age capabilities with minimum Cm
i ∈ R≥0 and maximum CM

i ∈ R>0 capacities.

The network collectively aims to meet a power demand profile during a finite-

time horizon [h] specified by Lt ∈ Rh
>0, that is, L(k)

t is the demand at time slot

k ∈ [h]. This demand can either correspond to a load requested from an ex-

ternal entity, denoted L
(k)
e ≥ 0 for slot k, or each DER i might have to satisfy

a load at the bus it is connected to, denoted (Lb)
(k)
i ≥ 0 for slot k. Thus, for

each k ∈ [h], L(k)
t = L

(k)
e +

∑n
i=1(Lb)

(k)
i . We assume that the external demand

85
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Le = (L
(1)
e , . . . , L

(h)
e ) is known to an arbitrarily selected unit r ∈ [n], whereas the

demand at bus i, (Lb)i = ((Lb)
(1)
i , . . . , (Lb)

(h)
i ), is known to unit i. For convenience,

Lb = (L
(1)
b , . . . , L

(h)
b ), where L(k)

b = ((Lb)
(k)
1 , . . . , (Lb)

(k)
n ) collects the load known

to each unit at k ∈ [h]. Along with load satisfaction, the group aims to minimize

the total cost of generation and to satisfy the constraints for each DER. These

elements are explained next.

Each unit i decides at every time slot k in [h] the amount of power it

generates, the portion J (k)
i ∈ R of it that it injects into the grid to meet the load,

and the remaining part S(k)
i ∈ R that it sends to the storage unit. The power

generated by i at k is then J (k)
i + S

(k)
i . We denote by J (k) = (J

(k)
1 , . . . , J

(k)
n ) ∈ Rn

and S(k) = (S
(k)
1 , . . . , S

(k)
n ) ∈ Rn the collective injected and stored power at time

k, respectively. The load satisfaction is then expressed as 1>n J (k) = L
(k)
t = L

(k)
e +

1>nL
(k)
b , for all k ∈ [h]. The cost f (k)

i (J
(k)
i +S

(k)
i ) of power generation J (k)

i +S
(k)
i by

i at time k is given by f (k)
i : R→ R≥0, which we assume convex and continuously

differentiable. Given (J (k), S(k)), the cost incurred by the network at slot k is

f (k)(J (k) + S(k)) =
n∑
i=1

f
(k)
i (J

(k)
i + S

(k)
i ).

The cumulative cost of generation for the network across the time horizon is f :

Rnh → R≥0, f(x) =
∑h

k=1 f
(k)(x(k)). Given injection J = (J (1), . . . , J (h)) ∈ Rnh

and storage S = (S(1), . . . , S(h)) ∈ Rnh values, the total network cost is

f(J + S) =

h∑
k=1

f (k)(J (k) + S(k)).

The functions {f (k)}hk=1 and f are also convex and continuously differentiable.

Next, we describe the physical constraints on the DERs. Each unit’s power must

belong to the range [Pm
i , P

M
i ] ⊂ R>0, representing lower and upper bounds on the

power generation at each time slot. Each unit i also respects upper and lower ramp

limits: the change in the generation from any time slot k to k + 1 is upper and

lower bounded by Ru
i and −Rl

i, respectively, with Ru
i , Rl

i ∈ R>0. At each time slot,

the power injected into the grid by each unit must be nonnegative, i.e., J (k)
i ≥ 0.
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Further, the power stored in any storage unit i at any time slot k ∈ [h] must belong

to the range [Cm
i , C

M
i ]. Finally, we assume that at the beginning of the time slot

k = 1, each storage unit i starts with some stored power S(0)
i ∈ [Cm

i , C
M
i ]. With

the above model, the dynamic economic dispatch with storage (DEDS) problem is

formally defined by the following convex optimization problem,

minimize
(J,S)∈R2nh

f(J + S), (5.1a)

subject to for k ∈ [h],

1>n J
(k) = L

(k)
t , (5.1b)

Pm ≤ J (k) + S(k) ≤ PM , (5.1c)

Cm ≤ S(0) +
k∑

k′=1

S(k′) ≤ CM , (5.1d)

0n ≤ J (k), (5.1e)

for k ∈ [h] \ {h},
Rl ≤ J (k+1) + S(k+1) − J (k) − S(k) ≤ Ru. (5.1f)

We refer to (5.1b)–(5.1f) as the load conditions, box constraints, storage limits, in-

jection constraints, and ramp constraints, resp. We denote by FDEDS and F∗DEDS the

feasibility and the solution set of (5.1), resp., and assume them to be nonempty.

Since FDEDS is compact, so is F∗DEDS. Moreover, the refined Slater condition is

satisfied as all constraints (5.1b)–(5.1f) are affine in the decision variables. Addi-

tionally, we assume the DEDS problem satisfies the strong Slater condition with

ρ ∈ R>0 and (Jρ, Sρ) ∈ R2nh. Our aim is to design a distributed algorithm that

allows the network to solve (5.1).

Remark 5.1.1. (Extensions to DEDS formulation): The DEDS formulation can

be modified to consider scenarios where only some DERs Vgs are equipped with

storage and others Vg are not, with [n] = Vgs ·∪ Vg. The formulation can also

be extended to consider the cost of storage, inefficiencies, and constraints on

(dis)charging of the storage units, as in [HMMD13, ZGG13]. These factors either

affect the constraint (5.1d), add additional conditions on the storage variables,
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or modify the objective function. As long as the resulting cost and constraints

are convex in S, all these can be treated within (5.1) without affecting the design

methodology. Also, the DEDS formulation does not account for other physical con-

straints on the power network such as transmission losses and line capacity limits.

Our ensuing discussion shows that, even with these omissions, the design of a

provably correct distributed algorithm with the communication structure assumed

here is challenging. •

5.2 Distributed algorithmic solution

We describe here the distributed algorithm that asymptotically solves the

DEDS problem. Our design builds on an equivalent formulation of the optimiza-

tion using penalty functions (cf. Section 5.2-A). This reformulation gets rid of

the inequality constraints, yielding an optimization whose structure guides our

algorithmic design (cf. Section 5.2-B).

A. Alternative formulation of the DEDS problem: The procedure here fol-

lows closely the theory of exact penalty functions outlined in Chapter 2. For an

ε ∈ R>0, consider the modified cost function f ε : Rnh × Rnh → R≥0,

f ε(J, S) = f(J + S) +
1

ε

( h∑
k=1

1>n
(
[T

(k)
1 ]+ + [T

(k)
2 ]+ + [T

(k)
3 ]+

+ [T
(k)
4 ]+ + [T

(k)
5 ]+

)
+

h−1∑
k=1

1>n
(
[T

(k)
6 ]+ + [T

(k)
7 ]+

))
,

where

T
(k)
1 = Pm − J (k) − S(k), T

(k)
2 = J (k) + S(k) − PM ,

T
(k)
3 = Cm − S(0) −

k∑
k′=1

S(k′),

T
(k)
4 = S(0) +

k∑
k′=1

S(k′) − CM , T
(k)
5 = −J (k),

T
(k)
6 = −Rl − J (k+1) − S(k+1) + J (k) + S(k),
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T
(k)
7 = J (k+1) + S(k+1) − J (k) − S(k) −Ru. (5.2)

This cost contains the penalty terms for all the inequality constraints of the DEDS

problem. Note that f ε is locally Lipschitz, jointly convex in J and S, and regular.

Thus, the partial generalized gradients ∂Jf ε and ∂Sf
ε take nonempty, convex,

compact values and are locally bounded and upper semicontinuous. Consider the

modified DEDS problem

min{f ε(J, S) | 1>n J (k) = L
(k)
t , ∀k ∈ [h]}. (5.3)

The difference between the optimizations (5.1) and (5.3) is that all inequality

constraints of (5.1) are moved to the objective of (5.3) in the form of penalty

terms. The next result provides a criteria for selecting ε such that the modified

DEDS and the DEDS problems have the exact same solutions. This allows us to

focus on solving (5.3). The proof is a direct application of Lemmas 2.5.1 and 2.5.2

using the fact that the DEDS problem satisfies the strong Slater condition with ρ

and (Jρ, Sρ).

Lemma 5.2.1. (Equivalence of DEDS and modified DEDS problems): Let

(J∗, S∗) ∈ F∗DEDS. Then, the optimizers of the problems (5.1) and (5.3) are the

same for ε ∈ R>0 satisfying

ε <
ρ

f(Jρ + Sρ)− f(J∗ + S∗)
. (5.4)

From here on, we assume that ε satisfies (5.4) and so problems (5.1)

and (5.3) are equivalent. Writing the Lagrangian and the KKT conditions for (5.3),

we obtain the following characterization of the solution set of the DEDS problem.

F∗DEDS ={(J, S) ∈ R2nh | 1>n J (k) = L
(k)
t for all k ∈ [h], 0 ∈ ∂Sf ε(J, S),

and ∃ν ∈ Rh such that (ν(1)1n; . . . ; ν(h)1n) ∈ ∂Jf ε(J, S)}. (5.5)

Recall that F∗DEDS is bounded. Next, we stipulate a mild regularity assumption on

this set which implies that perturbing it by a small parameter does not result into
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an unbounded set. This property is of use in our convergence analysis later.

Assumption 5.2.2. (Regularity of F∗DEDS): For p ∈ R≥0, define the map p 7→
F(p) ⊂ R2nh as

F(p) ={(J, S) ∈ R2nh |
∣∣∣1>n J (k) − L(k)

t

∣∣∣ ≤ p for all k ∈ [h],

0 ∈ ∂Sf ε(J, S) + pB1(0), and ∃ν ∈ Rh such that

(ν(1)1n; . . . ; ν(h)1n) ∈ ∂Jf ε(J, S) + pB1(0)}.

Note that F(0) = F∗DEDS. Then, there exists a p̄ > 0 such that F(p) is bounded for

all p ∈ [0, p̄). •

The equivalent reformulation (5.3), has a desirable structure: it does not

have inequality constraints and the equalities have the special property that their

coefficient vector lies in the null space of the Laplacian matrix. In the following

section, we see how these facts help in the algorithm design and analysis.

B. The dac+(L∂, ∂) coordination algorithm: Here, we present our dis-

tributed algorithm and establish its asymptotic convergence to the set of solu-

tions of the DEDS problem starting from any initial condition. Our design com-

bines ideas of Laplacian-gradient dynamics [CC15c] and dynamic average consen-

sus [KCM15b]. Consider the set-valued dynamics,

J̇ ∈ −(Ih ⊗ L)∂Jf
ε(J, S) + ν1z, (5.6a)

Ṡ ∈ −∂Sf ε(J, S), (5.6b)

ż = −αz − β(Ih ⊗ L)z − v + ν2(Le ⊗ er + Lb − J), (5.6c)

v̇ = αβ(Ih ⊗ L)z, (5.6d)

where α, β, ν2, ν2 ∈ R>0 are design parameters and er ∈ Rn is the unit vector

along the r-th coordinate. We refer to (5.6) as dac+(L∂, ∂) dynamics and below

we explain its components.

[Description of dac+(L∂, ∂) dynamics]: The dynamics (5.6) consists of “dynamic

average consensus in (z, v)+ Laplacian gradient in J + gradient in S”, and so we use
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the terminology dac+(L∂, ∂). The (z, v)-component corresponds to the dynamic

average consensus part. Here, z
(k)
i is aiming to track, for unit i, the quantity

1>n (L
(k)
e er+L

(k)
b −J (k)), that is, the difference between the total load L

(k)
t = L

(k)
e +

1>nL
(k)
b and the current injection level 1>n J (k) (recall that the external demand Le =

(L
(1)
e , . . . , L

(h)
e ) is known to unit r ∈ [n]). The J-dynamics has two terms. The first

term seeks to minimize f ε keeping constant the total power generation. The second

term gets the feedback of the mismatch between the total generation and the total

load from the z-dynamics and drives the network towards load satisfaction. Finally,

the S-component is gradient descent and seeks to minimize f ε with respect to the

variable S. From this description, one can see that getting rid of the inequalities

of (5.1) using penalty functions simplifies the design.

For convenience, we denote the right-hand side of (5.6) by Xdac+(L∂,∂) :

R4nh ⇒ R4nh. Note that Eq(Xdac+(L∂,∂)) = F∗DEDS and since ∂Jf ε and ∂Sf
ε are

locally bounded, upper semicontinuous and take nonempty convex compact values,

the solutions of Xdac+(L∂,∂) exist (cf. Chapter 2).

Remark 5.2.3. (Distributed implementation of dac+(L∂, ∂) dynamics): For (5.6),

each i ∈ [n] implements the dynamics of its decision variables, which are

{J (k)
i , S

(k)
i , z

(k)
i , v

(k)
i }hk=1. That is, for each k ∈ [h], unit i implements

J̇
(k)
i ∈ −

∑
j∈N+

(
i)

aij(ζ
(k)
i − ζ(k)

j ) + ν1z
(k)
i , (5.7a)

Ṡ
(k)
i ∈ −ξ(k)

i , (5.7b)

ż
(k)
i = −αz(k)

i − β
∑

j∈N+
(
i)

aij(z
(k)
i − z(k)

j )− v(k)
i

+ ν2(L(k)
e (er)i + (Lb)

(k)
i − J (k)

i ), (5.7c)

v̇
(k)
i = αβ

∑
j∈N+

(
i)

aij(z
(k)
i − z(k)

j ), (5.7d)

where ζ ∈ ∂Jf ε(J, S) ⊂ Rnh, and ξ ∈ ∂Sf ε(J, s) ⊂ Rnh. Hence, (5.7c) and (5.7d)

can be implemented by i using information from its out-neighbors. Subsequently,
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f ε can be written in the separable form

f ε(J, S) =
n∑
i=1

f εi (J
(1)
i , . . . , J

(h)
i , S

(1)
i , . . . , S

(h)
i ).

Thus, the entities ζ(k)
i ∈ ∂

J
(k)
i
f ε(J, S) and ξ

(k)
i ∈ ∂

S
(k)
i
f ε(J, S), for all k ∈ [h],

only depend on the decision variables of unit i and so are computable by it. This

further implies that (5.7b) can implemented by i using its own state and, to ex-

ecute (5.7a), i needs information from its out-neighbors. Hence, the dynamics

can be executed in a distributed manner. For real-time implementation, we dis-

cretize (5.6): selecting a small enough stepsize results in trajectories that follow

closely the continuous-time trajectories leading to the optimizers. •

Next, we state our main convergence result.

Theorem 5.2.4. (Convergence of the dac+(L∂, ∂) dynamics to the solutions of

the DEDS problem): Let F∗DEDS satisfy Assumption 5.2.2, ε satisfy (5.4), and

α, β, ν1, ν2 > 0 satisfy

ν1

βν2λ2(L + L>)
+
ν2

2λmax(L>L)

2α
< λ2(L + L>). (5.8)

Then, any trajectory of (5.6) starting in Rnh×Rnh×Rnh×(H0)h converges to F∗aug

= {(J, S, z, v) ∈ F∗DEDS × {0} × Rnh | v = ν2(Le ⊗ er + Lb − J)}.

Proof of Theorem 5.2.4. For convenience, let Mg = Rnh × Rnh × Rnh × (H0)h and

Mo =
∏h

k=1HL
(k)
t
× Rnh × (H0)h × (H0)h. We divide the proof into three broad

steps.

Step 1: Characterizing the ω-limit set: We show that the ω-limit set

of any trajectory of (5.6) with initial condition (J0, S0, z0, v0)∈Mg belongs to Mo.

For this, write (5.6d) as

v̇(k) = αβLz(k) for all k ∈ [h].

Note that 1>n v̇
(k) = αβ1>n Lz

(k) = 0 for all k ∈ [h] because G is weight-balanced.

Therefore, the initial condition v0 ∈ (H0)h implies that v(t) ∈ (H0)h for all t ≥ 0
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along any trajectory of (5.6) starting at (J0, S0, z0, v0). Now, if ζ ∈ ∂Jf
ε(J, S)

then, from (5.6a) and (5.6c), we get for any k ∈ [h]

J̇ (k) = −Lζ(k) + ν1z
(k),

ż(k) = −αz(k) − βLz(k) − v(k) + ν2(L(k)
e er + L

(k)
b − J (k)).

Let ξk = 1>n J
(k) − L

(k)
t . Then, from the above equations we get ξ̇k = 1>n J̇

(k) =

ν11
>
n z

(k). Further, we have

ξ̈k = ν11
>
n ż

(k) = −αν11
>
n z

(k) + ν1ν2(L
(k)
t − 1>n J

(k))

= −αξ̇k − ν1ν2ξk,

forming a second-order linear system for ξk. The LaSalle Invariance Princi-

ple [Kha02] with the function ν1ν2‖ξk‖2 + ‖ξ̇k‖2 implies that as t → ∞ we have

(ξk(t); ξ̇k(t))→ 0 and so 1>n J
(k)(t)→ L

(k)
t and 1>n z

(k)(t)→ 0 as t→∞.

Step 2: Applying the refined LaSalle Invariance Principle: Consider

the change of coordinates D : R4nh → R4nh,

(J, S, ω1, ω2) = D(J, S, z, v) = (J, S, z, v + αz − ν2(Le ⊗ er + Lb − J).

In these coordinates, the set-valued map (5.6) takes the form

Xdac+(L∂,∂)(J, S, ω1, ω2) = {(−(Ih ⊗ L)ζ1 + ν1ω1,−ζ2,−β(Ih ⊗ L)ω1 − ω2, (5.9)

ν1ν2ω1 − αω2 − ν2(Ih ⊗ L)ζ1) ∈ R4nh |
ζ1 ∈ ∂Jf ε(J, S), ζ2 ∈ ∂Sf ε(J, S)}.

This transformation helps in identifying the LaSalle-type function for the dynam-

ics. We now focus on proving that, in the new coordinates, the trajectories of (5.6)

converge to the set

Faug = D(F∗aug) = F∗DEDS × {0} × {0}.
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Note that D(Mo) = Mo and so, from the property of the ω-limit set of trajectories

above, we get that t 7→ (J(t), S(t), ω1(t), ω2(t)) starting in D(Mg) belongs to Mo.

Next, we show the hypotheses of Proposition 4.5.1 are satisfied, where Mo plays

the role of S ⊂ R4nh and V : R4nh → R≥0,

V (J, S, ω1, ω2) = f ε(J, S) +
1

2
(ν1ν2‖ω1‖2 + ‖ω2‖2).

plays the role of W , respectively. Let (J, S, ω1, ω2) ∈ Mo then any element of

LXdac+(L∂,∂)V (J, S, ω1, ω2) can be written as

− ζ>1 (Ih ⊗ L)ζ1 + ν1ζ
>
1 ω1 − ‖ζ2‖2 − βν1ν2ω

>
1 (Ih ⊗ L)ω1

− α‖ω2‖2 − ν2ω
>
2 (Ih ⊗ L)ζ1, (5.10)

where ζ1 ∈ ∂Jf ε(J, S) and ζ2 ∈ ∂Sf ε(J, S). Since the digraph G is strongly con-

nected and weight-balanced, we use (2.1) and 1>nhω1 = 0 to bound the above

expression as

− 1

2
λ2(L + L>)‖η‖2 + ν1η

>ω1 − ‖ζ2‖2

− 1

2
βν1ν2λ2(L + L>)‖ω1‖2 − α‖ω2‖2 − ν2ω

>
2 (Ih ⊗ L)η

= γ>Mγ − ‖ζ2‖2,

where η = (η(1); . . . ; η(h)) with η(k) = ζ(k)− 1
n
(1>n ζ

(k))1n, the vector γ = (η;ω1;ω2),

and the matrix

M =

[
−1

2
λ2(L + L>)Inh B>

B C

]
,

with B> =
[

1
2
ν1Inh −1

2
ν2(Ih ⊗ L)>

]
, and

C =

[
−1

2
βν1ν2λ2(L + L>)Inh 0

0 −αInh

]
.
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Resorting to the Schur complement [BV09], M ∈ R3nh×3nh is neg. definite if

−1
2
λ2(L + L>)Inh −B>C−1B, that equals

−1

2
λ2(L + L>)Inh +

ν1

2βν2λ2(L + L>)
Inh +

ν2
2

4α
(Ih ⊗ L)>(Ih ⊗ L),

is negative definite, which follows from (5.8). Hence, for any (J, S, ω1, ω2) ∈Mo, we

have maxLXdac+(L∂,∂)V (J, S, ω1, ω2) ≤ 0 and also 0 ∈ LXdac+(L∂,∂)V (J, S, ω1, ω2) iff η =

ζ2 = ω1 = ω2 = 0, which means ζ(k) ∈ span{1n} for each k ∈ [h]. Consequently,

using (5.5), we deduce that (J, S) is a solution of (5.3) and so, (J, S, ω1, ω2) ∈ Faug.

Since, Faug belongs to a level set of V , we conclude that Proposition 4.5.1(i) holds.

Further, using Lemma 4.5.3 one can show that Proposition 4.5.1(ii) holds too.

Step 3: Showing boundedness of trajectories: To apply Propo-

sition 4.5.1, it remains to show that the trajectories starting from D(Mg)

are bounded. We reason by contradiction. Assume there exists t 7→
(J(t), S(t), ω1(t), ω2(t)), with (J(0), S(0), ω1(0), ω2(0)) ∈ D(Mg), of Xdac+(L∂,∂)

such that ‖(J(t), S(t), ω1(t), ω2(t)‖ → ∞. Since V is radially unbounded, this

implies V (J(t), S(t), ω1(t), ω2(t)) → ∞. Also, as established above, we know

1>n J
(k)(t) → L

(k)
t and 1>nω

(k)
1 (t) → 0 for each k ∈ [h]. Thus, there exist times

{tm}∞m=1 with tm →∞ such that for all m ∈ Z≥1,∣∣∣1>nω(k)
1 (tm)

∣∣∣ < 1/m for all k ∈[h], (5.11)

maxLXdac+(L∂,∂)V (J(tm), S(tm),ω1(tm), ω2(tm)) > 0.

The second inequality implies the existence of {ζ1,m}∞m=1 and {ζ2,m}∞m=1 with

(ζ1,m, ζ2,m) ∈ (∂Jf
ε(J(tm), S(tm)), ∂Sf

ε(J(tm), S(tm))), such that

−ζ>1,m(Ih ⊗ L)ζ1,m + ν1ζ
>
1,mω1(tm)− ‖ζ2,m‖2

− βν1ν2ω1(tm)>(Ih ⊗ L)ω1(tm)− α‖ω2(tm)‖2

− ν2ω2(tm)>(Ih ⊗ L)ζ1,m > 0,

for all m ∈ Z≥1, where we have used (5.10) to write an element of
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LXdac+(L∂,∂)V (J, S, ω1, ω2). Letting η(k)
m = ζ

(k)
1,m− 1

n
(1>n ζ

(k)
1,m)1n, using (2.1), and using

the relation ‖ω(k)
1 (tm) − 1

n
(1>nω

(k)
1 (tm))1n‖2 = ‖ω(k)

1 (tm)‖2 − 1
n
(1>nω

(k)
1 (tm))2, the

above inequality can be rewritten as

γ>mMγm +
1

n
ν1

∑
k∈[h]

(1>n ζ
(k)
1,m)(1>nω

(k)
1 (tm))− ‖ζ2,m‖2

+
βν1ν2

2n
λ2(L + L>)

∑
k∈[h]

(1>nω
(k)
1 (tm))2 > 0, (5.12)

with γm = (ηm;ω1(tm);ω2(tm)). Using (5.11) on (5.12),

γ>mMγm − ‖ζ2,m‖2 +
ν1

nm

∑
k∈[h]

∣∣∣1>n ζ(k)
1,m

∣∣∣+
βν1ν2h

2nm2
λ2(L + L>) > 0 (5.13)

for all m ∈ Z≥1. Next, we consider two cases, depending on whether the

sequence {(J(tm), S(tm))}∞m=1 is (a) bounded or (b) unbounded. In case (a),

{(ω1(tm), ω2(tm))}∞m=1 must be unbounded. Since M is negative definite, we have

γ>mMγm ≤ λmax(M)‖(ω1(tm), ω2(tm))‖2. Thus, by (5.13)

λmax(M)‖(ω1(tm),ω2(tm))‖2 +
ν1

nm

∑
k∈[h]

∣∣∣1>n ζ(k)
1,m

∣∣∣+
βν1ν2h

2nm2
λ2(L + L>) > 0. (5.14)

Since ∂Jf ε is locally bounded and {(J(tm), S(tm))}∞m=1 is bounded, we deduce

{ζ1,m} is bounded [HUL93, Proposition 6.2.2]. Combining these facts with

λmax(M) < 0 and ‖(ω1(tm), ω2(tm))‖ → ∞, one can find m̄ ∈ Z≥1 such

that (5.14) is violated for all m ≥ m̄, a contradiction. Now consider case

(b) where {(J(tm), S(tm))}∞m=1 is unbounded. We divide this case further into

two, based on the sequence
{∑h

k=1

∣∣∣1>n ζ(k)
1,m

∣∣∣}∞
m=1

being bounded or not. Using

γ>mMγm ≤ λmax(M)‖ηm‖2, the inequality (5.13) implies

λmax(M)‖ηm‖2 − ‖ζ2,m‖2 +
ν1

nm

h∑
k=1

∣∣∣1>n ζ(k)
1,m

∣∣∣+
βν1ν2h

2nm2
λ2(L + L>) > 0. (5.15)

Consider the case when
{∑h

k=1

∣∣∣1>n ζ(k)
1,m

∣∣∣}∞
m=1

is unbounded. Partition [h] into
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disjoint sets Ku and Kb such that
∣∣∣1>n ζ(k)

1,m

∣∣∣→∞ for all k ∈ Ku and
{∣∣∣1>n ζ(k)

1,m

∣∣∣}∞
m=1

is uniformly bounded for all k ∈ Kb. For convenience, rewrite (5.15) as
∑h

k=1 Uk,m+

Z1

m
> 0, where Z1 = βν1ν2h

2nm
λ2(L + L>) and, for each k ∈ [h],

Uk,m = λmax(M)‖η(k)
m ‖2 − ‖ζ(k)

2,m‖2 +
ν1

nm

∣∣∣1>n ζ(k)
1,m

∣∣∣ .
By definition of Kb, there exists Z2 > 0 with

∑
k∈Kb Uk,m ≤

Z2

m
. Hence, if (5.15)

holds for all m ∈ Z≥1, then so is

∑
k∈Ku

Uk,m +
Z1 + Z2

m
> 0.

Next we show that for each k ∈ Ku there exists mk ∈ Z≥1 such that Uk,m+ Z1+Z2

m
<

0 for all m ≥ mk. This will lead to the desired contradiction. Assume without

loss of generality that 1>n ζ
(k)
1,m → ∞ (reasoning for the case when the sequence

approaches negative infinity follows analogously). Then, for

λmax(M)‖η(k)
m ‖2 − ‖ζ2,m‖2 +

ν1

nm

∣∣∣1>n ζ(k)
1,m

∣∣∣+
Z1 + Z2

m
> 0,

for all m ∈ Z≥1, we require (ζ
(k)
1,m)i →∞ for all i ∈ [n]. Indeed, otherwise, recalling

that η(k)
m = ζ

(k)
1,m − 1

n
(1>n ζ

(k)
1,m)1n, it can be shown that there exist an m̄ such that

λmax‖η(k)
m ‖2 <

ν1

nm

∣∣∣1>n ζ(k)
1,m

∣∣∣+
Z1 + Z2

m
for all m ≥ m̄.

Note that from Lemma 5.2.5 we have ‖ζ(k)
1,m − ζ(k)

2,m‖∞ ≤ h+4
ε

which further implies

that (ζ
(k)
2,m)i →∞ for all i ∈ [n]. With these facts in place, we write

Uk,m +
Z1 + Z2

m
< −

n∑
i=1

(ζ
(k)
2,m)2

i +
ν1

m

∣∣∣∣∣
n∑
i=1

(ζ
(k)
1,m)i

∣∣∣∣∣
+
Z1 + Z2

m

and deduce that there exists an mk ∈ Z≥1 such that the right-hand side of the

above expression is negative for all m ≥ mk, which is what we wanted to show.
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Finally, consider the case when
{∑h

k=1

∣∣∣1>n ζ(k)
1,m

∣∣∣}∞
m=1

is bounded. For (5.15)

to be true for all m, we need ‖γm‖ → 0 and ‖ζ2,m‖ → 0 as m → ∞. This

further implies that ηm → 0 and, from Assumption 5.2.2, this is only possible if

{(J(tm), S(tm))}∞m=1 is bounded, a contradiction.

The next result aids the above outlined proof.

Lemma 5.2.5. (Bound on the difference between ∂Jf
ε and ∂Sf

ε): For (J, S) ∈
R2nh, any two elements ζ1 ∈ ∂Jf ε(J, S) and ζ2 ∈ ∂Sf ε(J, S) satisfy ‖ζ1 − ζ2‖∞ ≤
(h + 4)/ε.

Proof. Write f ε(J, S) = fa(J + S) + fb(J) + fc(S) where the functions fa, fb, fc :

Rnh → R≥0 are

fa(J + S) = f(J + S) +
1

ε

( h∑
k=1

1>n ([T
(k)
1 ]+ + [T

(k)
2 ]+) +

h−1∑
k=1

1>n ([T
(k)
6 ]+ + [T

(k)
7 ]+)

)
,

fb(J) =
1

ε

h∑
k=1

1>n [T
(k)
5 ]+,

fc(S) =
1

ε

h∑
k=1

1>n ([T
(k)
3 ]+ + [T

(k)
4 ]+).

See (5.2) for the definition of the right-hand side terms. From the sum rule of

generalized gradients [Cor08], any element ζ1 ∈ ∂Jf ε(J, S) can be expressed as a

sum of the vectors ζ1,a and ζ1,b ∈ Rnh such that ζ1,a ∈ ∂fa(J+S) and ζ1,b ∈ ∂fb(J).

Similarly, ζ2 = ζ2,a+ζ2,c where ζ2,a ∈ ∂fa(J+S) and ζ2,c ∈ ∂fc(S). By the definition

of fb, we get ‖ζ1,b‖∞ ≤ 1
ε
. For the function fc, note that for any i ∈ [n] and any

k ∈ [h], either ([T
(k)
3 ]+)i is zero or ([T

(k)
4 ]+)i is zero. Considering extreme case,

if for a particular i, either ([T
(k)
3 ]+)i > 0 or ([T

(k)
4 ]+)i > 0 for all k ∈ [h] then,

we obtain
∣∣∣(ζ2,c)

(1)
i

∣∣∣ = h
ε
. This implies that ‖ζ2,c‖∞ ≤ h

ε
. Now consider any two

elements ζ1,a, ζ2,a ∈ ∂fa(J + S). Note that for any i ∈ [n], either ([T
(k)
1 ]+)i is

zero or ([T
(k)
2 ]+)i is zero. Similarly, either ([T

(k)
6 ]+)i or ([T

(k)
7 ]+)i is zero. Further,

note that J (k)
i + S

(k)
i appears in ([T

(k)
6 ]+)i and ([T

(k)
7 ]+)i as well as in ([T

(k−1)
6 ]+)i

and ([T
(k−1)
7 ]+)i. At the same time, only two of these four terms are nonzero for

any k ∈ [h] \ h and any i ∈ [n]. Using these facts we get ‖ζ1,a − ζ2,a‖∞ ≤ 3
ε
.
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Finally, the proof concludes noting ‖ζ1 − ζ2‖∞ = ‖ζ1,a + ζ1,b − ζ2,a − ζ2,c‖∞ ≤
‖ζ1,a − ζ2,a‖∞ + ‖ζ1,b‖∞ + ‖ζ2,c‖∞ ≤ (h + 4)/ε.

From the first step in the proof of Theorem 5.2.4, one sees that the mismatch

between the network power injection and the load profile converges exponentially

fast to zero. This guarantees robustness of the algorithm, in the sense that during

its execution, the load can vary or agents can join or leave the network (provided

that there is always a participating node that knows the external demand), and

the dynamics adjusts for these perturbations.

Remark 5.2.6. (General setup for storage: revisited): The dac+(L∂, ∂) dynam-

ics (5.6) can be modified to scenarios that include more general descriptions of stor-

age capabilities, as in Remark 5.1.1. For instance, if only a subset of units have

storage capabilities, the only modification is to set the variables {S(k)
i }i∈Vg ,k∈[h]

to zero and execute (5.6b) only for the variables {S(k)
i }i∈Vgs,k∈[h]. The resulting

strategy converges to the solution set of the corresponding DEDS problem. •

Remark 5.2.7. (Distributed selection of design parameters): The implementation

of (5.6) requires the selection of parameters α, β, ν1, ν2, ε satisfying (5.4) and (5.8).

Instead of condition (5.8), one can check a different, stronger inequality that re-

quires knowledge of the maximum and minimum of various network-wide quan-

tities. In turn, these can be computed in finite time by the units resorting to

distributed consensus-based procedures [RB08] in order to collectively select ap-

propriate values, see e.g., Remark 4.3.4. Regarding (5.4), an upper bound on the

denominator of the right-hand side can be computed by aggregating, using consen-

sus, the difference between the max and the min values that each DER’s aggregate

cost function takes in its respective feasibility set (neglecting load conditions). The

challenge for the units, however, is to estimate ρ. This can be accomplished by con-

sidering the optimization “find the largest ρ for which the DEDS problem satisfies

the strong Slater condition” and having the units employ a distributed algorithm

to solve it, see e.g., [CC16b]. •
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5.3 Simulations

We illustrate the application of the dac+(L∂, ∂) dynamics to solve the DEDS

problem for a group of n = 10 generators with communication defined by a directed

ring with bi-directional edges {(1, 5), (2, 6), (3, 7), (4, 8)} (all edge weights are 1).

The planning horizon is h = 6 and the load profile consists of the external load

Le = (1950, 1980, 2700, 2370, 1900, 1850) and the load at each generator i for each

slot k given by (Lb)
(k)
i = 10i. Thus, for each slot k, (L

(k)
b =

∑10
i=1(Lb)

(k)
i = 550 and

so, Lt = (2500, 2530, 3250, 2920, 2450, 2400). Generators have storage capacities

determined by CM = 1001n and Cm = S(0) = 51n. The cost function of each

unit is quadratic and constant across time. Table 5.1 details the cost function

coefficients, generation limits, and ramp constraints, which are modified from the

data for 39-bus New England system [ZMST11].

Table 5.1: Cost coefficients (ai, bi, ci) and bounds PM
i , Pm

i , R
l
i, Ru

i . The cost
function of i is fi(Pi) = ai + biPi + ciP

2
i .

Unit ai bi ci Pm
i PM

i Rl
i Ru

i

1 240 7.0 0.0070 0 1040 120 80
2 200 10.0 0.0095 0 646 90 50
3 220 8.5 0.0090 0 725 100 65
4 200 11.0 0.0090 0 652 90 50
5 220 10.5 0.0080 0 508 90 50
6 190 12.0 0.0075 0 687 90 50
7 200 10.0 0.0100 0 580 120 80
8 170 9.0 0.0090 0 564 90 50
9 190 11.0 0.0072 0 865 100 65
10 220 8.8 0.0080 0 1100 90 50

Figure 5.1 illustrates the evolution of the total power injected at each time

slot and the total cost incurred by the network, respectively. As established in

Theorem 5.2.4 and shown in Figure 5.2, the total injection asymptotically converges

to the load profile l, the total aggregate cost converges to the minimum 201092 and

the converged solution satisfies (5.1c)-(5.1f). The number of variables maintained

and updated by each generator is linear in the length of the time horizon h, and

therefore, at each iteration, the computation time and the communication volume

increase linearly with h.
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Figure 5.1: Illustration of the execution of dac+(L∂, ∂) dynamics for a network
of 10 generators with communication topology given by a directed ring among
the generators with bi-directional edges {(1, 5), (2, 6), (3, 7), (4, 8)} where all edge
weights are 1. Table 5.1 gives the box constraints, the ramp constraints, and the
cost functions. The load profile is Lt = (2500, 2530, 3250, 2920, 2450, 2400) and
CM = 1001n, Cm = S(0) = 51n. Plots (a) and (b) show the time evolution of
the total injection at each time slot and the aggregate cost along a trajectory of
the dac+(L∂, ∂) dynamics starting at J(0) = (PM , PM , Pm, Pm, PM , Pm), S(0) =
z(0) = v(0) = 0nh. The parameters are ε = 0.007, α = 4, β = 10, and ν1 = ν2 =
0.65 (which satisfy conditions (5.4) and (5.8)). The dynamics is simulated using
a first-order Euler discretization with stepsize 5 × 10−4. Without accounting for
communication, the computation time (i.e., the time spent by any unit updating its
variables) is 16.3642 seconds. In contrast, the (centralized) Quadprog solver from
the YALMIP toolbox takes 2.2361 seconds to find an optimizer. With stepsize
5 × 10−3, the computation time of the distributed algorithm reduces to 2.6915
seconds while the total incurred cost at the converged point is 0.1% higher.
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Figure 5.2: Plots (a) to (f) illustrate the solution obtained in Figure 5.1. Plots
(b) and (c) show the power injected and power sent to storage across the time
horizon, with unique colors for each generator. These values add up to the total
generation in (a). The collective behavior is represented in (d)-(f), where we plot
the total power generated, the total power sent to storage, and the aggregate of
the power stored in the storage units, respectively. The profile of total injection is
the same as that of load profile. Since the time-independent cost is quadratic with
positive coefficients and the storage capacity is large enough, one can show that
the optimal strategy is to produce the same power unless ramp constraints become
active. This can be seen in (a) and (d). The initial excess generation (due to the
lower required load) at slots k = 1, 2 is stored and used in slots k = 3, 4, 5, 6, as
indicated in (e) and (f).



Chapter 6

Asymptotic convergence of

saddle-point dynamics

It is well known that the trajectories of the gradient dynamics of a contin-

uously differentiable function with bounded sublevel sets converge asymptotically

to its set of critical points, see e.g. [HS74]. This fact, however, is not true in gen-

eral for the saddle-point dynamics (gradient descent in one variable and gradient

ascent in the other) of a continuously differentiable function of two variables, see

e.g. [AHU58, DSS58]. This chapter investigates conditions under which the above

statement is true for the case where the critical points are min-max saddle points

and they possibly form a continuum.

6.1 Problem statement

Given a continuously differentiable function F : Rn × Rm → R, which we

refer to as a saddle function, we consider its saddle-point dynamics, i.e., gradient-

descent in one argument and gradient-ascent in the other,

ẋ = −∇xF (x, z), (6.1a)

ż = ∇zF (x, z). (6.1b)

103
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When convenient, we use the shorthand notation Xsp : Rn × Rm → Rn × Rm to

refer to this dynamics. Our aim is to provide conditions on F under which the

trajectories of its saddle-point dynamics (6.1) locally asymptotically converge to

its set of saddle points, and possibly to a point in the set. We are also interested in

identifying conditions to establish global asymptotic convergence. Throughout this

chapter, we assume that the set Saddle(F ) is nonempty. This assumption is valid

under mild conditions in the application areas that motivate our study: for the

Lagrangian of the constrained optimization problem [BV04] and the value function

for zero-sum games [BO82]. Our forthcoming discussion is divided in two threads,

one for the case of convex-concave functions, cf. Section 6.2, and one for the case

of general functions, cf. Section 6.3. In each case, we provide illustrative examples

to show the applicability of the results. For preliminary concepts on saddle-points

and convex-concave functions, we refer to Section 2.4.

6.2 Convergence analysis for convex-concave sad-

dle functions

This section presents conditions for the asymptotic stability of saddle points

under the saddle-point dynamics (6.1) that rely on the convexity-concavity prop-

erties of the saddle function.

6.2.1 Stability under strict convexity-concavity

Our first result provides conditions that guarantee the local asymptotic

stability of the set of saddle points.

Proposition 6.2.1. (Local asymptotic stability of the set of saddle points via

convexity-concavity): For F : Rn×Rm → R continuously differentiable and locally

strictly convex-concave on Saddle(F ), each isolated path connected component of

Saddle(F ) is locally asymptotically stable under the saddle-point dynamics Xsp and,

moreover, the convergence of each trajectory is to a point.
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Proof. Let S be an isolated path connected component of Saddle(F ) and take

(x∗, z∗) ∈ S. Without loss of generality, we consider the case when x 7→ F (x, z∗) is

locally strictly convex (the proof for the case when z 7→ F (x∗, z) is locally strictly

concave is analogous). Consider the function V : Rn × Rm → R≥0,

V (x, z) =
1

2

(
‖x− x∗‖2 + ‖z − z∗‖2

)
, (6.2)

which we note is radially unbounded (and hence has bounded sublevel sets). We

refer to V as a LaSalle function because locally, as we show next, its Lie derivative

is negative, but not strictly negative. Let U be the neighborhood of (x∗, z∗) where

local convexity-concavity holds. The Lie derivative of V along the dynamics (6.1)

at (x, z) ∈ U can be written as,

LXspV (x, z) = −(x− x∗)>∇xF (x, z) + (z − z∗)>∇zF (x, z) (6.3)

≤ F (x∗, z)− F (x, z) + F (x, z)− F (x, z∗)

= F (x∗, z)− F (x∗, z∗) + F (x∗, z∗)− F (x, z∗) ≤ 0,

where the first inequality follows from the first-order condition for convexity and

concavity, and the last inequality follows from the definition of saddle point. As

a consequence, for α > 0 small enough such that V −1(≤ V (α)) ⊂ U , we con-

clude that V −1(≤ V (α)) is positively invariant under Xsp. The application of

the LaSalle Invariance Principle [Kha02, Theorem 4.4] yields that any trajectory

starting from a point in V −1(≤ V (α)) converges to the largest invariant setM con-

tained in {(x, z) ∈ V −1(≤ V (α)) | LXspV (x, z) = 0}. Let (x, z) ∈ M . From (6.3),

LXspV (x, z) = 0 implies that F (x∗, z) = F (x∗, z∗) = F (x, z∗). In turn, the lo-

cal strict convexity of x 7→ F (x, z∗) implies that x = x∗. Since M is positively

invariant, the trajectory t 7→ (x(t), z(t)) of Xsp starting at (x, z) is contained

in M . This implies that along the trajectory, for all t ≥ 0, (a) x(t) = x∗ i.e.,

ẋ(t) = ∇xF (x(t), z(t)) = 0, and (b) F (x∗, z(t)) = F (x∗, z∗). The later implies

0 = LXspF (x∗, z(t)) = Xsp(x∗, z(t)) · (0,∇zF (x∗, z(t))) = ‖∇zF (x(t), z(t))‖2,
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for all t ≥ 0. Thus, we get ∇xF (x, z) = 0 and ∇zF (x, z) = 0. Further, since

(x, z) ∈ U , local convexity-concavity holds over U , and S is an isolated compo-

nent, we obtain (x, z) ∈ S, which shows M ⊂ S. Since (x∗, z∗) is arbitrary, the

asymptotic convergence property holds in a neighborhood of S. The pointwise

convergence follows from the application of Lemma 6.4.3.

The result above shows that each saddle point is stable and that each path

connected component of Saddle(F ) is asymptotically stable. Note that each saddle

point might not be asymptotically stable. However, if a component consists of a

single point, then that point is asymptotically stable. Interestingly, a close look at

the proof of Proposition 6.2.1 reveals that, if the assumptions hold globally, then

the asymptotic stability of the set of saddle points is also global, as stated next.

Corollary 6.2.2. (Global asymptotic stability of the set of saddle points via

convexity-concavity): For F : Rn × Rm → R continuously differentiable and glob-

ally strictly convex-concave, Saddle(F ) is globally asymptotically stable under the

saddle-point dynamics Xsp and the convergence of trajectories is to a point.

Remark 6.2.3. (Relationship with results on primal-dual dynamics: I): Corol-

lary 6.2.2 is an extension to more general functions and less stringent assumptions

of the results stated for Lagrangian functions of constrained convex (or concave)

optimization problems in [WE11, AHU58, FP10] and cost functions of differen-

tial games in [RBS13]. In [AHU58, FP10], for a concave optimization, the matrix

∇xxF is assumed to be negative definite at every saddle point and in [WE11] the

set Saddle(F ) is assumed to be a singleton. The work [RBS13] assumes a sufficient

condition on the cost functions to guarantee convergence that in the current setup

is equivalent to having ∇xxF and ∇zzF positive and negative definite, respectively.

•

6.2.2 Stability under convexity-linearity or linearity-

concavity

Here we study the asymptotic convergence properties of the saddle-point

dynamics when the convexity-concavity of the saddle function is not strict but,
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instead, the function depends linearly on its second argument. The analysis follows

analogously for saddle functions that are linear in the first argument and concave

in the other. The consideration of this class of functions is motivated by equality

constrained optimization problems.

Proposition 6.2.4. (Local asymptotic stability of the set of saddle points via

convexity-linearity): For a continuously differentiable function F : Rn ×Rm → R,
if

(i) F is locally convex-concave on Saddle(F ) and linear in z,

(ii) for each (x∗, z∗) ∈ Saddle(F ), there exists a neighborhood Ux∗ ⊂ Rn of x∗
where, if F (x, z∗) = F (x∗, z∗) with x ∈ Ux∗, then (x, z∗) ∈ Saddle(F ),

then each isolated path connected component of Saddle(F ) is locally asymptoti-

cally stable under the saddle-point dynamics Xsp and, moreover, the convergence

of trajectories is to a point.

Proof. Given an isolated path connected component S of Saddle(F ), Lemma 6.4.1

implies that F|S is constant. Our proof proceeds along similar lines as those of

Proposition 6.2.1. With the same notation, given (x∗, z∗) ∈ S, the arguments

follow verbatim until the identification of the largest invariant set M contained

in {(x, z) ∈ V −1(≤ V (α)) | LXspV (x, z) = 0}. Let (x, z) ∈ M . From (6.3),

LXspV (x, z) = 0 implies F (x∗, z) = F (x∗, z∗) = F (x, z∗). By assumption (ii), this

means (x, z∗) ∈ S, and by assumption (i), the linearity property gives ∇zF (x, z) =

∇zF (x, z∗) = 0. Therefore ∇zF|M = 0. For (x, z) ∈ M , the trajectory t 7→
(x(t), z(t)) of Xsp starting at (x, z) is contained in M . Consequently, z(t) = z for

all t ∈ [0,∞) and ẋ(t) = −∇xF (x(t), z) corresponds to the gradient dynamics of

the (locally) convex function y 7→ F (y, z). Therefore, x(t) converges to a minimizer

x′ of this function, i.e., ∇xF (x′, z) = 0. Since ∇zF|M = 0, the continuity of

∇zF implies that ∇zF (x′, z) = 0, and hence (x′, z) ∈ S. By continuity of F , it

follows that F (x(t), z) → F (x′, z) = F (x∗, z∗), where for the equality we use the

fact that F|S is constant. On the other hand, note that 0 = LXspV (x(t), z) =
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−(x(t)− x∗)>∇xF (x(t), z) ≤ F (x∗, z)− F (x(t), z) implies

F (x(t), z) ≤ F (x∗, z) = F (x∗, z∗),

for all t ∈ [0,∞). Therefore, the monotonically nonincreasing sequence

{F (x(t), z)} converges to F (x∗, z∗), which is also an upper bound on the whole

sequence. This can only be possible if F (x(t), z) = F (x∗, z∗) for all t ∈ [0,∞).

This further implies ∇xF (x(t), z) = 0 for all t ∈ [0,∞), and hence, (x, z) ∈ S.
Consequently, M ⊂ S. Since (x∗, z∗) has been chosen arbitrarily, the convergence

property holds in a neighborhood of S. The pointwise convergence follows now

from the application of Lemma 6.4.3.

The assumption (ii) in the above result is a generalization of the local strict

convexity condition for the function F (·, z∗). That is, (ii) allows other points in

the neighborhood of x∗ to have the same value of the function F (·, z∗) as that at

x∗, as long as they are saddle points (whereas, under local strict convexity, x∗ is

the local unique minimizer of F (·, z∗)). The next result extends the conclusions of

Proposition 6.2.4 globally when the assumptions hold globally.

Corollary 6.2.5. (Global asymptotic stability of the set of saddle points via

convexity-linearity): For a C1 function F : Rn × Rm → R, if

(i) F is globally convex-concave and linear in z,

(ii) for each (x∗, z∗) ∈ Saddle(F ), if F (x, z∗) = F (x∗, z∗), then (x, z∗) ∈
Saddle(F ),

then Saddle(F ) is globally asymptotically stable under the saddle-point dynamics

Xsp and, moreover, convergence of trajectories is to a point.

Example 6.2.6. (Saddle-point dynamics for convex optimization): Consider the

following convex optimization problem on R3,

minimize (x1 + x2 + x3)2, (6.4a)

subject to x1 = x2. (6.4b)
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The set of solutions of this optimization is {x ∈ R3 | 2x1 + x3 = 0, x2 = x1}, with
Lagrangian

L(x, z) = (x1 + x2 + x3)2 + z(x1 − x2), (6.5)

where z ∈ R is the Lagrange multiplier. The set of saddle points of L (which

correspond to the set of primal-dual solutions to (6.4)) are Saddle(L) = {(x, z) ∈
R3 × R | 2x1 + x3 = 0, x1 = x2, and z = 0}. However, L is not strictly convex-

concave and hence, it does not satisfy the hypotheses of Corollary 6.2.2. While L

is globally convex-concave and linear in z, it does not satisfy assumption (ii) of

Corollary 6.2.5. Therefore, to identify a dynamics that renders Saddle(L) asymp-

totically stable, we form the augmented Lagrangian

L̃(x, z) = L(x, z) + (x1 − x2)2, (6.6)

that has the same set of saddle points as L. Note that L̃ is not strictly convex-

concave but it is globally convex-concave (this can be seen by computing its

Hessian) and is linear in z. Moreover, given any (x∗, z∗) ∈ Saddle(L), we have

L̃(x∗, z∗) = 0, and if L̃(x, z∗) = L̃(x∗, z∗) = 0, then (x, z∗) ∈ Saddle(L). By Corol-

lary 6.2.5, the trajectories of the saddle-point dynamics of L̃ converge to a point

in S and hence, solve the optimization problem (6.4). Figure 6.1 illustrates this

fact. Note that the point of convergence depends on the initial condition. •

Remark 6.2.7. (Relationship with results on primal-dual dynamics: II): The

work [FP10, Section 4] considers concave optimization problems under inequality

constraints where the objective function is not strictly concave but analyzes the

convergence properties of a different dynamics. Specifically, the paper studies a

discontinuous dynamics based on the saddle-point information of an augmented

Lagrangian combined with a projection operator that restricts the dual variables

to the nonnegative orthant. We have verified that, for the formulation of the con-

cave optimization problem in [FP10] but with equality constraints, the augmented

Lagrangian satisfies the hypotheses of Corollary 6.2.5, implying that the dynam-

ics Xsp renders the primal-dual optima of the problem asymptotically stable. •
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Figure 6.1: (a) Trajectory of the saddle-point dynamics of the augmented La-
grangian L̃ in (6.6) for the optimization problem (6.4). The initial condition is
(x, z) = (1,−2, 4, 8). The trajectory converges to (−1.5,−1.5, 3, 0) ∈ Saddle(L).
(b) Evolution of the objective function of the optimization (6.4) along the trajec-
tory. The value converges to the minimum, 0.

6.2.3 Stability under strong quasiconvexity-quasiconcavity

Motivated by the aim of further relaxing the conditions for asymptotic con-

vergence, we conclude this section by weakening the convexity-concavity require-

ment on the saddle function. The next result shows that strong quasiconvexity-

quasiconcavity is sufficient to ensure convergence of the saddle-point dynamics.

Proposition 6.2.8. (Local asymptotic stability of the set of saddle points via

strong quasiconvexity-quasiconcavity): Let F : Rn × Rm → R be C2 and the map

(x, z) 7→ ∇xzF (x, z) be locally Lipschitz. Assume that F is locally jointly strongly

quasiconvex-quasiconcave on Saddle(F ). Then, each isolated path connected com-

ponent of Saddle(F ) is locally asymptotically stable under the saddle-point dynam-

ics Xsp and, moreover, the convergence of trajectories is to a point. Further, if

F is globally jointly strongly quasiconvex-quasiconcave and ∇xzF is constant over

Rn × Rm, then Saddle(F ) is globally asymptotically stable under Xsp and the con-

vergence of trajectories is to a point.

Proof. Let (x∗, z∗) ∈ S, where S is an isolated path connected component of

Saddle(F ), and consider the function V : Rn × Rm → R≥0 defined in (6.2). Let

U be the neighborhood of (x∗, z∗) where the local joint strong quasiconvexity-
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quasiconcavity holds. The Lie derivative of V along the saddle-point dynamics at

(x, z) ∈ U can be written as,

LXspV (x, z) = −(x− x∗)>∇xF (x, z) + (z − z∗)>∇zF (x, z),

= −(x− x∗)>∇xF (x, z∗) + (z − z∗)>∇zF (x∗, z) +M1 +M2, (6.7)

where

M1 = −(x− x∗)>(∇xF (x, z)−∇xF (x, z∗)),

M2 = (z − z∗)>(∇zF (x, z)−∇zF (x∗, z)).

Writing

∇xF (x, z)−∇xF (x, z∗) =

∫ 1

0

∇zxF (x, z∗ + t(z − z∗))(z − z∗)dt,

∇zF (x, z)−∇zF (x∗, z) =

∫ 1

0

∇xzF (x∗ + t(x− x∗), z)(x− x∗)dt,

we get

M1 +M2 = (z − z∗)>
(∫ 1

0

(
∇xzF (x∗ + t(x− x∗), z)

−∇xzF (x, z∗ + t(z − z∗))
)
dt
)

(x− x∗)

≤ ‖z − z∗‖(L‖x− x∗‖+ L‖z − z∗‖)‖x− x∗‖, (6.8)

where in the inequality, we have used the fact that ∇xzF is locally Lipschitz with

some constant L > 0. From the first-order property of a strong quasiconvex

function, cf. Lemma 6.4.2, there exist constants s1, s2 > 0 such that

−(x− x∗)>∇xF (x, z∗) ≤ −s1‖x− x∗‖2, (6.9a)

(z − z∗)>∇zF (x∗, z) ≤ −s2‖z − z∗‖2, (6.9b)

for all (x, z) ∈ U . Substituting (6.8) and (6.9) into the expression for the Lie
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derivative (6.7), we obtain

LXspV (x, z) ≤ −s1‖x− x∗‖2 − s2‖z − z∗‖2 + L‖x− x∗‖2‖z − z∗‖
+ L‖x− x∗‖‖z − z∗‖2.

To conclude the proof, note that if ‖z − z∗‖ < s1
L

and ‖x − x∗‖ < s2
L
, then

LXspV (x, z) < 0, which implies local asymptotic stability. The pointwise conver-

gence follows from Lemma 6.4.3. The global asymptotic stability can be reasoned

using similar arguments as above using the fact that here M1 + M2 = 0 because

∇xzF is constant.

In the following, we present an example where the above result is employed

to explain local asymptotic convergence. In this case, none of the results from

Section 6.2.1 and 6.2.2 apply, thereby justifying the importance of the above result.

Example 6.2.9. (Convergence for locally jointly strongly quasiconvex-

quasiconcave function): Consider F : R× R→ R given by,

F (x, z) = (2− e−x2)(1 + e−z
2

). (6.10)

Note that F is C2 and ∇xzF (x, z) = −4xze−x
2
e−z

2 is locally Lipschitz. To see

this, note that the function x 7→ xe−x
2 is bounded and is locally Lipschitz (as its

derivative is bounded). Further, the product of two bounded and locally Lipschitz

functions is locally Lipschitz [Soh03, Theorem 4.6.3] and so, (x, z) 7→ ∇xzF (x, z)

is locally Lipschitz. The set of saddle points of F is Saddle(F ) = {0}. Next, we

show that x 7→ f(x) = c1− c2e
−x2 , c2 > 0, is locally strongly quasiconvex at 0. Fix

δ > 0 and let x, y ∈ Bδ(0) such that f(y) ≤ f(x). Then, |y| ≤ |x| and

max{f(x), f(y)} − f(λx+ (1− λ)y)− sλ(1− λ)(x− y)2

= c2(−e−x2 + e−(λx+(1−λ)y)2)− sλ(1− λ)(x− y)2 = c2e
−x2(−1 + ex

2−(λx+(1−λ)y)2)− sλ(1− λ)(x− y)2

≥ c2e
−x2(x2 − (λx+ (1− λ)y)2)− sλ(1− λ)(x− y)2

= (1− λ)(x− y)
(
c2e
−x2(x+ y) + λ(x− y)(c2e

−x2 − s)
)
≥ 0,
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Figure 6.2: (a) Trajectory of the saddle-point dynamics for F given in (6.10).
The initial condition is (x, z) = (0.5, 0.2). The trajectory converges to the saddle
point (0, 0). (b) Evolution of the function V along the trajectory.

for s ≤ c2e
−δ2 , given the fact that |y| ≤ |x|. Therefore, f is locally strongly

quasiconvex and so −f is locally strongly quasiconcave. Using these facts, we

deduce that F is locally jointly strongly quasiconvex-quasiconcave. Thus, the

hypotheses of Proposition 6.2.8 are met, implying local asymptotic stability of

Saddle(F ) under the saddle-point dynamics. Figure 6.2 illustrates this fact in

simulation. Note that F does not satisfy the conditions outlined in results of

Section 6.2.1 and 6.2.2. •

6.3 Convergence analysis for general saddle func-

tions

We study here the convergence properties of the saddle-point dynamics

associated to functions that are not convex-concave. Our first result explores

conditions for local asymptotic stability based on the linearization of the dynamics

and properties of the eigenstructure of the Jacobian matrices. In particular, we

assume that Xsp is piecewise C2 and that the set of limit points of the Jacobian

of Xsp at any saddle point have a common kernel and negative real parts for the

nonzero eigenvalues. The proof is a direct consequence of Proposition 6.4.5.

Proposition 6.3.1. (Local asymptotic stability of manifold of saddle points via
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linearization – piecewise C3 saddle function): Given F : Rn × Rm → R, let S ⊂
Saddle(F ) be a p-dimensional submanifold of saddle points. Assume that F is C1

with locally Lipschitz gradient on a neighborhood of S and that the vector field Xsp is

piecewise C2. Assume that at each (x∗, z∗) ∈ S, the set of matrices A∗ ⊂ Rn+m×n+m

defined as

A∗ = { lim
k→∞

DXsp(xk, zk) | (xk, zk)→ (x, z), (xk, zk) ∈ Rn+m \ ΩXsp},

where ΩXsp is the set of points where Xsp is not differentiable, satisfies the following:

(i) there exists an orthogonal matrix Q ∈ Rn+m×n+m such that

Q>AQ =

[
0 0

0 Ã

]
, (6.11)

for all A ∈ A∗, where Ã ∈ Rn+m−p×n+m−p,

(ii) the nonzero eigenvalues of the matrices in A∗ have negative real parts,

(iii) there exists a positive definite matrix P ∈ Rn+m−p×n+m−p such that

Ã>P + PÃ ≺ 0,

for all Ã obtained by applying transformation (6.11) on each A ∈ A∗.

Then, S is locally asymptotically stable under (6.30) and the trajectories converge

to a point in S.

When F is sufficiently smooth, we can refine the above result as follows.

Corollary 6.3.2. (Local asymptotic stability of manifold of saddle points via lin-

earization – C3 saddle function): Given F : Rn × Rm → R, let S ⊂ Saddle(F )

be a p-dimensional manifold of saddle points. Assume F is C3 on a neighborhood

of S and that the Jacobian of Xsp at each point in S has no eigenvalues in the

imaginary axis other than 0, which is semisimple with multiplicity p. Then, S is

locally asymptotically stable under the saddle-point dynamics Xsp and the trajecto-

ries converge to a point.
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Proof. Since F is C3, the map Xsp is C2 and so, the limit point of Jacobian matrices

at a saddle point (x∗, z∗) ∈ S is the Jacobian at that point itself, that is,

DXsp =

[
−∇xxF −∇xzF

∇zxF ∇zzF

]
(x∗,z∗)

.

From the definition of saddle point, we have ∇xxF (x∗, z∗) � 0 and ∇zzF (x∗, z∗) �
0. In turn, we obtain DXsp+DX>sp � 0, and since Re(λi(DXsp)) ≤ λmax(1

2
(DXsp+

DX>sp)) [Ber05, Fact 5.10.28], we deduce that Re(λi(DXsp)) ≤ 0. The statement

now follows from Proposition 6.3.1 using the fact that the properties of the eigenval-

ues of DXsp shown here imply existence of an orthonormal transformation leading

to a form of DXsp that satisfies assumptions (i)-(iii) of Proposition 6.3.1.

Next, we provide a sufficient condition under which the Jacobian of Xsp for

a saddle function F that is linear in its second argument satisfies the hypothesis of

Corollary 6.3.2 regarding the lack of eigenvalues on the imaginary axis other than

0.

Lemma 6.3.3. (Sufficient condition for absence of imaginary eigenvalues of the

Jacobian of Xsp): Let F : Rn × Rm → R be C2 and linear in the second argument.

Then, the Jacobian of Xsp at any saddle point (x∗, z∗) of F has no eigenvalues on

the imaginary axis except for 0 if range(∇zxF (x∗, z∗))∩ null(∇xxF (x∗, z∗)) = {0}.

Proof. The Jacobian of Xsp at a saddle point (x∗, z∗) for a saddle function F that

is linear in z is given as

DXsp =

[
A B

−B> 0

]
,

where A = −∇xxF (x∗, z∗) and B = −∇zxF (x∗, z∗). We reason by contradiction.

Let iλ, λ 6= 0 be an imaginary eigenvalue of DXsp with the corresponding eigen-

vector a + ib. Let a = (a1; a2) and b = (b1; b2) where a1, b1 ∈ Rn and a2, b2 ∈ Rm.

Then the real and imaginary parts of the condition DXsp(a + ib) = (iλ)(a + ib)
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yield

Aa1 +Ba2 = −λb1, −B>a1 = −λb2, (6.12)

Ab1 +Bb2 = λa1, −B>b1 = λa2. (6.13)

Pre-multiplying the first equation of (6.12) with a>1 gives a>1 Aa1 + a>1 Ba2 =

−λa>1 b1. Using the second equation of (6.12), we get a>1 Aa1 = −λ(a>1 b1 +a>2 b2). A

similar procedure for the set of equations in (6.13) gives b>1 Ab1 = λ(a>1 b1 + a>2 b2).

These conditions imply that a>1 Aa1 = −b>1 Ab1. Since A is negative semi-definite,

we obtain a1, b1 ∈ null(A). Note that a1, b1 6= 0, because otherwise it would mean

that a = b = 0. Further, using this fact in the first equations of (6.12) and (6.13),

respectively, we get

Ba2 = −λb1, Bb2 = λa1.

That is, a1, b1 ∈ range(B), a contradiction.

The following example illustrates an application of the above results to a

nonconvex constrained optimization problem.

Example 6.3.4. (Saddle-point dynamics for nonconvex optimization): Consider

the following constrained optimization on R3,

minimize (‖x‖ − 1)2, (6.14a)

subject to x3 = 0.5, (6.14b)

where x = (x1, x2, x3) ∈ R3. The optimizers are {x ∈ R3 | x3 = 0.5, x2
1+x2

2 = 0.75}.
The Lagrangian L : R3 × R→ R is given by

L(x, z) = (‖x‖ − 1)2 + z(x3 − 0.5),

and its set of saddle points is the one-dimensional manifold Saddle(L) = {(x, z) ∈
R3 × R | x3 = 0.5, x2

1 + x2
2 = 0.75, z = 0}. The saddle-point dynamics of L takes
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the form

ẋ = −2
(

1− 1

‖x‖
)
x− [0, 0, z]>, (6.15a)

ż = x3 − 0.5. (6.15b)

Note that Saddle(L) is nonconvex and that L is nonconvex in its first argument

on any neighborhood of any saddle point. Therefore, results that rely on the

convexity-concavity properties of L are not applicable to establish the asymptotic

convergence of (6.15) to the set of saddle points. This can, however, be estab-

lished through Corollary 6.3.2 by observing that the Jacobian of Xsp at any point

of Saddle(L) has 0 as an eigenvalue with multiplicity one and the rest of the eigen-

values are not on the imaginary axis. To show this, consider (x∗, z∗) ∈ Saddle(L).

Note that DXsp(x∗, z∗) =

[
−2x>∗ x∗ −e3

e>3 0

]
, where e3 = [0, 0, 1]>. One can deduce

from this that v ∈ null(DXsp(x∗, z∗)) if and only if x>∗ [v1, v2, v3]> = 0, v3 = 0, and

v4 = 0. These three conditions define a one-dimensional space and so 0 is an eigen-

value of DXsp(x∗, z∗) with multiplicity 1. To show that the rest of eigenvalues do

not lie on the imaginary axis, we show that the hypotheses of Lemma 6.3.3 are met.

At any saddle point (x∗, z∗), we have ∇zxL(x∗, z∗) = e3 and ∇xxL(x∗, z∗) = 2x>∗ x∗.

If v ∈ range(∇zxL(x∗, z∗)) ∩ null(∇xxL(x∗, z∗)) then v = [0, 0, λ]>, λ ∈ R, and
x>∗ v = 0. Since (x∗)3 = 0.5, we get λ = 0 and hence, the hypotheses of Lemma 6.3.3

are satisfied. Figure 6.3 illustrates in simulation the convergence of the trajectories

to a saddle point. The point of convergence depends on the initial condition. •

There are functions that do not satisfy the hypotheses of Proposition 6.3.1

whose saddle-point dynamics still seems to enjoy local asymptotic convergence

properties. As an example, consider the function F : R2 × R→ R,

F (x, z) = (‖x‖ − 1)4 − z2‖x‖2, (6.16)

whose set of saddle points is the one-dimensional manifold Saddle(F ) = {(x, z) ∈
R2 × R | ‖x‖ = 1, z = 0}. The Jacobian of the saddle-point dynamics at any

(x, z) ∈ Saddle(F ) has −2 as an eigenvalue and 0 as the other eigenvalue, with
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Figure 6.3: (a) Trajectory of the saddle-point dynamics (6.15) for the Lagrangian
of the constrained optimization problem (6.14). The initial condition is (x, z) =
(0.9, 0.7, 0.2, 0.3). The trajectory converges to (0.68, 0.53, 0.50, 0) ∈ Saddle(L). (b)
Evolution of the objective function of the optimization (6.14) along the trajectory.
The value converges to the minimum, 0.

multiplicity 2, which is greater than the dimension of Saddle(F ) (and therefore

Proposition 6.3.1 cannot be applied). Simulations show that the trajectories of the

saddle-point dynamics asymptotically approach Saddle(S) if the initial condition

is close enough to this set. Our next result allows us to formally establish this

fact by studying the behavior of the distance function along the proximal normals

to Saddle(F ).

Proposition 6.3.5. (Asymptotic stability of manifold of saddle points via prox-

imal normals): Let F : Rn × Rm → R be C2 and S ⊂ Saddle(F ) be a closed set.

Assume there exist constants λM , k1, k2, α1, β1 > 0 and Lx, Lz, α2, β2 ≥ 0 such that

the following hold

(i) either Lx = 0 or α1 ≤ α2 + 1,

(ii) either Lz = 0 or β1 ≤ β2 + 1,

(iii) for every (x∗, z∗) ∈ S and every proximal normal η = (ηx, ηz) ∈ Rn × Rm to

S at (x∗, z∗) with ‖η‖ = 1, the functions

[0, λM) 3 λ 7→ F (x∗ + ληx, z∗),

[0, λM) 3 λ 7→ F (x∗, z∗ + ληz),
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are convex and concave, respectively, with

F (x∗ + ληx, z∗)− F (x∗, z∗) ≥ k1‖ληx‖α1 , (6.17a)

F (x∗, z∗ + ληz)− F (x∗, z∗) ≤ −k2‖ληz‖β1 , (6.17b)

and, for all λ ∈ [0, λM) and all t ∈ [0, 1],

‖∇xzF (x∗ + tληx, z∗ + ληz)−∇xzF (x∗ + ληx, z∗ + tληz)‖
≤ Lx‖ληx‖α2 + Lz‖ληz‖β2 . (6.18)

Then, S is locally asymptotically stable under the saddle-point dynamics Xsp.

Moreover, the convergence of the trajectories is to a point if every point of S is sta-

ble. The convergence is global if, for every λM ∈ R≥0, there exist k1, k2, α1, β1 > 0

such that the above hypotheses (i)-(iii) are satisfied by these constants along with

Lx = Lz = 0.

Proof. Our proof is based on showing that there exists λ̄ ∈ (0, λM ] such that

the distance function dS decreases monotonically and converges to zero along the

trajectories of Xsp that start in S +Bλ̄(0). From (2.3),

∂d2
S(x, z) = co{2(x− x∗; z − z∗) | (x∗, z∗) ∈ projS(x, z)}.

Following [Cor08], we compute the set-valued Lie derivative of d2
S along Xsp, de-

noted LXspd
2
S : Rn × Rm ⇒ R, as

LXspd
2
S(x, z) = co{−2(x− x∗)>∇xF (x, z)+

2(z − z∗)>∇zF (x, z) | (x∗, z∗) ∈ projS(x, z)}.

Since d2
S is globally Lipschitz and regular, cf. Section 2.3, the evolution of the

function d2
S along any trajectory t 7→ (x(t), z(t)) of (6.1) is differentiable at almost

all t ∈ R≥0, and furthermore, cf. [Cor08, Proposition 10],

d

dt
(d2
S(x(t), z(t)) ∈ LXspd

2
S(x(t), z(t))



120

for almost all t ∈ R≥0. Therefore, our goal is to show that maxLXspd
2
S(x, z) < 0 for

all (x, z) ∈ (S +Bλ̄(0)) \S for some λ̄ ∈ (0, λM ]. Let (x, z) ∈ S +BλM (0) and take

(x∗, z∗) ∈ projS(x, z). By definition, there exists a proximal normal η = (ηx, ηz) to

S at (x∗, z∗) with ‖η‖ = 1 and x = x∗ + ληx, z = z∗ + ληz, and λ ∈ [0, λM). Let

2ξ ∈ LXspd
2
S(x, z) denote

ξ = −(x− x∗)>∇xF (x, z) + (z − z∗)>∇zF (x, z). (6.19)

Writing

∇xF (x, z) = ∇xF (x, z∗) +

∫ 1

0

∇zxF (x, z∗ + t(z − z∗))(z − z∗)dt,

∇zF (x, z) = ∇zF (x∗, z) +

∫ 1

0

∇xzF (x∗ + t(x− x∗), z)(x− x∗)dt,

and substituting in (6.19) we get

ξ = −(x− x∗)>∇xF (x, z∗) + (z − z∗)>∇zF (x∗, z) + (z − z∗)>M(x− x∗), (6.20)

where M =
∫ 1

0
(∇xzF (x∗ + t(x − x∗), z) − ∇xzF (x, z∗ + t(z − z∗)))dt. Using the

convexity and concavity along the proximal normal and applying the bounds (6.17),

we obtain

−(x− x∗)>∇xF (x, z∗) ≤ F (x∗, z∗)− F (x, z∗) ≤ −k1‖ληx‖α1 , (6.21a)

(z − z∗)>∇zF (x∗, z) ≤ F (x∗, z)− F (x∗, z∗) ≤ −k2‖ληz‖β1 . (6.21b)

On the other hand, using (6.18), we bound M by

‖M‖ ≤ Lx‖ληx‖α2 + Lz‖ληz‖β2 . (6.22)

Using (6.21) and (6.22) in (6.20), and rearranging the terms yields

ξ ≤
(
−k1‖ληx‖α1 + Lx‖ληx‖α2+1‖ληz‖

)
+
(
−k2‖ληz‖β1 + Lz‖ληz‖β2+1‖ληx‖

)
.
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If Lx = 0, then the first parenthesis is negative whenever ληx 6= 0 (i.e., x 6= x∗).

If Lx 6= 0 and α1 ≤ α2 + 1, then for ‖ληx‖ < 1 and ‖ληz‖ < min(1, k1/Lx), the

first parenthesis is negative whenever ληx 6= 0. Analogously, the second paren-

thesis is negative for z 6= z∗ if either Lz = 0 or β1 ≤ β2 + 1 with ‖ληz‖ < 1

and ‖ληx‖ < min(1, k2/Lz). Thus, if λ < min{1, k1/Lx, k2/Lz} (excluding from

the min operation the elements that are not well defined due to the denominator

being zero), then hypotheses (i)-(ii) imply that ξ < 0 whenever (x, z) 6= (x∗, z∗).

Moreover, since (x∗, z∗) ∈ projS(x, z) was chosen arbitrarily, we conclude that

maxLXspd
2
S(x, z) < 0 for all (x, z) ∈ S + Bλ̄(0) where λ̄ ∈ (0, λM ] satisfies

λ̄ < min{1, k1/Lx, k2/Lz}. This proves the local asymptotic stability. Finally,

convergence to a point follows from Lemma 6.4.3 and global convergence follows

from the analysis done above.

Intuitively, the hypotheses of Proposition 6.3.5 imply that along the proxi-

mal normal to the saddle set, the convexity (resp. concavity) in the x-coordinate

(resp. z-coordinate) is ‘stronger’ than the influence of the x- and z-dynamics on

each other, represented by the off-diagonal Hessian terms. When this coupling

is absent (i.e., ∇xzF ≡ 0), the x- and z-dynamics are independent of each other

and they function as individually aiming to minimize (resp. maximize) a function

of one variable, thereby, reaching a saddle point. Note that the assumptions of

Proposition 6.3.5 do not imply that F is locally convex-concave. As an example,

the function in (6.16) is not convex-concave in any neighborhood of any saddle

point but we show next that it satisfies the assumptions of Proposition 6.3.5, es-

tablishing local asymptotic convergence of the respective saddle-point dynamics.

Example 6.3.6. (Convergence analysis via proximal normals): Consider the func-

tion F defined in (6.16). Consider a saddle point (x∗, z∗) = (cos θ, sin θ, 0) ∈
Saddle(F ), where θ ∈ [0, 2π). Let

η = (ηx, ηz) = ((a1 cos θ, a1 sin θ), a2),

with a1, a2 ∈ R and a2
1 + a2

2 = 1, be a proximal normal to Saddle(F ) at (x∗, z∗).

Note that the function λ 7→ F (x∗ + ληx, z∗) = (λa1)4 is convex, satisfying (6.17a)
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Figure 6.4: (a) Trajectory of the saddle-point dynamics for the function defined
by (6.16). The initial condition is (x, z) = (0.1, 0.2, 4). The trajectory converges to
(0.49, 0.86, 0) ∈ Saddle(F ). (b) Evolution of the function F along the trajectory.
The value converges to 0, the value that the function takes on its saddle set.

with k1 = 1 and α1 = 4. The function λ 7→ F (x∗, z∗ + ληz) = −(λa2)2 is concave,

satisfying (6.17b) with k2 = 1, β1 = 2. Also, given any λM > 0 and for all t ∈ [0, 1],

we can write

‖∇xzF (x∗ + tληx, z∗ + ληz)−∇xzF (x∗ + ληx, z∗ + tληz)‖
= ‖ − 4(λa2)(1 + tλa1) ( cos θ

sin θ ) + 4(tλa2)(1 + λa1) ( cos θ
sin θ ) ‖,

≤ ‖4(λa2)(1 + tλa1)− 4(tλa2)(1 + λa1)‖,
≤ 8(1 + λa1)(λa2) ≤ Lz(λa2),

for λ ≤ λM , where Lz = 8(1+λMa1). This implies that Lx = 0, Lz 6= 0 and β2 = 1.

Therefore, hypotheses (i)-(iii) of Proposition 6.3.5 are satisfied and this establishes

asymptotic convergence of the saddle-point dynamics. Figure 6.4 illustrates this

fact. Note that since Lz 6= 0, we cannot guarantee global convergence. •

Interestingly, Propositions 6.3.1 and 6.3.5 complement each other. The

function (6.16) satisfies the hypotheses of Proposition 6.3.5 but not those of Propo-

sition 6.3.1. Conversely, the Lagrangian of the constrained optimization (6.14)

satisfies the hypotheses of Proposition 6.3.1 but not those of Proposition 6.3.5.

In the next result, we consider yet another scenario where the saddle func-

tion might not be convex-concave in its arguments but the saddle-point dynam-
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ics converges to the set of equilibrium points. As a motivation, consider the

function F : R × R → R, F (x, z) = xz2. The set of saddle points of F are

Saddle(F ) = R≤0×{0}. One can show that, at the saddle point (0, 0), neither the

hypotheses of Proposition 6.3.1 nor those of Proposition 6.3.5 are satisfied. Yet,

simulations show that the trajectories of the dynamics converge to the saddle points

from almost all initial conditions in R2, see Figure 6.5 below. This asymptotic be-

havior can be characterized through the following result which generalizes [KP87,

Theorem 3].

Proposition 6.3.7. (Global asymptotic stability of equilibria of saddle-point dy-

namics for saddle functions linear in one argument): For F : Rn×Rm → R, assume

the following form F (x, z) = g(z)>x, where g : Rm → Rn is C1. Assume that there

exists (x∗, z∗) ∈ Saddle(F ) such that

(i) F (x∗, z∗) ≥ F (x∗, z) for all z ∈ Rm,

(ii) for any z ∈ Rm, the condition g(z)>x∗ = 0 implies g(z) = 0,

(iii) any trajectory of Xsp is bounded.

Then, all trajectories of the saddle-point dynamics Xsp converge asymptotically to

the set of equilibrium points of Xsp.

Proof. Consider the function V : Rn × Rm → R,

V (x, z) = −x>∗ x.

The Lie derivative of V along the saddle-point dynamics Xsp is

LXspV (x, z) = x>∗∇xF (x, z) = x>∗ g(z) = F (x∗, z) ≤ F (x∗, z∗) = 0, (6.23)

where in the inequality we have used assumption (i), and F (x∗, z∗) = 0 is implied

by the definition of the saddle point, that is, ∇xF (x∗, z∗) = g(z∗) = 0. Now con-

sider any trajectory t 7→ (x(t), z(t)), (x(0), z(0)) ∈ Rn × Rm of Xsp. Since the

trajectory is bounded by assumption (iii), the application of the LaSalle Invari-

ance Principle [Kha02, Theorem 4.4] yields that the trajectory converges to the
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largest invariant setM contained in {(x, z) ∈ Rn × Rm | LXspV (x, z) = 0}, which
from (6.23) is equal to the set {(x, z) ∈ Rn × Rm | F (x∗, z) = 0}. Let (x, z) ∈ M.

Then, we have F (x∗, z) = g(z)>x∗ = 0 and by hypotheses (ii) we get g(z) = 0.

Therefore, if (x, z) ∈M then g(z) = 0. Consider the trajectory t 7→ (x(t), z(t)) of

Xsp with (x(0), z(0)) = (x, z) which is contained inM. Then, along the trajectory

we have

ẋ(t) = −∇xF (x(t), z(t)) = −g(z(t)) = 0.

Further, note that along this trajectory we have g(z(t)) = 0 for all t ≥ 0. Thus,
d
dt
g(z(t)) = 0 for all t ≥ 0, which implies that

d

dt
g(z(t)) = Dg(z(t))ż(t) = Dg(z(t))Dg(z(t))>x = 0.

From the above expression we deduce that ż(t) = Dg(z(t))>x = 0. This can be

seen from the fact that Dg(z(t))Dg(z(t))>x = 0 implies x>Dg(z(t))Dg(z(t))>x =

(Dg(z(t))>x)2 = 0. From the above reasoning, we conclude that (x, z) is an

equilibrium point of Xsp.

The proof of Proposition 6.3.7 hints at the fact that hypothesis (ii) can

be omitted if information about other saddle points of F is known. Specifically,

consider the case where n saddle points (x
(1)
∗ , z

(1)
∗ ), . . . , (x

(n)
∗ , z

(n)
∗ ) of F exist, each

satisfying hypothesis (i) of Proposition 6.3.7 and such that the vectors x(1)
∗ , . . . , x

(n)
∗

are linearly independent. In this scenario, for those points z ∈ Rm such that

g(z)>x
(i)
∗ = 0 for all i ∈ [n] (as would be obtained in the proof), the linear indepen-

dence of x(i)
∗ ’s already implies that g(z) = 0, making hypothesis (ii) unnecessary.

Corollary 6.3.8. (Almost global asymptotic stability of saddle points for saddle

functions linear in one argument): If, in addition to the hypotheses of Proposi-

tion 6.3.7, the set of equilibria of Xsp other than those belonging to Saddle(F ) are

unstable, then the trajectories of Xsp converge asymptotically to Saddle(F ) from al-

most all initial conditions (all but the unstable equilibria). Moreover, if each point

in Saddle(F ) is stable under Xsp, then Saddle(F ) is almost globally asymptotically
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Figure 6.5: (a) Trajectory of the saddle-point dynamics for the function F (x, z) =
xz2. The initial condition is (x, z) = (5, 5). The trajectory converges to
(−6.13, 0) ∈ Saddle(F ). (b) Evolution of the function F along the trajectory.
The value converges to 0, the value that the function takes on its saddle set. (c)
The vector field Xsp, depicting that the set of saddle points are attractive while
the other equilibrium points R>0 × {0} are unstable.

stable under the saddle-point dynamics Xsp and the trajectories converge to a point

in Saddle(F ).

Next, we illustrate how the above result can be applied to the motivating

example given before Proposition 6.3.7 to infer almost global convergence of the

trajectories.

Example 6.3.9. (Convergence for saddle functions linear in one argument): Con-

sider again F (x, z) = xz2 with Saddle(F ) = {(x, z) ∈ R × R | x ≤ 0 and z = 0}.
Pick (x∗, z∗) = (−1, 0). One can verify that this saddle point satisfies the hy-

potheses (i) and (ii) of Proposition 6.3.7. Moreover, along any trajectory of the

saddle-point dynamics for F , the function x2 + z2

2
is preserved, which implies that

all trajectories are bounded. One can also see that the equilibria of the saddle-

point dynamics that are not saddle points, that is the set R>0×{0}, are unstable.

Therefore, from Corollary 6.3.8, we conclude that the trajectories of the saddle-

point dynamics asymptotically converge to the set of saddle points from almost all

initial conditions. Figure 6.5 illustrates these observations. •
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6.4 Auxiliary results

This section contains some auxiliary results for our convergence analysis in

Sections 6.2 and 6.3. Our first result establishes the constant value of the saddle

function over its set of (local) saddle points.

Lemma 6.4.1. (Constant function value over saddle points): For F : Rn×Rm →
R continuously differentiable, let S ⊂ Saddle(F ) be a path connected set. If F is

locally convex-concave on S, then F|S is constant.

Proof. We start by considering the case when S is compact. Given (x, z) ∈ S,
let δ(x, z) > 0 be such that Bδ(x,z)(x, z) ⊂ (Ux × Uz) ∩ U , where Ux and Uz are

neighborhoods where the saddle property (2.4) holds and U is the neighborhood

of (x, z) where local convexity-concavity holds (cf. Section 2.4). This defines a

covering of S by open sets as

S ⊂ ∪(x,z)∈SBδ(x,z)(x, z).

Since S is compact, there exist a finite number of points

(x1, z1), (x2, z2), . . . , (xn, zn) in S such that ∪ni=1Bδ(xi,zi)(xi, zi) covers S. For

convenience, denote Bδ(xi,zi)(xi, zi) by Bi. Next, we show that F|S∩Bi is constant

for all i ∈ [n]. To see this, let (x̄, z̄) ∈ S ∩Bi. From (2.4), we have

F (xi, z̄) ≤ F (xi, zi) ≤ F (x̄, zi). (6.24)

From the convexity of x 7→ F (x, z̄) over U ∩ (Rn × {z̄}), (cf. definition of local

convexity-concavity in Section 2.4), and the fact that ∇xF (x̄, z̄) = 0, we obtain

F (xi, z̄) ≥ F (x̄, z̄) + (xi − x̄)>∇xF (x̄, z̄) = F (x̄, z̄). Similarly, using the concavity

of z 7→ F (x̄, z), we get F (x̄, zi) ≤ F (x̄, z̄). These inequalities together with (6.24)

yield

F (xi, zi) ≤ F (x̄, zi) ≤ F (x̄, z̄) ≤ F (xi, z̄) ≤ F (xi, zi).

That is, F (x̄, z̄) = F (xi, zi) and hence F|S∩Bi is constant. Using this reasoning,
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if S ∩ Bi ∩ Bj 6= ∅ for any i, j ∈ [n], then F|S∩(Bi∪Bj) is constant. Using that

S is path connected, the fact [Dug66, p. 117] states that, for any two points

(xl, zl), (xm, zm) ∈ S, there exist distinct members i1, i2, . . . , ik of the set [n] such

that (xl, zl) ∈ S ∩Bi1 , (xm, zm) ∈ S ∩Bik and S ∩Bit ∩Bit+1 6= ∅ for all t ∈ [k−1].

Hence, we conclude that F|S is constant. Finally, in the case when S is not compact,

pick any two points (xl, zl), (xm, zm) ∈ S and let γ : [0, 1]→ S be a continuous map

with γ(0) = (xl, zl) and γ(1) = (xm, zm) denoting the path between these points.

The image γ([0, 1]) ⊂ S is closed and bounded, hence compact, and therefore,

F|γ([0,1]) is constant. Since the two points are arbitrary, we conclude that F|S is

constant.

The difficulty in Lemma 6.4.1 arises due to the local nature of the saddle

points (the result is instead straightforward for global saddle points). The next

result provides a first-order condition for strongly quasiconvex functions.

Lemma 6.4.2. (First-order property of a strongly quasiconvex function): Let

f : Rn → R be a C1 function that is strongly quasiconvex on a convex set D ⊂ Rn.

Then, there exists a constant s > 0 such that

f(x) ≤ f(y)⇒ ∇f(y)>(x− y) ≤ −s‖x− y‖2, (6.25)

for any x, y ∈ D.

Proof. Consider x, y ∈ D such that f(x) ≤ f(y). From strong quasiconvexity we

have f(y) ≥ f(λx+ (1−λ)y) + sλ(1−λ)‖x− y‖2, for any λ ∈ [0, 1]. Rearranging,

f(λx+ (1− λ)y)− f(y) ≤ −sλ(1− λ)‖x− y‖2. (6.26)

On the other hand, the Taylor’s approximation of f at y yields the following

equality at point y + λ(x− y), which is equal to λx+ (1− λ)y, as

f(λx+ (1− λ)y)− f(y) = ∇f(y)>(λx+ (1− λ)y − y) + g(λx+ (1− λ)y − y)

= λ∇f(y)>(x− y) + g(λ(x− y)), (6.27)
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for some function g with the property limλ→0
g(λ(x−y))

λ
= 0. Using (6.27) in (6.26),

dividing by λ, and taking the limit λ→ 0 yields the result.

The next result is helpful when dealing with dynamical systems that have

non-isolated equilibria to establish the asymptotic convergence of the trajectories

to a point, rather than to a set.

Lemma 6.4.3. (Asymptotic convergence to a point [BB03, Corollary 5.2]): Con-

sider the nonlinear system

ẋ(t) = f(x(t)), x(0) = x0, (6.28)

where f : Rn → Rn is locally Lipschitz. Let W ⊂ Rn be a compact set that is

positively invariant under (6.28) and let E ⊂ W be a set of stable equilibria. If a

trajectory t 7→ x(t) of (6.28) with x0 ∈ W satisfies limt→∞ dE(x(t)) = 0, then the

trajectory converges to a point in E.

Finally, we establish the asymptotic stability of a manifold of equilibria

through linearization techniques. We start with a useful intermediary result.

Lemma 6.4.4. (Limit points of Jacobian of a piecewise C2 function): Let f :

Rn → Rn be piecewise C2. Then, for every x ∈ Rn, there exists a finite index set

Ix ⊂ Z≥1 and a set of matrices {Ax,i ∈ Rn×n}i∈Ix such that

{Ax,i | i ∈ Ix} = { lim
k→∞

Df(xk) | xk → x, xk ∈ Rn \ Ωf}, (6.29)

where Ωf is the set of points where f is not differentiable.

Proof. Since f is piecewise C2, cf. Section 2.1, let D1, . . . ,Dm ⊂ Rn be the fi-

nite collection of disjoint open sets such that f is C2 on Di for each i ∈ [m] and

Rn = ∪mi=1cl(Di). Let x ∈ Rn and define Ix = {i ∈ [m] | x ∈ cl(Di)} and

Ax,i = {limk→∞Df(xk) | xk → x, xk ∈ Di}. Note that Ax,i is uniquely defined

for each i as, by definition, f|cl(Di) is C2. To show that (6.29) holds for the above

defined matrices, first note that the set {Ax,i | i ∈ Ix} is included in the right
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hand side of (6.29) by definition. To show the other inclusion, consider any se-

quence {xk}∞k=1 ⊂ Rn \ Ωf with xk → x. One can partition this sequence into

subsequences, each contained in one of the sets Di, i ∈ Ix and each converging

to x. Thus, the limit limk→∞Df(xk) is contained in the set {Ax,i}i∈Ix , proving
the other inclusion and yielding (6.29). Note that, in the nonsmooth analysis lit-

erature [Cla83, Chapter 2], the convex hull of matrices {Ax,i}i∈Ix is known as the

generalized Jacobian of f at x.

The following statement is an extension of [Hen81, Exercise 6] to vector

fields that are only piecewise twice continuously differentiable. Its proof is inspired,

but cannot be directly implied from, center manifold theory [Car82].

Proposition 6.4.5. (Asymptotic stability of a manifold of equilibrium points for

piecewise C2 vector fields): Consider the system

ẋ = f(x), (6.30)

where f : Rn → Rn is piecewise C2 and locally Lipschitz in a neighborhood of a

p-dimensional submanifold of equilibrium points E ⊂ Rn of (6.30). Assume that

at each x∗ ∈ E, the set of matrices {Ax∗,i}i∈Ix∗ from Lemma 6.4.4 satisfy:

(i) there exists an orthogonal matrix Q ∈ Rn×n such that, for all i ∈ Ix∗,

Q>Ax∗,iQ =

[
0 0

0 Ãx∗,i

]
,

where Ãx∗,i ∈ Rn−p×n−p,

(ii) the eigenvalues of the matrices {Ãx∗,i}i∈Ix∗ have negative real parts,

(iii) there exists a positive definite matrix P ∈ Rn−p×n−p such that

Ã>x∗,iP + PÃx∗,i ≺ 0, for all i ∈ I(x∗,z∗).

Then, E is locally asymptotically stable under (6.30) and the trajectories converge

to a point in E.
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Proof. Our strategy to prove the result is to linearize the vector field f on each

of the patches around any equilibrium point and employ a common Lyapunov

function and a common upper bound on the growth of the second-order term to

establish the convergence of the trajectories. This approach is an extension of

the proof of [Kha02, Theorem 8.2], where the vector field f is assumed to be C2

everywhere. Let x∗ ∈ E . For convenience, translate x∗ to the origin of (6.30).

We divide the proof in its various parts to make it easier to follow the technical

arguments.

Step I: linearization of the vector field on patches around the equilibrium

point. From Lemma 6.4.4, define I0 = {i ∈ [m] | 0 ∈ cl(Di)} and matrices

{A0,i}i∈I0 as the limit points of the Jacobian matrices. From the definition of

piecewise C2 function, there exist C2 functions {fi : Dei → Rn}i∈I0 with Dei open

such that with cl(Di) ⊂ Dei and the maps f|cl(Di) and fi take the same value over

the set cl(Di). Note that 0 ∈ Dei for every i ∈ I0. By definition of the matrices

{A0,i}i∈I0 , we deduce that Dfi(0) = A0,i for each i ∈ I0. Therefore, there exists a

neighborhood N0 ⊂ Rn of the origin and a set of C2 functions {gi : Rn → Rn}i∈I0
such that, for all i ∈ I0, fi(x) = A0,ix+ gi(x), for all x ∈ N0 ∩ Dei , where

gi(0) = 0 and
∂gi
∂x

(0) = 0. (6.31)

Without loss of generality, select N0 such that N0 ∩ Di is empty for every i 6∈ I0.

That is, ∪i∈I0(N0 ∩ cl(Di)) contains a neighborhood of the origin. With the above

construction, the vector field f in a neighborhood around the origin is written as

f(x) = fi(x) = A0,xx+ gi(x), for all x ∈ N0 ∩ cl(Di), i ∈ I0, (6.32)

where for each i ∈ I0, gi satisfies (6.31).

Step II: change of coordinates. Subsequently, from hypothesis (i), there

exists an orthogonal matrix Q ∈ Rn×n, defining an orthonormal transformation
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denoted by TQ : Rn → Rn, x 7→ (u, v), that yields the new form of (6.32) as

[
u̇

v̇

]
=

[
0 0

0 Ã0,i

][
u

v

]
+

[
g̃i,1(u, v)

g̃i,2(u, v)

]
, for all (u, v) ∈ TQ(N0 ∩ cl(Di)), i ∈ I0,

(6.33)

where for each i ∈ I0, the matrix Ã0,i has eigenvalues with negative real parts (cf.

hypothesis (ii)) and for each i ∈ I0 and k ∈ {1, 2} we have

g̃i,k(0, 0) = 0,
∂g̃i,k
∂u

(0, 0) = 0, and
∂g̃i,k
∂v

(0, 0) = 0. (6.34)

With a slight abuse of notation, denote the manifold of equilibrium points in the

transformed coordinates by E itself, i.e., E = TQ(E). From (6.33), we deduce that

the tangent and the normal spaces to the equilibrium manifold E at the origin are

{(u, v) ∈ Rp × Rn−p | v = 0} and {(u, v) ∈ Rp × Rn−p | u = 0}, respectively. Due

to this fact and since E is a submanifold of Rn, there exists a smooth function

h : Rp → Rn−p and a neighborhood U ⊂ TQ(N0) ⊂ Rn of the origin such that for

any (u, v) ∈ U , v = h(u) if and only if (u, v) ∈ E ∩ U . Moreover,

h(0) = 0 and
∂h

∂u
(0) = 0. (6.35)

Now, consider the coordinate w = v − h(u) to quantify the distance of a point

(u, v) from the set E in the neighborhood U . To conclude the proof, we focus on

showing that there exists a neighborhood of the origin such that along a trajectory

of (6.33) initialized in this neighborhood, we have w(t)→ 0 and (u(t), h(u(t))) ∈ U
at all t ≥ 0. In (u,w)-coordinates, over the set U , the system (6.33) reads as

[
u̇

ẇ

]
=

[
0 0

0 Ã0,i

][
u

w

]
+

[
ḡi,1(u,w)

ḡi,2(u,w)

]
, for (u,w + h(u)) ∈ U ∩ TQ(cl(Di)), i ∈ I0,

(6.36)

where ḡi,1(u,w) = g̃i,1(u,w + h(u)) and ḡi,2(u,w) = Ã0,ih(u) + g̃i,2(u,w + h(u)) −
∂h
∂u

(u)(g̃i,1(u,w+h(u))). Further, the equilibrium points E ∩U in these coordinates
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are represented by the set of points (u, 0), where u satisfies (u, h(u)) ∈ E∩U . These
facts, along with the conditions on the first-order derivatives of g̃i,1, g̃i,2 in (6.34)

and that of h in (6.35) yield

ḡi,k(u, 0) = 0 and
∂ḡi,k
∂w

(0, 0) = 0, (6.37)

for all i ∈ I0 and k ∈ {1, 2}. Note that the functions ḡi,1 and ḡi,2 are C2. This

implies that, for small enough ε > 0, we have ‖ḡi,k(u,w)‖ ≤Mi,k‖w‖, for k ∈ {1, 2},
i ∈ I0, and (u,w) ∈ Bε(0), where the constants {Mi,k}i∈I0,k∈{1,2} ⊂ R>0 can be

made arbitrarily small by selecting smaller ε. DefiningMε = max{Mi,k | i ∈ I0, k ∈
{1, 2}},

‖ḡi,k(u,w)‖ ≤Mε‖w‖, for k ∈ {1, 2} and i ∈ I0. (6.38)

Step III: Lyapunov analysis. With the bounds above, we proceed to carry

out the Lyapunov analysis for (6.36). Using the matrix P from assumption (iii),

define the candidate Lyapunov function V : Rn−p → R≥0 for (6.36) as V (w) =

w>Pw whose Lie derivative along (6.36) is

L (6.36)V (w) = w>(Ã>0,iP + PÃ0,i)w + 2w>P ḡi,2(u,w),

for (u,w + h(u)) ∈ U ∩ TQ(cl(Di)), i ∈ I0.

By assumption (iii), there exists λ > 0 such that w>(Ã>0,iP + PÃ0,i)w ≤ −λ‖w‖2.

Pick ε such that (u,w) ∈ Bε(0) implies (u, h(u) + w) ∈ U . Then, the above Lie

derivative can be upper bounded as

L (6.36)V (w) ≤ −λ‖w‖2 + 2Mε‖P‖‖w‖2 = −β1‖w‖2, for (u,w) ∈ Bε(0),

where β1 = λ−2Mε. Let ε small enough so that β1 > 0 and therefore L (6.36)V (w) ≤
−β1‖w‖2 < 0 for w 6= 0. Now assume that there exists a trajectory t 7→ (u(t), w(t))

of (6.36) that satisfies (u(t), w(t)) ∈ Bε(0) for all t ≥ 0. Then, using the following

λmin(P )‖w‖2 ≤ w>Pw ≤ λmax(P )‖w‖2,
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we get V (w(t)) ≤ e−β1t/λmax(P )V (w(0)) along this trajectory. Employing the same

inequalities again, we get

‖w(t)‖ ≤ K‖w(0)‖e−β2t, (6.39)

where K =
√

λmax(P )
λmin(P )

and β2 = β1
2λmax(P )

> 0. This proves that w(t)→ 0 exponen-

tially for the considered trajectory. Finally, we show that there exists δ > 0 such

that all trajectories of (6.36) with initial condition (u(0), w(0)) ∈ Bδ(0) satisfy

(u(t), w(t)) ∈ Bε(0) for all t ≥ 0 and hence, converge to E . From (6.36), (6.38)

and (6.39), we have

‖u(t)‖ ≤ ‖u(0)‖+

∫ t

0

MεKe
−β2s‖w(0)‖ds,≤ ‖u(0)‖+

MεK

β2

‖w(0)‖. (6.40)

By choosing ε small enough, Mε can be made arbitrarily small and β2 can be

bounded away from the origin. With this, from (6.39) and (6.40), one can select

a small enough δ > 0 such that (u(0), w(0)) ∈ Bδ(0) imply (u(t), w(t)) ∈ Bε(0)

for all t ≥ 0 and w(t) → 0. From this, we deduce that the trajectories staring in

Bδ(0) converge to the set E and the origin is stable. Since x∗ was arbitrary, we

conclude local asymptotic stability of E . Convergence to a point follows from the

application of Lemma 6.4.3.

The next example illustrates the application of the above result to conclude

local convergence of trajectories to a point in the manifold of equilibria.

Example 6.4.6. (Asymptotic stability of a manifold of equilibria for piecewise C2
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vector fields): Consider the system ẋ = f(x), where f : R3 → R3 is given by

f(x) =




−1 1 0

1 −2 1

0 1 −1



x1

x2

x3

+ (x1 − x3)2


1

1

1

 , if x1 − x3 ≥ 0,


−2 1 1

1 −2 1

1 1 −2



x1

x2

x3

+ (x1 − x3)2(1− x1 + x3)


1

1

1

 , if x1 − x3 < 0.

(6.41)

The set of equilibria of f is the one-dimensional manifold E = {x ∈ R3 | x1 =

x2 = x3}. Consider the regions D1 = {x ∈ R2 | x1 − x3 > 0} and D2 = {x ∈
R2 | x1−x3 < 0}. Note that f is locally Lipschitz on R3 and C2 on D1 and D2. At

any equilibrium point x∗ ∈ E , the limit point of the generalized Jacobian belongs

to {A1, A2}, where

A1 =


−1 1 0

1 −2 1

0 1 −1

 and A2 =


−2 1 1

1 −2 1

1 1 −2

 .

With the orthogonal matrix Q =


1 1 1

1 −1 1

1 0 −2

 we get,

Q>A1Q =


0 0 0

0 −5 3

0 3 −9

 , Q>A2Q =


0 0 0

0 −6 0

0 0 −18

 .
The nonzero 2×2-submatrices obtained in the above equation have eigenvalues with

negative real parts and have the identity matrix as a common Lyapunov function.

Therefore, from Proposition 6.4.5, we conclude that E is locally asymptotically

stable under ẋ = f(x), as illustrated in Figure 6.6. •
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Figure 6.6: (a) Trajectory of the vector field f defined in (6.41). The initial
condition is x = (1, 1.6,−1.2). The trajectory converges to the equilibrium point
(2.88, 2.88, 2.88). (b) Evolution of the distance to the equilibrium set E of the
trajectory.
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Chapter 7

Asymptotic convergence of

primal-dual dynamics

Our objective in chapter is to provide a rigorous treatment of the conver-

gence analysis of the primal-dual dynamics using classical notions from stability

analysis.

7.1 Problem statement

This section reviews the primal-dual dynamics for solving constrained opti-

mization problems and justifies the need to rigorously characterize its convergence

properties. Consider the concave optimization problem on Rn,

maximize f(x), (7.1a)

subject to g(x) ≤ 0m, (7.1b)

where the continuously differentiable functions f : Rn → R and g : Rn → Rm

are strictly concave and convex, respectively, and have locally Lipschitz gradients.

The Lagrangian of the problem (7.1) is given as

L(x, λ) = f(x)− λ>g(x), (7.2)

136
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where λ ∈ Rm is the Lagrange multiplier corresponding to the inequality con-

straint (7.1b). Note that the Lagrangian is concave in x and convex (in fact linear)

in λ. Assume that the Slater’s conditions is satisfied for the problem (7.1), that

is, there exists x ∈ Rn such that g(x) < 0m. Under this assumption, the duality

gap between the primal and dual optimizers is zero and a point (x∗, λ∗) ∈ D is

a primal-dual optimizer of (7.1) if and only if it is a saddle point of L over the

domain D, i.e.,

L(x, λ) ≤ L(x∗, λ∗) and L(x∗, λ) ≥ L(x∗, λ∗),

for all x ∈ Rn and λ ∈ Rm
≥0. For convenience, we denote the set of saddle points of

L (equivalently the primal-dual optimizers) by X×Λ ⊂ Rn×Rm. Note that since

f is strictly concave, the set X is a singleton. Furthermore, (x∗, λ∗) is a primal-

dual optimizer if and only if it satisfies the following Karush-Kuhn-Tucker (KKT)

conditions (cf. [BV09, Chapter 5]),

∇f(x∗)−
m∑
i=1

(λ∗)i∇gi(x∗) = 0, (7.3a)

g(x∗) ≤ 0m, λ∗ ≥ 0m, λ>∗ g(x∗) = 0. (7.3b)

Given this characterization of the solutions of the optimization problem, it is nat-

ural to consider the primal-dual dynamics on Rn × Rm
≥0 to find them

ẋ = ∇xL(x, λ) = ∇f(x)−
m∑
i=1

λi∇gi(x), (7.4a)

λ̇ = [−∇λL(x, λ)]+λ = [g(x)]+λ . (7.4b)

When convenient, we use the notation Xp-d : Rn ×Rm
≥0 → Rn ×Rm to refer to the

dynamics (7.4). Given that the primal-dual dynamics is discontinuous, we consider

solutions in the Caratheodory sense. The reason for this is that, with this notion

of solution, a point is an equilibrium of (7.4) if and only if it satisfies the KKT

conditions (7.3).

Our objective is to establish that the solutions of (7.4) exist and asymptot-
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ically converge to a solution of the concave optimization problem (7.1) using clas-

sical notions and tools from stability analysis. Our motivation for this aim comes

from the conceptual simplicity and versatility of Lyapunov-like methods and their

amenability for performing robustness analysis and studying generalizations of the

dynamics. One way of tackling this problem, see e.g., [FP10], is to interpret the

dynamics as a state-dependent switched system, formulate the latter as a hybrid

automaton as defined in [LJS+03], and then employ the invariance principle for

hybrid automata to characterize its asymptotic convergence properties. However,

this route is not valid in general because one of the key assumptions required by

the invariance principle for hybrid automata is not satisfied by the primal-dual

dynamics. The next example justifies this claim.

Example 7.1.1. (The hybrid automaton corresponding to the primal-dual dy-

namics is not continuous): Consider the concave optimization problem (7.1) on R
with f(x) = −(x − 5)2 and g(x) = x2 − 1, whose set of primal-dual optimizers is

X× Λ = {(1, 4)}. The associated primal-dual dynamics takes the form

ẋ = −2(x− 5)− 2xλ, (7.5a)

λ̇ = [x2 − 1]+λ . (7.5b)

We next formulate this dynamics as a hybrid automaton as defined in [LJS+03,

Definition II.1]. The idea to build the hybrid automaton is to divide the state

space R×R≥0 into two domains over which the vector field (7.5) is continuous. To

this end, we define two modes represented by the discrete variable q, taking values

in Q = {1, 2}. The value q = 1 represents the mode where the projection in (7.5b)

is active and q = 2 represents the mode where it is not. Formally, the projection is

active at (x, λ) if [g(x)]+λ 6= g(x), i.e, λ = 0 and g(x) < 0. The hybrid automaton is

then given by the collection H = (Q,X, f, Init, D,E,G,R), where Q = {q} is the
set of discrete variables, taking values in Q; X = {x, λ} is the set of continuous

variables, taking values in X = R × R≥0; the vector field f : Q × X → TX is
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defined by

f(1, (x, λ)) =

[
−2(x− 5)− 2xλ

0

]
,

f(2, (x, λ)) =

[
−2(x− 5)− 2xλ

x2 − 1

]
;

Init = X is the set of initial conditions; D : Q ⇒ X specifies the domain of each

discrete mode,

D(1) = (−1, 1)× {0}, D(2) = X \D(1),

i.e., the dynamics is defined by the vector field (x, λ) → f(1, (x, λ)) over D(1)

and by (x, λ) → f(2, (x, λ)) over D(2); E = {(1, 2), (2, 1)} is the set of edges

specifying the transitions between modes; the guard map G : Q ⇒ X specifies

when a solution can jump from one mode to the other,

G(1, 2) = {(1, 0), (−1, 0)}, G(2, 1) = (−1, 1)× {0},

i.e., G(q, q′) is the set of points where a solution jumps from mode q to mode q′;

and, finally, the reset map R : Q × X ⇒ X specifies that the state is preserved

after a jump from one mode to another,

R((1, 2), (x, λ)) = R((2, 1), (x, λ)) = {(x, λ)}.

We are now ready to show that the hybrid automaton is not continuous in the

sense defined by [LJS+03, Definition III.3]. This notion plays a key role in the

study of omega-limit sets and their stability, and is in fact a basic assumption of

the invariance principle developed in [LJS+03, Theorem IV.1]. Roughly speaking,

H is continuous if two executions of H starting close to one another remain close

to one another. An execution of H consists of a tuple (τ, q, x), where τ is a

hybrid time trajectory (a sequence of intervals specifying where mode transitions

and continuous evolution take place), q is a map that gives the discrete mode
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Figure 7.1: An illustration depicting the vector field (7.5) in the range (x, λ) ∈
[0, 1.6]× [0, 0.2]. As shown (with a red streamline), there exists a solution of (7.5)
that starts at a point (x(0), λ(0)) with x(0) < 1 and λ(0) > 0 such that it remains
in the domain λ > 0 at all times except at one time instant t′ when (x(t′), λ(t′)) =
(1, 0).

of the execution at each interval of τ , and x is a set of differentiable maps that

represent the evolution of the continuous state of the execution along intervals

of τ . A necessary condition for two executions to “remain close” is to have the

time instants of transitions in their mode for the executions (if there are any)

close to one another. To disprove the continuity of H, it is enough then to show

that there exist two executions that start arbitrarily close and yet experience their

first mode transitions at time instants that are not arbitrarily close. Select an

initial condition (x(0), λ(0)) ∈ (0, 1)× (0,∞) that gives rise to a solution of (7.5)

that remains in the set (0, 1) × (0,∞) for a finite time interval (0, t′), t′ > 0,

satisfies (x(t′), λ(t′)) = (1, 0), and stays in the set (1,∞) × (0,∞) for some finite

time interval (t′, T ), T > t′. The existence of such a solution becomes clear by

plotting the vector field (7.5), see Figure 7.1. Note that by construction, this also

corresponds to an execution of the hybrid automaton H that starts and remains

in domain D(2) for the time interval [0, T ] and so it does not encounter any jumps

in its discrete mode. Specifically, for this execution, the hybrid time trajectory is
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the interval [0, T ], the discrete mode q is always 2 and the continuous state evolves

as t 7→ (x(t), λ(t)). Further, by observing the vector field, we deduce that in every

neighborhood of (x(0), λ(0)), there exists a point (x̃(0), λ̃(0)) such that a solution

of (7.5) t 7→ (x̃(t), λ̃(t)) starting at (x̃(0), λ̃(0)) reaches the set (0, 1)×{0} in finite

time t1 > 0, remains in (0, 1)×{0} for a finite time interval [t1, t2], and then enters

the set (1,∞)×(0,∞) upon reaching the point (1, 0). Indeed, this is true whenever

x̃ < x(0) and λ̃ < λ(0). The execution of H corresponding to this solution starts in

D(2), enters D(1) in finite time t1, and returns to D(2) at time t2. Specifically, the

hybrid time trajectory consists of three intervals {[0, t1], [t1, t2], [t2, T
′]}, where we

assume T ′ > t2. The discrete mode q takes value 2 for the interval [0, t1], 1 for the

interval [t1, t2], and 2 for the interval [t2, T
′]. The continuous state t 7→ (x̃(t), λ̃(t))

takes the same values as the solution of (7.5) explained above. Thus, the value of

the discrete variable representing the mode of the execution switches from 2 to 1

and back to 2, whereas the execution corresponding to the solution of (7.5) starting

at (x(0), λ(0)) never switches mode. This shows that the hybrid automaton is not

continuous. •

Interestingly, even though the hybrid automaton H described in Exam-

ple 7.1.1 is not continuous, one can infer from Figure 7.1 that two solutions of (7.5)

remain close to each other if they start close enough. This suggests that continuity

with respect to the initial condition might hold provided this notion is formalized

the way it is done for traditional nonlinear systems (and not as done for hybrid

automata where both discrete and continuous states have to be aligned). The

next section shows that this in fact is the case. This, along with the existence

and uniqueness of solutions, allows us to characterize the asymptotic convergence

properties of the primal-dual dynamics.

7.2 Convergence analysis of primal-dual dynamics

In this section we show that the solutions of the primal-dual dynam-

ics (7.4) asymptotically converge to a solution of the constrained optimization

problem (7.1). Our proof strategy is to employ the invariance principle for
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Caratheodory solutions of discontinuous dynamical systems stated in Proposi-

tion 2.6.1. Our first step is then to verify that all its hypotheses hold.

We start by stating a useful monotonicity property of the primal-dual dy-

namics with respect to the set of primal-dual optimizers X×Λ. This property can

be found in [AHU58, FP10] and we include here its proof for completeness.

Lemma 7.2.1. (Monotonicity of the primal-dual dynamics with respect to primal-

dual optimizers): Let (x∗, λ∗) ∈ X× Λ and define V : Rn × Rm → R≥0,

V (x, λ) =
1

2

(
‖x− x∗‖2 + ‖λ− λ∗‖2

)
. (7.6)

Then LXp-dV (x, λ) ≤ 0 for all (x, λ) ∈ D.

Proof. By definition of LXp-dV (cf. Section 2.6.1), we have

LXp-dV (x, λ) = (x− x∗)>∇xL(x, λ) + (λ− λ∗)>[−∇λL(x, λ)]+λ

= (x− x∗)>∇xL(x, λ)− (λ− λ∗)>∇λL(x, λ)

+ (λ− λ∗)>([−∇λL(x, λ)]+λ +∇λL(x, λ)).

Since L is concave in x and convex in λ, applying the first order condition of

concavity and convexity for the first two terms of the above expression yields the

following bound

LXp-dV (x, λ) ≤ L(x, λ)− L(x∗, λ) + L(x, λ∗)− L(x, λ)

+ (λ− λ∗)>([−∇λL(x, λ)]+λ +∇λL(x, λ))

= L(x∗, λ∗)− L(x∗, λ) + L(x, λ∗)− L(x∗, λ∗)

+ (λ− λ∗)>([−∇λL(x, λ)]+λ +∇λL(x, λ)).

Define the shorthand notationM1 = L(x∗, λ∗)−L(x∗, λ),M2 = L(x, λ∗)−L(x∗, λ∗),

andM3 = (λ−λ∗)>([−∇λL(x, λ)]+λ +∇λL(x, λ)), so that the above inequality reads

LXp-dV (x, λ) ≤M1 +M2 +M3.

Since λ∗ is a minimizer of the map λ → L(x∗, λ) over the domain Rm
≥0 and x∗
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is a maximizer of the map x → L(x, λ∗), we obtain M1,M2 ≤ 0. Replacing

−∇λL(x, λ) = g(x), one can write M3 =
∑m

i=1 Ti, where for each i,

Ti = (λi − (λ∗)i)([gi(x)]+λi − gi(x)).

If λi > 0, then [gi(x)]+λi = gi(x) and so Ti = 0. If λi = 0, then λi − (λ∗)i ≤ 0 and

[gi(x)]+λi − gi(x) ≥ 0, which implies that Ti ≤ 0. Therefore, we get M3 ≤ 0, and

the result follows.

Next, we show that the primal-dual dynamics can be written as a projected

dynamical system.

Lemma 7.2.2. (Primal-dual dynamics as a projected dynamical system): The

primal-dual dynamics can be written as a projected dynamical system.

Proof. Consider the vector field X : Rn × Rm → Rn × Rm defined by

X(x, λ) =

[
∇xL(x, λ)

−∇λL(x, λ)

]
. (7.7)

We wish to show that Xp-d(x, λ) = ΠD((x, λ), X(x, λ)) for all (x, λ) ∈ D. To see

this, note that the maps Xp-d and X take the same values over int(D) = Rn×Rm
>0.

Now consider any point (x, λ) ∈ bd(D). Let I ⊂ [m] be the set of indices for which

λi = 0 and (−∇λL(x, λ))i < 0. Then, there exist δ̃ > 0 such that, for all δ ∈ [0, δ̃)

and for any j ∈ [n+m], we have

(projD((x, λ) + δX(x, λ)))j =

0, if j − n ∈ I,

(x, λ)j + δ(X(x, λ))j, otherwise .

Consequently, using the definition of the projection operator, cf. Section 2.6.2, we

get

(ΠD((x, λ), X(x, λ)))j =

0, if j − n ∈ I,

(X(x, λ))j, otherwise ,
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which implies Xp-d(x, λ) = ΠD((x, λ), X(x, λ)) for all (x, λ) ∈ bd(D). This con-

cludes the proof.

Next, we use Lemmas 7.2.1 and 7.2.2 to show the existence, uniqueness, and

continuity of the solutions of Xp-d starting from D. Our proof strategy consists of

using Lemma 7.2.2 and Proposition 2.6.2 to conclude the result. A minor technical

hurdle in this process is ensuring the Lipschitz property of the vector field (7.7), the

projection of which onD isXp-d. We tackle this by using the monotonicity property

of the primal-dual dynamics stated in Lemma 7.2.1 implying that a solution of

Xp-d (if it exists) remains in a bounded set, which we know explicitly. This further

implies that, given a starting point, there exists a bounded set such that the values

of the vector field outside this set do not affect the solution starting at that point

and hence, the vector field can be modified at the outside points without loss of

generality to obtain the Lipschitz property. We make this construction explicit in

the proof.

Lemma 7.2.3. (Existence, uniqueness, and continuity of solutions of the primal-

dual dynamics): Starting from any point (x, λ) ∈ D, a unique solution t 7→ γ(t)

of the primal-dual dynamics Xp-d exists and remains in (D) ∩ V −1(≤ V (x, λ)).

Moreover, if a sequence of points {(xk, λk)}∞k=1 ⊂ D converge to (x, λ) as k →∞,

then the sequence of solutions {t 7→ γk(t)}∞k=1 of Xp-d starting at these points

converge uniformly to the solution t 7→ γ(t) on every compact set of [0,∞).

Proof. Consider (x(0), λ(0)) ∈ D and let ε > 0. Define V0 = V (x(0), λ(0)), where

V is given in (7.6), and letWε = V −1(≤ V0 + ε). Note thatWε is convex, compact,

and V −1(≤ V0) ⊂ int(Wε). Let XWε : Rn × Rm → Rn × Rm be a vector field

defined as follows: equal to X on Wε and, for any (x, λ) ∈ (Rn × Rm) \Wε,

XWε(x, λ) = X(projWε
(x, λ)).

The vector field XWε is Lipschitz on the domain Rn × Rm. To see this, note that

X is Lipschitz on the compact setWε with some Lipschitz constant K > 0 because
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f and g have locally Lipschitz gradients. Let (x1, λ1), (x2, λ2) ∈ Rn × Rm. Then,

‖XWε(x1, λ1)−XWε(x2, λ2)‖ = ‖X(projWε
(x1, λ1))−X(projWε

(x2, λ2))‖
≤ K‖projWε

(x1, λ1)− projWε
(x2, λ2)‖

≤ K‖(x1, λ1)− (x2, λ2)‖.

The last inequality follows from the Lipschitz property of the map projWε
(cf.

Section 2.6.2).

Next, we employ Proposition 2.6.2 to establish the existence, uniqueness,

and continuity with respect to the initial condition of the solutions of the projected

dynamical system, XWε
p-d , associated with XWε and D. Our proof then concludes by

showing that in fact all solutions of the projected system XWε
p-d starting in Wε ∩D

are in one-to-one correspondence with the solutions of Xp-d starting in Wε ∩ D.
Let XWε

p-d : D → Rn × Rm be the map obtained by projecting XWε with respect to

D,

XWε
p-d(x, λ) = ΠD((x, λ), XWε(x, λ)),

for all (x, λ) ∈ D. Since Xp-d is the projection of X with respect to D, we de-

duce that XWε
p-d = Xp-d over the set Wε ∩ D. Since XWε is Lipschitz, following

Proposition 2.6.2, we obtain that starting from any point in D, a unique solution

of XWε
p-d exists over [0,∞) and is continuous with respect to the initial condition.

Consider any solution t 7→ (x̃(t), λ̃(t)) of XWε
p-d that starts in Wε ∩ D. Note that

since the solution is absolutely continuous and V is continuously differentiable, the

map t 7→ V (x̃(t), λ̃(t)) is differentiable almost everywhere on [0,∞), and hence

d

dt
V (x̃(t), λ̃(t)) = LXWεp-d

V (x̃(t), λ̃(t)),

almost everywhere on [0,∞). From Lemma 7.2.1 and the fact that LXWεp-d
V and

LXp-dV are the same over Wε ∩D, we conclude that V is non-increasing along the

solution. This means the solution remains in the set Wε ∩ D. Finally, since XWε
p-d

and Xp-d are same on Wε ∩ D, we conclude that t 7→ (x̃(t), λ̃(t)) is also a solution
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of Xp-d. Therefore, starting at any point in Wε ∩ D, a solution of Xp-d exists.

Using Lemma 7.2.1, one can show that, if a solution of Xp-d that starts from a

point in Wε ∩ D exists, then it remains in Wε ∩ D and so is a solution of XWε
p-d .

This, combined with the uniqueness of solutions of XWε
p-d , implies that a unique

solution of Xp-d exists starting from any point in Wε ∩ D. In particular, this is

true for the point (x(0), λ(0)). Finally, from the continuity of solutions of XWε
p-d

and the one-to-one correspondence of solutions of Xp-d and XWε
p-d starting Wε ∩D,

we conclude the continuity with respect to initial condition for solutions of Xp-d

starting in V −1(x(0), λ(0)). Since (x(0), λ(0)) is arbitrary, the result follows.

The next result states the invariance of the omega-limit set of any solu-

tion of the primal-dual dynamics. This ensures that all hypotheses of the invari-

ance principle for Caratheodory solutions of discontinuous dynamical systems, cf.

Proposition 2.6.1, are satisfied.

Lemma 7.2.4. (Omega-limit set of solution of primal-dual dynamics is invariant):

The omega-limit set of any solution of the primal-dual dynamics starting from any

point in Rn × Rm
≥0 is invariant under (7.4).

Proof. For (x(0), λ(0)) ∈ D, let t 7→ (x(t), λ(t)) be the solution of Xp-d starting

at (x(0), λ(0)) and let Ω(x, λ) be its omega-limit set. Since every solution of

Xp-d is bounded (cf. Lemma 7.2.3), the set Ω(x, λ) is nonempty. Let (x̄, λ̄) ∈
Ω(x, λ). From the definition of omega-limit set (cf. Section 2.6.1), there exists

a sequence {tk}∞k=1 with limk→∞ tk = ∞ such that limk→∞(x(tk), λ(tk)) = (x̄, λ̄).

From Lemma 7.2.3, we know that (x̄, λ̄) ∈ (D) ∩ V −1(≤ V (x(0), λ(0))) and thus

a unique solution of Xp-d exists starting at (x̄, λ̄). We denote it by t 7→ φ(t),

φ(0) = (x̄, λ̄), We need to show that φ(t) ∈ Ω(x, λ) for all t ≥ 0. Pick any

t̃ ∈ [0,∞). Consider the sequence of solutions {t 7→ (xk(t), λk(t))}∞k=1 where

(xk(0), λk(0)) = (x(tk), λ(tk)) for all k ∈ Z≥1. Since (xk(0), λk(0)) → (x̄, λ̄), by

the continuity property of solutions (cf. Lemma 7.2.3), the sequence of solutions

{t 7→ (xk(t), λk(t))}∞k=1 converges uniformly to t 7→ φ(t) over the interval [0, t̃]. In
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particular, from uniqueness of solutions, we have

φ(t̃) = lim
k→∞

(xk(t̃), λk(t̃)) = lim
k→∞

(x(tk + t̃), λ(tk + t̃)),

or equivalently, φ(t̃) ∈ Ω(x, λ). Since t̃ is arbitrary, we deduce that φ(t) ∈ Ω(x, λ)

for all t ≥ 0, concluding the proof.

We are now ready to establish our main result, the asymptotic convergence

of the solutions of the primal-dual dynamics to a solution of the constrained opti-

mization problem.

Theorem 7.2.5. (Convergence of the primal-dual dynamics to a primal-dual op-

timizer): The set of primal-dual solutions of (7.1) is globally asymptotically stable

on Rn × Rm
≥0 under the primal-dual dynamics (7.4), and the convergence of each

solution is to a point.

Proof. Let (x∗, λ∗) ∈ X × Λ and consider the function V defined in (7.6). For

δ > 0, consider the compact set S = V −1(≤ δ) ∩ (Rn × Rm
≥0). From Lemma 7.2.3,

we deduce that a unique solution of Xp-d exists starting from any point in S,
which remains in S. Moreover, from Lemma 7.2.4, the omega-limit set of each

solution starting from any point in S is invariant. Finally, from Lemma 7.2.1,

LXp-dV (x, λ) ≤ 0 for all (x, λ) ∈ S. Therefore, Proposition 2.6.1 implies that any

solution of Xp-d staring in S converges to the largest invariant set M contained in

cl(Z), where Z = {(x, λ) ∈ S | LXp-dV (x, λ) = 0}. From the proof of Lemma 7.2.1,

LXp-dV (x, λ) = 0 implies

L(x∗, λ∗)− L(x∗, λ) = 0,

L(x, λ∗)− L(x∗, λ∗) = 0,

(λi − (λ∗)i)([gi(x)]+λi − gi(x)) = 0, for all i ∈ [m].

Since f is strictly concave, so is the function x 7→ L(x, λ∗) and thus L(x, λ∗) =

L(x∗, λ∗) implies x = x∗. The equality L(x∗, λ∗)−L(x∗, λ) = 0 implies λ>g(x∗) = 0.

Therefore Z = {(x, λ) ∈ S | x = x∗, λ
>g(x∗) = 0} is closed. Let (x∗, λ) ∈ M ⊂

Z. The solution of Xp-d starting at (x∗, λ) remains in M (and hence in Z) only
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if ∇f(x∗) −
∑m

i=1 λi∇gi(x∗) = 0. This implies that (x∗, λ) satisfies the KKT

conditions (7.3) and hence, M ⊂ X×Λ. Since the initial choice δ > 0 is arbitrary,

we conclude that the set X × Λ is globally asymptotically stable on Rn × Rm
≥0.

Finally, we note that convergence is to a point in X × Λ. This is equivalent to

saying that the omega-limit set Ω(x, λ) ⊂ X × Λ of any solution t 7→ (x(t), λ(t))

of Xp-d is a singleton. This fact follows from the definition of omega-limit set and

the fact that, by Lemma 7.2.1, primal-dual optimizers are Lyapunov stable. This

concludes the proof.

Remark 7.2.6. (Alternative proof strategy via evolution variational inequalities):

We briefly describe here an alternative proof strategy to the one we have used

here to establish the asymptotic convergence of the primal-dual dynamics. The

Caratheodory solutions of the primal-dual dynamics can also be seen as solutions

of an evolution variational inequality (EVI) problem [BG05]. Then, one can show

that the resulting EVI problem has a unique solution starting from each point

in D, which moreover remains in D. With this in place, the LaSalle Invariance

Principle [BG05, Theorem 4] for the solutions of the EVI problem can be applied

to conclude the convergence to the set of primal-dual optimizers. •

Remark 7.2.7. (Primal-dual dynamics with gains): In power network optimiza-

tion problems [ZTLL14, MZL14, ZP14] and network congestion control prob-

lems [WA04, LPD02], it is common to see generalizations of the primal-dual dy-

namics involving gain matrices. Formally, these dynamics take the form

ẋ = K1∇xL(x, λ), (7.8a)

λ̇ = K2[−∇λL(x, λ)]+λ , (7.8b)

where K1 ∈ Rn×n and K2 ∈ Rm×m are diagonal, positive definite matrices. In such

cases, the analysis performed here can be replicated following the same steps but

using instead the Lyapunov function

V ′(x, λ) =
1

2
((x− x∗)>K−1

1 (x− x∗) + (λ− λ∗)>K−1
2 (λ− λ∗)),
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to establish the required monotonicity and convergence properties of (7.8). •
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Chapter 8

Role of convexity in saddle-point

dynamics

The main aim of this chapter is to refine the analysis of the saddle-point

dynamics by unveiling two ways in which convexity-concavity of the saddle function

plays a role. First, we show that local strong convexity-concavity is enough to

conclude global asymptotic convergence, thus generalizing previous results that

rely on global strong/strict convexity-concavity instead. Second, we show that, if

global strong convexity-concavity holds, then one can identify a novel Lyapunov

function for the projected saddle-point dynamics for the case when the saddle

function is the Lagrangian of a constrained optimization problem. This, in turn,

implies a stronger form of convergence, that is, input-to-state stability (ISS) and

has important implications in the practical implementation of the saddle-point

dynamics.

8.1 Problem statement

In this section, we provide a formal statement of the problem of interest.

Consider a twice continuously differentiable function F : Rn × Rp
≥0 × Rm → R,

(x, y, z) 7→ F (x, y, z), which we refer to as saddle function. With the notation of

Section 2.4, we set X = Rn and Y = Rp
≥0 × Rm, and assume that F is convex-

concave on (Rn)× (Rp
≥0×Rm). Let Saddle(F ) denote its (non-empty) set of saddle

150
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points. We define the projected saddle-point dynamics for F as

ẋ = −∇xF (x, y, z), (8.1a)

ẏ = [∇yF (x, y, z)]+y , (8.1b)

ż = ∇zF (x, y, z). (8.1c)

When convenient, we use the map Xp-sp : Rn × Rp
≥0 × Rm → Rn × Rp × Rm to

refer to the dynamics (8.1). Note that the domain Rn × Rp
≥0 × Rm is invariant

under Xp-sp (this follows from the definition of the projection operator) and its

set of equilibrium points precisely corresponds to Saddle(F ) (this follows from

the defining property of saddle points and the first-order condition for convexity-

concavity of F ). Thus, a saddle point (x∗, y∗, z∗) satisfies

∇xF (x∗, y∗, z∗) = 0, ∇zF (x∗, y∗, z∗) = 0, (8.2a)

∇yF (x∗, y∗, z∗) ≤ 0, y>∗ ∇yF (x∗, y∗, z∗) = 0. (8.2b)

Our interest in the dynamics (8.1) is motivated by two bodies of work in the

literature: one that analyzes primal-dual dynamics, corresponding to (8.1a) to-

gether with (8.1b), for solving inequality constrained network optimization prob-

lems, see e.g., [AHU58, FP10, MZL17, ZTLL14]; and the other one analyzing

saddle-point dynamics, corresponding to (8.1a) together with (8.1c), for solving

equality constrained problems and finding Nash equilibrium of zero-sum games,

see e.g., [CGC17] and references therein. By considering (8.1a)-(8.1c) together, we

aim to unify these lines of work. Below we explain further the significance of the

dynamics in solving specific network optimization problems.

Remark 8.1.1. (Motivating examples): Consider the following constrained convex

optimization problem

min{f(x) | g(x) ≤ 0, Ax = b},

where f : Rn → R and g : Rn → Rp are convex continuously differentiable func-

tions, A ∈ Rm×n, and b ∈ Rm. Under zero duality gap, saddle points of the
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associated Lagrangian L(x, y, z) = f(x) + y>g(x) + z>(Ax − b) correspond to

the primal-dual optimizers of the problem. This observation motivates the search

for the saddle points of the Lagrangian, which can be done via the projected

saddle-point dynamics (8.1). In many network optimization problems, f is the

summation of individual costs of agents and the constraints, defined by g and A,

are such that each of its components is computable by one agent interacting with

its neighbors. This structure renders the projected saddle-point dynamics of the

Lagrangian implementable in a distributed manner. Motivated by this, the dy-

namics is widespread in network optimization scenarios. For example, in optimal

dispatch of power generators [ZTLL14, LZC16, SPvdS17, MZL17], the objective

function is the sum of the individual cost function of each generator, the inequal-

ities consist of generator capacity constraints and line limits, and the equality

encodes the power balance at each bus. In congestion control of communication

networks [CLCD07, PM09, FP10], the cost function is the summation of the nega-

tive of the utility of the communicated data, the inequalities define constraints on

channel capacities, and equalities encode the data balance at each node. •

Our main objectives are to identify conditions that guarantee that the set

of saddle points is globally asymptotically stable under the dynamics (8.1) and

formally characterize the robustness properties using the concept of input-to-state

stability. The rest of the chapter is structured as follows. Section 8.2 investi-

gates novel conditions that guarantee global asymptotic convergence relying on

LaSalle-type arguments. Section 8.3 instead identifies a strict Lyapunov function

for constrained convex optimization problems. This finding allows us in Section 8.4

to go beyond convergence guarantees and explore the robustness properties of the

saddle-point dynamics.

8.2 Local properties of the saddle function imply

global convergence

Our first result of this section provides a novel characterization of the

omega-limit set of the trajectories of the projected saddle-point dynamics (8.1).
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Proposition 8.2.1. (Characterization of the omega-limit set of solutions ofXp-sp):

Given a twice continuously differentiable, convex-concave function F , each point

in the set Saddle(F ) is stable under the projected saddle-point dynamics Xp-sp and

the omega-limit set of every solution is contained in the largest invariant setM in

E(F ), where

E(F ) = {(x, y, z) ∈ Rn × Rp
≥0 × Rm |

(x− x∗; y − y∗; z − z∗) ∈ ker(H(x, y, z, x∗, y∗, z∗)),

for all (x∗, y∗, z∗) ∈ Saddle(F )}, (8.3)

and

H(x, y, z, x∗, y∗, z∗) =

∫ 1

0

H(x(s), y(s), z(s))ds,

(x(s), y(s), z(s)) = (x∗, y∗, z∗) + s(x− x∗, y − y∗, z − z∗),

H(x, y, z) =


−∇xxF 0 0

0 ∇yyF ∇yzF

0 ∇zyF ∇zzF


(x,y,z)

. (8.4)

Proof. The proof follows from the application of the LaSalle Invariance Principle

for discontinuous Caratheodory systems (cf. Proposition 2.6.1). Let (x∗, y∗, z∗) ∈
Saddle(F ) and V1 : Rn × Rp

≥0 × Rm → R≥0 be defined as

V1(x, y, z)=
1

2

(
‖x− x∗‖2+‖y − y∗‖2+‖z − z∗‖2

)
. (8.5)

The Lie derivative of V1 along (8.1) is

LXp-spV1(x, y, z) = −(x− x∗)>∇xF (x, y, z) + (y − y∗)>[∇yF (x, y, z)]+y

+ (z − z∗)>∇zF (x, y, z)

= −(x− x∗)>∇xF (x, y, z) + (y − y∗)>∇yF (x, y, z)

+ (z − z∗)>∇zF (x, y, z)

+ (y − y∗)>([∇yF (x, y, z)]+y −∇yF (x, y, z))
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≤ −(x− x∗)>∇xF (x, y, z) + (y − y∗)>∇yF (x, y, z)

+ (z − z∗)>∇zF (x, y, z), (8.6)

where the last inequality follows from the fact that Ti = (y−y∗)i([∇yF (x, y, z)]+y −
∇yF (x, y, z))i ≤ 0 for each i ∈ [p]. Indeed if yi > 0, then Ti = 0 and if yi = 0, then

(y − y∗)i ≤ 0 and ([∇yF (x, y, z)]+y −∇yF (x, y, z))i ≥ 0 which implies that Ti ≤ 0.

Next, denoting λ = (y; z) and λ∗ = (y∗, z∗), we simplify the above inequality as

LXp-spV1(x, y, z) ≤ −(x− x∗)>∇xF (x, λ) + (λ− λ∗)>∇λF (x, λ)

(a)
= −(x− x∗)>

∫ 1

0

(
∇xxF (x(s), λ(s))(x− x∗)

+∇λxF (x(s), λ(s))(λ− λ∗)
)
ds

+ (λ− λ∗)>
∫ 1

0

(
∇xλF (x(s), λ(s))(x− x∗)

+∇λλF (x(s), λ(s))(λ− λ∗)
)
ds

(b)
= [x− x∗;λ− λ∗]>H(x, λ, x∗, λ

∗)

[
x− x∗
λ− λ∗

]
(c)

≤ 0,

where (a) follows from the fundamental theorem of calculus using the notation

x(s) = x∗ + s(x − x∗) and λ(s) = λ∗ + s(λ − λ∗) and recalling from (8.2) that

∇xF (x∗, λ
∗) = 0 and (λ− λ∗)>∇λF (x∗, λ

∗) ≤ 0; (b) follows from the definition of

H using (∇λxF (x, λ))> = ∇xλF (x, λ); and (c) follows from the fact that H is neg-

ative semi-definite. Now using this fact that LXp-spV1 is nonpositive at any point,

one can deduce, see e.g. [CMC16, Lemma 4.2-4.4], that starting from any point

(x(0), y(0), z(0)) a unique trajectory of Xp-sp exists, is contained in the compact

set V −1
1 (V1(x(0), y(0), z(0))) ∩ (Rn × Rp

≥0 × Rm) at all times, and its omega-limit

set is invariant. These facts imply that the hypotheses of Proposition 2.6.1 hold

and so, we deduce that the solutions of the dynamics Xp-sp converge to the largest

invariant set where the Lie derivative is zero, that is, the set

E(F, x∗, y∗, z∗) = {(x, y, z) ∈ Rn × Rp
≥0 × Rm |

(x; y; z)− (x∗; y∗; z∗) ∈ ker(H(x, y, z, x∗, y∗, z∗))}. (8.7)
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Finally, since (x∗, y∗, z∗) was chosen arbitrary, we get that the solu-

tions converge to the largest invariant set M contained in E(F ) =⋂
(x∗,y∗,z∗)∈Saddle(F )

E(F, x∗, y∗, z∗), concluding the proof.

Note that the proof of Proposition 8.2.1 shows that the Lie derivative of

the function V1 is negative, but not strictly negative, outside the set Saddle(F ).

From Proposition 8.2.1 and the definition (8.3), we deduce that if a point (x, y, z)

belongs to the omega-limit set (and is not a saddle point), then the line integral

of the Hessian block matrix (8.4) from the any saddle point to (x, y, z) cannot be

full rank. Elaborating further,

(i) if ∇xxF is full rank at a saddle point (x∗, y∗, z∗) and if the point (x, y, z) 6∈
Saddle(F ) belongs to the omega-limit set, then x = x∗, and

(ii) if

[
∇yyF ∇yzF

∇zyF ∇zzF

]
is full rank at a saddle point (x∗, y∗, z∗), then (y, z) =

(y∗, z∗).

These properties are used in the next result which shows that local strong

convexity-concavity at a saddle point together with global convexity-concavity of

the saddle function are enough to guarantee global convergence.

Theorem 8.2.2. (Global asymptotic stability of the set of saddle points un-

der Xp-sp): Given a twice continuously differentiable, convex-concave function F

which is locally strongly convex-concave at a saddle point, the set Saddle(F ) is

globally asymptotically stable under the projected saddle-point dynamics Xp-sp and

the convergence of trajectories is to a point.

Proof. Our proof proceeds by characterizing the set E(F ) defined in (8.3). Let

(x∗, y∗, z∗) be a saddle point at which F is locally strongly convex-concave. With-

out loss of generality, assume that ∇xxF (x∗, y∗, z∗) � 0 (the case of negative def-

initeness of the other Hessian block can be reasoned analogously). Let (x, y, z) ∈
E(F, x∗, y∗, z∗) (recall the definition of this set in (8.7)). Since ∇xxF (x∗, y∗, z∗) � 0

and F is twice continuously differentiable, we have that ∇xxF is positive definite
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in a neighborhood of (x∗, y∗, z∗) and so

∫ 1

0

∇xxF (x(s), y(s), z(s))ds � 0,

where x(s) = x∗ + s(x − x∗), y(s) = y∗ + s(y − y∗), and z(s) = z∗ + s(z −
z∗). Therefore, by definition of E(F, x∗, y∗, z∗), it follows that x = x∗ and so,

E(F, x∗, y∗, z∗) ⊆ {x∗} × (Rp
≥0 × Rm). From Proposition 8.2.1 the trajectories of

Xp-sp converge to the largest invariant set M contained in E(F, x∗, y∗, z∗). To

characterize this set, let (x∗, y, z) ∈ M and t 7→ (x∗, y(t), z(t)) be a trajectory of

Xp-sp that is contained inM and hence in E(F, x∗, y∗, z∗). From (8.6), we get

LXp-spV1(x, y, z) ≤ −(x− x∗)>∇xF (x, y, z) + (y − y∗)>∇yF (x, y, z)

+ (z − z∗)>∇zF (x, y, z)

≤ F (x, y, z)− F (x, y∗, z∗) + F (x∗, y, z)− F (x, y, z)

≤ F (x∗, y∗, z∗)− F (x, y∗, z∗) + F (x∗, y, z)

− F (x∗, y∗, z∗) ≤ 0, (8.8)

where in the second inequality we have used the first-order convexity and con-

cavity property of the maps x 7→ F (x, y, z) and (y, z) 7→ F (x, y, z). Now since

E(F, x∗, y∗, z∗) = {(x∗, y, z) | LXp-spV1(x∗, y, z) = 0}, using the above inequal-

ity, we get F (x∗, y(t), z(t)) = F (x∗, y∗, z∗) for all t ≥ 0. Thus, for all t ≥ 0,

LXp-spF (x∗, y(t), z(t)) = 0 which yields

∇yF (x∗, y(t), z(t))>[∇yF (x∗, y(t), z(t))]+y(t) + ‖∇zF (x∗, y(t), z(t))‖2 = 0

Note that both terms in the above expression are nonnegative and so, we get

[∇yF (x∗, y(t), z(t))]+y(t) = 0 and ∇zF (x∗, y(t), z(t)) = 0 for all t ≥ 0. In particular,

this holds at t = 0 and so, (x, y, z) ∈ Saddle(F ), and we concludeM⊂ Saddle(F ).

Hence Saddle(F ) is globally asymptotically stable. Combining this with the fact

that individual saddle points are stable, one deduces the pointwise convergence of

trajectories along the same lines as in [BB03, Corollary 5.2].
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A closer look at the proof of the above result reveals that the same con-

clusion also holds under milder conditions on the saddle function. In particular,

F need only be twice continuously differentiable in a neighborhood of the saddle

point and the local strong convexity-concavity can be relaxed to a condition on

the line integral of Hessian blocks of F . We state next this stronger result.

Theorem 8.2.3. (Global asymptotic stability of the set of saddle points un-

der Xp-sp): Let F be convex-concave and continuously differentiable with locally

Lipschitz gradient. Suppose there is a saddle point (x∗, y∗, z∗) and a neighborhood

of this point U∗ ⊂ Rn × Rp
≥0 × Rm such that F is twice continuously differentiable

on U∗ and either of the following holds

(i) for all (x, y, z) ∈ U∗, ∫ 1

0

∇xxF (x(s), y(s), z(s))ds � 0,

(ii) for all (x, y, z) ∈ U∗,

∫ 1

0

[
∇yyF ∇yzF

∇zyF ∇zzF

]
(x(s),y(s),z(s))

ds ≺ 0,

where (x(s), y(s), z(s)) are given in (8.4). Then, Saddle(F ) is globally asymptot-

ically stable under the projected saddle-point dynamics Xp-sp and the convergence

of trajectories is to a point.

We omit the proof of this result as the argument is analogous to the proof of

Theorem 8.2.2, where one replaces the integral of Hessian blocks by the integral of

generalized Hessian blocks (see [Cla83, Chapter 2] for the definition of the latter),

as the function is not twice continuously differentiable everywhere.

Example 8.2.4. (Illustration of global asymptotic convergence): Consider F :

R2 × R≥0 × R→ R given as

F (x, y, z) = f(x) + y(−x1 − 1) + z(x1 − x2), (8.9)
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Figure 8.1: Execution of the projected saddle-point dynamics (8.1) starting
from (1.7256, 0.1793, 2.4696, 0.3532) for Example 8.2.4. As guaranteed by The-
orem 8.2.3, the trajectory converges to the unique saddle point 0 and the function
V1 defined in (8.5) decreases monotonically.

where

f(x) =

‖x‖4, if ‖x‖ ≤ 1
2
,

1
16

+ 1
2
(‖x‖ − 1

2
), if ‖x‖ ≥ 1

2
.

Note that F is convex-concave on (R2) × (R≥0 × R) and Saddle(F ) = {0}. Also,

F is continuously differentiable on the entire domain and its gradient is locally

Lipschitz. Finally, F is twice continuously differentiable on the neighborhood U∗ =

B1/2(0)∩ (R2×R≥0×R) of the saddle point 0 and hypothesis (i) of Theorem 8.2.3

holds on U∗. Therefore, we conclude from Theorem 8.2.3 that the trajectories of

the projected saddle-point dynamics of F converge globally asymptotically to the

saddle point 0. Figure 8.1 shows an execution. •

Remark 8.2.5. (Comparison with the literature): Theorems 8.2.2 and 8.2.3 com-

plement the available results in the literature concerning the asymptotic conver-

gence properties of saddle-point [AHU58, CGC17, NC16] and primal-dual dynam-

ics [FP10, CMC16]. The former dynamics corresponds to (8.1) when the variable

y is absent and the later to (8.1) when the variable z is absent. For both saddle-

point and primal-dual dynamics, existing global asymptotic stability results require

assumptions on the global properties of F , in addition to the global convexity-

concavity of F , such as global strong convexity-concavity [AHU58], global strict
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convexity-concavity, and its generalizations [CGC17]. In contrast, the novelty of

our results lies in establishing that certain local properties of the saddle function

are enough to guarantee global asymptotic convergence. •

8.3 Lyapunov function for constrained convex op-

timization problems

Our discussion above has established the global asymptotic stability of the

set of saddle points resorting to LaSalle-type arguments (because the function V1

defined in (8.5) is not a strict Lyapunov function). In this section, we identify

instead a strict Lyapunov function for the projected saddle-point dynamics when

the saddle function F corresponds to the Lagrangian of a constrained optimization

problem, cf. Remark 8.1.1. The relevance of this result stems from two facts. On

the one hand, the projected saddle-point dynamics has been employed profusely to

solve network optimization problems. On the other hand, although the conclusions

on the asymptotic convergence of this dynamics that can be obtained with the

identified Lyapunov function are the same as in the previous section, having a

Lyapunov function available is advantageous for a number of reasons, including

the study of robustness against disturbances, the characterization of the algorithm

convergence rate, or as a design tool for developing opportunistic state-triggered

implementations. We come back to this point in Section 8.4 below.

Theorem 8.3.1. (Lyapunov function for Xp-sp): Let F : Rn × Rp
≥0 × Rm → R be

defined as

F (x, y, z) = f(x) + y>g(x) + z>(Ax− b), (8.10)

where f : Rn → R is strongly convex, twice continuously differentiable, g : Rn → Rp

is convex, twice continuously differentiable, A ∈ Rm×n, and b ∈ Rm. For each

(x, y, z) ∈ Rn × Rp
≥0 × Rm, define the index set of active constraints

J (x, y, z) = {j ∈ [p] | yj = 0 and (∇yF (x, y, z))j < 0}.
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Then, the function V2 : Rn × Rp
≥0 × Rm → R,

V2(x, y, z) =
1

2

(
‖∇xF (x, y, z)‖2 + ‖∇zF (x, y, z)‖2

+
∑

j∈[p]\J (x,y,z)

((∇yF (x, y, z))j)
2
)

+
1

2
‖(x, y, z)‖2

Saddle(F )

is nonnegative everywhere in its domain and V2(x, y, z) = 0 if and only if (x, y, z) ∈
Saddle(F ). Moreover, for any trajectory t 7→ (x(t), y(t), z(t)) of Xp-sp, the map

t 7→ V2(x(t), y(t), z(t))

(i) is differentiable almost everywhere and if (x(t), y(t), z(t)) 6∈ Saddle(F )

for some t ≥ 0, then d
dt
V2(x(t), y(t), z(t)) < 0 provided the deriva-

tive exists. Furthermore, for any sequence of times {tk}∞k=1 such

that tk → t and d
dt
V2(x(tk), y(tk), z(tk)) exists for every tk, we have

lim supk→∞
d
dt
V (x(tk), y(tk), z(tk)) < 0,

(ii) is right-continuous and at any point of discontinuity t′ ≥ 0, we have

V2(x(t′), y(t′), z(t′)) ≤ limt↑t′ V2(x(t), y(t), z(t)).

As a consequence, Saddle(F ) is globally asymptotically stable under Xp-sp and con-

vergence of trajectories is to a point.

Proof. We start by partitioning the domain based on the active constraints. Let

I ⊂ [p] and

D(I) = {(x, y, z) ∈ Rn × Rp
≥0 × Rm | J (x, y, z) = I}.

Note that for I1, I2 ⊂ [p], I1 6= I2, we have D(I1) ∩ D(I2) = ∅. Moreover,

Rn × Rp
≥0 × Rm =

⋃
I⊂[p]

D(I).

For each I ⊂ [p], define the function

V I2 (x, y, z) =
1

2

(
‖∇xF (x, y, z)‖2 + ‖∇zF (x, y, z)‖2
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+
∑
j 6∈I

((∇yF (x, y, z))j)
2
)

+
1

2
‖(x, y, z)‖2

Saddle(F )
. (8.11)

These functions will be used later for analyzing the evolution of V2. Consider a

trajectory t 7→ (x(t), y(t), z(t)) of Xp-sp starting at some point (x(0), y(0), z(0)) ∈
Rn × Rp

≥0 × Rm. Our proof strategy consists of proving assertions (i) and (ii)

for two scenarios, depending on whether or not there exists δ > 0 such that the

difference between two consecutive time instants when the trajectory switches from

one partition set to another is lower bounded by δ.

Scenario 1: time elapsed between consecutive switches is lower

bounded: Let (a, b) ⊂ R≥0, b − a ≥ δ, be a time interval for which the trajec-

tory belongs to a partition D(I ′), I ′ ⊂ [p], for all t ∈ (a, b). In the following,

we show that d
dt
V2(x(t), y(t), z(t)) exists for almost all t ∈ (a, b) and its value is

negative whenever (x(t), y(t), z(t)) 6∈ Saddle(F ). Consider the function V I
′

2 de-

fined in (8.11) and note that t 7→ V I
′

2 (x(t), y(t), z(t)) is absolutely continuous as

V I
′

2 is continuously differentiable on Rn × Rp
≥0 × Rm and the trajectory is abso-

lutely continuous. Employing Rademacher’s Theorem [Cla83], we deduce that the

map t 7→ V I
′

2 (x(t), y(t), z(t)) is differentiable almost everywhere. By definition,

V2(x(t), y(t), z(t)) = V I
′

2 (x(t), y(t), z(t)) for all t ∈ (a, b). Therefore

d

dt
V2(x(t), y(t), z(t)) =

d

dt
V I

′

2 (x(t), y(t), z(t)) (8.12)

for almost all t ∈ (a, b). Further, since V I′2 is continuously differentiable, we have

d

dt
V I

′

2 (x(t), y(t), z(t)) = LXp-spV
I′

2 (x(t), y(t), z(t)). (8.13)

Now consider any (x, y, z) ∈ D(I ′) \Saddle(F ). Our next computation shows that

LXp-spV
I′

2 (x, y, z) < 0. We have

LXp-spV
I′

2 (x, y, z) = −∇xF (x, y, z)>∇xxF (x, y, z)∇xF (x, y, z)

+

[
[∇yF (x, y, z)]+y

∇zF (x, y, z)

]> [
∇yyF ∇yzF

∇zyF ∇zzF

]
(x,y,z)

[
[∇yF (x, y, z)]+y

∇zF (x, y, z)

]
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+ LXp-sp

(1

2
‖(x, y, z)‖2

Saddle(F )

)
. (8.14)

The first two terms in the above expression are the Lie derivative of (x, y, z) 7→
V I

′
2 (x, y, z) − 1

2
‖(x, y, z)‖2

Saddle(F )
. This computation can be shown using the

properties of the operator [·]+y . Now let (x∗, y∗, z∗) = projSaddle(F )
(x, y, z). Then,

by Danskin’s Theorem [CLSW98, p. 99], we have

∇‖(x, y, z)‖2

Saddle(F )
= 2(x− x∗; y − y∗; z − z∗) (8.15)

Using this expression, we get

LXp-sp

(1

2
‖(x, y, z)‖2

Saddle(F )

)
=−(x− x∗)>∇xF (x, y, z) + (y − y∗)>[∇yF (x, y, z)]+y

+ (z − z∗)>∇zF (x, y, z)

≤ F (x∗, y, z)− F (x∗, y∗, z∗) + F (x∗, y∗, z∗)

− F (x, y∗, z∗),

where the last inequality follows from (8.8). Now using the above expression

in (8.14) we get

LXp-spV
I′

2 (x, y, z) ≤ −∇xF (x, y, z)∇xxF (x, y, z)∇xF (x, y, z)

+

[
[∇yF (x, y, z)]+y

∇zF (x, y, z)

]> [
∇yyF ∇yzF

∇zyF ∇zzF

]
(x,y,z)

[
[∇yF (x, y, z)]+y

∇zF (x, y, z)

]

+ F (x∗, y, z)− F (x∗, y∗, z∗) + F (x∗, y∗, z∗)

− F (x, y∗, z∗) ≤ 0.

If LXp-spV
I′

2 (x, y, z) = 0, then (a) ∇xF (x, y, z) = 0; (b) x = x∗; and (c)

F (x∗, y, z) = F (x∗, y∗, z∗). From (b) and (8.2), we conclude that ∇zF (x, y, z) = 0.

From (c) and (8.10), we deduce that (y−y∗)>g(x∗) = 0. Note that for each i ∈ [p],

we have (yi − (y∗)i)(g(x∗))i ≤ 0. This is because either (g(x∗))i = 0 in which

case it is trivial or (g(x∗))i < 0 in which case (y∗)i = 0 (as y∗ maximizes the map

y 7→ y>g(x∗)) thereby making yi − (y∗)i ≥ 0. Since, (yi − (y∗)i)(g(x∗))i ≤ 0 for
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each i and (y − y∗)>g(x∗) = 0, we get that for each i ∈ [p], either (g(x∗))i = 0 or

yi = (y∗)i. Thus, [∇yF (x, y, z)]+y = 0. These facts imply that (x, y, z) ∈ Saddle(F ).

Therefore, if (x, y, z) ∈ D(I ′) \ Saddle(F ) then LXp-spV
I′

2 (x, y, z) < 0. Combining

this with (8.12) and (8.13), we deduce

d

dt
V2(x(t), y(t), z(t)) < 0

for almost all t ∈ (a, b). Therefore, between any two switches in the par-

tition, the evolution of V2 is differentiable and the value of the derivative is

negative. Since the number of time instances when a switch occurs is count-

able, the first part of assertion (i) holds. To show the limit condition, con-

sider t ≥ 0 such that (x(t), y(t), z(t)) 6∈ Saddle(F ). Let {tk}∞k=1 be such

that tk → t and d
dt
V2(x(tk), y(tk), z(tk)) exists for every tk. By continuity,

limk→∞(x(tk), y(tk), z(tk)) = (x(t), y(t), z(t)). Let B ⊂ Rn × Rp
≥0 × Rm be a com-

pact neighborhood of (x(t), y(t), z(t)) such that B ∩ Saddle(F ) = ∅. Without loss

of generality, assume that {x(tk), y(tk), z(tk))}∞k=1 ⊂ B. Define

S = max{LXp-spV
J (x,y,z)

2 (x, y, z) | (x, y, z) ∈ B}.

The Lie derivatives in the above expression are well-defined and continu-

ous as each V
J (x,y,z)

2 is continuously differentiable. Note that S < 0

as B ∩ Saddle(F ) = ∅. Moreover, as established above, for each k,
d
dt
V2(x(tk), y(tk), z(tk)) = LXp-spV

J (x(tk),y(tk),z(tk))
2 (x(tk), y(tk), z(tk)) ≤ S. Thus,

we get lim supk→∞
d
dt
V2(x(tk), y(tk), z(tk)) ≤ S < 0, establishing (i) for Scenario 1.

To prove assertion (ii), note that discontinuity in V2 can only happen when

the trajectory switches the partition. In order to analyze this, consider any time

instant t′ ≥ 0 and let (x(t′), y(t′), z(t′)) ∈ D(I ′) for some I ′ ⊂ [p]. Looking at

times t ≥ t′, two cases arise:

(a) There exists δ̃ > 0 such that (x(t), y(t), z(t)) ∈ D(I ′) for all t ∈ [t′, t′ + δ̃).

(b) There exists δ̃ > 0 and I 6= I ′ such that (x(t), y(t), z(t)) ∈ D(I) for all

t ∈ (t′, t′ + δ̃).
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One can show that for Scenario 1, the trajectory cannot show any behavior other

than the above mentioned two cases. We proceed to show that in both the above

outlined cases, t 7→ V2(x(t), y(t), z(t)) is right-continuous at t′. Case (a) is straight-

forward as V2 is continuous in the domain D(I ′) and the trajectory is absolutely

continuous. In case (b), I 6= I ′ implies that there exists j ∈ [p] such that either

j ∈ I \ I ′ or j ∈ I ′ \ I. Note that the later scenario, i.e., j ∈ I ′ and j 6∈ I cannot

happen. Indeed by definition (y(t′))j = 0 and (∇yF (x(t′), y(t′), z(t′)))j < 0 and by

continuity of the trajectory and the map ∇yF , these conditions also hold for some

finite time interval starting at t′. Therefore, we focus on the case that j ∈ I \ I ′.
Then, either (y(t′))j > 0 or (∇yF (x(t′), y(t′), z(t′)))j ≥ 0. The former implies, due

to continuity of trajectories, that it is not possible to have j ∈ I. Similarly, by

continuity if (∇yF (x(t′), y(t′), z(t′)))j > 0, then one cannot have j ∈ I. Therefore,
the only possibility is (y(t′))j = 0 and (∇yF (x(t′), y(t′), z(t′)))j = 0. This implies

that the term t 7→ (∇yF (x(t), y(t), z(t)))2
j is right-continuous at t′. Since this holds

for any j ∈ I \ I ′, we conclude right-continuity of V2 at t′. Therefore, for both

cases (a) and (b), we conclude right-continuity of V2.

Next we show the limit condition of assertion (ii). Let t′ ≥ 0 be a point of

discontinuity. Then, from the preceding discussion, there must exist I, I ′ ⊂ [p],

I 6= I ′, such that (x(t′), y(t′), z(t′)) ∈ D(I ′) and (x(t), y(t), z(t)) ∈ D(I) for all

t ∈ (t′ − δ, t′). By continuity, limt↑t′ V2(x(t), y(t), z(t)) exists. Note that if j ∈ I
and j 6∈ I ′, then the term getting added to V2 at time t′ which was absent at times

t ∈ (t′−δ, t′), i.e., (∇yF (x(t), y(t), z(t)))2
j , is zero at t′. Therefore, the discontinuity

at t′ can only happen due to the existence of j ∈ I ′ \ I. That is, a constraint

becomes active at time t′ which was inactive in the time interval (t′ − δ, t′). Thus,
the function V2 loses a nonnegative term at time t′. This can only mean at t′ the

value of V2 decreases. Hence, the limit condition of assertion (ii) holds.

Scenario 2: time elapsed between consecutive switches is not lower

bounded: Observe that three cases arise. First is when there are only a finite

number of switches in partition in any compact time interval. In this case, the

analysis of Secnario 1 applies to every compact time interval and so assertions (i)

and (ii) hold. The second case is when there exist time instants t′ > 0 where
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there is absence of “finite dwell time”, that is, there exist index sets I1 6= I2 and

I2 6= I3 such that (x(t), y(t), z(t)) ∈ D(I1) for all t ∈ (t′ − ε1, t′) and some ε1 > 0;

(x(t′), y(t′), z(t′)) ∈ D(I2); and (x(t), y(t), z(t)) ∈ D(I3) for all t ∈ (t′, t′ + ε2) and

some ε2 > 0. Again using the arguments of Scenario 1, one can show that both

assertions (i) and (ii) hold for this case if there is no accumulation point of such

time instants t′.

The third case instead is when there are infinite switches in a finite time

interval. We analyze this case in parts. Assume that there exists a sequence of

times {tk}∞k=1, tk ↑ t′, such that trajectory switches partition at each tk. The aim

is to show left-continuity of t 7→ V (x(t), y(t), z(t)) at t′. Let Is ⊂ [p] be the set of

indices that switch between being active and inactive an infinite number of times

along the sequence {tk} (note that the set is nonempty as there are an infinite

number of switches and a finite number of indices). To analyze the left-continuity

at t′, we only need to study the possible occurrence of discontinuity due to terms

in V2 corresponding to the indices in Is, since all other terms do not affect the

continuity. Pick any j ∈ Is. Then, the term in V2 corresponding to the index j

satisfies

lim
k→∞

(∇yF (x(tk), y(tk), z(tk)))
2
j = 0. (8.16)

In order to show this, assume the contrary. This implies the existence of ε > 0

such that

lim inf
k→∞

(∇yF (x(tk), y(tk), z(tk)))
2
j ≥ ε.

As a consequence, the set of k for which (∇yF (x(tk), y(tk), z(tk)))
2
j ≥ ε/2 is infinite.

Recall that if the constraint j becomes active at tk, then V2 decreases by at least

(∇yF (x(tk), y(tk), z(tk)))
2
j at tk. Further, V2 decreases montonically between any

consecutive tk’s. These facts lead to the conclusion that V2 tends to −∞ as tk → t′.

However, V2 takes nonnegative values, yielding a contradiction. Hence, (8.16) is
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true for all j ∈ Is and so,

lim
k→∞

V2(x(tk), y(tk), z(tk)) = V2(x(t′), y(t′), z(t′)),

proving left-continuity of V2 at t′. Using this reasoning, one can also conclude

that if the infinite number of switches happen on a sequence {tk}∞k=1 with tk ↓ t′,
then one has right-continuity at t′. Therefore, at each time instant when a switch

happens, we have right-continuity of t 7→ V2(x(t), y(t), z(t)) and at points where

there is accumulation of switches we have continuity (depending on which side

of the time instance the accumulation takes place). This proves assertion (ii).

Note that in this case too we have a countable number of time instants where

the partition set switches and so the map t 7→ V2(x(t), y(t), z(t)) is differentiable

almost everywhere. Moreover, one can also analyze, as done in Scenario 1, that

the limit condition of assertion (i) holds in this case. These facts together establish

the condition of assertion (ii), completing the proof.

Remark 8.3.2. (Multiple Lyapunov functions): The Lyapunov function V2 is

discontinuous on the domain Rn ×Rp
≥0 ×Rm. However, it can be seen as multiple

(continuously differentiable) Lyapunov functions [Bra98], each valid on a domain,

patched together in an appropriate way such that along the trajectories ofXp-sp, the

evolution of V2 is continuously differentiable with negative derivative at intervals

where it is continuous and at times of discontinuity the value of V2 only decreases.

Note that in the absence of the projection in Xp-sp (that is, no y-component of the

dynamics), the function V2 takes a much simpler form with no discontinuities and

is continuously differentiable on the entire domain. •

Remark 8.3.3. (Connection with the literature: II): The two functions whose

sum defines V2 are, individually by themselves, sufficient to establish asymptotic

convergence of Xp-sp using LaSalle Invariance arguments, see e.g., [FP10, CMC16].

However, the fact that their combination results in a strict Lyapunov function for

the projected saddle-point dynamics is a novelty of our analysis here. In [NC16], a

different Lyapunov function is proposed and an exponential rate of convergence is

established for a saddle-point-like dynamics which is similar to Xp-sp but without
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projection components. •

8.4 ISS and self-triggered implementation of the

saddle-point dynamics

Here, we build on the novel Lyapunov function identified in Section 8.3

to explore other properties of the projected saddle-point dynamics beyond global

asymptotic convergence. Throughout this section, we consider saddle functions F

that corresponds to the Lagrangian of an equality-constrained optimization prob-

lem, i.e.,

F (x, z) = f(x) + z>(Ax− b), (8.17)

where A ∈ Rm×n, b ∈ Rm, and f : Rn → R. The reason behind this focus

is that, in this case, the dynamics (8.1) is smooth and the Lyapunov function

identified in Theorem 8.3.1 is continuously differentiable. These simplifications

allow us to analyze input-to-state stability of the dynamics using the theory of

ISS-Lyapunov functions (cf. Section 2.8). On the other hand, we do not know

of such a theory for projected systems, which precludes us from carrying out ISS

analysis for dynamics (8.1) for a general saddle function. The projected saddle-

point dynamics (8.1) for the class of saddle functions given in (8.17) takes the form

ẋ = −∇xF (x, z) = −∇f(x)− A>z, (8.18a)

ż = ∇zF (x, z) = Ax− b, (8.18b)

corresponding to equations (8.1a) and (8.1c). We term these dynamics simply

saddle-point dynamics and denote it as Xsp : Rn × Rm → Rn × Rm.
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8.4.1 Input-to-state stability

Here, we establish that the saddle-point dynamics (8.18) is ISS with respect

to the set Saddle(F ) when disturbance inputs affect it additively. Disturbance in-

puts can arise when implementing the saddle-point dynamics as a controller of

a physical system because of a variety of malfunctions, including errors in the

gradient computation, noise in state measurements, and errors in the controller

implementation. In such scenarios, the following result shows that the dynam-

ics (8.18) exhibits a graceful degradation of its convergence properties, one that

scales with the size of the disturbance.

Theorem 8.4.1. (ISS of saddle-point dynamics): Let the saddle function F be

of the form (8.17), with f strongly convex, twice continuously differentiable, and

satisfying mI � ∇2f(x) � MI for all x ∈ Rn and some constants 0 < m ≤ M <

∞. Then, the dynamics [
ẋ

ż

]
=

[
−∇xF (x, z)

∇zF (x, z)

]
+

[
ux

uz

]
, (8.19)

where (ux, uz) : R≥0 → Rn × Rm is a measurable and locally essentially bounded

map, is ISS with respect to Saddle(F ).

Proof. For notational convenience, we refer to (8.19) byXp
sp : Rn×Rm×Rn×Rm →

Rn×Rm. Our proof consists of establishing that the function V3 : Rn×Rm → R≥0,

V3(x, z) =
β1

2
‖Xsp(x, z)‖2 +

β2

2
‖(x, z)‖2

Saddle(F )
(8.20)

with β1 > 0, β2 = 4β1M4

m2 , is an ISS-Lyapunov function with respect to Saddle(F )

for Xp
sp. The statement then directly follows from Proposition 2.8.1.

We first show (2.14) for V3, that is, there exist α1, α2 > 0 such that

α1‖(x, z)‖2

Saddle(F )
≤ V3(x, z) ≤ α2‖(x, z)‖2

Saddle(F )
for all (x, z) ∈ Rn × Rm.

The lower bound follows by choosing α1 = β2/2. For the upper bound, define the
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function U : Rn × Rn → Rn×n by

U(x1, x2) =

∫ 1

0

∇2f(x1 + s(x2 − x1))ds. (8.21)

By assumption, it holds that mI � U(x1, x2) � MI for all x1, x2 ∈ Rn.

Also, from the fundamental theorem of calculus, we have ∇f(x2) − ∇f(x1) =

U(x1, x2)(x2 − x1) for all x1, x2 ∈ Rn. Now pick any (x, z) ∈ Rn × Rm. Let

(x∗, z∗) = projSaddle(F )
(x, z), that is, the projection of (x, z) on the set Saddle(F ).

This projection is unique as Saddle(F ) is convex. Then, one can write

∇xF (x, z) = ∇xF (x∗, z∗) +

∫ 1

0

∇xxF (x(s), z(s))(x− x∗)ds

+

∫ 1

0

∇zxF (x(s), z(s))(z − z∗)ds,

= U(x∗, x)(x− x∗) + A>(z − z∗), (8.22)

where x(s) = x∗ + s(x− x∗) and z(s) = z∗ + s(z − z∗). Also, note that

∇zF (x, z) = ∇zF (x∗, z∗) +

∫ 1

0

∇xzF (x(s), z(s))(x− x∗)ds

= A(x− x∗). (8.23)

The expressions (8.22) and (8.23) use ∇xF (x∗, z∗) = 0, ∇zF (x∗, z∗) = 0, and

∇zxF (x, z) = ∇xzF (x, z)> = A> for all (x, z). From (8.22) and (8.23), we get

‖Xsp(x, z)‖2 ≤ α̃2(‖x− x∗‖2 + ‖z − z∗‖2) = α̃2‖(x, z)‖2

Saddle(F )
,

where α̃2 = 3
2
(M2 +‖A‖2). In the above computation, we have used the inequality

(a+ b)2 ≤ 3(a2 + b2) for any a, b ∈ R. The above inequality gives the upper bound

V3(x, z) ≤ α2‖(x, z)‖2

Saddle(F )
, where α2 = 3β1

2
(M2 + ‖A‖2) + β2

2
.

The next step is to show that the Lie derivative of V3 along the dynamics

Xp
sp satisfies the ISS property (2.15). Again, pick any (x, z) ∈ Rn × Rm and let

(x∗, z∗) = projSaddle(F )
(x, z). Then, by Danskin’s Theorem [CLSW98, p. 99], we
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get

∇‖(x, z)‖2

Saddle(F )
= 2(x− x∗; z − z∗).

Using the above expression, one can compute the Lie derivative of V3 along the

dynamics Xp
sp as

LXp
spV3(x, z) = −β1∇xF (x, z)∇xxF (x, z)∇xF (x, z)

− β2(x− x∗)>∇xF (x, z) + β2(z − z∗)>∇zF (x, z)

+ β1∇xF (x, z)>∇xxF (x, z)ux + β1∇xF (x, z)>∇xzF (x, z)uz

+ β1∇zF (x, z)>∇zxF (x, z)ux + β2(x− x∗)>ux + β2(z − z∗)>uz.

Due to the particular form of F , we have

∇xF (x, z) = ∇f(x) + A>z, ∇zF (x, z) = Ax− b,
∇xxF (x, z) = ∇2f(x), ∇xzF (x, z) = A>,

∇zxF (x, z) = A, ∇zzF (x, z) = 0.

Also, ∇xF (x∗, z∗) = ∇xf(x∗) +A>z∗ = 0 and ∇zF (x∗, z∗) = Ax∗ − b = 0. Substi-

tuting these values in the expression of LXp
spV3, replacing ∇xF (x, z) = ∇xF (x, z)−

∇xF (x∗, z∗) = ∇f(x)−∇f(x∗) +A>(z− z∗) = U(x∗, x)(x−x∗) +A>(z− z∗), and
simplifying,

LXp
spV3(x, z) = −β1(U(x∗, x)(x− x∗))>∇2f(x)(U(x∗, x)(x− x∗))

− β1(z − z∗)>A∇2f(x)A>(z − z∗)
− β1(U(x∗, x)(x− x∗))>∇2f(x)A>(z − z∗)
− β1(z − z∗)>A∇2f(x)(U(x∗, x)(x− x∗))
− (x− x∗)>U(x∗, x)(x− x∗)
+ β1(U(x∗, x)(x− x∗) + A>(z − z∗))>∇2f(x)ux

+ β1(U(x∗, x)(x− x∗) + A>(z − z∗))>A>uz
+ β2(x− x∗)>ux + β1(A(x− x∗))>Aux + β2(z − z∗)>uz.
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Upper bounding now the terms using ‖∇2f(x)‖, ‖U(x∗, x)‖ ≤ M for all x ∈ Rn

yields

LXp
spV3(x, z) ≤ −[x− x∗; A>(z − z∗)]>U(x∗, x)[x− x∗; A>(z − z∗)]

+ Cx(x, z)‖ux‖+ Cz(x, z)‖uz‖, (8.24)

where

Cx(x, z) =
(
β1M

2‖x− x∗‖+ β1M‖A‖‖z − z∗‖

+ β2‖x− x∗‖+ β1‖A‖2‖x− x∗‖
)
,

Cz(x, z) =
(
β1M‖A‖‖x− x∗‖+ β1‖A‖2‖z − z∗‖

+ β2‖z − z∗‖
)
,

and U(x∗, x) is

[
β1U∇2f(x)U + β2U β1U∇2f(x)

β1∇2f(x)U β1∇2f(x)

]
.

where U = U(x∗, x). Note that Cx(x, z) ≤ C̃x‖x−x∗; z−z∗‖ = C̃x‖(x, z)‖Saddle(F )

and Cz(x, z) ≤ C̃z‖x− x∗; z − z∗‖ = C̃z‖(x, z)‖Saddle(F )
, where

C̃x = β1M
2 + β1M‖A‖+ β2 + β1‖A‖2,

C̃z = β1M‖A‖+ β1‖A‖2 + β2.

From Lemma 8.5.1, we have U(x∗, x) � λmI, where λm > 0. Employing these

facts in (8.24), we obtain

LXp
spV3(x, z) ≤ −λm(‖x− x∗‖2 + ‖A>(z − z∗)‖2)

+ (C̃x + C̃z)‖(x, z)‖Saddle(F )
‖u‖



172

From Lemma 8.5.2, we get

LXp
spV3(x, z) ≤ −λm(‖x− x∗‖2 + λs(AA

>)‖z − z∗‖2

+ (C̃x + C̃z)‖(x, z)‖Saddle(F )
‖u‖

≤ −λ̃m‖(x, z)‖2

Saddle(F )

+ (C̃x + C̃z)‖(x, z)‖Saddle(F )
‖u‖,

where λ̃m = λm min{1, λs(AA
>)}. Now pick any θ ∈ (0, 1). Then,

LXp
spV3(x, z) ≤ −(1− θ)λ̃m‖(x, z)‖2

Saddle(F )

− θλ̃m‖(x, z)‖2

Saddle(F )

+ (C̃x + C̃z)‖(x, z)‖Saddle(F )
‖u‖

≤ −(1− θ)λ̃m‖(x, z)‖2

Saddle(F )
,

whenever ‖(x, z)‖Saddle(F )
≥ C̃x+C̃z

θλ̃m
‖u‖, which proves the ISS property.

Remark 8.4.2. (Relaxing global bounds on Hessian of f): The assumption on

the Hessian of f in Theorem 8.4.1 is restrictive, but there are functions other than

quadratic that satisfy it, see e.g. [KCM15a, Section 6]. We conjecture that the

global upper bound on the Hessian can be relaxed by resorting to the notion of

semiglobal ISS, and we will explore this in the future. •

The above result has the following consequence.

Corollary 8.4.3. (Lyapunov function for saddle-point dynamics): Let the saddle

function F be of the form (8.17), with f strongly convex, twice continuously dif-

ferentiable, and satisfying mI � ∇2f(x) �MI for all x ∈ Rn and some constants

0 < m ≤ M < ∞. Then, the function V3 (8.20) is a Lyapunov function with

respect to the set Saddle(F ) for the saddle-point dynamics (8.18).

Remark 8.4.4. (ISS with respect to Saddle(F ) does not imply bounded trajecto-

ries): Note that Theorem 8.4.1 bounds only the distance of the trajectories of (8.19)

to Saddle(F ). Thus, if Saddle(F ) is unbounded, the trajectories of (8.19) can be
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unbounded under arbitrarily small constant disturbances. However, if matrix A

has full row-rank, then Saddle(F ) is a singleton and the ISS property implies that

the trajectory of (8.19) remains bounded under bounded disturbances. •

As pointed out in the above remark, if Saddle(F ) is not unique, then the

trajectories of the dynamics might not be bounded. We next look at a particu-

lar type of disturbance input which guarantees bounded trajectories even when

Saddle(F ) is unbounded. Pick any (x∗, z∗) ∈ Saddle(F ) and define the function

Ṽ3 : Rn × Rm → R≥0 as

Ṽ3(x, z) =
β1

2
‖Xsp(x, z)‖2 +

β2

2
(‖x− x∗‖2 + ‖z − z∗‖2)

with β1 > 0, β2 = 4β1M4

m2 . One can show, following similar steps as those of proof of

Theorem 8.4.1, that the function Ṽ3 is an ISS Lyapunov function with respect to the

point (x∗, z∗) for the dynamics Xp
sp when the disturbance input to z-dynamics has

the special structure uz = Aũz, ũz ∈ Rn. This type of disturbance is motivated

by scenarios with measurement errors in the values of x and z used in (8.18)

and without any computation error of the gradient term in the z-dynamics. The

following statement makes precise the ISS property for this particular disturbance.

Corollary 8.4.5. (ISS of saddle-point dynamics): Let the saddle function F be

of the form (8.17), with f strongly convex, twice continuously differentiable, and

satisfying mI � ∇2f(x) � MI for all x ∈ Rn and some constants 0 < m ≤ M <

∞. Then, the dynamics [
ẋ

ż

]
=

[
−∇xF (x, z)

∇zF (x, z)

]
+

[
ux

Aũz

]
, (8.25)

where (ux, ũz) : R≥0 → R2n is measurable and locally essentially bounded input, is

ISS with respect to every point of Saddle(F ).

The proof is analogous to that of Theorem 8.4.1 with the key difference that

the terms Cx(x, z) and Cz(x, z) appearing in (8.24) need to be upper bounded in

terms of ‖x−x∗‖ and ‖A>(z− z∗)‖. This can be done due to the special structure
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of uz. With these bounds, one arrives at the condition (2.15) for Lyapunov Ṽ3 and

dynamics (8.25). One can deduce from Corollary 8.4.5 that the trajectory of (8.25)

remains bounded for bounded input even when Saddle(F ) is unbounded.

Example 8.4.6. (ISS property of saddle-point dynamics): Consider F : R2×R2 →
R of the form (8.17) with

f(x) = x2
1 + (x2 − 2)2,

A =

[
1 −1

−1 1

]
, and b =

[
0

0

]
. (8.26)

Then, Saddle(F ) = {(x, z) ∈ R2 × R2 | x = (1, 1), z = (0, 2) + λ(1, 1), λ ∈ R} is

a continuum of points. Note that ∇2f(x) = 2I, thus, satisfying the assumption

of bounds on the Hessian of f . By Theorem 8.4.1, the saddle-point dynamics for

this saddle function F is input-to-state stable with respect to the set Saddle(F ).

This fact is illustrated in Figure 8.2, which also depicts how the specific structure

of the disturbance input in (8.25) affects the boundedness of the trajectories. •

Remark 8.4.7. (Quadratic ISS-Lyapunov function): For the saddle-point dynam-

ics (8.18), the ISS property stated in Theorem 8.4.1 and Corollary 8.4.5 can also

be shown using a quadratic Lyapunov function. Let V4 : Rn × Rm → R≥0 be

V4(x, z) =
1

2
‖(x, z)‖2

Saddle(F )
+ ε(x− xp)>A>(z − zp),

where (xp, zp) = projSaddle(F )
(x, z) and ε > 0. Then, one can show that there

exists εmax > 0 such that V4 for any ε ∈ (0, εmax) is an ISS-Lyapunov function for

the dynamics (8.18). •

8.4.2 Self-triggered implementation

In this section we develop an opportunistic state-triggered implementation

of the (continuous-time) saddle-point dynamics. Our aim is to provide a discrete-

time execution of the algorithm, either on a physical system or as an optimization

strategy, that do not require the continuous evaluation of the vector field and
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Figure 8.2: Plots (a)-(b) show the ISS property, cf Theorem 8.4.1, of the dy-
namics (8.19) for the saddle function F defined by (8.26). The initial condition is
x(0) = (−0.3254,−2.4925) and z(0) = (−0.6435,−2.4234) and the input u is ex-
ponentially decaying in magnitude. As shown in (a)-(b), the trajectory converges
asymptotically to a saddle point as the input is vanishing. Plots (c)-(d) have the
same initial condition but the disturbance input consists of a constant plus a si-
nusoid. The trajectory is unbounded under bounded input while the distance to
the set of saddle points remains bounded, cf. Remark 8.4.4. Plots (e)-(f) have
the same initial condition but the disturbance input to the z-dynamics is of the
form (8.25). In this case, the trajectory remains bounded as the dynamics is ISS
with respect to each saddle point, cf. Corollary 8.4.5.
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instead adjust the stepsize based on the current state of the system. Formally,

given a sequence of triggering time instants {tk}∞k=0, with t0 = 0, we consider the

following implementation of the saddle-point dynamics

ẋ(t) = −∇xF (x(tk), z(tk)), (8.27a)

ż(t) = ∇zF (x(tk), z(tk)). (8.27b)

for t ∈ [tk, tk+1) and k ∈ Z≥0. The objective is then to design a criterium to

opportunistically select the sequence of triggering instants, guaranteeing at the

same time the feasibility of the execution and global asymptotic convergence, see

e.g., [HJT12]. Towards this goal, we look at the evolution of the Lyapunov func-

tion V3 in (8.20) along (8.27),

∇V3(x(t), z(t))>Xsp(x(tk), z(tk))

= LXspV3(x(tk), z(tk)) (8.28)

+
(
∇V3(x(t), z(t))−∇V3(x(tk), z(tk))

)>
Xsp(x(tk), z(tk)).

We know from Corollary 8.4.3 that the first summand is negative outside

Saddle(F ). Clearly, for t = tk, the second summand vanishes, and by continu-

ity, for t sufficiently close to tk, this summand remains smaller in magnitude than

the first, ensuring the decrease of V3. To make this argument precise, we employ

Proposition 8.5.3 in (8.28) and obtain

∇V3(x(t), z(t))>Xsp(x(tk), z(tk)) ≤ LXspV3(x(tk), z(tk)) + ξ(x(tk), z(tk))

‖(x(t)− x(tk)); (z(t)− z(tk))‖‖Xsp(x(tk), z(tk))‖
= LXspV3(x(tk), z(tk))

+ (t− tk)ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2,

where the equality follows from writing (x(t), z(t)) in terms of (x(tk), z(tk)) by

integrating (8.27). Therefore, in order to ensure the monotonic decrease of V3, we
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require the above expression to be nonpositive. That is,

tk+1 ≤ tk −
LXspV3(x(tk), z(tk))

ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2
. (8.29)

Note that to set tk+1 equal to the right-hand side of the above expression, one needs

to compute the Lie derivative at (x(tk), z(tk)). We then distinguish between two

possibilities. If the self-triggered saddle-point dynamics acts as a closed-loop physi-

cal system and its equilibrium points are known, then computing the Lie derivative

is feasible and one can use (8.29) to determine the triggering times. If, however,

the dynamics is employed to seek the primal-dual optimizers of an optimization

problem, then computing the Lie derivative is infeasible as it requires knowledge

of the optimizer. To overcome this limitation, we propose the following alterna-

tive triggering criterium which satisfies (8.29) as shown later in our convergence

analysis,

tk+1 = tk +
λ̃m

3(M2 + ‖A‖2)ξ(x(tk), z(tk))
, (8.30)

where λ̃m = λm min{1, λs(AA
>)}, λm is given in Lemma 8.5.1, and λs(AA

>) is

the smallest nonzero eigenvalue of AA>. In either (8.29) or (8.30), the right-hand

side depends only on the state (x(tk), z(tk)). These triggering times for the dynam-

ics (8.27) define a first-order Euler discretization of the saddle-point dynamics with

step-size selection based on the current state of the system. It is for this reason

that we refer to (8.27) together with either the triggering criterium (8.29) or (8.30)

as the self-triggered saddle-point dynamics. In integral form, this dynamics results

in a discrete-time implementation of (8.18) given as

[
x(tk+1)

z(tk+1)

]
=

[
x(tk)

z(tk)

]
+ (tk+1 − tk)Xsp(x(tk), z(tk)).

Note that this dynamics can also be regarded as a state-dependent switched system

with a single continuous mode and a reset map that updates the sampled state

at the switching times, cf. [Lib03]. We understand the solution of (8.27) in the
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Caratheodory sense (note that this dynamics has a discontinuous right-hand side).

The existence of such solutions, possibly defined only on a finite time interval,

is guaranteed from the fact that along any trajectory of the dynamics there are

only countable number of discontinuities encountered in the vector field. The next

result however shows that solutions of (8.27) exist over the entire domain [0,∞) as

the difference between consecutive triggering times of the solution is lower bounded

by a positive constant. Also, it establishes the asymptotic convergence of solutions

to the set of saddle points.

Theorem 8.4.8. (Convergence of the self-triggered saddle-point dynamics): Let

the saddle function F be of the form (8.17), with A having full row rank, f strongly

convex, twice differentiable, and satisfying mI � ∇2f(x) �MI for all x ∈ Rn and

some constants 0 < m ≤ M < ∞. Let the map x 7→ ∇2f(x) be Lipschitz with

some constant L > 0. Then, Saddle(F ) is singleton. Let Saddle(F ) = {(x∗, z∗)}.
Then, for any initial condition (x(0), z(0)) ∈ Rn × Rm, we have

lim
k→∞

(x(tk), z(tk)) = (x∗, z∗)

for the solution of the self-triggered saddle-point dynamics, defined by (8.27)

and (8.30), starting at (x(0), z(0)). Further, there exists µ(x(0),z(0)) > 0 such that

the triggering times of this solution satisfy

tk+1 − tk ≥ µ(x(0),z(0)), for all k ∈ Z≥1.

Proof. Note that there is a unique equilibrium point to the saddle-point dynam-

ics (8.18) for F satisfying the stated hypotheses. Therefore, the set of saddle point

is singleton for this F . Now, given (x(0), z(0)) ∈ Rn ×Rm, let V 0
3 = V3(x(0), z(0))

and define

G = max{‖∇xF (x, z)‖ | (x, z) ∈ V −1
3 (≤ V3(V 0

3 ))},
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where, we use the notation for the sublevel set of V3 as

V −1
3 (≤ V3(α)) = {(x, z) ∈ Rn × Rm | V3(x, z) ≤ α}

for any α ≥ 0. Since V3 is radially unbounded, the set V −1
3 (≤ V3(V 0

3 )) is compact

and so, G is well-defined and finite. If the trajectory of the self-triggered saddle-

point dynamics is contained in V −1
3 (≤ V3(V 0

3 )), then we can bound the difference

between triggering times in the following way. From Proposition 8.5.3 for all

(x, z) ∈ V −1
3 (≤ V3(V 0

3 )), we have ξ1(x, z) = Mξ2 + L‖∇xF (x, z)‖ ≤ Mξ2 + LG =:

T1. Hence, for all (x, z) ∈ V −1
3 (≤ V3(V 0

3 )), we get

ξ(x, z) =
(
β2

1(ξ1(x, z)2 + ‖A‖4 + ‖A‖2ξ2
2) + β2

2

) 1
2

≤
(
β2

1(T 2
1 + ‖A‖4 + ‖A‖2 + ξ2

2) + β2
2

) 1
2

=: T2.

Using the above bound in (8.30), we get for all k ∈ Z≥1

tk+1 − tk =
λ̃m

3(M2 + ‖A‖2)ξ(x(tk), z(tk))

≥ λ̃m
3(M2 + ‖A‖2)T2

> 0.

This implies that as long as the trajectory is contained in V −1
3 (≤ V3(V 0

3 )),

the inter-trigger times are lower bounded by a positive quantity. Our next

step is to show that the trajectory is contained in V −1
3 (≤ V3(V 0

3 )). Note

that if (8.29) is satisfied for the triggering condition (8.30), then the sequence

{V3(x(tk), z(tk))}k∈Z≥1
is strictly decreasing. Since V3 is nonnegative, this implies

that limk→∞ V3(x(tk), z(tk)) = 0 and so, by continuity, limk→∞(x(tk), z(tk)) =

(x∗, z∗). Thus, it remains to show that (8.30) implies (8.29). To this end, first note

the following inequalities shown in the proof of Theorem 8.4.1

‖Xsp(x, z)‖2

3(M2 + ‖A‖2)
≤ ‖(x− x∗); (z − z∗)‖2, (8.31a)
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∣∣LXspV3(x, z)
∣∣ ≥ λ̃m‖(x− x∗); (z − z∗)‖2. (8.31b)

Using these bounds, we get from (8.30)

tk+1 − tk =
λ̃m

3(M2 + ‖A‖2)ξ(x(tk), z(tk))

(a)
=

λ̃m‖Xsp(x(tk), z(tk))‖2

3(M2 + ‖A‖2)ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2

(b)

≤ λ̃m‖(x(tk)− x∗); (z(tk)− z∗)‖2

ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2

(c)

≤
∣∣LXspV3(x(tk), z(tk))

∣∣
ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2

= − LXspV3(x(tk), z(tk))

ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2
,

where (a) is valid as ‖Xsp(x(tk), z(tk))‖ 6= 0, (b) follows from (8.31a), and (c)

follows from (8.31b). Thus, (8.30) implies (8.29) which completes the proof.

Note from the above proof that the convergence implication of Theo-

rem 8.4.8 is also valid when the triggering criterium is given by (8.29) with the

inequality replaced by the equality.

Example 8.4.9. (Self-triggered saddle-point dynamics): Consider the function

F : R3 × R→ R,
F (x, z) = ‖x‖2 + z(x1 + x2 + x3 − 1). (8.32)

Then, with the notation of (8.17), we have f(x) = ‖x‖2, A = [1, 1, 1], and b = 1.

The set of saddle points is a singleton, Saddle(F ) = {((1
3
, 1

3
, 1

3
),−2

3
)}. Note that

∇2f(x) = 2I and A has full row-rank, thus, the hypotheses of Theorem 8.4.8 are

met. Hence, for this F , the self-triggered saddle-point dynamics (8.27) with trig-

gering times (8.30) converges asymptotically to the saddle point of F . Moreover,

the difference between two consecutive triggering times is lower bounded by a fi-

nite quantity. Figure 8.3 illustrates a simulation of dynamics (8.27) with triggering

criteria (8.29) (replacing inequality with equality), showing that this triggering cri-

teria also ensures convergence as commented above. Finally, Figure 8.4 compares
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Figure 8.3: Illustration of the self-triggered saddle-point dynamics defined
by (8.27) with the triggering criterium (8.29). The saddle function F is defined
in (8.32). With respect to the notation of Theorem 8.4.8, we have m = M = 2 and
‖A‖ =

√
3. We select β1 = 0.1, then β2 = 1.6, and from (8.35), ξ1 = 2. These con-

stants define functions V3 (cf. (8.20)), ξ, and ξ2 (cf. (8.35)) and also, the triggering
times (8.30). In plot (a), the initial condition is x(0) = (0.6210, 3.9201,−4.0817),
z(0) = 2.0675. The trajectory converges to the unique saddle-point and the inter-
trigger times are lower bounded by a positive quantity.

the self-triggered implementation of the saddle-point dynamics with a constant-

stepsize and a decaying-stepsize first-order Euler discretization. In both cases, the

the self-triggered dynamics achieves convergence faster, and this may be attributed

to the fact that it tunes the stepsize in a state-dependent way. •

8.5 Auxiliary results

Here we collect a couple of supporting results used in the proof of Theo-

rem 8.4.1.

Lemma 8.5.1. (Auxiliary result for Theorem 8.4.1: I): Let B1, B2 ∈ Rn×n be

symmetric matrices satisfying mI � B1, B2 � MI for some 0 < m ≤ M < ∞.

Let β1 > 0, β2 = 4β1M4

m2 , and λm = min{1
2
β1m,β1m

3}. Then,

W :=

[
β1B1B2B1 + β2B1 β1B1B2

β1B2B1 β1B2

]
� λmI.

Proof. Reasoning with Schur complement [BV09, Section A.5.5], the expression
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Figure 8.4: Comparison between the self-triggered saddle-point dynamics and
a first-order Euler discretization of the saddle-point dynamics with two different
stepsize rules. The initial condition and implementation details are the same as
in Figure 8.3. Both plots show the evolution of the distance to the saddle point,
compared in (a) against a constant-stepsize implementation with value 0.1 and in
(b) against a decaying-stepsize implementation with value 1/k at the k-th iteration.
The self-triggered dynamics converges faster in both cases.

W − λmI � 0 holds if and only if the following hold

β1B1B2B1 + β2B1 − λmI � 0,

β1B2 − λmI− (8.33)

β1B2B1(β1B1B2B1 + β2B1 − λmI)−1β1B1B2 � 0.

The first of the above inequalities is true since β1B1B2B1 +β2B1−λmI � β1m
3I+

β2mI − λmI � 0 as λm ≤ β1m
3. For the second inequality note that

β1B2 − λmI
− β1B2B1(β1B1B2B1 + β2B1 − λmI)−1β1B1B2

� (β1m− λm)I

− β2
1M

4λmax

(
(β1B1B2B1 + β2B1 − λmI)−1

)
I

�
(1

2
β1m−

β2
1M

4

λmin(β1B1B2B1 + β2B1 − λmI)

)
I,

where in the last inequality we have used the fact that λm ≤ β1m/2. Note that

λmin

(
β1B1B2B1 + β2B1 − λmI

)
≥ β1m

3 + β2m − λm ≥ β2m. Using this lower
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bound, the following holds

1

2
β1m−

β2
1M

4

λmin(β1B1B2B1 + β2B1 − λmI)
≥ 1

2
β1m−

β2
1M

4

β2m
=

1

4
β1m.

The above set of inequalities show that the second inequality in (8.33) holds, which

concludes the proof.

Lemma 8.5.2. (Auxiliary result for Theorem 8.4.1: II): Let F be of the form (8.17)

with f strongly convex. Let (x, z) ∈ Rn × Rm and (x∗, z∗) = projSaddle(F )
(x, z).

Then, z − z∗ is orthogonal to the kernel of A>, and

‖A>(z − z∗)‖2 ≥ λs(AA
>)‖z − z∗‖2,

where λs(AA
>) is the smallest nonzero eigenvalue of AA>.

Proof. Our first step is to show that there exists x∗ ∈ Rn such that if (x, z) ∈
Saddle(F ), then x = x∗. By contradiction, assume that (x1, z1), (x2, z2) ∈
Saddle(F ) and x1 6= x2. The saddle point property at (x1, z1) and (x2, z2) yields

F (x1, z1) ≤ F (x2, z1) ≤ F (x2, z2) ≤ F (x1, z2) ≤ F (x1, z1).

This implies that F (x1, z1) = F (x2, z1), which is a contradiction as x 7→ F (x, z1)

is strongly convex and x1 is a minimizer of this map. Therefore, Saddle(F ) =

{x∗}×Z, Z ⊂ Rm. Further, recall that the set of saddle points of F are the set of

equilibrium points of the saddle point dynamics (8.18). Hence, (x∗, z) ∈ Saddle(F )

if and only if

∇f(x∗) + A>z = 0.

We conclude from this that

Z = −(A>)†∇f(x∗) + ker(A>), (8.34)

where (A>)† and ker(A>) are the Moore-Penrose pseudoinverse [BV09, Section

A.5.4] and the kernel of A>, respectively. By definition of the projection operator,



184

if (x∗, z∗) = projSaddle(F )
(x, z), then z∗ = projZ(z) and so, from (8.34), we deduce

that (z − z∗)>v = 0 for all v ∈ ker(A>). Using this fact, we conclude the proof by

writing

‖A>(z − z∗)‖2 = (z − z∗)>AA>(z − z∗) ≥ λs(AA
>)‖z − z∗‖2,

where the inequality follows by writing the eigenvalue decomposition of AA>, ex-

panding the quadratic expression in (z − z∗), and lower-bounding the terms.

Proposition 8.5.3. (Gradient of V3 is locally Lipschitz): Let the saddle function

F be of the form (8.17), with f twice differentiable, map x 7→ ∇2f(x) Lipschitz

with some constant L > 0, and mI � ∇2f(x) � MI for all x ∈ Rn and some

constants 0 < m ≤M <∞. Then, for V3 given in (8.20), the following holds

‖∇V3(x2, z2)−∇V3(x1, z1)‖ ≤ ξ(x1, z1)‖x2 − x1; z2 − z1‖,

for all (x1, z1), (x2, z2) ∈ Rn × Rm, where

ξ(x1, z1) =
√

3
(
β2

1(ξ1(x1, z1)2 + ‖A‖4 + ‖A‖2ξ2
2) + β2

2

) 1
2
,

ξ1(x1, z1) = Mξ2 + L‖∇xF (x1, z1)‖,
ξ2 = max{M, ‖A‖}. (8.35)

Proof. For the map (x, z) 7→ ∇xF (x, z), note that

‖∇xF (x2, z2)−∇xF (x1, z1)‖

=
∥∥∥∫ 1

0

∇xxF (x(s), z(s))(x2 − x1)ds

+

∫ 1

0

∇zxF (x(s), z(s))(z2 − z1)
∥∥∥

≤M‖x2 − x1‖+ ‖A‖‖z2 − z1‖
≤ ξ2‖x2 − x1; z2 − z1‖, (8.36)

where x(s) = x1 + s(x2 − x1), z(s) = z1 + s(z2 − z1) and ξ2 = max{M, ‖A‖}. In
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the above inequalities we have used the fact that ‖∇xxF (x, z)‖ = ‖∇2f(x)‖ ≤ M

for any (x, z). Further, the following Lipschitz condition holds by assumption

‖∇xxF (x2, z2)−∇xxF (x1, z1)‖ ≤ L‖x2 − x1‖ (8.37)

Using (8.36) and (8.37), we get

‖∇xxF (x2, z2)∇xF (x2, z2)−∇xxF (x1, z1)∇xF (x1, z1)‖
≤ ‖∇xxF (x2, z2)(∇xF (x2, z2)−∇xF (x1, z1))‖

+ ‖(∇xxF (x2, z2)−∇xxF (x1, z1))∇xF (x1, z1)‖
≤ ξ1(x1, z1)‖x2 − x1; z2 − z1‖, (8.38)

where ξ1(x1, z1) = Mξ2 + L‖∇xF (x1, z1)‖. Also,

‖∇zF (x2, z2)−∇zF (x1, z1)‖ = ‖A(x2 − x1)‖
≤ ‖A‖‖x2 − x1; z2 − z1‖ (8.39)

Now note that

∇xV3(x, z) = β1

(
∇xxF (x, z)∇xF (x, z) + A>∇zF (x, z)

)
+ β2(x− x∗),

∇zV3(x, z) = β1A∇xF (x, z) + β2(z − z∗).

Finally, using (8.36), (8.38), and (8.39), we get

‖∇V3(x2, z2)−∇V3(x1, z1)‖2 = ‖∇xV3(x2, z2)

−∇xV3(x1, z1)‖2 + ‖∇zV3(x2, z2)−∇zV3(x1, z1)‖2

(a)

≤ 3β2
1‖∇xxF (x2, z2)∇xF (x2, z2)

−∇xxF (x1, z1)∇xF (x1, z1)‖2

+ 3β2
1‖A>(∇zF (x2, z2)−∇zF (x1, z1))‖2+3β2

2‖x2 − x1‖2

+ 3β2
1‖A(∇xF (x2, z2)−∇xF (x1, z1))‖2+3β2

2‖z2 − z1‖2
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≤ ξ(x1, z1)2‖x2 − x1; z2 − z1‖2,

where in (a), we have used the inequality (a + b)2 ≤ 3(a2 + b2) for any a, b ∈ R.
This concludes the proof.
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Chapter 9

Iterative bidding in markets

In this chapter, we focus on the competition aspect among the aggregators.

We use the term generators and aggregators alternatively. We study policies that

individual generators, in conjunction with the ISO, can implement to solve the

OPF problem while acting in a selfish and rational fashion.

9.1 Problem statement

Consider an electrical power network with Nb ∈ Z≥1 buses. The physical

interconnection between the buses is given by a digraph G = (V , E), where nodes

correspond to buses and edges to physical power lines. The direction for each

edge represents the convention of positive power flow. The power flow on the line

(i, j) ∈ E is zij ∈ R. Each line (i, j) ∈ E has a limit on the power flowing through

it (in either direction), represented by zij > 0. Assume that each bus i ∈ [Nb]

is connected to ni ∈ Z≥0 strategic generators. We let N =
∑Nb

i=1 ni be the total

number of generators and assign them a unique identity in [N ]. Let the set of

generators at node i be Gi ⊂ [N ] (this set is empty if there are no generators

connected to bus i). The power demand at bus i is denoted by yi ≥ 0 and is

assumed to be fixed and known to the Independent System Operator (ISO) that

acts as the central regulating authority. The total demand is y =
∑Nb

i=1 yi. The

cost fn(xn) of generating xn ∈ R≥0 amount of power by the n-th generator is given

187
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by a quadratic function

fn(x) = anx
2 + cnx, (9.1)

where an > 0 and cn ≥ 0. Given a power allocation x = (x1, . . . , xN) ∈ RN
≥0,

the aggregate cost is
∑N

n=1 fn(xn). The dc optimal power flow problem (DC-OPF)

consists of

minimize
(x,z)

N∑
n=1

fn(xn), (9.2a)

subject to
∑
j∈N+

i

zij −
∑
j∈N−i

zij =
∑
n∈Gi

xn − yi,∀i, (9.2b)

− zij ≤ zij ≤ zij, ∀(i, j), (9.2c)

x ≥ 0N . (9.2d)

This problem finds the generation profile that meets the load at each bus (ensured

by (9.2b)), respects the line constraints (due to (9.2c)), and minimizes the total

cost (given by the objective function (9.2a)). In (9.2b) we make the convention

that if Gi = ∅, then the first term on the right-hand side is zero. We assume

that (9.2) is feasible. Since the individual costs are quadratic, the optimizer of the

problem, denoted (x∗, z∗), is unique [BV04].

The goal for the ISO is to solve (9.2). The ISO can interact with the

generators, whereas each generator can only communicate with the ISO and is

not aware of the number of other generators participating in the market and their

respective cost functions, or the load at its own bus. While the ISO knows the

loads and the limits on the power lines, it does not have any information about the

cost functions of the generators. Therefore, power allocation is decided following

a bidding process, resulting into a game-theoretic formulation. Instead of sharing

their cost with the ISO, the generators bid the price per unit of power that they

are willing to provide the power at. This price-based bidding is well known in the

economics literature as Bertrand competition [MCWG95, Chapter 12]. Specifically,

generator n bids the cost per unit power bn ∈ R≥0 and, when convenient, we denote
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the bids of all other generators except n by b−n = (b1, . . . , bn−1, bn+1, . . . , bN). Given

the bids b = (b1, . . . , bN) ∈ RN
≥0, the ISO solves the following strategic dc optimal

power flow problem (S-DC-OPF)

minimize
(x,z)

N∑
n=1

bnxn, (9.3a)

subject to
∑
j∈N+

i

zij −
∑
j∈N−i

zij =
∑
n∈Gi

xn − yi, ∀i, (9.3b)

− zij ≤ zij ≤ zij, ∀(i, j), (9.3c)

x ≥ 0N . (9.3d)

The difference between (9.3) and (9.2) is the objective function which is linear

in the former and nonlinear, convex in the latter. The ISO solves (9.3) once all

the bids are gathered. Let (xopt(b), zopt(b)) be the optimizer of (9.3) that the

ISO selects (note that there might not be a unique optimizer) given bids b. This

determines the power requested from each generator, given by the vector xopt(b).

Knowing this process, the objective of each generator n is to bid a quantity bn ≥ 0

that maximizes its payoff un : R2
≥0 → R,

un(bn, x
opt
n (b)) = bnx

opt
n (b)− fn(xopt

n (b)), (9.4)

where xopt
n (b) is the n-th component of the optimizer xopt(b).

Definition 9.1.1. (Inelastic electricity market game): The inelastic electricity

market game is defined by the following

(i) Players: the set of generators [N ],

(ii) Action: for each player n, the bid bn ∈ R≥0,

(iii) Payoff: for each player n, the payoff un in (9.4).

Wherever convenient, for any n ∈ [N ], we use interchangeably the notation

b and (bn, b−n), as well as, xopt(b) and xopt(bn, b−n). Note that the payoff of the

players is not only defined by the bids of other players but also by the optimizer
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of (9.3) that the ISO selects. For this reason, the definition of the pure Nash

equilibrium for the game described below is slightly different from the standard

one, see e.g. [FT91].

Definition 9.1.2. (Nash equilibrium): The (pure) Nash equilibrium of the inelas-

tic electricity market game is the bid profile of the group b∗ ∈ RN
≥0 for which there

exists an optimizer (xopt(b∗), zopt(b∗)) of the optimization (9.3) that satisfies

un(bn, x
opt
n (bn, b

∗
−n)) ≤ un(b∗n, x

opt
n (b∗)), (9.5)

for all n ∈ [N ], all bids bn ∈ R≥0, and all optimizers (xopt(bn, b
∗
−n), zopt(bn, b−n))

of (9.3) given bids (bn, b
∗
−n).

We are specifically interested in bid profiles for which the optimizer of the

DC-OPF problem is also a solution to the S-DC-OPF problem. This is captured

in the following definition.

Definition 9.1.3. (Efficient bid): An efficient bid of the inelastic electricity mar-

ket is a bid b∗ ∈ RN
≥0 for which the optimizer (x∗, z∗) of (9.2) is also an optimizer

of (9.3) given bids b∗ and

x∗n = argmaxx≥0b
∗
nx− fn(x), for all n ∈ [N ]. (9.6)

The right-hand side of (9.6) is unique as costs are quadratic.

Definition 9.1.4. (Efficient Nash equilibrium): A bid b∗ is an efficient Nash

equilibrium of the inelastic electricity market game if it is an efficient bid and is a

Nash equilibrium.

At the efficient Nash equilibrium, the production that the generators are

willing to provide, maximizing their profit, coincides with the optimal generation

for the DC-OPF problem (9.2). This property justifies the study of efficient Nash

equilibria. Note that given the efficient bid profile, there might be many solutions

to (9.3) because the problem is linear. Thus, the ISO might not be able to find

x∗ given the efficient bid. However, once the ISO knows that an efficient Nash
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equilibrium bid is submitted, it can ask the generators to also submit the desirable

generation levels at that bid, which would exactly correspond to the solution of

the DC-OPF problem.

9.2 Existence and uniqueness of efficient Nash

equilibrium

Here, we establish the existence of an efficient Nash equilibrium of the

inelastic electricity market game described in Section 9.1 and provide a condition

for its uniqueness.

Proposition 9.2.1. (Existence of efficient Nash equilibrium): Assume that at each

bus of the network either there is more than one generator or there is none, i.e.,

either ni = 0 or ni ≥ 2 for each i ∈ [Nb]. Then, there exists an efficient Nash

equilibrium of the inelastic electricity market game.

Proof. For convenience, we write (9.2b) and (9.2c) as

J1z − J2x+ y = 0 and J3z ≤ zc,

respectively. Here, J1 ∈ {0, 1,−1}Nb×Nb defines the interconnection of buses in the

digraph G, specifically, (i, j)-th element of J1 is 1 if (i, j) ∈ E , is −1 if (j, i) ∈ E , and
0 otherwise. The matrix J2 ∈ {0, 1}Nb×N defines the connectivity of generators to

buses, that is, (i, j)-th element of J2 is 1 if and only if j-th generator is connected

to i-th bus. Lastly,

J3 =

[
I|E|

−I|E|

]
and zc =

[
z

z

]
.

The Lagrangian of the optimization (9.2) is

L(x, z, ν, µ, λ) =
∑N

n=1 fn(xn) + ν>(J1z − J2x+ y)

+ µ>(J3z − zc)− λ>x,
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where ν ∈ RNb , µ ∈ R2|E|
≥0 , and λ ∈ RN

≥0 are Lagrange multipliers corresponding

to constraints (9.2b), (9.2c), and (9.2d), respectively. Since constraints (9.2b)-

(9.2c) are affine and the feasibility set is nonempty, the refined Slater condition is

satisfied for (9.2) and hence, the duality gap between the primal and the dual op-

timization problems is zero [BV04]. Under this condition, a primal-dual optimizer

(x∗, z∗, ν∗, µ∗, λ∗) satisfies the following Karush-Kuhn-Tucker (KKT) conditions

∇f(x∗)− J>2 ν∗ − λ∗ = 0, (9.7a)

J>1 ν
∗ − J>3 µ∗ = 0, (9.7b)

J1z
∗ − J2x

∗ + y = 0, (9.7c)

J3z
∗ ≤ zc, x∗ ≥ 0, (9.7d)

λ∗ ≥ 0, µ∗ ≥ 0, (9.7e)

(x∗)>λ∗ = 0, and (µ∗)>(J3z
∗ − zc) = 0, (9.7f)

where ∇f(x∗) = (∇f1(x∗1),∇f2(x∗2), . . . ,∇fN(x∗N))>. In the rest of the proof, we

show that the following bid profile, constructed from a primal-dual optimizer, is

an efficient Nash equilibrium of the inelastic electricity market game

b∗n =

ν∗i(n), if min{x∗m | m ∈ Gi(n)} > 0,

∇fn(0), otherwise,
(9.8)

where i(n) ∈ [Nb] denotes the bus of the network to which generator n is connected

to. Given the form (9.1) of the cost functions, we deduce b∗ ≥ 0. Moreover, from

the definition of J2, one can deduce that either all generators n ∈ Gi have b∗n = νi

or all of them have x∗n = 0. Next, to show that the bid b∗ defined in (9.8) is

efficient, we first establish

x∗n = argmaxx≥0b
∗
nx− fn(x), (9.9)

for all n ∈ [N ]. For each n, consider the optimization maxx≥0 b
∗
nx−fn(x). Because

zero duality holds for this optimization, a point xo ∈ R≥0 is an optimizer if and
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only if it satisfies the KKT conditions

b∗n −∇fn(xo)− µo = 0,

µo ≥ 0, xo ≥ 0, µoxo = 0,

where µo is the dual optimizer. Since x∗n satisfies the above conditions with µo = λ∗n,

the expression (9.9) holds. To claim the efficiency of b∗, we next show that (x∗, z∗) is

one of the optimizers of (9.3) given bids b∗. Note that the KKT conditions for (9.3)

are given by (9.7) with the term ∇f(x∗) in (9.7a) replaced with b∗. Also, one can

show using the KKT conditions (9.7) and the definition of b∗ that b∗ − J>2 ν
∗ ≥

0. Using these facts, we deduce that (x∗, z∗, ν∗, µ∗, b∗ − J>2 ν∗) satisfies the KKT

conditions for (9.3) and hence, (x∗, z∗) is an optimizer of (9.3).

Our final step is to show the Nash equilibrium condition (9.5) for the

bid profile b∗. Note that for each n, the payoff at the bid profile-optimizer

pair (b∗, xopt(b∗)) = (b∗, x∗) is nonnegative. Specifically, if x∗n = 0, then

un(b∗n, x
opt
n (b∗)) = 0. If x∗n > 0, using the fact that ∇fn(x) ≤ b∗n for all x ∈ [0, x∗n],

we get

un(b∗n, x
opt
n (b∗)) = b∗nx

∗
n − fn(x∗n)

=

∫ x∗n

0

∇(b∗nx− fn(x))dx

=

∫ x∗n

0

(b∗n −∇fn(x))dx ≥ 0.

Now pick any generator n ∈ [N ]. For bid bn 6= b∗n we have two cases, first, bn > b∗n

and second, bn ≤ b∗n. For the first case, either (i) x∗n = 0 which implies that

xopt(bn, b
∗
−n) = 0 and so un(bn, x

opt
n (bn, b

∗
−n)) = un(b∗n, x

∗
n) = 0; or (ii) x∗n > 0, so all

bids at bus i(n) are equal, implying that n increasing its bid yields xopt
n (bn, b

∗
−n) = 0.

That is, un(bn, x
opt
n (bn, b

∗
−n)) = 0 ≤ un(b∗n, x

∗
n). For the second case,

un(bn, x
opt
n (bn, b

∗
−n)) = bnx

opt
n (bn, b

∗
−n)− fn(xopt

n (bn, b
∗
−n))

≤ b∗nx
opt
n (bn, b

∗
−n)− fn(xopt

n (bn, b
∗
−n))
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≤ b∗nx
∗
n − fn(x∗n) = un(b∗n, x

∗
n),

where in the first inequality we use bn ≤ b∗n and in the second we use (9.9). This

shows (9.5), concluding the proof.

Note that the condition in Proposition 9.2.1 of having zero or at least two

generators at each bus is reasonable. If this is not the case, i.e., there is a bus with

a single generator, and the line capacities are such that the load at that bus can

only be met by that generator, then there is possibility of market manipulation.

The generator at the bus can set its bid arbitrarily high as no other generator can

meet that load and consequently, there does not exist a Nash equilibrium. Next

we provide a sufficient condition that ensures uniqueness of the efficient bid.

Lemma 9.2.2. (Uniqueness of the efficient bid): Assume that the optimizer x∗

of (9.2) satisfies x∗n > 0 for all n ∈ [N ]. Then, there exists a unique efficient bid

b∗ ∈ RN
≥0 of the inelastic electricity market game given by

b∗n = ∇fn(x∗n) = 2anx
∗
n + cn, for all n (9.10)

Proof. By definition, an efficient bid b ∈ RN
≥0 satisfies

x∗n = argmaxx≥0bnx− fn(x)

for all n. Since x∗n > 0, first-order optimality condition of the above optimization

yields bn = ∇fn(x∗n). This establishes (9.10) and hence, the uniqueness.

From Proposition 9.2.1 and Lemma 9.2.2, we conclude the following result.

Corollary 9.2.3. (Uniqueness of the efficient Nash equilibrium): Assume that at

each bus of the network either there is more than one generator or there is none.

Further assume that the optimizer x∗ of (9.2) satisfies x∗n > 0 for all n ∈ [N ].

Then, there exists a unique efficient Nash equilibrium of the inelastic electricity

market game given by (9.10) for all n.
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In the rest of the paper, we assume that the sufficient conditions in Corol-

lary 9.2.3 hold unless otherwise stated. Note that the definition of the unique effi-

cient Nash equilibrium given in (9.10) is consistent with the one provided in (9.8).

This is so because if x∗n > 0 for all n, then ∇fñ(x∗ñ) = ν∗i for each bus i ∈ [Nb] and

every generator ñ ∈ Gi.

9.3 The Bid Adjustment Algorithm and its

convergence properties

In this section, we introduce a decentralized Nash equilibrium seeking algo-

rithm, termed Bid Adjustment Algorithm. We show that its executions lead

the generators to the unique efficient Nash equilibrium, and consequently, to the

optimizer of the DC-OPF problem (9.2).

9.3.1 Bid Adjustment Algorithm

We start with an informal description of the Bid Adjustment Algo-

rithm. The algorithm is iterative and can be interpreted as “learning via repeated

play” of the inelastic electricity market game by the generators. Both ISO and

generators have bounded rationality, with each generator trying to maximize its

own profit and the ISO trying to maximize the welfare of the entities.

[Informal description]: At each iteration k, generators decide on a bid
and send it to the ISO. Once the ISO has obtained the bids, it computes
an optimizer of the S-DC-OPF problem (9.3), denoted (xopt(k), zopt(k))
for convenience, and sends the corresponding production level at the
optimizer to each generator. At the (k + 1)-th iteration, generators
adjust their bid based on their previous bid, the amount of produced
power that maximizes their payoff for the previous bid, and the allo-
cation of generation assigned by the ISO. The iterative process starts
with the generators arbitrarily selecting initial bids that yield a positive
profit.

The Bid Adjustment Algorithm is formally presented in Algorithm 3.
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Algorithm 3: Bid Adjustment Algorithm
Executed by: generators n ∈ [N ] and ISO
Data : cost fn and stepsizes {βk}k∈Z≥1

for each generator n, and
load y for ISO

Initialize : Each generator n selects arbitrarily bn(1) ≥ cn, sets k = 1,
and jumps to step 4; ISO sets k = 1 and waits for step 6

1 while k > 0 do
/* For each generator n: */

2 Receive xopt
n (k − 1) from ISO

3 Set bn(k)=[bn(k−1)+βk(x
opt
n (k−1)− qn(k−1))]+

4 Set qn(k) = argmaxq≥0bn(k)q − fn(q)

5 Send bn(k) to the ISO; set k = k + 1

/* For ISO: */
6 Receive bn(k) from each n ∈ [N ]
7 Find a solution (xopt(k), zopt(k)) to (9.3) given b(k)
8 Send xopt

n (k) to each n ∈ [N ]; set k = k + 1

9 end

In the Bid Adjustment Algorithm, the role of the ISO is to compute

an optimizer of the S-DC-OPF problem after the bids are submitted. Generators

adjust their bids at each iteration in a “myopically selfish” and rational fashion,

with the sole aim of maximizing their payoff. Intuitively,

• if n gets xopt
n (k) = 0: two things can happen: (i) n was willing to produce

a positive quantity qn(k) > 0 at bid bn(k) but the demand from the ISO is

xopt
n (k) = 0. Thus, the rational choice for n is to decrease the bid in the

next iteration and increase its chances of getting a positive payoff; (ii) n was

willing to produce nothing qn(k) = 0 at bn(k) and got xopt
n (k) = 0. At this

point, reducing the bid will not increase the payoff as it will not be willing to

produce more at a lower bid. Alternatively, increasing the bid will not make

the amount that the ISO wants the generator to produce positive. Hence,

the bid stays put.

• if n gets xopt
n (k) > 0: then it would want to move the bid in the direction

that makes its payoff higher in the next iteration, assuming that n gets a

positive generation signal from the ISO in the next round. If qn(k) < xopt
n (k),
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then the demand from the ISO is more than what the generator is willing

to produce, so n increases its cost, i.e., the bid. If qn(k) > xopt
n (k), then the

demand is less than what the generator is willing to supply so n decreases

its bid.

Remark 9.3.1. (Information structure and other learning approaches): Gener-

ators have no knowledge of the number of other players, their actions, or their

payoffs. The only information they have at each iteration is their own bid and the

generation that the ISO requests from them. This information structure rules out

the applicability of a number of Nash equilibrium learning methods, including best-

response dynamics [BGJ10], fictitious play [FL98], or other gradient-based adjust-

ments [BCKS10], all requiring some kind of information about other players. Meth-

ods that relax this requirement, such as extremum seeking used in [FKB12, SJS12],

rely on the payoff functions being continuous in the actions of the players, which

is not the case for the inelastic electricity market game. •

Remark 9.3.2. (Stopping criteria and justification of “myopically selfish” strate-

gies): Algorithm 3 consists of an infinite number of iterations. To make it imple-

mentable, later we identify stopping criteria, see Remark 9.3.9, based on a param-

eter that the ISO selects. Since this is not known to the generators, they cannot

predict when the algorithm will terminate and, hence, they do not have an incen-

tive to play strategically to maximize their payoff in the long term. Given this,

they should focus on maximizing the payoff in the next iteration, which justifies

the myopically selfish perspective adopted here. •

9.3.2 Convergence analysis

In this section, we show that the generator bids along any execution of

the Bid Adjustment Algorithm converge to a neighborhood of the unique

efficient Nash equilibrium. The size of the neighborhood is a decreasing function

of the stepsize and can be made arbitrarily small.

We first present a series of results that highlight certain geometric properties

of the bid update done in Step 3 of Algorithm 3. These results form the basis for
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establishing later the convergence guarantee. The following result states that one

could neglect the projection operator in Step 3 of Algorithm 3.

Lemma 9.3.3. (Generator bids are lower bounded): In Algorithm 3, let 0 < βk <

2an for all n ∈ [N ] and k ∈ Z≥1. Then, bn(k) ≥ cn and for all n ∈ [N ] and

k ∈ Z≥1,

qn(k) =
bn(k)− cn

2an
. (9.11)

Proof. Equation (9.11) follows directly from bn(k) ≥ cn, so we focus on proving

the latter. We proceed by induction. Note that bn(1) ≥ cn for all n ∈ [N ]. Assume

that bn(k) ≥ cn for some k ∈ Z≥1 and let us show bn(k + 1) ≥ cn. We have

bn(k + 1)= [bn(k) + βk(x
opt
n (k)− qn(k))]+

(a)

≥ [bn(k)−βkqn(k)]+
(b)
=
[
bn(k)−βk

(bn(k)− cn
2an

)]+

=
[(

1− βk
2an

)
bn(k) + βk

cn
2an

]+

(c)
=
(

1− βk
2an

)
bn(k) + βk

cn
2an

,

where (a) is due to the fact that xopt
n (k) ≥ 0, (b) follows from the definition of qn(k)

given the fact that bn(k) ≥ cn, and (c) follows from the assumption that βk < 2an

for all n (which makes both terms in the expression positive). By contradiction,

assume bn(k + 1) < cn. Then,(
1− βk

2an

)
bn(k) + βk

cn
2an

< cn,

which implies that bn(k) < cn, a contradiction.

Our next result gives a different expression for the bid update step (cf.

Step 3) presenting a geometric perspective of the direction along which the bids are

moving. Specifically, we write the k+ 1-th bid as the addition of two vectors. The

first one is a convex combination of the k-th bid and the efficient Nash equilibrium

b∗. Hence, the first vector is closer to b∗ as compared to the k-th bid. The second
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one depends on the difference between what the ISO requests from the generators

and the optimizer of (9.2). If the second term is small enough, then we are assured

that the bids move towards b∗.

Lemma 9.3.4. (Geometric characterization of the bid update): In Algorithm 3,

let 0 < βk < 2an for all n ∈ [N ] and k ∈ Z≥1. Then, we have

b(k + 1) = bcoc(k + 1) + βk(x
opt(k)− x∗),

for all k ∈ Z≥1, where for each n ∈ [N ],

bcoc
n (k + 1) =

(
1− βk

2an

)
bn(k) +

βk
2an

b∗n.

Proof. In the proof of Lemma 9.3.3, we have shown that for all n and k, the term

inside the projection operator [·]+ in Step 3 of Algorithm 3 is nonnegative. Hence,

the projection can be dropped and we can write

bn(k + 1) = bn(k) + βk(x
opt
n (k)− qn(k))

(a)
= bn(k) + βk(x

opt
n (k))− βk

(bn(k)− cn
2an

)
=
(

1− βk
2an

)
bn(k) + βk

(
xopt
n (k) +

cn
2an

)
=
(

1− βk
2an

)
bn(k) + βk(x

opt
n (k)− x∗n) + βk

(
x∗n +

cn
2an

)
(b)
=
(

1− βk
2an

)
bn(k) +

βk
2an

b∗n + βk(x
opt
n (k)− x∗n).

In the above expression, we have used (9.11) in the equality (a) and (9.10) in the

equality (b).

The next result gives a lower bound on the inner product between the

direction in which the bids move and the direction towards the efficient Nash

equilibrium.

Lemma 9.3.5. (Bids move in the direction of the efficient Nash equilibrium): In

Algorithm 3, let 0 < βk < 2an for all n ∈ [N ] and k ∈ Z≥1. Let amax = maxn{an}.
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Then, for all k ∈ Z≥1,

〈b(k + 1)− b(k), b∗ − b(k)〉 ≥ βk
2amax

‖b(k)− b∗‖2. (9.12)

Proof. Using Lemma 9.3.4, we write

〈b(k + 1)− b(k), b∗ − b(k)〉
= 〈b(k + 1)− bcoc(k + 1), b∗ − b(k)〉+ 〈bcoc(k + 1)− b(k), b∗ − b(k)〉

= βk〈xopt(k)− x∗, b∗ − b(k)〉+
N∑
n=1

βk
2an

(b∗n − bn(k))2

(a)

≥
N∑
n=1

βk
2an

(b∗n − bn(k))2 ≥ βk
2amax

‖b(k)− b∗‖2.

For the inequality (a), we have used the fact that

〈xopt(k)− x∗, b∗−b(k)〉 =
(
〈xopt(k), b∗〉 − 〈x∗, b∗〉

)
+
(
〈x∗, b(k)〉 − 〈xopt(k), b(k)〉

)
≥ 0.

The last inequality follows from the fact that x∗ and xopt(k) are the optimizers

of (9.3) given b∗ and b(k), resp., making both expressions on the right-hand side

nonnegative.

The next result states that the distance between consecutive bids decreases

as the bids get closer to b∗. In combination with Lemma 9.3.5, one can see intu-

itively that the bids get closer to b∗ and, as they get closer to it, the bid update

step behaves as if the bids are reaching an equilibrium of the update scheme. These

two facts lead to convergence.

Lemma 9.3.6. (Distance between consecutive bids is upper bounded): In Algo-

rithm 3, let 0 < βk < 2an for all n ∈ [N ] and k ∈ Z≥1. Let amin = minn{an}.
Then, for all k ∈ Z≥1,

‖b(k + 1)− b(k)‖2 ≤ β2
k

2a2
min

‖b(k)− b∗‖2 + 8β2
ky

2. (9.13)
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Proof. Consider the following

‖b(k + 1)− b(k)‖2 (a)
=

N∑
n=1

( βk
2an

(b∗n − bn(k)) + βk(x
opt
n (k)− x∗n)

)2

(b)

≤
N∑
n=1

2
( βk

2an
(b∗n − bn(k))

)2

+
N∑
n=1

2β2
k(x

opt
n (k)− x∗n)2

(c)

≤ β2
k

2a2
min

‖b(k)− b∗‖2 + 2β2
k‖xopt(k)− x∗‖2. (9.14)

In the above expression, (a) follows from the expression of bn(k + 1) from

Lemma 9.3.4, (b) follows from the inequality (x + y)2 ≤ 2(x2 + y2) for x, y ∈ R,
and (c) follows from the definition of amin. Note that

‖xopt(k)− x∗‖ ≤
N∑
n=1

∣∣xopt
n (k)− x∗n

∣∣ ≤ N∑
n=1

∣∣xopt
n (k)

∣∣+ |x∗n|

=
∑N

n=1(xopt
n (k) + x∗n) = 2y.

The proof concludes by using the above bound in (9.14).

We are ready to present the main convergence result.

Theorem 9.3.7. (Convergence of the Bid Adjustment Algorithm): In Al-

gorithm 3, let 0 < βk < 2an for all n ∈ [N ] and k ∈ Z≥1. Further, let

0 < r < ‖b(1)− b∗‖ and for all k ∈ Z≥1 assume

α ≤ βk ≤ B(r) :=
1

2amax

( 1

2a2
min

+
16y2

r2

)−1

, (9.15)

for some α > 0. Then, the following holds

(i) there exists l ∈ Z≥1 such that ‖b(l)− b∗‖ < r and for all k ∈ [l− 1], we have

‖b(k)− b∗‖ ≥ r with

‖b(k + 1)− b∗‖ ≤
(

1− α

2amax

)k/2
‖b(1)− b∗‖, (9.16)
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(ii) for all k ≥ l,

‖b(k)− b∗‖ ≤
(

1 +
B(r)

2amax

)1/2

r. (9.17)

Proof. Assume that ‖b(k) − b∗‖ ≥ r for some k ∈ Z≥1. Then, the upper bound

on the stepsizes in the inequality (9.15) holds when r is replaced with ‖b(k)− b∗‖,
that is, βk ≤ B(‖b(k) − b∗‖) for all k ∈ Z≥1. This is because r 7→ B(r) is

strictly increasing in the domain r > 0. Proceeding with this replacement and

reordering (9.15), we obtain

βk

(‖b(k)− b∗‖2

2a2
min

+ 16y2
)
≤ 1

2amax
‖b(k)− b∗‖2,

or equivalently,

βk
2a2

min

‖b(k)− b∗‖2 + 16βky
2 − 1

amax

‖b(k)− b∗‖2 ≤ − 1

2amax

‖b(k)− b∗‖2. (9.18)

Now consider the following inequalities

‖b(k + 1)− b∗‖2 = ‖b(k + 1)− b(k) + b(k)− b∗‖2

= ‖b(k + 1)− b(k)‖2 + ‖b(k)− b∗‖2 (9.19a)

+ 2〈b(k + 1)− b(k), b(k)− b∗〉
(a)

≤ β2
k

2a2
min

‖b(k)− b∗‖2 + 8β2
ky

2 + ‖b(k)− b∗‖2

− βk
amax

‖b(k)− b∗‖2 (9.19b)

(b)

≤
(

1− βk
2amax

)
‖b(k)− b∗‖2, (9.19c)

where in (a) we have used the bounds (9.12) and (9.13) from Lemmas 9.3.5

and 9.3.6, respectively, and the inequality (b) is implied by that in (9.18). Note

that the inequality (9.18) is conservative in the sense that the term 16βky
2 could

be replaced with 8βky
2 and the inequality (9.19c) would still follow. However, we

opt for this conservativeness while defining the map r 7→ B(r) in (9.15) because it
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results into robustness guarantees for the algorithm as discussed in the forthcom-

ing section. Therefore, (9.19c) holds whenever ‖b(k) − b∗‖ ≥ r. By assumption,

we have 0 <
(

1− βk
2amax

)
< 1, ‖b(1)− b∗‖ > r, and βk ≥ α for all k ∈ Z≥1. Using

these facts and applying (9.19c) recursively, we conclude part (i).

For part (ii), note that if ‖b(k)−b∗‖ ≥ r for some k ≥ l, then ‖b(k+1)−b∗‖ <
‖b(k) − b∗‖ by (9.19c). Therefore, to find an upper bound on ‖b(k) − b∗‖ for all

k ≥ l, we only need to consider the case when ‖b(k) − b∗‖ < r. Plugging this

bound in (9.19b) and neglecting the negative term, we get

‖b(k + 1)− b∗‖2 ≤ β2
kr

2

2a2
min

+ 8β2
ky

2 + r2. (9.20)

From (9.15), we have

β2
kr

2

2a2
min

+ 16β2
ky

2 ≤ βkr
2

2amax

.

The result now follows by upper bounding the right-hand side of (9.20) with the

left-hand side of the above expression and then employing the bound on the step-

sizes give in (9.15).

Remark 9.3.8. (Convergence properties from Theorem 9.3.7): The assertion (i)

of Theorem 9.3.7 implies that for any choice of r > 0, one can select stepsizes

according to (9.15) so that bids reach the set Br(b∗) in a finite number of steps

and at a linear rate. Further, once bids reach the set Br(b∗), we are assured from

assertion (ii) that they remain in a neighborhood of b∗, where the size of the

neighborhood is proportional to r (cf. (9.17)). In combination, the above facts

mean that bids converge to any neighborhood of the efficient Nash equilibrium

at a linear rate provided the stepsizes are selected appropriately. Note that as

r becomes small, B(r) gets small and so does α. Thus, from (9.16), the rate of

convergence decreases as r becomes small. This presents a trade-off between the

desired precision and the rate of convergence. •

Remark 9.3.9. (Stopping criteria for the ISO): From the proof of Theorem 9.3.7(i)

note that, as long as ‖b(k)− b∗‖ > r, the distance to the efficient Nash equilibrium
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decreases. Therefore, if ‖b(k)− b∗‖ > r and k < l, then one can write

‖b(k + 1)− b(k)‖ = ‖b(k + 1)− b∗ + b∗ − b(k)‖
≥ ‖b(k)− b∗‖ − ‖b(k + 1)− b∗‖
(a)

≥ ‖b(k)− b∗‖ −
(

1− α

2amax

)1/2

‖b(k)− b∗‖

=
(

1−
(

1− α

2amax

)1/2)
‖b(k)− b∗‖, (9.21)

where in (a) we have used (9.19c) and βk ≥ α. Given this observation, if the ISO

has an estimate of α and amax, then it can design a stopping criteria based on the

distance between consecutive bids. In fact, if the ISO decides selects ε > 0 and

stops the iteration whenever ‖b(k + 1)− b(k)‖ ≤ ε, then it has the guarantee that

either of the following is satisfied

(i) the condition ‖b(k)− b∗‖ > r and k < l is met and from (9.21) we get

‖b(k)− b∗‖ ≤ ε
(

1−
(

1− α

2amax

)1/2)−1

; (9.22)

(ii) ‖b(k)− b∗‖ ≤ r; or

(iii) k > l in which case from (9.17) we get

‖b(k)− b∗‖ ≤
(

1 +
B(r)

2amax

)1/2

r.

The ISO does not know the value of r; its value depends on the stepsizes that

the generators select. Assuming that stepsizes are small, the ISO can adjust ε

depending on the desired accuracy level to get the guarantee (9.22) for the k-th

bid. For small ε, the stopping criteria might never be met if stepsizes are too big.•
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9.4 Robustness of the Bid Adjustment Algo-

rithm

Here we study the robustness properties of the Bid Adjustment Algo-

rithm in a variety of scenarios. We first show that the introduction of disturbances

in the bid update mechanism does not destroy the algorithm convergence prop-

erties. We then study robustness against either an individual agent or colluding

agents changing their strategy to get a higher payoff.

9.4.1 Robustness to disturbances

Here we establish the robustness properties of the Bid Adjustment Al-

gorithm in the presence of disturbances by characterizing its input-to-state sta-

bility (ISS) properties [JW01]. Let d : Z≥1 → RN model the disturbance to the

bid update mechanism. Such disturbances might arise from agents using different

stepsizes than the prescribed one or other disruption to the prescribed bid update

scheme. The resulting perturbed version of the Bid Adjustment Algorithm

can be written as the following discrete-time dynamical system

b(k + 1) = [b(k) + βk(x
opt(k)− q(k)) + d(k)]+, (9.23a)

xopt(k + 1) ∈ Solsopf(b(k + 1)), (9.23b)

q(k + 1) = Soleff(b(k + 1)), (9.23c)

where Solsopf : RN
≥0 ⇒ RN

≥0 and Soleff : RN
≥0 → RN

≥0 map a bid profile to the set of

optimizers of problem (9.3) and (9.6), respectively. Note that Solsopf is a set-valued

map since (9.3) is a linear program. If d ≡ 0, then the dynamics (9.23) represents

the k-th iteration of the Bid Adjustment Algorithm.

The next result shows that the perturbed version of the algorithm (9.23)

retains the convergence properties of the unperturbed version provided the mag-

nitude of the disturbance satisfies an upper bound dependent on the state of the

bid.

Proposition 9.4.1. (The Bid Adjustment Algorithm is robust to pertur-
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bations in the bid update): For dynamics (9.23), let the hypotheses of Theo-

rem 9.3.7 hold and assume that bn(k) ≥ cn for all n ∈ [N ] and k ∈ Z≥1. Let

0 < θ < 1
6

(
1 − α

2amax

)
and assume ‖d(k)‖ ≤ θ‖b(k) − b∗‖ for all k ∈ Z≥1. Then,

the following holds

(i) there exists l ∈ Z≥1 such that ‖b(l)− b∗‖ < r and, for all k ∈ [l− 1], we have

‖b(k)− b∗‖ ≥ r with

‖b(k + 1)− b∗‖ ≤
(

1− α

2amax

+ 2θ + 4θ2
)k/2
‖b(1)− b∗‖, (9.24)

(ii) for all k ≥ l,

‖b(k)− b∗‖ ≤
(

1 +
B(r)

2amax

+ 2θ + 4θ2
)1/2

r. (9.25)

Proof. Since bn(k) ≥ cn, we obtain for dynamics (9.23), qn(k) = bn(k)−cn
2an

, for all

n ∈ [N ] and k ∈ Z≥1. Moreover, mimicking Lemma 9.3.4, we rewrite the bid

update (9.23a) as

b(k + 1) = bcoc(k + 1) + βk(x
opt(k)− x∗) + d(k), (9.26)

for all k ∈ Z≥1. Using (9.26) and following the steps of Lemma 9.3.5 for dynam-

ics (9.23a) we get,

〈b(k + 1)− b(k),b(k)− b∗〉 ≤ 〈d(k), b(k)− b∗〉 − βk
2amax

‖b(k)− b∗‖2, (9.27)

for all n ∈ [N ] and k ∈ Z≥1. Similarly, from the reasoning of Lemma 9.3.6 we

obtain

‖b(k + 1)− b(k)‖2 ≤ β2
k

2a2
min

‖b(k)− b∗‖2 + 2
(
‖βk(xopt(k)− x∗) + d(k))‖

)2

≤ β2
k

2a2
min

‖b(k)− b∗‖2 + 4β2
k‖xopt(k)− x∗‖2 + 4‖d(k)‖2

≤ β2
k

2a2
min

‖b(k)− b∗‖2 + 16β2
ky

2 + 4‖d(k)‖2 (9.28)
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for all k ∈ Z≥1 for dynamics (9.23a). Employing (9.27) and (9.28), assuming

‖b(k)− b∗‖ ≥ r, and writing the set of inequalities (9.19) with α ≤ βk, we deduce

the following

‖b(k + 1)− b∗‖2 ≤
(

1− α

2amax

)
‖b(k)− b∗‖2 + 4‖d(k)‖2

+ 2〈d(k), b(k)− b∗〉. (9.29)

Finally, using ‖d(k)‖ ≤ θ‖b(k)− b∗‖ we get

‖b(k + 1)− b∗‖2 ≤
(

1− α

2amax

+ 2θ + 4θ2
)
‖b(k)− b∗‖2. (9.30)

Iteratively, we obtain (9.24). The bound (9.25) can be computed in a similar way

as done in the proof of Theorem 9.3.7.

Similar to the convergence guarantees of Theorem 9.3.7, the above result

establishes that the perturbed version of the algorithm (9.23) converges to a neigh-

borhood of the efficient Nash equilibrium provided the stepsizes and the distur-

bance satisfy appropriate bounds, and that the size of this neighborhood is tunable

as a function of these.

The next result complements Proposition 9.4.1 by giving an alternative

representation of robustness of (9.23). It establishes two properties: first, when the

disturbance is bounded (not necessarily satisfying the bound of Proposition 9.4.1),

the bids remain bounded; second, if the disturbance goes to zero, then the bids

satisfy the bound (9.17) asymptotically. Notice that both these results do not

follow directly from Proposition 9.4.1, justifying the need for a formal proof.

Proposition 9.4.2. (Bounded disturbance implies bounded bids for Bid Adjust-

ment Algorithm): For dynamics (9.23), let the hypotheses of Theorem 9.3.7

hold and assume that bn(k) ≥ cn for all n ∈ [N ] and k ∈ Z≥1. Let ‖d(k)‖ ≤ dmax

for all k ∈ Z≥1 and let θ ∈
(

0, 1
6

(
1 − α

2amax

))
. Then, the following holds for all

k ∈ Z≥1,

‖b(k)− b∗‖ ≤
(

1− α

2amax

+ 2θ + 4θ2
)k/2
‖b(1)− b∗‖+G(r, θ, dmax), (9.31)
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where G(r, θ, dmax) := max{G1(r, dmax), G2(θ, dmax)} and

G1(r, dmax) :=
(B(r)r2

2amax

+ (2dmax + r)2
)1/2

,

G2(θ, dmax) :=
(

2 +
1

θ

)
dmax.

As a consequence, as k →∞, if ‖d(k)‖ → 0, then

max
{
‖b(k)− b∗‖,

(
1 +

B(r)

2amax

)1/2

r
}
→ 0. (9.32)

Proof. We first show that if for some k ∈ Z≥1, ‖b(k) − b∗‖ ≤ G(r, θ, dmax), then

‖b(l) − b∗‖ ≤ G(r, θ, dmax) for all l ≥ k. To this end, as a first case, assume

that r ≤ ‖b(k) − b∗‖ ≤ G(r, θ, dmax). Then, following the steps of the proof of

Proposition 9.4.1, we arrive at (9.29). If ‖d(k)‖ ≤ θ‖b(k) − b∗‖, then we get the

inequality (9.30) which implies that ‖b(k + 1)− b∗‖ ≤ ‖b(k)− b∗‖ ≤ G(r, θ, dmax).

On the other hand, if ‖d(k)‖ > θ‖b(k) − b∗‖, then using this bound in (9.29), we

get

‖b(k + 1)− b∗‖2 <
(

1− α

2amax

)‖d(k)‖2

θ2
+ 4‖d(k)‖2 + 2

‖d(k)‖2

θ

<
( 1

θ2
+

4

θ
+ 4
)
‖d(k)‖2.

Thus, using ‖d(k)‖ ≤ dmax, we get ‖b(k+1)−b∗‖ < G2(θ, dmax) ≤ G(r, θ, dmax). As

a second case, assume ‖b(k)− b∗‖ < r. Note that r < G(r, θ, dmax), and so ‖b(k)−
b∗‖ < G(r, θ, dmax). For this case, using ‖b(k) − b∗‖ < r and inequalities (9.27)

and (9.28), we get as in (9.19b) that

‖b(k + 1)− b∗‖2 ≤ β2
kr

2

2a2
min

+ 16β2
ky

2 + 4‖d(k)‖2 + r2 + 2r‖d(k)‖.

Now applying bounds ‖d(k)‖ ≤ dmax and βk ≤ B(r), we obtain ‖b(k + 1)− b∗‖ ≤
G1(r, dmax). Hence, we arrive at the conclusion that if ‖b(k)− b∗‖ ≤ G(r, θ, dmax),

then ‖b(l)− b∗‖ ≤ G(r, θ, dmax) for all l ≥ k.

Consider now the case when for some k ∈ Z≥1, ‖b(k)− b∗‖ > G(r, θ, dmax).
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By definition of G(r, θ, dmax), this implies that ‖b(k)− b∗‖ > r and ‖b(k)− b∗‖ >
d(k)
θ
. Therefore, from the proof of Proposition 9.4.1, we arrive at (9.30). Finally,

combining the reasoning of the two cases when ‖b(k)− b∗‖ is greater than or less

than equal to G(r, θ, dmax), we obtain the inequality (9.31). The limit (9.32) follows

from that fact that as k → ∞, the first term of (9.31) converges to zero and as

dmax tends to zero, G(r, θ, dmax) tends to
(

1 + B(r)
2amax

)1/2

r.

One can observe from (9.31) that the limiting behavior of the bids depend

on the magnitude of r and dmax: if r is designed to be small enough and if dmax

is small enough, or this bound becomes small as the algorithm iterates, then the

bids do converge to a small neighborhood of b∗.

As an aside, in the theory of ISS for discrete-time dynamical sys-

tems [JW01], one typically would conclude Proposition 9.4.2 from Proposi-

tion 9.4.1. However, the traditional ISS results require asymptotic convergence

of the unperturbed dynamics, (i.e., dynamics (9.23) with d ≡ 0) to a point. This

is not the case here and hence, we provide a formal proof.

Remark 9.4.3. (Bid Adjustment Algorithm is robust to variation in step-

sizes): In practice, given that generators are competing and do not share infor-

mation with each other, it is conceivable that they do not agree on a common

stepsize. Propositions 9.4.1 and 9.4.2 provide a way to quantify the performance

of the algorithm when the stepsizes are different. Specifically, let βk, k ∈ Z≥1,

denote a common set of stepsizes for all generators that satisfies the hypotheses of

Theorem 9.3.7 and hence, guarantees the convergence properties outlined therein.

Assume that each generator selects a different stepsize at each iteration, denoted

as βk,n, k ∈ Z≥1, for generator n. Then, the bid iteration in Step 3 of the Bid

Adjustment Algorithm can be written as (9.23) where now

dn(k) = (βk,n − βk)(xopt
n (k)− qn(k))

for all n ∈ [N ] and k ∈ Z≥1. Now if the variation in stepsizes, i.e., the quantity

βk,n − βk, is bounded above by a particular function of the distance of the bid-

state to the efficient Nash equilibrium, then the linear convergence and the ultimate
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bound is guaranteed following Proposition 9.4.1. On the other hand, if the variation

in stepsizes do not depend on the state but are bounded then, then the bids still

converge asymptotically to a neighborhood of the efficient Nash equilibrium, as

concluded in Proposition 9.4.2. Note that the assumption of bn(k) ≥ cn for all

n and k holds whenever the stepsizes are positive for all agents at all times (cf.

Lemma 9.3.3). •

9.4.2 Robustness to deviation in bid update

We illustrate here another aspect of robustness of the Bid Adjustment

Algorithm by establishing that, if all generators follow the bid update scheme,

then there is no incentive for any generator to deviate from it. We next formalize

these notions. Assume that all generators, except ñ ∈ [N ], follow the Bid Adjust-

ment Algorithm, and that ñ follows an arbitrary strategy to update its bids.

Then, one can write the Bid Adjustment Algorithm under this deviation as

b−ñ(k + 1) = [b−ñ(k) + βk(x
opt
−ñ(k)− q−ñ(k))]+, (9.33a)

bñ(k + 1) = H(k)
ñ

(
{bñ(t), xopt

ñ (t), qñ(t)}kt=1

)
, (9.33b)

xopt(k + 1) ∈ Solsopf(b(k + 1)), (9.33c)

q(k + 1) ∈ Soleff(b(k + 1)), (9.33d)

where the maps {H(k)
ñ : R3k

≥0 → R≥0}∞k=1 represent the update scheme of ñ at

iterations 1, 2, . . . Recall that the subscript −ñ denotes the vector without the

component corresponding to the generator ñ. Note that (9.33b) implies that at

each iteration k, the generator ñ only knows the bids it made and the quantities

the ISO demanded from it up until iteration k.

We next introduce the notion of “incentive to deviate” from the Bid Ad-

justment Algorithm for the generator ñ. A natural way to quantify incentives

for a generator is in terms of the payoff (9.4): a generator has an incentive to

deviate if this would bring in a higher payoff, when the ISO stops the iteration,

than not deviating. This is formalized below.
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Definition 9.4.4. (Incentive to deviate from Bid Adjustment Algorithm):

Let r > 0 and assume that the stepsizes for any execution of (9.33) satisfy the hy-

potheses of Theorem 9.3.7. Then, the generator ñ ∈ [N ] has an incentive to deviate

from the Bid Adjustment Algorithm if there exists an execution of (9.33) and

l ∈ Z≥1 such that

uñ(bñ(k), xopt
ñ (k)) > umax

ñ , (9.34)

for all k ≥ l, where

umax
ñ := max

{
uñ(bñ,x

opt
ñ (b))

∣∣∣‖b− b∗‖ ≤ (1 +
B(r)

2amax

)
r

and xopt(b) ∈ Solsopf(b)
}
. (9.35)

In the above definition, recall the short-hand notation xopt(k) for xopt(b(k)).

Equation (9.34) implies that the generator ñ has an incentive to deviate if, after

a finite number of iterations, it is guaranteed a higher payoff than what it might

eventually get if it follows the Bid Adjustment Algorithm. This captures the

fact that the generator does not know when the ISO might stop the bid and hence

it would deviate only when it is guaranteed to get a higher payoff after a finite

number of steps. The next result shows that there is no incentive to deviate from

the Bid Adjustment Algorithm.

Proposition 9.4.5. (Robustness to deviation from Bid Adjustment Algo-

rithm): For dynamics (9.33), let the hypotheses of Theorem 9.3.7 hold and as-

sume that bn(k) ≥ cn for all n ∈ [N ] and k ∈ Z≥1. Also, assume that the ISO

selects a vertex solution xopt(k) ∈ Solsopf(b(k)) at each iteration k ∈ Z≥1. Then, no

generator has an incentive to deviate from the Bid Adjustment Algorithm.

Proof. We reason by contradiction. Assume that a generator ñ has an incentive

to deviate from the Bid Adjustment Algorithm. That is, there exists an

execution of (9.33) and l ∈ Z≥1 such that (9.34) holds for all k ≥ l. By definition,

umax
ñ > b∗ñx

∗
ñ − fñ(x∗ñ). (9.36)
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Now consider the map

R≥0 3 b 7→ gñ(b) := max{bq − fñ(q) | q ≥ 0}.

From (9.6), we get gñ(b∗ñ) = b∗ñx
∗
ñ−fñ(x∗ñ). Further, using (9.1), one can show that

this map is continuous, strictly increasing in the domain b ≥ cñ, and gñ(b)→∞ as

b → ∞. These facts along with (9.36) imply that there exists a unique bmax
ñ > b∗ñ

such that gñ(bmax
ñ ) = umax

ñ , gñ(b) > umax
ñ for all b > bmax

ñ , and gñ(b) < umax
ñ for all

cñ ≤ b < bmax
ñ . Then, (9.34) reads as

uñ(bñ(k), xopt
ñ (k)) > gñ(bmax

ñ ), (9.37)

for all k ≥ l. From the above expression, we deduce that bñ(k) ≥ bmax
ñ for all k ≥ l.

Indeed otherwise, there exists k̃ ≥ l such that bñ(k̃) < bmax
ñ . This further implies

that

uñ(bñ(k̃), xopt
ñ (k̃)) = bñ(k̃)xopt

ñ (k̃)− fñ(xopt
ñ (k̃))

≤ gñ(bñ(k̃)) < gñ(bmax
ñ ),

contradicting (9.37). In the above expression, the first inequality follows from the

definition of gñ and the second follows from the fact that gñ is strictly increasing.

The above reasoning has helped us establish that bñ(k) ≥ bmax
ñ > b∗ñ for all

k ≥ l. Note that xopt
ñ (k) > 0 for all k ≥ l because otherwise uñ(bñ(k), xopt

ñ (k)) = 0

and (9.37) gets violated. By assumption, there exists at least one more generator

connected to the bus i(ñ) to which ñ is connected to. For now assume that there

is only one other generator n̄ ∈ [N ] connected to i(ñ). Since for all k ≥ l, xopt(k)

is a solution of (9.3), from the fact that xopt
ñ (k) > 0, we deduce

bn̄(k) ≥ bñ(k) ≥ bmax
ñ ,
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for all k ≥ l. Now let

qmax
n̄ := inf

b≥bmax
ñ

argmax{bq − fn̄(q) | q ≥ 0}.

Note that qmax
n̄ > 0 because of the facts: (i) b∗n̄ = b∗ñ < bmax

ñ ; (ii) argmax{b∗n̄q −
fn̄(q) | q ≥ 0} = x∗n̄ > 0; and (iii) b 7→ argmax{bq−fn̄(q) | q ≥ 0} is nondecreasing.
Since bn̄(k) ≥ bmax

ñ for all k ≥ l, we obtain qn̄(k) ≥ qmax
n̄ for all k ≥ l (see

Step 4 of the Bid Adjustment Algorithm for the definition of qn̄(k)). Thus,

if bn̄(k) > bñ(k) for some k ≥ l, then xopt
n̄ (k) = 0 (because xopt(k) is an optimizer

of (9.3) given bids b(k)) and bn̄(k) > bmax
ñ . As a consequence,

bn̄(k + 1) = bn̄(k)− βkqn̄(k) ≤ bn̄(k)− αqmax
n̄ . (9.38)

Therefore, if bn̄(k) > bñ(k) for some k ≥ l, then from (9.38) we deduce that there

exists a finite k̃ > k such that, either bn̄(k̃) < bñ(k̃) or bn̄(k̃) = bñ(k̃). In the

former case, uñ(bñ(k̃), xopt
ñ (k̃)) = 0 as xopt

ñ (k̃) = 0. This contradicts (9.34). In

the latter case, two further cases can arise. In the first one, we get xopt
ñ (k̃) = 0

implying uñ(bñ(k̃), xopt
ñ (k̃)) = 0 and contradicting (9.34). In the second one,

we obtain xopt
n̄ (k) = 0, implying bn̄(k + 1) < bñ(k + 1). This further yields

uñ(bñ(k̃ + 1), xopt
ñ (k̃ + 1)) = 0, thereby, contradicting (9.34). Finally, if there

are other generators connected to i(ñ) that follow the Bid Adjustment Algo-

rithm, then one can carry out the same reasoning as done above and show that

we contradict (9.34). This completes the proof.

Remark 9.4.6. (Generalization of Proposition 9.4.5): It is interesting to observe

that in the proof of Proposition 9.4.5, we have not used at any point that the

generators connected at buses other than the one that ñ is connected follow the

Bid Adjustment Algorithm. In fact, independently of how such generators

update their bids, the Bid Adjustment Algorithm ensures that ñ does not

have any incentive to deviate. This is a useful property which we use later when

studying robustness to collusion. •

Remark 9.4.7. (Other notions of “incentive to deviate”): In Definition 9.4.4, one

can impose the condition of higher payoff (9.34) to hold for all executions of (9.33).
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If this condition holds, then the generator has an even stronger incentive to deviate

from the Bid Adjustment Algorithm. However, by Proposition 9.4.5, we are

ensured that there does not exist such strong incentive to deviate. This is because

the result shows that there does not exist any execution of (9.33) for which (9.34)

holds. If, on the other hand, we replace the condition (9.34) in Definition 9.4.4

with the requirement that there exists an execution of (9.33) along which

lim sup
k→∞

uñ(bñ(k), xopt
ñ (k)) > umax

ñ (9.39)

holds. This inequality means that there exists an execution of (9.33) in which the

generator ñ gets a higher payoff than umax
ñ infinitely often. Since the ISO can stop

the iterations at any time, the generator is not guaranteed a higher payoff, but the

possibility is still there. We conjecture that the Bid Adjustment Algorithm

is not robust to this notion of weak incentive to deviate. However, the obfuscation

of the stopping criteria by the ISO makes such a weak incentive not enough for a

rational generator to deviate. •

9.4.3 Robustness to collusion

Here we study the robustness of the Bid Adjustment Algorithm

against collusion. Collusion refers to the action of a set of generators to share

among themselves information about their bids and generation demands by the

ISO, with the goal of getting a higher profit, possibly by deviating from the bid

update scheme. The following makes this notion formal.

Definition 9.4.8. (Collusion between generators): A group of generators J ⊂ [N ]

form a collusion if at each iteration k ∈ Z≥1 of the algorithm, each generator n ∈ J ,

(i) has the information

Ik := {(br(t), xopt
r (t)) | r ∈ J , t ∈ [k]}, and

(ii) determines its next bid bn(k+1) based on the information Ik, not necessarily
following the update scheme (Step 3) of the Bid Adjustment Algorithm.
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An iteration of the Bid Adjustment Algorithm under a collusion be-

tween a group of generators J ⊂ [N ] is given by the following dynamics

bn(k + 1) = [bn(k) + βk(x
opt
n (k)− qn(k))]+,∀n 6∈ J , (9.40a)

bn(k + 1) = H(k)
n

(
Ik, {qn(t)}kt=1

)
,∀n ∈ J (9.40b)

xopt(k + 1) ∈ Solsopf(b(k + 1)), (9.40c)

q(k + 1) = Soleff(b(k + 1)), (9.40d)

where maps {H(k)
n : R(2|J |+1)k

≥0 → R≥0}n∈J ,k=1,2,... represent the update scheme of

generators in collusion. Notice that for each generator n, the quantity qn(k), for all

k ∈ Z≥1, is part of its private information, irrespective of the fact that n belongs

to J or not. Next, we define what it means for the group of generators J to have

an incentive to collude.

Definition 9.4.9. (Incentive to collude): Let r > 0 and assume that the stepsizes

for any execution of (9.40) satisfy the hypotheses of Theorem 9.3.7. Then, the

group of generators J has an incentive to collude under the Bid Adjustment

Algorithm if there exists an execution of (9.40), a generator ñ ∈ J , and l ∈ Z≥1

such that

uñ(bñ(k), xopt
ñ (k)) > umax

ñ , (9.41)

for all k ≥ l, where umax
ñ is defined in (9.35).

This notion essentially says that there is an incentive to collude for the

generators in J if there exists at least one execution of (9.40) along which at least

one generator in J gets a higher payoff after finite number of steps. The next result

shows that no group of generators has an incentive to collude provided there is at

least one generator at each bus with generation that follows the Bid Adjustment

Algorithm.

Proposition 9.4.10. (Robustness to collusion under the Bid Adjustment Al-

gorithm): For dynamics (9.40), let the hypotheses of Theorem 9.3.7 hold and
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assume that bn(k) ≥ cn for all n ∈ [N ] and k ∈ Z≥1. Assume that the ISO selects

a vertex solution xopt(k) ∈ Solsopf(b(k)) at each iteration k ∈ Z≥1. Assume that

at each bus that has generators connected to it, there exists at least one generator

that follows the update scheme of the Bid Adjustment Algorithm. Denote

these generators by K ⊂ [N ]. Then, there is no incentive to collude for any group

of generators contained in [N ] \ K.

Proof. Let J ⊂ [N ] \ K be a group of generators that form a collusion. Assume

first Scenario 1 where each generator in J is connected to a different bus. By

hypotheses, there exists at least one other generator following the Bid Adjust-

ment Algorithm at the bus where a generator in J is connected to. Thus,

mimicking the proof of Proposition 9.4.5 (cf. Remark 9.4.6), at each bus, no gen-

erator has an incentive to deviate from the Bid Adjustment Algorithm. By

Definition 9.4.4, this implies that there does not exist any execution of (9.40) for

which (9.41) holds for any generator in J . Hence, for Scenario 1, generators in J
do not have an incentive to collude.

Next, consider Scenario 2, where at least a bus, say i ∈ [Nb], has more

than one generator from J , that is, Ji := Gi ∩ J has cardinality larger than or

equal to 2. Let n̄ ∈ Gi be the generator at i that follows Bid Adjustment

Algorithm. For the sake of contradiction, assume the existence of a generator

ñ ∈ Ji for which (9.41) holds for some execution of (9.40). Since the ISO selects

a vertex solution at each iteration k ∈ Z≥1, we deduce that for all k ≥ l, all

other generators in Ji get zero production signal from the ISO, i.e., xopt
n (k) = 0

for all n ∈ Ji \ {ñ} and k ≥ l. Therefore, for the purpose of analysis, one can

neglect the generators in Ji \ {ñ} and assume that only ñ and n̄ are connected

to i. Again, mimicking the proof of Proposition 9.4.5, we deduce that ñ does not

have an incentive to deviate and so (9.41) does not hold, a contradiction. Since

i is arbitrary, we conclude that for Scenario 2, generators in J do not have an

incentive to collude either.

An alternative definition of an incentive to collude could be where every

generator in the collusion gets a higher payoff after a finite number of steps. Propo-

sition 9.4.10 however shows that, under the assumed hypotheses, such a scenario
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does not occur as there is not even a single generator that gets a higher payoff

after a finite number of iterations. Note that the assumptions of the above result

is tight in the sense that if all generators at a bus collude, then based on the load

and the line limits, generators at that bus can increase their bid to an arbitrarily

high value, thus creating an incentive to collude.

Remark 9.4.11. (Limitations on robustness under generator bounds): The ro-

bustness of the Bid Adjustment Algorithm against deviation and collusion

relies heavily on the fact that we have not considered upper bounds on the gener-

ation capacities. In the presence of such bounds, the generators might be able to

push the bids and their individual utilities to a higher value based on the load at

the respective bus and the capacity constraints on the lines connected to the bus.

To avoid such behavior of market manipulation, either one can modify network ca-

pacities or investigate alternative allocation mechanisms that disincentivizes such

behavior. •

9.5 Simulations

We illustrate the convergence and robustness properties of the Bid Ad-

justment Algorithm using a modified IEEE 9-bus test case [ZMST11]. The

traditional IEEE 9-bus system has 3 generators, at buses v1, v2, and v3 and three

loads at buses v5, v7, and v9. In our modified test case, we have added one generator

each at buses v1, v2 and v3. The interconnection topology is given in Figure 9.1.

The line flow limit between any two buses (vi, vj) is 2.5 except for three lines,

(v5, v6), (v3, v6), and (v6, v7), for which the limits are 1.5, 3.0, and 1.5, respectively.

The loads are y5 = 2, y7 = 3, and y9 = 1, where yi denotes the load at bus vi. The

cost function for each generator i is fi(xi) = aix
2
i + cixi, where the coefficients for

all the generators are given by the vectors

a = (0.1100, 0.0950, 0.0850, 0.1000, 0.1225, 0.0750),

c = (3.5, 3.8, 1.2, 0.8, 1.0, 1.3). (9.42)



218

v1

v2 v3

v4

v5

v6v7v8

v9

1 2

3

4 5

6

Buses

Loads

Generators

Figure 9.1: Network layout of the modified IEEE 9-bus test case.

For the given costs and loads, the generation profile at the optimizer of the DC-

OPF problem (9.2) is

x∗ = (1.4268, 0.0732, 0.2703, 2.2297, 1.8987, 1.1013),

and the unique efficient Nash equilibrium is

b∗ = (3.8139, 3.8139, 1.2459, 1.2459, 1.4652, 1.4652). (9.43)

Figure 9.2 depicts the evolution of the bids and their distance to the efficient Nash

equilibrium along an execution of the Bid Adjustment Algorithm. The ini-

tial bids b(1) are selected satisfying bn(1) ≥ cn for all the generators n ∈ [6]. The

stepsizes are constant, βk = 0.01 for all k, and satisfy βk < 2an. As predicted by

Theorem 9.3.7, Figure 9.2 shows that the bids converge towards the efficient Nash

equilibrium b∗ at a linear rate and, after a finite number of steps, remain in a neigh-

borhood of b∗. If one selects r = 1.35, then B(r) = 0.0101 and condition (9.15)

holds for the stepsizes. Computing the right hand side of (9.17) using these values,
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Figure 9.2: Execution of the Bid Adjustment Algorithm for the modi-
fied IEEE 9-bus test case in Figure 9.1. The cost function for each generator
i is fi(xi) = aix

2
i + cixi, with coefficients given in (9.42). The load is y5 = 2,

y7 = 3, and y9 = 1. The efficient Nash equilibrium b∗ is given in (9.43).
Plots (a) and (b) show, respectively, the evolution of the bids and their dis-
tance to b∗. The stepsizes are βk = 0.01 for all k and the initial bids are
b(1) = (7.6096, 9.9313, 7.6087, 8.4827, 6.6175, 7.5254). Bids converge to and then
remain in a neighborhood of the efficient Nash equilibrium.

we conclude that bids eventually remain in the neighborhood centered at b∗ with

radius 1.3775. Figure 9.2(b) validates this claim and, in fact, shows that the bound

is conservative since bids actually remain in a neighborhood of radius 0.05.

We next illustrate the robustness properties of the Bid Adjustment Al-

gorithm against disturbances (cf. Section 9.4.1). Figure 9.3 considers the same

setup as above but now with generators choosing a different stepsize at each itera-

tion. These differences in stepsizes can be interpreted as a disturbance to the Bid

Adjustment Algorithm, as discussed in Remark 9.4.3. In Figure 9.3(a)-(b),

the interval from which stepsizes are selected is constant, whereas in Figure 9.3(c)-

(d) the size of this interval decays with time. In both cases, the bids converge

to a neighborhood of b∗ (in the latter case of decaying interval, the bids converge

to a smaller neighborhood), as established in Proposition 9.4.2. Observe that the

convergence rate in Figure 9.3(a)-(b) is higher than in Figure 9.2(a)-(b). This is

because stepsizes are allowed to be large in the former. However, this higher con-

vergence rate comes with the pitfall of loss in accuracy, cf. Remark 9.3.8. Hence,

to retain both properties, stepsizes should be large initially and decay as iterations
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Figure 9.3: Execution of the Bid Adjustment Algorithm under different
stepsize selection for the example of Figure 9.2. All data is the same except for the
stepsizes. In plots (a) and (b), each generator at each iteration randomly selects the
stepsize from the set [0.001, 0.1] with uniform probability distribution. We observe
that the bids still converge to a neighborhood of the efficient Nash equilibrium, but
the size of the neighborhood is bigger than that achieved in Figure 9.2. In plots (c)
and (d), the interval of stepsize selection decays with time to a single point 0.01.
The bids now converge to the efficient Nash equilibrium with greater accuracy.
These observations validate the robustness guarantees of Proposition 9.4.2.
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Figure 9.4: Execution of the Bid Adjustment Algorithm for the example
considered in Figure 9.2 with generators 1, 3, and 5 forming a collusion. The initial
condition is the same and the stepsize is 0.01 at each iteration for generators 2,
4, and 6. For each n ∈ {1, 3, 5}, at each iteration k, bn(k) = 0.99 ∗ bn+1(k) if this
value is bigger than or equal to b∗n. Otherwise, bn(k) is selected randomly from the
interval [b∗n, b

∗
n + 1], with uniform probability distribution. With this choice of bid,

the colluding generators aim to get a positive production signal and at the same
time bid high enough so as to obtain a high utility. The plot shows the evolution of
the difference between the utility obtained at each iteration, un(bn(k), xopt

n (k)), and
the utility at the optimal bid and generation, un(b∗n, x

opt
n (b∗)) for each n ∈ {1, 3, 5}.

This value becomes negative for all generators after a finite number of iterations.
Since umax

n > un(b∗n, x
∗
n), the example shows that (9.41) does not hold.

proceed. This is seen in Figure 9.3(c)-(d), where stepsizes decay over time (in ex-

pectation), yielding both high convergence rate and accuracy. Finally, Figure 9.4

demonstrates the robustness against collusion of the Bid Adjustment Algo-

rithm (cf. Section 9.4.3), where generators 1, 3, and 5 form a collusion. These

generators may select their bids in any fashion they want: for this example, we

assume a particular strategy of bid selection, explained in Figure 9.4. The plot

shows that the utility of the colluding generators eventually becomes lower than

umax
n (defined in (9.35)). Hence, there is no incentive for collusion, as ensured by

Proposition 9.4.10.
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Chapter 10

Conclusions

In this thesis we have mainly focussed on designing coordination algorithms

and analyzing market dynamics in the event of optimal dispatch of distributed

energy resources. For the former part, we first designed a class of “Laplacian-

gradient” dynamics that are anytime and distributed in nature and that solve the

economic dispatch problem for a group of generators. These dynamics require

a feasible initial condition to start with. To address this problem, we designed

the determine feasible allocation strategy to allow a group of generators

with box constraints communicating over an undirected graph to find a feasible

power allocation in finite time. This initialization method is also useful in tack-

ling cases where the load condition is violated by the addition and/or deletion of

generators. However, the proposed initialization+“Laplacian-gradient” dynamics

cannot track a time-varying load signal. Motivated by this, we interconnected the

“Laplacian-gradient” dynamics with a dynamic average consensus block. The net

result was a distributed dynamics that allows the group of generators to solve the

economic dispatch problem starting from any initial power allocation. Our analy-

sis has also shown that for this solution strategy, the mismatch dynamics between

total generation and load are input-to-state stable and, as a consequence, the co-

ordination algorithm is robust to initialization errors, time-varying load signals,

and intermittent power generation. The class of “Laplacian-gradient”+dynamic

average consensus dynamics has a general structural advantage. That is, it can

be used as a building block to address more general problems. We have leveraged
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on this aspect when dealing with the DEDS problem for a group of generators

with storage capabilities. We have provided a distributed dynamics that provably

converges to the set of solutions of this problem from any initial condition.

Motivated by the fact that saddle-point dynamics play a major role in de-

signing distributed algorithms for network optimization problem, we have studied

in detail the asymptotic stability and robustness of this dynamics. First, we have

identified a set of complementary conditions under which the trajectories of the

dynamics are proved to converge to the set of saddle points of the saddle function

and, wherever feasible, we have also established global stability guarantees and

convergence to a point in the set. These results include both cases: when the

function is convex-concave in its argument and when it is nonconvex. Next, we

considered the primal-dual dynamics (that has a projection operator on top of the

saddle-point dynamics) for a constrained concave optimization problem and estab-

lished the asymptotic convergence of its Caratheodory solutions to a primal-dual

optimizer using notions of projected dynamical systems and invariance principle for

discontinuous Caratheodory systems. Finally, we have studied the global conver-

gence and robustness properties of the projected saddle-point dynamics. We have

established global asymptotic convergence assuming only local strong convexity-

concavity of the saddle function. For the case when this strong convexity-concavity

property is global, we have identified a Lyapunov function for the dynamics. In

addition, when the saddle function takes the form of a Lagrangian of an equality

constrained optimization problem, we have established the input-to-state stability

of the saddle-point dynamics by identifying an ISS Lyapunov function, which we

have used to design a self-triggered discrete-time implementation.

For the competition between aggregators, we have formulated an inelastic

electricity market game capturing the strategic interaction between them in a bid-

based energy dispatch setting. For this game, we have established the existence

and uniqueness of the efficient Nash equilibria. We have also designed the Bid Ad-

justment Algorithm, which is an iterative strategy amenable to decentralized

implementation that provably converges to a neighborhood of the efficient Nash

equilibrium at a linear rate. We have characterized the robustness properties of
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the algorithm against disturbances, deviation in bid updates, and collusions among

generators.

10.1 Future research directions

10.1.1 Short-term plan

Robustness and energy-efficiency in distributed optimization: Distributed

solution algorithms for network optimization problems have garnered much atten-

tion lately. While many recent developments have occurred in this field, there is

still a gap between the theoretical analysis and the practical implementation of

these algorithms. Two properties (among others) that determine the practicality

of these algorithms are robustness to perturbations and efficiency in terms of the

communication burden. Robustness concerns in distributed methods arise due to

asynchronous communication, noisy channels, and packet drops. Often times, al-

gorithms work in theory (and simulations) but fail in real-life implementation due

to these drawbacks. This highlights the need for rigorous robustness analysis of the

proposed algorithms. System-theoretic tools, such as Lyapunov functions, provide

an elegant way of studying robustness. Conducting such analysis for the state-of-

the-art distributed algorithms and designing algorithms that achieve robustness

guarantees (while possibly compromising a bit on the rate of convergence) are

important future research endeavors. Communication burden of distributed algo-

rithms is a lesser studied topic. Relatively, communication requires far more energy

than computation. Fast algorithms might require a lot of communication, directly

impacting the energy requirement. Moreover, for certain problems, one might not

desire speed or accuracy but require long-term energy-efficiency. Therefore, there

is a need to propose communication-efficient algorithms. One possible way of do-

ing so is to employ triggered communication strategies to design such algorithms.

In this framework, agents run an optimization routine on their local variables and

communicate with their neighbors only when a certain criteria is met. This criteria

is designed so as to ensure monotonic evolution of a Lyapunov-like function.

Learning in multi-agent games: In relation to the competition in electricity
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market, the overall outlook for future research is to pursue the “dynamic analysis

of competition” in multiagent setting. The approach needs both the theoretical

analysis and validation from the available data. Some theoretical questions are

what other learning strategies can occur in competitive settings. Do these learning

strategies converge to some equilibrium, is that equilibrium a maximizer of social

welfare. If that is not the case, how can one change the incentives so as to align

the selfish equilibrium to the global welfare maximizing equilibrium. Pertinent to

validation, the central question to address is is there empirical evidence that agents

follow certain behavior in certain competitions, for example, bidding in electricity

markets. Some of these ideas have been explored in the are of behavioral economics.

10.1.2 Long-term plan

Delay in transportation due to traffic congestion is commonplace in modern

cities. This causes inconvenience to commuters and leads to suboptimal usage of

our much valued natural resources. One way of mitigating this problem is by

designing efficient coordination and competition among the entities interacting

in this network. For example, coordinating the infrastructure entities such as

traffic lights is expected to ease the congestion. Various coordination algorithms

have been designed for this problem and there is a continued effort in improving

them. In addition to the infrastructure units, users of this network (humans and

autonomous vehicles) immensely affect the efficiency (throughput of vehicles in

this case) of the network. The actions of users are predominantly selfish, driven

by their intention of maximizing their own welfare (that is, minimizing their travel

time). Therefore, researchers have looked into designing incentives for users such

that their selfish actions align to maximize the efficiency. An example of such

a mechanism is the real-time traffic information available to the drivers through

interactive maps. Given this context, an interesting research direction is to explore

the possibility of co-design of coordination and incentive schemes in order to realize

an efficient, agile, and resilient transportation management system. The answers to

these questions lie at the intersection of distributed algorithms, mechanism design,

and network science.
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