
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Distributed Triggered Control of Networked Cyber-Physical Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Cameron Nowzari

Committee in charge:

Professor Jorge Cortés, Chair
Professor Massimo Franceschetti
Professor Miroslav Krstic
Professor Melvin Leok
Professor Sonia Mart́ınez

2013

Copyright

Cameron Nowzari, 2013

All rights reserved.

The dissertation of Cameron Nowzari is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California, San Diego

2013

iii

EPIGRAPH

Prefer knowledge to wealth, for the one is transitory,

the other perpetual.

—Socrates

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1

1.1 Relevant work . 4

1.1.1 Discrete-event systems 4

1.1.2 Distributed algorithms 4

1.1.3 Event- and self-triggered control of networked cyber-
physical systems 6

1.2 Statement of contributions 7

1.2.1 Event- and self-triggered optimal decision making 7

1.2.2 Distributed event-triggered consensus 9

1.2.3 Distributed self-triggered optimal deployment . . 10

1.2.4 Distributed team-triggered coordination 11

1.3 Organization . 12

Chapter 2 Preliminaries . 14

2.1 Basic notation . 14

2.2 Locational optimization 15

2.2.1 Voronoi partitions 16

v

2.2.2 Facility location problem 16

2.3 Set-valued maps . 18

2.4 Graph theory . 20

2.4.1 Optimal stopping problems on Markov chains . . 21

Chapter 3 Real-time control of cyber-physical systems 23

3.1 Real-time control strategies for single plant cyber-physical
systems . 23

3.1.1 Time-triggered control 24

3.1.2 Event-triggered control 25

3.1.3 Self-triggered control 26

3.2 Real-time control strategies for networked cyber-physical
systems . 28

3.2.1 Time-triggered communication and control 30

3.2.2 Event-triggered communication and control 32

3.2.3 Self-triggered communication and control 33

Chapter 4 Event- and self-triggered servicing policies in dynamic envi-
ronments . 36

4.1 Problem statement . 38

4.1.1 Probabilistic model for target motion 40

4.1.2 Allowable control policies 41

4.1.3 Objective function 41

4.2 Optimal stopping problem formulation 42

4.2.1 Optimal stopping problem 43

4.2.2 Equivalence with the decision problem 44

4.2.3 State space reduction for the optimal stopping
problem . 46

4.3 Optimal investment decision policies 47

4.3.1 The Best Investment Algorithm 48

4.3.2 The Second Best Investment Algorithm 50

4.4 Robustness of the optimal investment policy 54

4.5 Event- and self-triggered decision algorithms 57

vi

4.5.1 Event-triggered decision algorithm 58

4.5.2 Self-triggered decision algorithm 60

4.5.3 Worst-case performance guarantees 68

Chapter 5 Event-triggered consensus . 72

5.1 Problem statement . 74

5.2 Event-triggered design 75

5.2.1 Basic algorithm design 75

5.2.2 Event-Triggered Communication and Control Law 77

5.3 Properties of the event-triggered algorithm 79

Chapter 6 Self-triggered optimal deployment 84

6.1 Problem statement . 85

6.2 Space partitions with uncertain information 87

6.2.1 Guaranteed Voronoi diagram 87

6.2.2 Dual guaranteed Voronoi diagram 89

6.3 Self-triggered coverage optimization 91

6.3.1 Motion control 92

6.3.2 Update decision policy 96

6.3.3 The Self-Triggered Centroid Algorithm 97

6.4 Convergence of synchronous executions 101

6.5 Extensions . 106

6.5.1 Maximum velocity decrease 106

6.5.2 Asynchronous executions 107

6.6 Simulations . 110

Chapter 7 Team-triggered coordination 114

7.1 Problem statement . 115

7.2 Team-triggered communication and control 116

7.2.1 Promises . 117

7.2.2 Controllers on set-valued information models . . . 119

7.2.3 Self-triggered information updates 121

7.2.4 Event-triggered information updates 123

vii

7.3 Convergence analysis of the Team-Triggered Law 124

7.4 Robustness in the presence of unreliable communication . 131

7.5 Simulations . 134

7.5.1 Optimal deployment 134

7.5.2 Formation control 137

Chapter 8 Closing remarks . 146

8.1 Conclusions . 146

8.2 Future work . 148

Bibliography . 151

viii

LIST OF FIGURES

Figure 4.1: Example network of roads. 39

Figure 4.2: State space X and transition matrix P of the optimal stopping
problem associated to the problem in Figure 4.1. 44

Figure 4.3: Example reduction from X to X̂. 48

Figure 4.4: Optimal solution to the problem described in Figure 4.1 for the
goal of interest g at Node 7, with β = 20, and cost function
f(z) = 10z. 51

Figure 4.5: Second best solution to the problem described in Figure 4.1 for
the goal of interest g at Node 7, with β = 20, and cost function
f(z) = 10z. 54

Figure 4.6: Illustration of the application of the event-triggered decision
algorithm using Proposition 4.4.3 for the problem described in
Figures 4.1-4.2. 59

Figure 4.7: Illustration of the application of the self-triggered acquisition
and decision algorithm. 68

Figure 4.8: Illustration of the application of Corollary 4.5.5 for the simple
example problem displayed in Figure 4.7. 70

Figure 6.1: Guaranteed and dual guaranteed Voronoi diagrams. 88

Figure 6.2: Graphical illustration of Lemma 6.3.1. 93

Figure 6.3: Graphical representation of tbb when ‖p − prB(q,r)(p)‖ > vmax

and ‖p− prB(q,r)(p)‖ ≤ vmax. 95

Figure 6.4: Network trajectories of a synchronous and asynchronous exe-
cution of the Self-Triggered Centroid Algorithmwith ε = 0.30,
and an execution of the time-triggered or periodic algorithm
(benchmark case). 111

Figure 6.5: Plots of the communication power P used by the network and
the value ofH at each time step of the synchronous self-triggered
execution with ε = 0.55, the synchronous self-triggered execu-
tion with ε = 0.55 also executing the maximum velocity de-
crease strategy, and the time-triggered execution (benchmark). 112

Figure 6.6: Plots of the average communication power consumption and
timesteps to convergence for the self-triggered deployment al-
gorithm . 113

ix

Figure 7.1: Executions of the time-triggered, self-triggered, and the team-
triggered implementations of the gradient-based continuous con-
troller for optimal deployment in [1]. 136

Figure 7.2: Plots of the evolutions of the objective function, the communi-
cation power consumption over time, and the total transmission
energy used for the three executions in Figure 7.1. 136

Figure 7.3: Implementation of the team-triggered strategy with varying tight-
ness of promises. 138

Figure 7.4: Trajectories of an execution of the Team-Triggered Lawwith
fixed dwell times and promises. 139

Figure 7.5: Plots of the number of self-triggered information requests made
by each agent and the evolution of the Lyapunov function for
both the self and team-triggered communication laws. 140

Figure 7.6: Plots of the number of self-triggered requests made by each
agent and the number of event-triggered messages sent (broken
promises) by each agent in an execution of the team-triggered
approach with fixed dwell times and promises. 141

Figure 7.7: Plots of the value of the Lyapunov function at a fixed time and
the total number of messages exchanged in the network by this
time for the team-triggered approach with varying tightness of
promises. 142

Figure 7.8: Plots of the total number of messages sent and the evolution
of the Lyapunov function V for executions of self-triggered ap-
proach and the team-triggered approaches with fixed promises
and dwell times, fixed promises and adaptive dwell times, adap-
tive promises and fixed dwell times, and adaptive promises and
dwell times. 143

x

LIST OF TABLES

Table 4.1: Best Investment Algorithm. 49

Table 4.2: Second Best Investment Algorithm. 52

Table 4.3: Self-Triggered Acquisition&Decision Algorithm. 66

Table 5.1: Event-Triggered Communication and Control Law. 79

Table 6.1: Motion Control Law. 96

Table 6.2: One-Step-Ahead Update Decision Policy. 97

Table 6.3: Multiple-Steps-Ahead Update Decision Policy. 98

Table 6.4: Voronoi Cell Computation. 99

Table 6.5: Self-Triggered Centroid Algorithm. 101

Table 7.1: Team-Triggered Law. 144

Table 7.2: Robust Team-Triggered Law. 145

xi

ACKNOWLEDGEMENTS

Above all else, I must begin by thanking my parents to whom I owe every-

thing I have. No matter what I do, I know I can always turn to them for support.

Even if they cannot directly help me, they will always try their best. They are the

only people I know that really just want to understand what I do on a day-to-day

basis at school, knowing full well that they will never completely get it. If you

instead asked any of my friends what I do, they would simply respond, “something

with robots.”

To Jorge, all I can say is wow, you are the sole reason I can call myself a

mathematician now. Four years ago I came to UCSD hating mathematics, expect-

ing to build robots, and not knowing what R3 meant... seriously. Since then you

have certainly helped show me how beautiful mathematics really is and I am very

grateful for it. I also want to thank you for the rigorous expectations you always

have of me. I read so many papers that make me think, “Jorge would never let

me publish something like this...” which makes me truly appreciate the level of

quality you expect of me. I am sure my leaving UC San Diego will not sever our

communication and I look forward to continue working with you in the future.

To Professors Sonia Martinez, Miroslav Krstic, Massimo Franceschetti, and

Melvin Leok, thank you for taking the time to serve on my dissertation committee.

Without your time and dedication to academia, the value of my Ph.D. would be

severely lessened.

To my friends who have come and gone throughout my life, thank you for

making my life enjoyable and worth living. Without you guys I would surely just

be an insane lab rat with no social capabilities whatsoever. Some of you I just

have absolutely no idea what I would have done without at certain points in my

life and as much as I would love to point you out by name, you know who you are.

I am very happy to be able to call you my true friends and hope you know you

can always count on me to be there for you as well.

To Mike, I can’t believe we are actually graduating... I first met you over

four years ago when I came to your office to figure out what the heck a LaTeX

xii

was and why anyone would ever use it. As I am now compiling this 170-whatever

page dissertation in LaTeX I am very glad you were always there. Whether it was

figuring out the answer to some obscure homework problem or how to deal with a

conflict on SVN, it was very comforting to know that there was someone having

the exact same problems as me at any given time.

To Bahman, thanks for everything. You may not think you have impacted

my life too much in any way, but you are one of the few people in the world that

I have a massive amount of respect for, and I don’t even know exactly why it is.

You were always willing to drop anything you were working on to help me with

my trivial mathematical problems. No matter how complex of a topic it may have

been, you were always able to break it down in such a way that even three-years-

ago-me could understand it. I am very happy that everything seems to be falling

perfectly in place for you and Rebecca, you deserve it.

To my colleagues Dean, David, Andrew, Minghui, Hamed, Solmaz, and

all the newbies. It was very nice having people I can talk to that actually know

math and understand the various technical struggles we all shared at one point or

another. I wish you all the best of luck in the future.

Lastly, I must thank Joel “deadmau5” Zimmerman. I can’t count how many

times I’ve listened to Random Album Title while working on research late into the

night, or more specifically “Not Exactly.” Some of the work in this dissertation is

certainly thanks to you.

Chapter 4 is a partial reprint of the material [2] as it appears in Self-

Triggered Optimal Servicing in Dynamic Environments with Acyclic Structure,

IEEE Transactions on Automatic Control, vol. 58, no. 5, pp. 1236-1249, 2013.

The dissertation author was the primary investigator and author of this paper.

Chapter 6 is a partial reprint of the material [3] as it appears in Self-

Triggered Coordination of Robotic Networks for Optimal Deployment, Automat-

ica, vol. 48, no. 6, pp. 1077-1087, 2012. The dissertation author was the primary

investigator and author of this paper.

Chapter 7 is a partial reprint of the material [4] as it appears in Robust

xiii

Team-Triggered Coordination of Networked Cyberphysical Systems, Lecture Notes

in Control and Information Sciences, vol. 449, Springer-Verlag, pp. 317-336, 2013.

Chapter 7, in part, has been submitted for publication of the material [5] as it

may appear in Team-Triggered Coordination for Real-Time Control of Networked

Cyberphysical Systems, IEEE Transactions on Automatic Control, Special Issue

on Cyber-Physical Systems, 2014. The dissertation author was the primary inves-

tigator and author of these papers.

xiv

VITA

2009 B. S. in Mechanical Engineering with honors, University of
California, Santa Barbara

2010 M. S in Engineering Sciences (Mechanical Engineering), Uni-
versity of California, San Diego

2013 Ph. D. in Engineering Sciences (Mechanical Engineering),
University of California, San Diego

PUBLICATIONS

Journal Publications

C. Nowzari and J. Cortés, “Team-triggered coordination for real-time control of
networked cyberphysical systems,” IEEE Transactions on Automatic Control, Spe-
cial Issue on Cyber-Physical Systems, submitted.

C. Nowzari and J. Cortés, “Self-triggered optimal servicing in dynamic environ-
ments with acyclic structure,” IEEE Transactions on Automatic Control, vol. 58,
no. 5, pp. 1236-1249, 2013.

C. Nowzari and J. Cortés, “Self-triggered coordination of robotic networks for
optimal deployment,” Automatica, vol. 48, no. 6, pp. 1077-1087, 2012.

Book Chapters

C. Nowzari and J. Cortés, “Robust team-triggered coordination of networked cy-
berphysical systems,” Lecture Notes in Control and Information Sciences, vol. 449,
Springer-Verlag, pp. 317-336, 2013.

Conference Proceedings

C. Nowzari and J. Cortés, “Team-triggered coordination of networked systems,”
American Control Conference, Washington, D.C., pp. 3827-3832, 2013.

C. Nowzari and J. Cortés, “Robust optimal decision policies for servicing targets
in acyclic digraphs,” IEEE Conference on Decision and Control, Maui, Hawaii, pp.
136-141, 2012.

C. Nowzari and J. Cortés, “Self-triggered coordination of robotic networks for
optimal deployment,” American Control Conference, San Francisco, California,
pp. 1039-1044, 2011.

xv

ABSTRACT OF THE DISSERTATION

Distributed Triggered Control of Networked Cyber-Physical Systems

by

Cameron Nowzari

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2013

Professor Jorge Cortés, Chair

As computer-controlled systems become more and more ubiquitous in to-

day’s world, the physical challenges that must be overcome to ensure their reliable

and efficient operation become extremely important. In general, controllers are

designed assuming perfect information is available at all times and actuators can

be updated continuously. When resources such as actuator power or energy con-

sumption are not factors, this is not a problem because the controller can take

samples and update the control signals fast enough so that the system behaves

as close to ideally as possible. But now as we move steadfast into the age where

xvi

we want everything to be smaller and more portable, physical constraints such as

battery life become major limiting factors to what we can achieve. Furthermore,

when considering wireless networks of cyber-physical systems, the coupled physi-

cal constraints become an even larger challenge, making it unrealistic to continue

blindly using controllers that assume ideal scenarios.

This naturally gives rise to the study of robustness of controllers. In other

words, given a system and an ideal controller, how fast must the controller sam-

ple the state and update the actuator signals such that the system behaves in

the intended way? Rather than answering the above questions directly, we are

interested in finding control strategies that account for these uncertainties at the

design stage. While it is certainly easier to design controllers for systems that have

perfect information at all times, it is just not practical in the real world.

In this dissertation we explore various existing and new methods of endow-

ing cyber-physical systems with sufficient autonomy to allow them to determine

when and what kind of information is needed to perform a given task with a de-

sired quality of service. The core of this dissertation is rooted at ideas developed

from event- and self-triggered control strategies which we apply to a variety of

different goals. We also provide a novel framework for a new method we call the

team-triggered control strategy. This strategy combines the strengths of event- and

self-triggered control and shows a lot of promise in efficiently controlling networks

of cyber-physical systems.

xvii

Chapter 1

Introduction

A growing body of work studies the design and real-time implementation

of controllers to ensure the efficient and robust operation of cyber-physical sys-

tems. In any computer-controlled system, energy consumption is correlated with

the rate at which digital sensors are taking samples, microprocessors are comput-

ing control inputs, and actuator signals are being updated. Performing these tasks

periodically is costly, might lead to inefficient implementations, or face hard phys-

ical constraints. Most importantly, performing these tasks periodically is often

unnecessary. Examples of unnecessary actions include sampling a part of the state

that is already known or can be reconstructed with the available information, or

recomputing a control signal that has not changed substantially. To address these

issues, the goal of this dissertation is to identify criteria that allow cyber-physical

systems to tune the implementation of controllers and sampling schemes to the

execution of the task at hand and the desired level of performance.

Cyber-physical systems refer to any system that control physical entities

where computation and control are tightly coupled. In networked cyber-physical

systems an extra layer of complexity is added because communication constraints

between the various components of the system must be considered as well. The

main challenge of cyber-physical systems is that the different components cannot

be designed without being aware of the capabilities of the physical system. For

instance, a controller cannot be designed for a system assuming perfect informa-

1

2

tion if the digital sensor attached to the system is noisy or information obtained

through wireless communication is delayed. Successfully operated cyber-physical

systems enjoy natural robustness against physical disturbances because they have

been designed accounting for these uncertainties right from the start. This type of

research is becoming very important as we are greatly interested in systems that

can interact with the physical world. An emerging example today is the implemen-

tation of autonomous passenger cars. Without considering all the physical inputs

that might affect an autonomous car, it will be impossible to guarantee unwanted

behavior like collision avoidance.

Regardless of the desired task, controllers are often designed assuming ideal

conditions. That is, if perfect information is available at all times and the controller

is able to apply the desired input to a system at all times, then the system is

guaranteed to achieve its task. However, due to physical constraints, it is not

possible to continuously change a control signal or have perfect information at

all times. This naturally gives rise to the study of robustness. How accurate does

information need to be, how fast does new information need to be acquired, or how

fast must control signals be recomputed to ensure the system behaves as intended?

The easiest way to deal with these issues is to simply overload the system

with as much information as possible to minimize the amount of uncertainties

present. However, this is precisely what the work in this dissertation attempts to

avoid. Rather than answering the above questions directly, we are interested in

designing different control strategies that account for these uncertainties right from

the start. While it is certainly easier to design controllers for systems assuming

perfect information at all times, it is not practical in the physical world. Many

controllers rely on periodic information that comes from either a digital sensor

or through wireless communication. Then, as long as the rate at which updated

information is obtained is high enough, the system behaves properly. These types

of periodic or time-triggered controllers were the first wave of computer-controlled

systems; however, this is often still wasteful because the controller is blindly being

fed information, regardless of whether it needs it at that time or not. Ideally, we

want a way of endowing individual cyber-physical systems with sufficient autonomy

3

to allow them to determine when and what information is needed to perform the

desired task with a desired quality of service.

This idea becomes even more important when considering networked cyber-

physical systems. As before, networked controllers are not truly implementable

over real physical systems with embedded components because they are designed

under idealistic assumptions such as continuous or periodic availability of infor-

mation. Such assumptions are unrealistic when faced with the complexity of the

cyber-physical world where the interactions between computational and physical

components are all coupled together. Furthermore, we are interested in controlling

such systems in a distributed way. This means that individual subsystems should

not be communicating with every single component of the entire system. This is

not only wasteful, but impractical as the networks become very large. Instead,

each subsystem should be able to identify which information stored in the network

is pertinent to its own operation, and only communicate with the appropriate com-

ponents. A successfully controlled cyber-physical system should be able to achieve

its objective while tolerating varying degrees of uncertainty in its knowledge of the

environment, other elements of the network, or possible adversaries. The challenge

then lies in implementing these distributed networked controllers in real time, while

preserving their guarantees about task completion and ensuring their robustness

against the multiple sources of disruption present in the physical world.

In the context of real-time control of embedded systems, approaches based

on agent triggers provide a sound solution to address these implementation issues.

In event-triggered control, the focus is on having agents determine when to take

various actions based on the information available to them. In self-triggered con-

trol, instead, the emphasis is on having agents determine when they will need up-

dated information based on the information they currently have. Event-triggered

control generally results in better performance but is not easily implementable over

fully distributed networked scenarios because of the need for continuous availability

of information to check the triggers. Self-triggered control is more easily amenable

to distributed implementation but results in conservative executions because of the

extra uncertainties that come from the lapses in information updates.

4

In this dissertation we explore how event- and self-triggered control can

be applied to various networked cyber-physical systems allowing them to be more

autonomous and self-aware. This will allow the use and acquisition of information

about the physical world to be much more efficient and reliable. We begin by

reviewing some relevant fields of research and the current state of the art. This

provides the appropriate context to better understand the novelty of the contribu-

tions of our work which is highlighted in Section 1.2.

1.1 Relevant work

While the field of cyber-physical systems is indeed very vast, our main focus

will be on how networks of cyber-physical systems should interact and communi-

cate with one another to achieve various goals. The three main areas of research

we build on are discrete-event systems, distributed algorithms, and event/self-

triggered control.

1.1.1 Discrete-event systems

Discrete-event systems are dynamical systems that are subject to the oc-

currence of events at possibly irregular time intervals [6, 7, 8]. As such, the tools

developed in this field are very useful in analyzing time-, event-, and self-triggered

control policies. The study of discrete-event systems seeks to guarantee a proper

and reliable operation, and over the years has matured with many tools to ana-

lyze stability, state boundedness, and robustness against disturbances. We rely on

many of these tools throughout the dissertation to state properties of the various

event- and self-triggered strategies proposed.

1.1.2 Distributed algorithms

The study of distributed algorithms is concerned with providing mathemat-

ical models for complex systems and networks of systems where global information

5

is not available at some central location. With many different subsystems all

carrying different amounts and even types of information, we need various tools

for precisely specifying global behaviors of a large system and being able to pro-

vide proofs of their correctness. These tools are necessary in properly modeling

the complicated interactions we see in networked cyber-physical systems. The

books [9, 10, 11, 12] provide a large overview of many different types of distributed

algorithms and their applications. More specifically, via an automata-theoretic

approach, the references [9, 13] treat distributed consensus, resource allocation,

communication, and data consistency problems which we touch on throughout

the dissertation. The hybrid models developed in [14, 15, 16, 17] provide powerful

means to formalize complex interconnected systems whose evolution is governed by

both continuous and discrete dynamics. However, these references do not address

algorithms over dynamically changing ad hoc networks with sensing, processing,

and control capabilities.

Many related works mainly consider synchronous algorithms, which again

may not be practical for a large network of cyber-physical systems. Thus, we

are interested in asynchronous algorithms that can still ensure task completion.

Asynchronous executions of coordination algorithms have been analyzed for sev-

eral tasks including cohesion control [18], task assignment [19], rendezvous [20, 21],

and consensus [22, 23]. In these works, the asynchronous time schedules on which

the agents operate are given a priori, and convergence to the desired network con-

figurations is guaranteed assuming they satisfy suitable conditions on the frequency

at which information is refreshed. This means that the problem is first solved in

an idealistic way and is then only guaranteed to work under certain conditions.

By considering all physical interactions of components in a cyber-physical system

we intend to design solutions that are catered to the specific constraints and chal-

lenges of the system being used. An underlying assumption common to all these

works is the continuous or periodic availability of information to each agent about

the states of other agents. This is precisely the assumption we seek to relax in this

dissertation by the use of event- and self-triggered control.

6

1.1.3 Event- and self-triggered control of networked cyber-

physical systems

The real-time implementation of controllers is an area of extensive research

including periodic [24, 25, 26], event-triggered [27, 28, 29, 30], and self-triggered [31,

32, 33, 34] implementations. Similar to these works, we are interested in trading

computation and decision making in exchange for less wireless communication,

sensor measurements, or actuator effort while still maintaining a desired level of

performance. Triggered controllers rely on a precise understanding of the real-

time requirements of control systems and the trade-offs between the amount of

resources allotted to a controller and the achieved performance. The reliance on

this knowledge is shared with other active areas of research, particularly the study

of control and stabilization under communication constraints [35, 36, 37, 38, 39].

The need for systems integration and the importance of bridging the gap

between computing, communication, and control in the study of cyber-physical

systems cannot be overemphasized [40, 41]. Of particular relevance to the theme

of this dissertation are works that study event- and self-triggered implementations

of controllers for networked cyber-physical systems. Earlier works in this field

have studied a single plant that is stabilized through a decentralized triggered

controller over a sensor-actuator network, see e.g. [42, 43, 44]. Fewer works have

considered scenarios where multiple plants or agents together are the subject of

the overall control design, as is the main focus of our work. Exceptions include

consensus via event-triggered [45, 46, 47, 48] or self-triggered control [49], model

predictive control [50], event-triggered optimization [51], and model-based event-

triggered control [52, 53]. The implementation of controllers for such systems poses

novel challenges beyond the ones usually considered in real-time control because of

the distributed nature of information and the lack of centralized decision making.

When designing triggered strategies, it is important to keep the controller synthe-

sis in line with the capabilities of the networked system: for instance, some of the

works mentioned above propose event-triggered control laws that rely on continu-

ous communication among neighboring agents in order to monitor the compliance

7

(or lack of) with the triggering criterium, therefore incurring similar communica-

tion costs as non-triggered strategies. In such contexts, event-triggered strategies

only make sense when the state of neighboring agents states can be sensed con-

tinuously rather than obtained through wireless communication. Even then, the

continuous acquisition of data is an unrealistic assumption to have for digital hard-

ware such as embedded microprocessors.

Since we are interested in cyber-physical systems where we use embedded

microprocessors to bear the brunt of the computing and decision making, resource

awareness and efficient implementation is a high priority. Thus, we are not only

interested in using the event- and self-triggered ideas for control, but also for

deciding when new information should be acquired whether it be through digital

sensing or wireless communication. There are numerous challenges that come when

considering such complex interconnected systems. One example is because of the

naturally asynchronous nature of agents acquiring information, these systems often

yield discontinuous trajectories. This means that often times it is not possible to

use standard stability theory and we must instead resort to more complicated

descriptions such as hybrid or set-valued models. Another common issue is to

ensure these systems do not exhibit Zeno behavior, meaning there is never an

infinite number of actions required of an agent in any finite time period. This is

especially important in the study of cyber-physical systems because this is clearly

a physical constraint that must be obeyed.

1.2 Statement of contributions

Here we highlight the contributions of this dissertation towards the efficient

control of cyber-physical systems.

1.2.1 Event- and self-triggered optimal decision making

We show how event- and self-triggered control ideas can be applied to a

class of optimal decision making problems to more efficiently make use of available

8

information. We begin by formulating a decision making problem under uncer-

tainty described over a weighted acyclic digraph. More specifically, we consider a

scenario where targets appear at a known location and move through an acyclic

directed graph to some unknown destination, possibly different for each target.

The graph is an abstraction that represents connections available to the targets

between points of interest in an environment. A group of sensors deployed over

the nodes of the network report the presence of targets to a decision maker. For

any given target, it is the job of the decision maker to identify the target’s po-

tential destination and make preparations accordingly (for instance by committing

some resources to the destination). The earlier these preparations are made, the

less resources we need. The decision maker must balance the desire to correctly

identify the target’s true destination with the amount of resources that must be

committed.

The decision making problem then corresponds to the optimization over

the set of all possible decisions of an objective function that encodes the expected

net reward associated with decision. Our contributions on this problem are three-

fold. First, we show that the proposed scenario can be formulated as an optimal

stopping problem on a Markov chain. We establish the equivalence of finding the

optimal decision policy with that of finding the optimal stopping set of this opti-

mal stopping problem. We then build on this equivalence to design algorithms that

find the optimal and second-to-optimal decision policies and characterize their cor-

rectness and time complexities. The Best Investment Algorithmand Second Best

Investment Algorithmare dynamic programming-based strategies that iteratively

solve simple sub-problems until the desired policy is found. The knowledge of

the second best control policy plays an important role in our second contribution,

which is the analysis of the robustness of the optimal solution against changing

parameters. Specifically, we obtain explicit bounds on the change of value of the

objective function caused by modifying the various parameters of the problem.

This analysis becomes vital in our third contribution, which is the development

of a sufficient condition to determine if the optimal solution of the problem re-

mains optimal as the parameters change. The condition we obtain only relies on

9

knowledge of the new parameters and the optimal and second-to-optimal decision

policies for the original parameters. Based on this analysis, we develop event-

and self-triggered policies that allow the decision maker, under partial knowledge

of the parameter dynamics, to schedule in advance when to check if the decision

policy in its memory remains optimal (and if this test fails, when to recompute

it). The availability of this algorithm yields computational savings and immediate

readiness to the decision maker. Finally, we obtain worst-case lower bounds on the

maximum time that can elapse under arbitrary parameter dynamics before the

optimal solution must be recomputed. Simulations illustrate our results.

1.2.2 Distributed event-triggered consensus

In the study of distributed multi-agent systems, a very common problem

is the task of achieving consensus. This means that all agents in the network

should all be in agreement. This has a myriad of different applications such as

mobile agents performing rendezvous or a number of sensors measuring the same

thing for a more accurate reading. In regards to this problem, we propose a

novel event-triggered broadcasting and controller update strategy that relies only

on information available to the agents. Unlike a large number of previous work,

our algorithm does not require agents to have continuous information about their

neighbors at all times, or even periodically. This fully distributed communication

and control strategy can be implemented without any a priori or online global

knowledge of the network. We show that our naturally asynchronous algorithm

still ensures that all agent states converge to the initial average of all agents given

a connected, undirected communication topology. We also show that there exists

a finite number of broadcasts and updates by each agent in any finite time period

ensuring that Zeno behavior does not occur in the system. We are also able to

characterize a lower bound on the exponential convergence rate of the algorithm.

10

1.2.3 Distributed self-triggered optimal deployment

Another useful task in the cooperative control arena is deployment or cov-

erage control. The goal is for a group of agents to evenly distribute themselves

throughout an environment, giving emphasis to locations of interest. For instance,

the group of agents could be a fleet of police cars and the environment a city. The

police cars should distribute themselves throughout the city such that the expected

time to respond to a 9-1-1 call is minimized. This means police cars should be

more densely deployed in areas of high population density or high crime rates.

This type of problem has many applications in different areas such as environmen-

tal monitoring, data collection, surveillance, and servicing.

We propose a distributed self-triggered communication and control law to

achieve optimal static deployment in a given convex environment. This strategy

is based on two building blocks. The first building block is an update policy that

helps an agent determine if the information it possesses about the other agents is

sufficiently up-to-date. This update policy is based on spatial partitioning tech-

niques with uncertain information, and in particular, on the notions of guaranteed

and dual guaranteed Voronoi diagrams. The second building block is a motion

control law that, given the (possibly outdated) information an agent has, deter-

mines a motion plan that is guaranteed to contribute positively to achieving the

deployment task. To execute the proposed algorithm, individual agents only need

to have location information about a (precisely characterized) subset of the net-

work and in particular, do not need to know the total number of agents in the

network. We establish the monotonic evolution of the aggregate objective function

encoding the notion of deployment and characterize the convergence properties of

the algorithm. Due to the discontinuous nature of the data structure that agents

maintain in our self-triggered law, the technical approach resorts to a combination

of tools from computational geometry, set-valued analysis, and stability theory. We

show that both synchronous and asynchronous executions of the propose strategy

asymptotically achieve the same optimal configurations that an algorithm with

perfect location information would, and illustrate their performance and cost in

11

simulations.

1.2.4 Distributed team-triggered coordination

In Chapter 7, rather than studying a somewhat specific class of problems,

we consider a much more general networked cyber-physical system. Without any

specific dynamics or even a goal for the agents of the system to achieve, we provide

a framework for a new method of coordinating a networked cyber-physical system.

More specifically, we propose a novel scheme for the real-time control of a net-

worked cyber-physical system that combines ideas from event- and self-triggered

control. Our approach is based on agents making promises to one another about

their future states and being responsible for warning each other if they later de-

cide to break them. Promises can be broad, from tight state trajectories to loose

descriptions of reachability sets. With the information provided by promises, in-

dividual agents can autonomously determine when in the future fresh information

will be needed to maintain a desired level of performance. The benefits of the

proposed scheme are threefold. First, because of the availability of the promises,

agents do not require continuous state information about neighbors, in contrast

to event-triggered strategies implemented over distributed systems that require

the continuous availability of the information necessary to check the relevant trig-

gers. Second, because of the extra information provided by promises about what

other agents plan to do, agents can operate more efficiently and less conservatively

compared to when worst-case scenarios are assumed, as is done in self-triggered

control. Lastly, we provide theoretical guarantees for the correctness and per-

formance of team-triggered strategies implemented over networked cyber-physical

systems. Our technical approach makes use of set-valued analysis, invariance sets,

and Lyapunov stability. We also show that, in the presence of physical sources

of error and under the assumption that 1-bit messages can be sent reliably with

negligible delay, the team-triggered approach can be slightly modified to be robust

to delays, packet drops, and communication noise. Interestingly, the self-triggered

approach can be seen as a particular case of the team-triggered approach where

12

promises among agents simply consist of their reachability sets (and hence do

not actually constrain their state in any way). We illustrate the convergence and

robustness results through simulations of a multi-agent optimal deployment prob-

lem and a multi-agent formation control problem, paying special attention to the

implementation costs and the role of the tightness of promises in the algorithm

performance.

1.3 Organization

In Chapter 2 we briefly review some preliminary mathematical notation,

tools, theories, and concepts that will be used throughout this dissertation.

In Chapter 3 we lay out the main scope of this dissertation and provide an

overview of the current state of the art.

Our contributions to the field begin in Chapter 4 where we consider a class of

optimal decision making problems. We show how event- and self-triggered control

strategies can be applied to this class of problems to make the most use out of

available information.

In Chapter 5 we shift our focus to networked cyber-physical systems. More

specifically, we consider a multi-agent consensus problem for which a novel event-

triggered communication and control law is designed.

In Chapter 6 we consider a multi-agent optimal deployment or coverage

problem. We design a self-triggered communication and control law and compare

its performance against existing, periodic communication and control laws.

In Chapter 7 we consider a much more general multi-agent problem and pro-

pose a novel coordination strategy, termed team-triggered, which combines ideas

from event- and self-triggered control. The proposed strategy is then compared

against existing self-triggered and periodic communication and control strategies

for both the deployment problem considered in Chapter 6 and a formation control

problem.

13

Finally, we gather our concluding thoughts and provide many outlets for

future research in Chapter 8.

Chapter 2

Preliminaries

In this chapter we present a brief overview of useful mathematical tools,

theories, and concepts that will be used throughout this dissertation. We begin

by presenting basic notation that will be commonly used throughout the entire

exposition. We then provide some mathematical ideas and results that will also

come in handy later.

2.1 Basic notation

Let R, R≥0, R>0, and Z≥0 denote the set of real, nonnegative real, posi-

tive real, and nonnegative integer numbers, respectively. The Euclidean distance

between two points p, q ∈ R
d is given by ‖p − q‖. Let [p, q] ⊂ R

d denote the

closed line segment with extreme points p and q ∈ R
d. Let B(p, r) = {q ∈

R
d | ‖q − p‖ ≤ r} denote the closed ball centered at p ∈ R

d with radius r and

Hpo = {q ∈ R
d | ‖q − p‖ ≤ ‖q − o‖} denote the closed halfspace determined by

p, o ∈ R
d that contains p.

Given a vector v ∈ R
d \ ∅, let unit(v) be the unit vector in the direction of

v. Given two vectors v1, v2 ∈ R
d \ ∅, we denote by ∠(v1, v2) ∈ (−π, π] the angle

between them.

Given a set S ⊂ R
d, if S is finite, we denote its cardinality by |S|. The

14

15

circumcenter ccS of a bounded set S ⊂ R
d is the center of the closed ball of

minimum radius that contains S. The circumradius cr(S) of S is the radius of this

ball. The diameter of S is diam(S) = maxp,q∈S ‖p − q‖. For a convex set S ⊂ R
d

and p ∈ R
d, prS(p) denotes the orthogonal projection of p onto S, i.e., prS(p) is

the point in S closest to p.

We let Pc(S), respectively P
cc(S), denote the collection of compact, respec-

tively compact and connected, subsets of S. Given S1, S2 ⊂ R
d, the Hausdorff

distance between S1 and S2 is

dH(S1, S2) = max{sup
x∈S1

inf
y∈S2

‖x− y‖, sup
y∈S2

inf
x∈S1

‖x− y‖}.

The Hausdorff distance is a metric on the set of all non-empty compact subsets of

R
d.

For Ai ∈ R
mi×ni with i ∈ {1, . . . , N}, we denote by diag (A1, . . . , AN) ∈

R
m×n the block-diagonal matrix with A1 through AN on the diagonal, where

m =
∑N

i=1 mi and n =
∑N

i=1 ni. We let P(d) = {(α1, . . . , αd) | αi ≥ 0, i ∈

{1, . . . , d},
∑d

i=1 αi = 1} denote the (d− 1)−simplex.

We denote by C0(S1;S2) the space of all continuous functions that map from

S1 to S2. Similarly, we let Ck(S1;S2) denote the space of all k-times differentiable

functions that map from S1 to S2.

2.2 Locational optimization

Here we cover a class of problems under computational geometry and op-

erations research known as the facility location problem. Let us start by giving an

example of why solving such a problem is important. Consider a city planner who

is given funding to build five fire departments in a large city. Where should these

fire departments be placed?

The most important factor the city planner will likely consider is expected

response time to a 9-1-1 call. Perhaps the city planner has information about

how densely populated various areas of the city are or certain regions that are

16

more or less prone to fires. Taking into account all available information, the

city planner must decide where to place these five fire departments such that the

expected response time to a 9-1-1 call that might come from anywhere in the city

is minimized.

We begin by reviewing a very useful notion known as Voronoi partitioning

before formally presenting the problem of interest along with some relevant results.

2.2.1 Voronoi partitions

The notion of Voronoi partitioning [54] plays an important role in locational

optimization and later developments. In general, Voronoi partitions can be defined

in arbitrary dimensions, but here we restrict our attention to the plane. Let S be

a convex polygon in R
2 including its interior and let P = (p1, . . . , pN) be N points

in S. A partition of S is a collection of N polygons W = {W1, . . . ,WN} with

disjoint interiors whose union is S. The Voronoi partition V(P) = {V1, . . . , VN} of

S generated by the points P is

Vi = {q ∈ S | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}.

When the Voronoi regions Vi and Vj share an edge, (i.e., they share a set of points

that is not a singleton) pi and pj are (Voronoi) neighbors. We denote the set of

neighbors of agent i by Ni.

2.2.2 Facility location problem

We introduce here a locational optimization function termed aggregate dis-

tortion [55, 10]. Consider a set of agent positions P ∈ SN . The agent performance

at q of the agent pi degrades with ‖q − pi‖
2. Assume a density φ : S → R is avail-

able, with φ(q) reflecting the likelihood of an event happening at q. Briefly going

back to the city planner and fire department example, this density can represent

the likelihood that a 9-1-1 call will be made at any location q in the city S. Thus,

the closer one of the fire departments is to the point a call is made q, the quicker

17

it can be serviced. For S ⊂ R
d, the mass and center of mass of S with respect to

φ are

mass(S) =

∫

S

φ(q)dq, cm(S) =
1

mass(S)

∫

S

qφ(q)dq.

P = (p1, . . . , pN) is a centroidal Voronoi configuration if pi = cm(Vi), for all i ∈

{1, . . . , n}.

Consider then the minimization of

H(P) = Eφ

[
min

i∈{1,...,N}
‖q − pi‖

2

]
. (2.1)

This type of function is applicable in scenarios where the agent closest to an event

of interest is the one responsible for it as is natural in the fire department example.

Other examples include servicing tasks, spatial sampling of random fields, resource

allocation, and event detection, see [10] and references therein. Interestingly, H

can be rewritten in terms of the Voronoi partition as

H(P) =
N∑

i=1

∫

Vi

‖q − pi‖
2φ(q)dq,

This suggests defining a generalization of H, which with a slight abuse of notation

we denote by the same letter,

H(P,W) =
N∑

i=1

∫

Wi

‖q − pi‖
2φ(q)dq, (2.2)

where W is a partition of S, and the ith agent is responsible of the “dominance

region” Wi. The function H is to be minimized with respect to the locations P

and the dominance regions W . The next result [55, 10] characterizes its critical

points.

Lemma 2.2.1. Given P ∈ SN and a partition W of S,

H(P,V(P)) ≤ H(P,W), (2.3)

i.e., the optimal partition is the Voronoi partition. For P ′ ∈ SN with ‖p′i −

cm(Wi)‖ ≤ ‖pi − cm(Wi)‖, i ∈ {1, . . . , N},

H(P ′,W) ≤ H(P,W),

i.e., the optimal sensor positions are the centroids.

18

Given single integrator dynamics for each agent i ∈ {1, . . . , N},

ṗi = ui,

the continuous time distributed control law,

ui = −kprop(pi − cm(Vi)), (2.4)

where kprop > 0 is a positive gain, has the following property [1].

Proposition 2.2.2 (Continuous-time Lloyd descent algorithm). For the closed-

loop system induced by equation (2.4), the agents’ locations asymptotically converge

to the set of centroidal Voronoi configurations on S.

2.3 Set-valued maps

Here we review some basic notions about set-valued maps such as continuity

and distance. We refer to [56, 57] for more details on set-valued mappings. A set-

valued map M is a mapping from one space to the power set of another. For

instance, the mapping M : Rd → P
c(Rd) is a mapping from points in R

d to all

possible compact subsets of Rd. We now state some definitions that will be useful

later for describing different set-valued maps.

Definition 2.3.1 (Outer semicontinuity). The set-valued map M : Rd → P
c(Rd)

is outer (upper) semicontinuous or closed at x ∈ R
d if for all ε ∈ (0,∞), there

exists δ ∈ (0,∞) such that M(y) ⊂ M(x) + B(0, ε) for all y ∈ B(x, δ). •

Definition 2.3.2 (Inner semicontinuity). The set-valued map M is inner (lower)

semicontinuous at x ∈ R
d if for all ε ∈ (0,∞), there exists δ ∈ (0,∞) such that

M(x) ⊂ M(y) + B(0, ε) for all y ∈ B(x, δ). •

In general, the set-valued map M is then called continuous if it is both

outer and lower semicontinuous; however, in this dissertation when we refer to a

continuous set-valued map or function we mean it in the sense of the Hausdorff

distance.

19

An alternate characterization for when a set-valued map is outer semicontin-

uous or closed is given as follows. The set-valued map M is outer semicontinuous

if the following holds: if there exist sequences {xk} and {yk} such that xk ∈ R
d

and yk ∈ M(xk) for all k ∈ Z≥0, and xk → x and yk → y, then y ∈ M(x).

Given two bounded set-valued functions C1, C2 ∈ C0(I ⊂ R;Pc(Rd)), we

define the distance between them as

dfunc(C1, C2) = sup
t∈I

dH(C1(t), C2(t)). (2.5)

Definition 2.3.3 (Weak positive invariance). Given a set-valued map M : Rd →

P
c(Rd) and a set W ⊂ R

d, we say that the set W is weakly positively invariant

with respect to M if for all x ∈ W there exists y ∈ M(x) such that y ∈ W . •

Definition 2.3.4 (Strong positive invariance). Given a set-valued map M : Rd →

P
c(Rd) and a set W ⊂ R

d, we say that the set W is strongly positively invariant

with respect to M if for all x ∈ W , M(x) ⊂ W . •

We now state a version of the LaSalle Invariance Principle for set-valued

discrete-time dynamical systems that will be very useful later [10].

Theorem 2.3.5 (LaSalle Invariance Principle for set-valued discrete-time dynam-

ical systems). Let M : X → P
c(X) be a set-valued map and X0 ⊂ X be a set of

possible initial conditions. If

(i) there exists a closed set W ⊂ X that is strongly positively invariant with

respect to M,

(ii) there exists a function V : X → R that is nonincreasing along M on W ,

(iii) all evolutions of x ∈ X starting from x ∈ X0 along M are bounded, and

(iv) M is nonempty and closed at W and V is continuous on W ,

then each evolution with initial condition in W approaches a set of the form

V −1(c) ∩ S, where c is a real constant and S is the largest weakly positively in-

variant set contained in {w ∈ W | ∃w′ ∈ M(w) such that V (w′) = V (w)}.

20

2.4 Graph theory

This section introduces basic but useful concepts from graph theory and

Markov chains. We begin with some common definitions.

Definition 2.4.1 (Weighted directed graph). A weighted directed graph or weighted

digraph is a triplet G = (V,E,A) consisting of a set vertices V , a set of edges

E ⊂ V ×V , and an adjacency matrix A ∈ R
|V |×|V |
≥0 satisfying ai,j > 0 if and only if

(vi, vj) ∈ E. Edges are directed, meaning that they are traversable in one direction

only. •

Definition 2.4.2 (Neighbors). The sets of in-neighbors and out-neighbors of v ∈ V

are respectively

N in
i = {vj ∈ V | (vj, vi) ∈ E},

N out
i = {vj ∈ V | (vi, vj) ∈ E}.

•

A vertex v is a source if N in(v) = ∅ and a sink if N out(v) = ∅. We say that

a vertex v is collapsible if |N in(v)| = |N out(v)| = 1. We let Ĝ denote the collapsed

digraph of G after performing the following operation until no collapsible vertex

exists: remove each collapsible vertex vj and replace the pair of edges (vi, vj),

(vj, vk) by an edge (vi, vk) with weight ai,j + aj,k.

A directed path p, or in short path, is an ordered sequence of vertices such

that any two consecutive vertices in p form an edge in E. Given v ∈ V , we let

R(v) and R−1(v) be the set of descendants and ancestors of v, respectively. In

other words there exists a path from v to all v′ ∈ R(v) and from all v′ ∈ R−1(v)

to v. Given a path p = (v1, . . . , vm), let

S(p) =
⋃

k∈{1,...,m}

(v1, . . . , vk)

be the set of all subpaths of p. We define the map last to extract the last vertex of

a path p, i.e., last(p) = vm. The length and weighted length of p are respectively

lgth(p) = |p| − 1 and lgthw(p) =
m−1∑

k=1

aikik+1
. (2.6)

21

Given a sink g and a path p, let lngthsw(p, g) denote the shorted weighted length

or weighted length of the shortest path from last(p) to g,

lngthsw(p, g) = min{lgthw(p′) | p′ path from last(p) to g}. (2.7)

A path that starts and ends at the same node is called a cycle. An acyclic

digraph is a digraph with no cycles. An acyclic digraph has a finite number of

paths and at least one source and sink. For a source s ∈ V , we let P(s) denote all

paths that start at s and end at a sink of the digraph. If the digraph is acyclic,

this set is finite. A rooted tree is an acyclic digraph with a vertex called the root

such that there exists a unique path from the root to each vertex. Each vertex

besides the the root has exactly one in-neighbor.

Definition 2.4.3 (Undirected graph). An undirected graph is a directed graph

such that (vi, vj) ∈ E if and only if (vj, vi) ∈ E for all i, j,∈ {1, . . . , |V |}. •

Definition 2.4.4 (Connected graph). An undirected graph is connected if for all

vi, vj ∈ V , there exists a path from vi to vj. •

We refer to the neighbors of i in an undirected graph by Ni = N out
i =

N in
i . The degree matrix D of an undirected graph G is a diagonal matrix where

dii = |Ni|. The Laplacian matrix is defined as L = D − A. For undirected

graphs the Laplacian is symmetric L = LT and positive semidefinite. If the graph

G is connected, the Laplacian has exactly one eigenvalue at 0 (with associated

eigenvector 1|V |) with the rest positive 0 = λ1(L) < λ2(L) ≤ · · · ≤ λ|V |(L), where

1|V | denotes the column vector of |V | ones.

The following property will be useful,

λ2(L)x
TLx ≤ xTL2x ≤ λ|V |(L)x

TLx. (2.8)

2.4.1 Optimal stopping problems on Markov chains

Here we introduce optimal stopping problems on discrete Markov chains.

Let X be a finite state space and P ∈ R
|X|×|X|
≥0 be a row-stochastic matrix. A

22

Markov chain starting from x0 ∈ X is a sequence of random variables {xk | k ∈

Z≥0}, where given state xk at time k, the probability that the state is xk+1 at time

k + 1 is Pxk,xk+1
. The optimal stopping problem is a triplet M = (X,P,Q), where

X and P are as described above and Q : X → R is a reward function. The value

Q(x) is the reward associated with stopping the Markov chain at state x.

Given any x0 ∈ X, let Ex0 denote the expectation of the sequence of random

variables {xk | k ∈ Z≥0} specified by M and x0. The goal of the problem is to

characterize a set of halting states Y ⊂ X that maximizes Ex0 [Q(xτ)], where

xτ ∈ Y is the first time the Markov chain enters Y , i.e., xk /∈ Y for k < τ . A

maximizer of this function is an optimal stopping set Y ∗ ⊂ X. Optimal stopping

sets can be alternatively characterized in terms of the value function V∗,

Y ∗ = {x ∈ X | Q(x) = V∗(x)},

where

V∗(x0) = max
k∈Z≥0

Ex0 [Q(xk)].

Chapter 3

Real-time control of

cyber-physical systems

In this chapter we review existing methods of implementing controllers on

cyber-physical systems. We begin by looking at various strategies for the real-

time control of single plant systems, then move on to networks of cyber-physical

systems.

3.1 Real-time control strategies for single plant

cyber-physical systems

In this section we review the various existing methods of realizing controllers

on single plant cyber-physical systems. A more detailed tutorial on event- and self-

triggered control and the current state of the art can be found in [58].

Consider a single plant with dynamics

ẋ = f(x, u),

where x ∈ R
d is the state of the plant and u ∈ R

m is the control signal. Now let a

23

24

controller u = k(x) be given such that the closed loop system

ẋ = f(x, k(x)) (3.1)

is stable. Now imagine this controller must be implemented using a microprocessor.

Clearly, continuous access to the state x and update of the control signal u = k(x)

is not feasible and thus this is an idealized controller. So how can we realize the

idealized controller u = k(x) in real time?

3.1.1 Time-triggered control

The easiest way to implement the idealized controller is to use time-triggered

or periodic control. Depending on the power and resources available to the sensor

and actuator, a sampling and control period T is chosen such that every T seconds

the state x is sampled and the control k(x) is applied. Then, rather than the ideal

closed loop dynamics (3.1), our system will be subject to

ẋ(t) = f(x(t), k(x(tℓ)), t ∈ [tℓ, tℓ+1), (3.2)

where ℓ ∈ Z≥0 and tℓ+1 − tℓ = T for all ℓ. The natural question to consider at this

point is how to choose the sampling and control period T .

For a long time the answer has simply been “small enough”. Even well

established texts like [59] suggest heuristics such as “...at least 20 times the closed-

loop bandwidth...” for choosing sampling frequency 1
T
. Intuitively this makes

sense because as the period T is chosen smaller and smaller the actual closed loop

dynamics (3.2) gets closer and closer to the idealized one (3.1).

The point of this dissertation is to argue that this periodic implementation

is wasteful as sampling the state and updating the control signals this frequently at

all times is often unnecessary. We will now explore other real-time implementation

methods that are arguably more efficient than this time-triggered control strategy.

25

3.1.2 Event-triggered control

In event-triggered control, we are interested in deciding when it is actually

necessary to update the control signal rather than updating it periodically as in

the time-triggered strategy. As before we will let {tℓ} be the sequence of times at

which the control signal is updated as given in (3.2); however, the difference now

is that in general tℓ+1 − tℓ is not constant. In fact, at time t = tℓ, it is not even

known what the next update time tℓ+1 will be. We define the error in the state

as e(t) = x(tℓ)− x(t) for t ≥ tℓ. Once the magnitude of this error |e(t)| surpasses

some threshold, an event is triggered causing the control signal to be updated and

thus the error is reset to 0. This threshold must be chosen to ensure that the

system (3.2) still behaves in the desired way, i.e., convergence to the origin.

Let us illustrate with a simple linear example,

ẋ = Ax+ Bu,

where an ideal linear control law u = Kx which renders the closed loop system

ẋ = (A+ BK)x (3.3)

asymptotically stable is available. By the above discussion, when using the event-

triggered control strategy, the actual dynamics becomes

ẋ(t) = Ax(t) + BKx(tℓ)

= (A+ BK)x(t) + BKe(t). (3.4)

Since we know that the ideal closed loop system (3.3) is linear and stable, there

exists some Lyapunov function V satisfying

V̇ ≤ −a‖x‖2 + b‖x‖‖e‖ (3.5)

for some constants a, b > 0. If we could then enforce that

‖e‖ ≤ σ
a

b
‖x‖ (3.6)

for some σ ∈ (0, 1), then (3.5) can be bounded by

V̇ ≤ −(1− σ)a‖x‖2 < 0

26

for all ‖x‖ 6= 0. To ensure that (3.6) is enforced at all times, the natural event-

trigger is then

‖e‖ = σ
a

b
‖x‖. (3.7)

Whenever (3.7) is satisfied, the control signal should be updated and the error will

be reset to 0. An important question to ask now is how can we ensure that the time

between updates tℓ+1 − tℓ is large enough so that it is actually implementable by

the physical microprocessor? Or even worse, how do we know the sequence times

between updates tℓ+1 − tℓ is not going to 0, i.e., Zeno behavior does not occur?

These are very valid questions that have positive answers but we do not enter into

here. We refer to [29, 58] for further details regarding these questions.

The event-triggered controller proposed above indeed solves the problem of

the actuator signal only being updated when necessary rather than periodically;

however, there is still the issue of how the sensor gathers information. In this

case, in order to check the trigger (3.7), continuous information about the state x

is required at all times which is still a problem. One solution is to use periodic

samples with the event-triggered controller and only check the trigger (3.7) when

information is available but then we still have all the same issues we had before

when discussing time-triggered control, namely how small does this period need to

be to ensure stability? Instead, we now review another real-time implementation

strategy known as self-triggered control which is a solution to this problem.

3.1.3 Self-triggered control

In self-triggered control, we are interested not only in deciding when the

control signal should be updated, but also when to sample the state. As before we

let {tℓ} be the sequence of sampling times at which the control signal is updated as

given in (3.2); however, the difference now is that the state x(t) is not even available

in between sampling times t ∈ (tℓ, tℓ+1). This means that at time tℓ, given the

current state x(tℓ), we must design a function τ : Rd → R≥0 that determines both

the next time the state is sampled and the control signal is updated. Formally, the

next sampling and control update time is then given by tℓ+1 = tℓ + τ(x(tℓ)).

27

Consider again the linear example with the idealized closed loop dynam-

ics (3.3). In this simple linear example with no disturbances, we can quite easily

implement the event-triggered control update strategy of the previous section in

a self-triggered way. Given an update at time tℓ, we can simply integrate (3.4) to

find

x(t) = e(A+BK)(t−tℓ)x(tℓ) +

∫ t

tℓ

e(A+BK)(t−τ)BKe(τ)dτ,

= e(A+BK)(t−tℓ)x(tℓ) +

∫ t

tℓ

e(A+BK)(t−τ)BK(x(τ)− x(tℓ))dτ,

for t ≥ tℓ. Given the deterministic nature of this setup, the controller can then

compute at time tℓ exactly the time tℓ+1 at which the event-trigger (3.7) defined in

the previous section will be satisfied. This gives rise to the exact same performance

as before where the control signal is only updated in necessary but now the state

does not even need to be sampled at all times.

Of course this is a trivial example since a fully open-loop controller could

also work in this case, but this idea can also be extended to the case with un-

known disturbances also affecting the system. In this scenario the event-triggered

controller would likely outperform the self-triggered controller because the self-

triggered controller will have to compute the next sampling and update time

conservatively to ensure stability, whereas the event-triggered control has more

information about the true state of the plant when deciding if the control signal

should be updated or not.

Here we have shown how event- and self-triggered control strategies can be

applied to a single plant system being controlled by a microprocessor to bring to

fruition more efficient real-time realizations of an ideal control law. The rest of

this dissertation focuses on how to take these strategies and apply them to more

complex situations such as how to implement distributed controllers for networked

cyber-physical systems.

28

3.2 Real-time control strategies for networked

cyber-physical systems

In the previous section we have only focused on how to implement con-

trollers on single plant cyber-physical systems in real time. We now turn our at-

tention to wirelessly networked cyber-physical systems. In these systems we have

many different subsystems or agents that are working together in a distributed

way to achieve some global task. Each agent is only allowed to share information

with a subset of all the agents through wireless communication. Since informa-

tion is obtained through wireless communication, it is even more important in this

scenario to minimize the amount of information agents require while still ensuring

that the global task can be achieved. We begin by posing a general problem and

reviewing the existing methods of realizing ideal controllers in real-time.

We consider a distributed control problem carried out over a wireless net-

work. Consider N agents whose communication topology is described by an undi-

rected graph G. The fact that (i, j) belongs to E models the ability of agents i

and j to communicate with one another. The set of all agents that i can com-

municate with is then given by its set of neighbors N (i) in the graph G. The

state of agent i ∈ {1, . . . , N}, denoted xi, belongs to a closed set Xi ⊂ R
ni . The

network state x = (x1, . . . , xN) therefore belongs to X =
∏N

i=1 Xi. We denote by

xiN = (xi, {xj}j∈N (i)) the state information about agents i and all its neighbors

j ∈ N (i). According to the discussion above, agent i can access xiN when it com-

municates with its neighbors. We assume that each agent has access to its own

state at all times.

For simplicity, we consider linear dynamics for each agent i ∈ {1, . . . , N},

ẋi = fi(xi, ui) = Aixi + Biui, (3.8)

with Ai ∈ R
ni×ni , Bi ∈ R

ni×mi , and ui ∈ Ui. Here, Ui ⊂ R
mi is a closed set of

allowable controls for agent i. We assume that the pair (Ai, Bi) is controllable with

controls taking values in Ui for all i ∈ {1, . . . , N}. Letting u =
(
uT1 , . . . , u

T
N

)T
∈

29

∏N
i=1 Ui, the dynamics of the entire network can be described by

ẋ = Ax+ Bu, (3.9)

with A = diag (A1, . . . , AN) ∈ R
n×n and B = diag (B1, . . . , BN) ∈ R

n×m, where

n =
∑N

i=1 ni, and m =
∑N

i=1 mi.

The goal of the network is to drive the agents’ states to some desired closed

set of configurations D ⊂ X and ensure that it stays there. Depending on how the

set D is defined, this objective can capture different coordination tasks, including

deployment, consensus, formation control, etc. The objective here is not to design

the controller that achieves this, but rather synthesize efficient strategies for the

real-time implementation of a given idealized controller.

Given the agent dynamics, the communication graph G, and the set D,

our starting point is the availability of a continuous distributed control law that

drives the system asymptotically to D. Formally, we assume that a continuous

map u∗ : X → R
m and a continuously differentiable function V : X → R, bounded

from below, exist such that D is the set of local minimizers of V and, for all x /∈ D,

∇iV (x) (Aixi + Biu
∗
i (x)) ≤ 0, i ∈ {1, . . . , N}, (3.10a)

N∑

i=1

∇iV (x) (Aixi + Biu
∗
i (x)) < 0. (3.10b)

We assume that both the control law u∗ and the gradient ∇V are distributed over

G. By this we mean that, for each i ∈ {1, . . . , N}, the ith component of each of

these objects only depends on xiN , rather than on the full network state x. For

simplicity, and with a slight abuse of notation, we write u∗
i (x

i
N) and ∇iV (xiN) to

emphasize this fact when convenient. This property has the important consequence

that agent i can compute u∗
i and ∇iV with the exact information it can obtain

through communication on the graph G.

From an implementation viewpoint, the controller u∗ requires continuous

agent-to-agent communication and continuous updates of the actuator signals,

making it unfeasible for cyber-physical systems. The time-, event-, and self-

triggered communication and control strategies that we review next represent dif-

30

ferent approaches to address the issue of selecting the time instants when infor-

mation is acquired in such a way that the resulting implementation still enjoys

certificates on correctness and performance similar to those of the idealized con-

tinuous control law.

As we saw in Section 3.1, the basic general idea is to design implementations

that guarantee that the time derivative of the Lyapunov function V along the

solutions of the network dynamics is less than or equal to 0 at all times, even when

the information used by the agents is inexact.

3.2.1 Time-triggered communication and control

The simplest way to relax the continuous communication requirement is

to use a time-triggered or periodic strategy where agents communicate with one

another at regular intervals defined by a constant period T ∈ R≥0. In such a case,

each agent i ∈ {1, . . . , N} keeps an estimate x̂ij of the state of each of its neighbors

j ∈ Ni. Let t0 be the initial time at which agent i receives updated information

from its neighbors. All update times are then given by tℓ = t0 + Tℓ, for ℓ ∈ Z≥0.

In between updates, the simplest estimate is the zero-order hold given by

x̂ij(t) = xj(tℓ), t ∈ [tℓ, tℓ+1). (3.11)

Recall that agent i always has access to its own state. Therefore, x̂iN (t) =

(xi(t), {x̂
i
j(t)}j∈N (i)) is the information available to agent i at time t.

Since agents do not have access to exact information at all times, they

cannot implement the controller u∗ exactly, but instead apply the ideal control law

to their estimates

uper
i (t) = u∗

i (x̂
i
N (t)). (3.12)

The time derivative of the Lyapunov function along the trajectories of (3.9) with

u = uper is

d

dt
V (x(t)) =

N∑

i=1

∇iV (xiN (t)) (Aixi(t) + Biu
per
i (t)) . (3.13)

31

Because of the definition of the periodic controller uper, at the times tℓ when

the information available to the agents is exact (i.e., x̂iN (tℓ) = xiN (tℓ) for all i ∈

{1, . . . , N}), the inequality (3.10b) implies that d
dt
V (x(tℓ)) < 0 for all x(tℓ) 6∈ D.

Then, during the time interval t ∈ (tℓ, tℓ+1), as the errors ‖x̂ij(t) − xj(t)‖ begin

to grow for each i ∈ {1, . . . , N} and j ∈ Ni, it becomes harder to guarantee

d
dt
V (x(t)) < 0. The communication period T must be chosen small enough such

that (3.13) remains less than 0 at all times. A method of how T can be chosen is

discussed in the following remark.

Remark 3.2.1 (Choosing T for the time-triggered communication strategy). The

following can be used to implicitly find the largest possible period of communi-

cation T that still guarantees d
dt
V (x(t)) < 0 at all times t. Letting t0 be some

time at which all agents receive updated information, the period can be found by

computing the largest possible T ∗ such that for all x(t0) ∈ X \D,

d

dt
V (x(t)) =

N∑

i=1

∇iV (xiN (t0 + T ∗)) (Aixi(t0 + T ∗) + Biu
per
i (t0)) < 0,

for t ∈ [t0, t0 + T ∗). Depending on the set D, it may be that T ∗ = 0, meaning

continuous communication is required to converge all the way to D. •

There are several potential shortcomings of this method. First, computing

the period requires information about the whole network state and hence cannot be

determined in a distributed way. Second, the period must be valid regardless of the

network state, meaning it must be small enough to capture worst-case scenarios.

In some scenarios, as pointed out in Remark 3.2.1, the procedure of taking the

infimum over all possible network states might give rise to a vanishing period.

Third, even if this is not the case, the choice of a period that is valid for worst-case

scenarios makes it much smaller than it needs to be in general. This may give rise

to inefficient implementations where information is refreshed at a much faster rate

than necessary. The underlying synchronicity assumption necessary to implement

this periodic controller in general also requires extra layers of effort in practical

implementations.

32

3.2.2 Event-triggered communication and control

Instead of using a fixed time period at which agents communicate for new

information or update their control laws, event-triggered strategies seek to identify

the time instant when this is necessary based on the current network configuration.

Let tlast be the last time at which all agents have received information from their

neighbors. The difference with the periodic approach is that, the next time tnext

at which an update should occur is not known a priori. Until then, agent i ∈

{1, . . . , N} uses the zero-order hold estimate and control

x̂ij(t) = xj(tlast), uevent
i (t) = u∗

i (x̂
i
N (tlast)),

for t ∈ [tlast, tnext). The time tnext at which an update becomes necessary is deter-

mined by the first time after tlast that the time derivative of V along the trajectory

of (3.9) with u = uevent is no longer negative. Formally, the event for when agents

should communicate with one another is the first time tnext > tlast such that

d

dt
V (x(tnext)) =

N∑

i=1

∇iV (x(tnext))
(
Aixi(tnext) + Biu

event
i (tlast)

)
= 0. (3.14)

Two reasons may cause (3.14) to be satisfied. One reason is that the zero-order hold

control uevent(t) for t ∈ [tlast, tnext) has become too outdated, causing an update at

time tnext. Until (3.14) is satisfied, it is not necessary to update state information

because inequality (3.10b) implies that d
dt
V (x(tlast)) < 0 for all x(tlast) /∈ D given

that all agents have exact information at tlast, and thus d
dt
V (x(t)) < 0 for t ∈

[tlast, tnext) by continuity of d
dt
V (x). The other reason is simply that x(tnext) ∈ D

which means the system has reached its desired configuration.

Unfortunately, (3.14) cannot be checked in a distributed way because it

requires global information. Instead, one can define a local event that implicitly

defines when a single agent i ∈ {1, . . . , N} should update its information. Letting

tilast be some time at which agent i receives updated information from its neighbors,

tinext ≥ tilast is the first time such that

∇iV (x(tinext))
(
Aixi(t

i
next) + Biu

event
i (tilast)

)
= 0. (3.15)

33

This means that as long as each agent i can ensure the local event (3.15) has

not yet occurred, it is guaranteed that (3.14) has not yet occurred either. The

shortcoming of this approach is that each agent i ∈ {1, . . . , N} needs to have con-

tinuous access to information about the state of its neighbors xiN in order to eval-

uate ∇iV (x) = ∇iV (xiN) and check condition (3.15). This requirement may make

the event-triggered approach impractical when this information is only available

through wireless communication. As we discussed in Section 3.1.2, it is possible to

implement event-triggered control updates with periodic samples/communication

and only check the trigger (3.15) when information is available. However, as be-

fore we still have all the same issues we had before when discussing time-triggered

communication and control, namely how small does the sampling/communication

period need to be to ensure stability?

This does not mean that event-triggered communication is impossible in

this setup but requires some more thought to implement. We will address this

later and give an example of how it can be done in Chapter 5.

3.2.3 Self-triggered communication and control

The self-triggered approach seeks to identify criteria that can be checked

autonomously by each individual agent in order to decide at what time in the future

updated information will be required. To achieve this, the basic idea is to come

up with a way to check the test (3.15) without the requirement on continuous

availability of information by utilizing the inexact information available to the

agents about the state of their neighbors. To do so, we begin by introducing the

notion of reachability sets. Given y ∈ Xi, let Ri(s, y) be the reachable set of points

under (3.8) starting from y in s seconds,

Ri(s, y) = {z ∈ Xi | ∃ui : [0, s] → Ui such that z = eAisy +

∫ s

0

eAi(s−τ)Biui(τ)dτ}.

Assuming here that agents have exact knowledge about the dynamics and control

sets of its neighboring agents, each agent can construct, each time state information

is received, sets that are guaranteed to contain their neighbors’ states. Formally,

34

if tlast is the time at which agent i receives state information xj(tlast) from each of

its neighbors j ∈ N (i), then the set

Xi
j(t) = Rj(t− tlast, xj(tlast)) ⊂ Xj (3.16)

is guaranteed to contain xj(t) for all t ≥ tlast. We refer to these sets as guaranteed

sets. We denote by Xi
N (t) = (xi(t), {X

i
j(t)}j∈Ni

) the information available to an

agent i at time t.

Remark 3.2.2 (Modeling uncertainties). In the case of modeling uncertainties or

if each agent i does not know exactly the dynamics of its neighbors j ∈ Ni, the

reachable set Rj(s, y) can be replaced by any other time-varying set R̂j(s, y) that

contains Rj(s, y) for all s ≥ 0. •

With the guaranteed sets in place, we can now provide a test for when

new information should be obtained that can be checked with inexact information.

Let tilast be the last time at which agent i received updated information from its

neighbors. Until the next time tinext information is obtained, agent i uses the

zero-order hold estimate and control

x̂ij(t) = xj(t
i
last), uself

i (t) = u∗
i (x̂

i
N (tilast)),

for t ∈ [tilast, t
i
next) and all j ∈ Ni. At time tilast, agent i computes the next time

tinext ≥ tilast at which information should be acquired via

sup
yN∈Xi

N (tinext)

∇iV (yN)
(
Aixi(t

i
next) + Biu

self
i (tilast)

)
= 0. (3.17)

By (3.10a) and the fact that Xi
j(t

i
last) = {xj(t

i
last)} at time tilast for all j ∈ Ni, we

have

sup
yN∈Xi

N (tilast)

∇iV (yN)
(
Aixi(t

i
last) + Biu

self
i (tilast)

)

= ∇iV (xiN i(tilast))
(
Aixi(t

i
last) + Biu

self
i (tilast)

)
≤ 0.

If all agents use the triggering criterium (3.17) for when to acquire updated in-

formation from their neighbors, it is guaranteed that d
dt
V (x(t)) ≤ 0 at all times

35

because, for each i ∈ {1, . . . , N}, the true state xj(t) is guaranteed to be in Xi
j(t)

for all j ∈ Ni and t ≥ tilast.

The condition (3.17) is appealing because it can be solved by agent i with

the information it possesses at time tilast. Once determined, agent i schedules that,

at time tinext, it will request updated information from its neighbors. The term

self-triggered captures the fact that each agent is now responsible for deciding

when it requires new information. We refer to tinext − tilast as the self-triggered

request time of agent i ∈ {1, . . . , N}. Due to the conservative way in which tinext

is determined, it is possible that tinext = tilast for some i, which would mean that

continuous information updates are necessary (it should be noted that this cannot

happen for all i ∈ {1, . . . , N} unless the network state is already in D). This is

certainly a problem as this type of Zeno behavior cannot occur in cyber-physical

systems which compromises the integrity of the network. We do not enter into the

details of this here, but instead defer the discussion to Chapters 6 and 7.

The problem with the self-triggered approach is that the resulting times are

often conservative because the guaranteed sets can grow large quickly as they cap-

ture all possible trajectories of neighboring agents. It is conceivable that improve-

ments can be made from tuning the guaranteed sets based on what neighboring

agents plan to do rather than what they can do. This observation is at the core of

the team-triggered approach proposed in Chapter 7. Before that, we go into more

detail on how to utilize the event- and self-triggered strategies described in this

chapter for specific problems.

Chapter 4

Event- and self-triggered servicing

policies in dynamic environments

In this chapter we apply the event- and self-triggered control strategies to

an optimal decision making problem to show the versatility of these ideas. More

specifically, we consider a scenario where targets appear at a known location and

move through an acyclic directed graph to some unknown destination, possibly

different for each target. The graph is an abstraction that represents connections

available to the targets between points of interest in an environment. A group of

sensors deployed over the nodes of the network report the presence of targets to a

decision maker. Depending on the target destination, different actions should be

carried out. For any given target, it is the job of the decision maker to identify the

target’s potential destination and make preparations accordingly (for instance by

committing some resources to the destination). The earlier a decision is made, the

less costly it is to take action as more time is available before the target’s arrival;

if however the decision to act was made later, it will be more costly as less time

is available to prepare for the target’s arrival. The decision maker must balance

the desire to correctly identify the target’s true destination with the amount of

resources that must be committed.

This type of decision problem appears in a variety of scenarios including

supply chain management, resource allocation, queuing, servicing problems, and

36

37

pursuit-evasion games on road networks. For example, in queuing, targets can be

thought of as heterogeneous tasks that travel through a network of nodes where

different skills exist for identifying task features. The edge weights represent the

time it takes the corresponding node to examine the task against a specific feature.

The task release controller must make a decision on the task type and, based on

this decision, assign it to someone. The earlier a task is assigned, the higher the risk

that it was assigned incorrectly. Similarly, in supply chain management, targets

can be thought of as customer demands that must be met by a specific deadline.

The supervisor must make decisions as to how much supply of different products

to purchase ahead of time to meet customer demand while overstocking as little

as possible. In this scenario, the earlier the purchase of a product is made, the

lower the price of the product while the higher the uncertainty in the demand. On

the other hand, if the supervisor puts off placing orders to more accurately gauge

customer demand, the cost of rushing products to customers may have increased.

This setup can again be modeled as a target moving through a graph where nodes

represent different customer demands at a specific instances of time before the

deadline and edge weights represent elapsed time.

The subject matter of the problem considered here is optimal decision mak-

ing under uncertainty, and has connections with Markov decision processes, op-

timal stopping, and dynamic programming. A discussion of current techniques

and challenges related to optimization problems under uncertainty is documented

in [60]. Common to almost all these problems is some sort of stochastic dynamic

programming solution, see [61, 62, 63]. For a specific class of utility functions,

simpler solutions can be found [64]. Interestingly, the problem we pose can be

cast as an optimal stopping problem on a rooted directed tree for which we can

find an algorithmic solution that scales with the size of the state space. The

works [65, 66, 67] present a broad exposition of optimal stopping problems and

their applications. For a specific family of optimal stopping problems on Markov

chains, [68] establishes existence of solutions and [69] reviews methods to solve

them. We refer to [70, 71] for an exposition of the general discrete time and space

problem which also introduce a technique called the Elimination Algorithm. This

38

technique finds the optimal solution faster than standard methods by eliminating

states from the search that are guaranteed not to belong to the optimal stopping

set.

In the context of sensor networks, [72] considers an optimal stopping prob-

lem on a hidden Markov chain where the objective is to detect the presence of

a target on a line graph with noisy sensor measurements. A variation is consid-

ered in [73], where an additional decision can be made at each timestep to pay

for perfect information or not. In the context of optimal investments and task

servicing, [74] considers the problem of finding optimal controls at each timestep

given stochastic observations whose objective is to steer the target towards a de-

sired goal; however, the algorithms that find the optimal solutions are usually not

scalable with the size of the problem. To this point, some papers such as [75, 76]

study heuristic approaches to find suboptimal control policies and reduce compu-

tation time. We also make a mention here to robust Markov decision problems, in

which the probability distributions themselves are uncertain [77]. The notion of

robustness that we consider in this paper is different from that of robust stochastic

programming problems in the literature. Normally, as presented in [77], robust-

ness is a term attached to an algorithm and conditions for which it can still find

the optimal solution. In this paper, we instead analyze the robustness of solu-

tions, i.e., once the optimal solution to the problem has been found, we determine

conditions under which the optimal solution does not change. Finally, our exposi-

tion is also connected to the increasing body of work on self-triggered control, see

e.g. [32, 34, 31, 3], that reduces computation, decision making, and implementation

efforts while still guaranteeing a desired level of performance.

4.1 Problem statement

Here we formulate the problem we are interesting in solving. We begin

with an informal description of the basic elements and modeling assumptions,

then formally describe the problem.

39

Consider a network of roads described by a weighted acyclic digraph G =

(V,E,A) with a single source s and a set of sinks S. Assume targets appear at

the source and head towards one of the goals in S, see Figure 4.1. The weight of

an edge can be interpreted as a measure of the cost it takes a target to traverse

it (e.g., larger weights correspond to longer times or higher energy cost). Sensors

deployed over the graph nodes transmit information about target positions to a

decision maker who must decide whether or not to start preparing for the arrival

of the target at a goal by committing some resources to it. We refer to this action

as ‘making an investment.’

1

2 3

4 5 6

7

8 9

10

Figure 4.1: Example network of roads modeled as a weighted acyclic digraph.

All edge weights are equal to 1. There are 8 paths starting at the source (node 1)

and ending at a sink (either node 7 or 10). The probabilities associated to these

paths are given by the vector α = [.05, .1, .15, .2, .05, .1, .15, .2].

Since the destination of each target is unknown, the decision maker must

decide when, if ever, to invest in any given goal in anticipation of a target’s arrival.

Our model specifies that the larger the gap between the investment decision time

and the target’s arrival time, the less costly it is to make an investment for that

goal; however, if an investment is made and the target actually ends up at a

different goal, the investment is wasted. Once a decision to invest has been made,

it cannot be retracted and thus the cost of investing is incurred immediately.

40

4.1.1 Probabilistic model for target motion

The exact way a target T chooses its path along the digraph G is unknown

to the decision maker, who instead uses the probabilistic model described next.

Let pT ∈ P(s) denote the (unknown to the decision maker) path of T in G. The

set of trajectories that can be observed by the decision maker as T moves through

G is precisely S(pT). Therefore, the set of all possible trajectories the decision

maker may observe is

H(G) =
⋃

p∈P(s)

S(p).

Let n = |P(s)| and assign labels {1, . . . , n} to the paths in P(s). Let α ∈ P(n)

be a probability vector, where αµ is the probability that target T takes path µ,

i.e., pT = pµ. Such probabilities can be computed in a number of ways, including

incorporating observations about trajectories from past targets, but we do not

enter into this here. Note that this model is more general than a Markov chain

model on the graph (where the target’s motion only depends on its current state).

According to this model, the decision maker can infer a target’s future

actions as it moves through the network. In fact, given history h ∈ H, let Ind(h) =

{µ ∈ {1, . . . , n} | h ∈ S(pµ)} denote the set of indices corresponding to the paths

that the target could possibly be on. Any path in Ind(h) is indistinguishable,

i.e., consistent with having observed the history h. Then, the decision maker can

compute the probability that pT = pµ given observation h,

P(pT = pµ|h) =





αµ∑
ν∈Ind(h) αν

, if µ ∈ Ind(h),

0, otherwise.

Using this model, the decision maker can compute the probability that the target

will eventually go to a vertex v ∈ V or another history h′ ∈ H, as follows,

P(v|h) =
∑

{µ∈{1,...,n} | v∈pµ}

P(pT = pµ|h),

P(h′|h) =
∑

{µ∈{1,...,n} | h′∈S(pµ)}

P(pT = pµ|h).

41

Both notions will be used throughout the paper. Note that these will evaluate to

1 if the target vertex or history is already in h and 0 if they are not reachable from

h.

4.1.2 Allowable control policies

As targets move through the digraph, the decision maker must decide at

each timestep, for each goal, whether an investment should be made or not. For

simplicity of presentation and without loss of generality, the paper considers in-

vestment decisions for one specific goal g (in the case of multiple goals, our policies

can then be applied to each one of them). We suppress the dependence on g when

it is clear from the context. A control strategy is then a map

u : H → {invest, not-invest}

that specifies, for a target with history h ∈ H, a decision to u(h) in goal g ∈ S.

The set of all allowable control policies is denoted by U . Throughout the paper we

consider control strategies that prescribe at most one investment along any given

path. The reason for this is that once an investment is made for a goal, it does

not make sense to make further investments at the same goal. Formally, for each

p ∈ P(s), u(h) = invest for at most one h ∈ S(p). If such a history exists, we

denote it by hu(p), otherwise we set hu(p) = ∅. We let Invu = ∪µ∈{1,...,n}{hu(pµ)}

be the set of all possible investment histories for policy u.

4.1.3 Objective function

Our next step is to define the objective function that the decision maker

seeks to optimize. To this end, we present a model for the cost of investment and

the reward obtained for making the investment. Recalling the definition of the

shortest weighted length (2.7), the cost of investing in goal g for a target with

history h ∈ H is

c(h) = f
(

1
lngthsw(h,g)

)
,

42

where f : R≥0 → R≥0 is a class K function, i.e., continuous, monotonically increas-

ing, and satisfies f(0) = 0. Note that the longer the weighted length of the shortest

path from last(h) to g, the smaller the cost. The reward for correctly preparing

for a target’s arrival at g is modeled by a parameter β ∈ R≥0. The reward accrued

using control policy u is then

Ru(pT) =




β, if last(pT) = g and hu(pT) 6= ∅,

0, otherwise.

Since the target’s path is unknown a priori, this reward is not known when the

target is at history hu(pT) ∈ Invu. Instead, we define an expected reward using

the probabilistic model,

Ehu(pT)[Ru(pT)] = βP(g|hu(pT)).

Now, maximizing Ehu(pT)[Ru(pT)] − c(hu(pT)) is the job of the decision maker.

Since the path of the target is unknown, the objective function of the decision

problem is then the expected value of this expression over all possible paths,

J(u) = Es

[
Ehu(pT)[Ru(pT)]− c(hu(pT))

]
,

=
∑

h∈Invu

P(h| s) (βP(g|h)− c(h)) . (4.1)

4.2 Optimal stopping problem formulation

Here, we formulate an optimal stopping problem and establish its equiv-

alence with the decision problem described in Section 4.1. Specifically, for the

goal of interest g ∈ S, we identify a corresponding optimal stopping problem

Minv = (X,P,Q). The advantage of the reformulation is that the target motion

is Markov on Minv, whereas in general is not for the original investment problem.

The optimal stopping formulation also allows us to establish the existence of an

optimal solution and sets the basis for our algorithm design.

43

4.2.1 Optimal stopping problem

According to the probability model for target motion discussed in Sec-

tion 4.1.1, at any given time, the evolution of a target along G depends on the full

history of vertices visited by the target prior to reaching the current vertex. For

this reason, we choose as the state space of the optimal stopping problem the set

X = H(G) of all possible target trajectories in G, rather than the set of vertices V .

Note that X is a rooted tree with the source s as the root. Each node corresponds

to a path in G whose unique parent is the subpath obtained by removing the last

vertex. The cardinality of X depends on the graph’s adjacency matrix A and is

upper bounded by

|X| ≤ 1 +
∑

p∈P(s)

lgth(p),

where the summand 1 corresponds to the history s. In the worst case, i.e., when

A is a strictly upper triangular matrix containing nonzero elements, one has |X| =

2|V |−1.

We define the one-step transition matrix P ∈ R
|X|×|X|
≥0 ,

Px,y =





P(y| x), if x ∈ S(y), lgth(y) = lgth(x) + 1,

0, otherwise,

for x, y ∈ X. With the definitions of X and P , the target motion now corresponds

to a Markov chain on the space of histories with initial condition s. Figure 4.2

shows the rooted tree X with edge weights given by P for the weighted acyclic

digraph depicted in Figure 4.1.

The last element of the optimal stopping problem is the reward function Q

that we define by

Q(x) = βP(g| x)− c(x). (4.2)

The first term corresponds to the expected reward obtained from investing in goal

g at state x ∈ X and the second term corresponds to the cost of making this

investment.

44

 0.5
 0.5

 0.3 0.7 0.3
 0.7

 0.333
 0.667 0.429 0.571 0.333 0.667 0.429

 0.571

 1 1 1 1 1 1

1

1 2 1 3

1 2 4 1 2 5 1 3 5 1 3 6

1 2 4 7

1 2 4 8 1 2 5 8 1 2 5 9 1 3 5 8 1 3 5 9 1 3 6 9

1 3 6 10

1 2 4 8 7 1 2 5 8 7 1 2 5 9 10 1 3 5 8 7 1 3 5 9 10 1 3 6 9 10

Figure 4.2: State space X and transition matrix P of the optimal stopping

problem associated to the problem in Figure 4.1. Each node represents a history

h ∈ H. Note that all the sinks of this tree correspond to a sink of the original

digraph.

With the optimal stopping problem Minv = (X,P,Q) properly defined, the

next result follows from [66, Chapter 3] and the fact that X is finite.

Lemma 4.2.1 (Existence of optimal stopping set). For Minv = (X,P,Q) con-

structed as above,

(i) there exists an optimal stopping set Y ∗ ⊂ X, and

(ii) no randomized stopping rule can do better than stopping the first time the

state is in Y ∗.

4.2.2 Equivalence with the decision problem

Here, we establish the equivalence of the optimal stopping problem on a

Markov chain Minv with the decision problem described in Section 4.1. To do so,

we need a mapping that relates a halting set Y for the optimal stopping problem

to a control policy u for the decision problem and vice versa. This is accomplished

by introducing the notion of reduced halting subset of a halting set Y for a given

45

initial condition x0 as

Yx0 = {x ∈ Y ∩R(x0) | y /∈ Y for y ∈ R−1(x)}.

This set is composed of all the states in Y that can be reached first by a Markov

chain starting from x0. In other words, the Markov chain cannot reach states in

Y \ Yx0 without passing through a state in Yx0 . This set has the property that

Ex0 [Q(xτ)] = Ex0 [Q(xτ ′)],

where xτ and xτ ′ are the first times the Markov chain enters Y and Yx0 , respectively.

A halting set Y is minimal from x0 if it satisfies Yx0 = Y . To a halting set Y ⊂ X,

we then associate the control policy uY given by

uY (x) =




invest, if x ∈ Ys,

not-invest, otherwise.
(4.3)

Conversely, to a control policy u, we associate the halting set Invu. Note that Invu

is minimal from s because of the defining properties of allowable control policies.

We can now draw the connection between the optimal stopping problem and the

problem posed in Section 4.1.

Proposition 4.2.2 (Equivalence with the investment decision problem). Given an

optimal stopping set Y ∗ for the optimal stopping problem Minv, the control policy

uY ∗ is optimal for the objective function (4.1). Reciprocally, given an optimal

control policy u∗ for the objective function (4.1), the set Invu∗ is an optimal stopping

set that is minimal from s.

Proof. We proceed by introducing an objective function Jos for the optimal stop-

ping problem with initial condition x0 = s. Given a halting set Y , let

Jos(Y) = Es[Q(xτ)], (4.4)

where xτ is the first time the Markov chain enters Y . We can rewrite this function

as

Jos(Y) = Es [βP(g| xτ)− c(xτ)]

=
∑

x∈Ys

P(x| s) [βP(g| x)− c(x)] .

46

With this expression in mind, it is easy to see that

Jos(Y) = J(uY), J(u) = Jos(Invu),

from which the result follows.

The following result is a consequence of Lemma 4.2.1 and Proposition 4.2.2.

Corollary 4.2.3 (Random policies are not better). No randomized control policy

does better than an optimal control policy u∗ : H → {invest, not-invest}.

4.2.3 State space reduction for the optimal stopping prob-

lem

With the equivalence between the optimal stopping problemMinv = (X,P,Q)

and the decision problem on G established, our strategy to determine the optimal

control policy is to find the optimal stopping set Y ∗. Before proceeding with the

algorithm design, it is advantageous to reduce the size of Minv as this naturally

results in lower algorithmic complexities. Our approach proceeds by eliminating

states that are guaranteed not to belong to the optimal set. This is reminiscent

of techniques such as the Elimination Algorithm [70, 71]. We start by defining

a cluster C = (x1, . . . , xm) as a maximal path in the state space X such that

N out(xk) = {xk+1} for k ∈ {1, . . . ,m−1}. Maximal here means that C is not con-

tained in any other path with the same properties. We refer to x1 as the anchor

of cluster C. Intuitively, any state in X with only one out-neighbor is part of a

cluster with that neighbor. The next result guarantees that eliminating all nodes

belonging to clusters other than the anchor nodes does not change the optimal

stopping set.

Lemma 4.2.4 (State space reduction). Consider the optimal stopping problem

Minv = (X,P,Q). Let C1, . . . , Cq denote the set of all clusters of X. Then,

Y ∗ ∩ (∪µ∈{1,...,q}C
µ \ {xµ1}) = ∅.

47

Proof. The result follows by noting that, for any cluster C, the reward obtained

by investing at the anchor is higher than the one obtained at any other node in

that cluster, i.e., Q(x1) ≥ Q(xr) for r ≥ 2, and thus it is not optimal to stop at

xr. This fact can be established by noticing that, in (4.2), the expected reward

βP(g| x) is the same for all x ∈ C and the cost function c is nondecreasing along

the path C.

As a consequence of Lemma 4.2.4, we define a new optimal stopping problem

M̂inv = (X̂, P̂ , Q̂) with state space

X̂ = X \ (∪µ∈{1,...,q}C
µ \ {xµ1}).

The transition matrix P̂ is created by modifying the original matrix P . We first

replace, for each µ ∈ {1, . . . , q}, the row corresponding to xµ1 ∈ Cµ by the row

corresponding to the last element of Cµ. Then, we remove all rows and columns in

P corresponding to the states removed from X. Finally, the reward function Q̂ is

just the restriction of Q to X̂. Lemma 4.2.4 guarantees that the optimal solution

found on Minv is the same solution found on M̂inv. Interestingly,

H(Ĝ) = X̂ ∪ P(s),

i.e., the space of histories corresponding to the collapsed digraph Ĝ is the same as

the reduced state-space X̂ plus the set of full paths to the sinks P(s). A further

simplification can be done by eliminating the set {x ∈ X̂ | g /∈ R(x)} containing

the states that do not have the goal g in its set of descendants since their associated

reward is trivially zero. Figure 4.3 illustrates this discussion and the reduction from

X to X̂.

4.3 Optimal investment decision policies

In this section, we design strategies to find the best and second best control

policies for the investment problem in Section 4.1 using dynamic programming

48

x1 x2 x3

x7 x8 x9

x4 x5 x6

(a)

x1

x7

x4

(b)

x1 x7

(c)

Figure 4.3: The original state space X with source s = x1 and sinks x6 and

x9 is shown in (a). In this case there are q = 3 clusters, C1 = {x1, x2, x3},

C2 = {x4, x5, x6}, and C3 = {x7, x8, x9}. The state-space reduction gives rise to

X̂ in (b) with only 3 states. If the goal of interest is x9, the state x4 can also be

removed because x9 is not reachable from x4. This can further reduce the state

space to a size of two states as shown in (c).

techniques on the optimal stopping problem formulated in Section 4.2. The deter-

mination of the second best control policy will be useful later in our robustness

analysis. The algorithms can be run on either M = Minv or M = M̂inv.

4.3.1 The Best Investment Algorithm

Here, we present an algorithm to solve the optimal stopping problem M =

(X,P,Q) with initial condition s. According to Bellman’s principle of optimal-

ity [61], the decision at any given state x must be computed assuming that sub-

sequent decisions constitute an optimal policy with respect to this state x and

decision u(x). This means before we can find the optimal decision for the source

u∗(s), we must already know the optimal solution at all other states. Our algo-

rithm thus starts at states for which the optimal solution can be computed with

only one comparison: is it better to invest or wait at this point? These sub-

problems can be solved for any state x′
0 once the sub-problems have been solved

for all x ∈ R(x′
0). Our algorithm iteratively solves sub-problems for each initial

condition x′
0 and makes future decisions based on these solutions. The algorithm

runs until the problem is solved for s. We now describe the algorithm informally.

[Informal description]: Choose x ∈ X such that the problem is un-
solved for x but solved for its descendants. Compute the value obtained

49

if the chain is stopped at x and compare it to the expected value ob-
tained by waiting one timestep. Save the best decision, store the value,
and mark x as solved. Proceed iteratively until the problem is solved
for x = s.

The strategy is presented formally in Table 4.1. The next result shows

that the output of the Best Investment Algorithmis the control policy u∗, where

u∗(x) = invest for all x ∈ Y ∗
s and u∗(x) = not-invest otherwise.

Table 4.1: Best Investment Algorithm.

-2

Initialization:

1: initialize V (x) = 0 for all x ∈ X

2: initialize Solved = ∅

3: initialize Y = ∅

Perform:

1: while there exists x /∈ Solved with R(x) ⊆ Solved do

2: if Q(x) ≥
∑

y∈N out(x) V (y)Px,y then

3: add x to Y

4: set V (x) = Q(x)

5: else

6: set V (x) =
∑

y∈N out(x) V (y)Px,y

7: end if

8: add x to Solved

9: end while

10: compute uY

Proposition 4.3.1 (Correctness of the Best Investment Algorithm). Given the

optimal stopping problem M = (X,P,Q) for goal g with initial condition s, the

Best Investment Algorithmfinds the optimal solution u∗ to the decision problem

and its value V∗(s).

Proof. With the notation of the Best Investment Algorithm, given a state x, the

value V (x) corresponds to the value of the objective function obtained by running

control policy uY on the sub-problem with initial condition x. Since uY is con-

structed from Y , from the proof of Proposition 4.2.2 we know that J(uY) = Jos(Ys).

50

Therefore, we deduce that V (s) = J(uY). Since V∗(s) is the maximum value of

the objective function (4.4), in order to show that uY is a maximizer of (4.1), all

we need to do is establish that V (s) = V∗(s).

We start by verifying that V as determined by Table 4.1 satisfies the Bell-

man equation [61],

V (x) = max{Q(x),
∑

y∈N out(x)

V (y)Px,y}.

This property is enforced by the if condition in step 2: of Table 4.1 for all x ∈ X.

Let y ∈ X be such that R(y) = ∅. Then, it is trivial to see that V (y) =

max{Q(y), 0} = V∗(y) because no other investment decisions will be made after

state y. Now, let (x0, . . . , xm) be a path ending in xm = y. Then, using backward

induction and the Bellman equation, we deduce

V (xk−1) = max{Q(xk−1), Exk−1
[V (xk)]} = V∗(xk−1),

for k ∈ {1, . . . ,m}, which concludes the result.

Figure 4.4 shows the result of an execution of the Best Investment Algo-

rithm.

The time complexity of the Best Investment Algorithmis characterized by

the following result. Its proof follows from the fact that the strategy solves |X|

sub-problems and each sub-problem is solved in time complexity O(1).

Lemma 4.3.2. The time complexity of the Best Investment Algorithmto solve M

is O(|X|).

Remarkably, for fixed parameters α, β, and A, Table 4.1 only needs to be

called once to determine a set of rules to follow. Then, without further computa-

tions, the decision maker can make decisions depending on the target’s position.

4.3.2 The Second Best Investment Algorithm

Here, we make use of the solution computed by the Best Investment Algo-

rithmto find the second best solution to the optimal stopping problem M . Our

51

 0.5
 0.5

 0.3 0.7 0.3
 0.7

 0.333
 0.667 0.429

 0.571
 0.333

 0.667 0.429 0.571

 1 1
 1

 1
 1 1

1

1 2 1 3

1 2 4 1 2 5 1 3 5 1 3 6

1 2 4 7 1 2 4 8 1 2 5 8 1 2 5 9 1 3 5 8 1 3 5 9 1 3 6 9 1 3 6 10

1 2 4 8 7 1 2 5 8 7 1 2 5 9 10 1 3 5 8 7 1 3 5 9 10 1 3 6 9 10

Figure 4.4: Optimal solution to the problem described in Figure 4.1 for the

goal of interest g at Node 7, with β = 20, and cost function f(z) = 10z. The

optimal stopping set Y ∗ is depicted by the 5 circular nodes and the minimal optimal

stopping set from the source Y ∗
s giving rise to the control policy u∗ corresponds to

the bold circles.

strategy relies on the observation that the optimal stopping set and the second best

stopping set are similar. Given an optimal stopping set Y ∗, we create candidate

stopping sets

C(Y ∗, x) =




Y ∗ \ {x}, if x ∈ Y ∗

s ,

(Y ∗ ∪ {x}) \ R−1(x), otherwise.

Recalling that (4.3) relates halting sets to control policies, these sets are con-

structed such that uC(Y ∗,x)(x) 6= uY ∗(x). For simplicity, we let uC
x = uC(Y ∗,x).

The set of all candidate control policies that we search over is then given by

UC = ∪x∈X{u
C
x}.

We can now describe the algorithm informally.

[Informal description]: Given the optimal stopping set, create a set of
candidate control policies as described above. Select the control policy
in this set that has the highest value of the objective function.

52

We refer to this strategy as the Second Best Investment Algorithmand for-

mally present it in Table 4.2. The next result shows that the output is the second

best control policy.

Table 4.2: Second Best Investment Algorithm.

-2

Initialization

1: initialize V C
x = 0 for all x ∈ X

2: execute the Best Investment Algorithm

3: compute Y ∗
s from Y ∗

Perform:

1: for x ∈ Y ∗
s do

2: set V C
x = V∗(s)− P(x| s)[V∗(x)−

∑
y∈N out(x)[V

∗(y)Px,y]]

3: while N in(x) 6= ∅ do

4: set y = N in(x)

5: set V C
y = V∗(s)− P(y| s) [V∗(y)−Q(y)]

6: set x = y

7: end while

8: end for

9: compute x̄ = argmaxx∈X V C
x

10: compute uC
x̄

Proposition 4.3.3 (Correctness of the Second Best Investment Algorithm). Given

the optimal stopping problem M = (X,P,Q) for goal g with initial condition s, the

Second Best Investment Algorithmfinds the second best control policy u′ to the

decision problem, i.e., for all u different from u∗ and u′,

J(u∗) ≥ J(u′) ≥ J(u).

Proof. Note that the value V x
C in Table 4.2 is precisely the value obtained by the

control policy uC
x, i.e., V

x
C = J(uC

x). Since this algorithm constructs and searches

over the policies in UC, we show here that for every u 6= u∗, there exists uC
x ∈ UC

such that J(uC
x) ≥ J(u).

Let xuµ be the state xuµ ∈ Invu at which an investment is prescribed by

control policy u along path pµ. If it exists, we let Qu
µ = Q(xuµ), otherwise we let

53

Qu
µ = 0. Then, given u,

J(u∗)− J(u) =
n∑

µ=1

αµ(Q
u∗

µ −Qu
µ),

which is trivially nonnegative.

Take now any ν ∈ {1, . . . , n} such that xu
∗

ν 6= xuν . Note that there exists at

least one such ν because u 6= u∗. If the control policy u prescribes an investment

along path pν later than the optimal investment policy, then we write

J(uC
xuν
)− J(u) =

∑

µ∈{1,...,n}\Ind(xu
∗

ν)

αµ(Q
u∗

µ −Qu
µ)

+
∑

µ∈Ind(xu∗ν)

αµ




 ∑

x∈N out(xu
∗

ν)

P(x| xu
∗

ν)V∗(x)


−Qu

µ


 ,

which is greater than or equal to 0. The first sum is for all the paths at which

the optimal investment policy is used compared to the policy u, and thus is easily

shown to be nonnegative. The second sum is for all paths going through state

xu
∗

ν . Investing at xu
∗

ν is optimal; however, u′ skips it and uses the optimal policy

from the next step inwards. It is also easy to see that this is nonnegative because

xuµ 6= xu
∗

ν for all µ ∈ Ind(xu
∗

ν).

If the control policy u prescribes an investment along path pν earlier than

the optimal investment policy, then we write

J(uC
xuν
)− J(u) =

∑

µ∈{1,...,n}\Ind(xuν)

αµ(Q
u∗

µ −Qu
µ),

which is simply the optimal solution along all paths that do not go through xuν

compared against u, and again can easily be shown to be nonnegative. Thus,

J(uC
xuν
) ≥ J(u).

Figure 4.5 shows the result of an execution of the algorithm.

Since the Second Best Investment Algorithmterminates after computing

at most |X| candidate values J(uC
x), where each computation has time complex-

ity O(1), we deduce the following statement.

54

 0.5
 0.5

 0.3 0.7
 0.3 0.7

 0.333
 0.667 0.429 0.571 0.333 0.667 0.429

 0.571

 1 1 1 1 1 1

1

1 2 1 3

1 2 4 1 2 5 1 3 5 1 3 6

1 2 4 7

1 2 4 8 1 2 5 8 1 2 5 9 1 3 5 8 1 3 5 9 1 3 6 9

1 3 6 10

1 2 4 8 7 1 2 5 8 7 1 2 5 9 10 1 3 5 8 7 1 3 5 9 10 1 3 6 9 10

Figure 4.5: Second best solution to the problem described in Figure 4.1 for the

goal of interest g at Node 7, with β = 20, and cost function f(z) = 10z. The

set of investment states Invu′ for control policy u′ is depicted by the two circular

nodes. The values of the objective function for the optimal and second best control

policies are given by J(u∗) = 4.0 and J(u′) = 3.75, respectively.

Lemma 4.3.4. The time complexity of the Second Best Investment Algorithmto

solve M is O(|X|).

Remark 4.3.5 (Problem reduction may not preserve the second best solution).

Interestingly, although the optimal solutions on Minv and M̂inv are the same (cf.

Lemma 4.2.4), this does not hold in general for the second best solution, i.e., the

output of the Second Best Investment Algorithmmay be different depending on

whether it is executed for Minv or M̂inv. This is because the reduction from Minv

to M̂inv removes some solutions in Minv that are guaranteed not to be optimal

(possibly including the second best policy). As we show later in Remark 4.5.6,

this fact has positive implications on our analysis of the robustness of solutions. •

4.4 Robustness of the optimal investment policy

In this section we are interested in determining conditions under which the

optimal control policy remains optimal for parameters other than the original ones.

55

Specifically, we consider changes in the edge weights of the digraph, the probability

model for target motion, and the reward associated with the goal of interest. Our

study is motivated by the idea that small changes in the parameters may not affect

the optimal solution, and thus it may be wasteful to constantly execute the Best

Investment Algorithm. This analysis sets the basis for our forthcoming design

of policies that, under partial knowledge of the parameter dynamics, allows the

decision maker to schedule in advance when future actions need to be taken.

For convenience, denote by

θ = (A,α, β) ∈ Y = R
|V |×|V |
≥0 × P(n)× R≥0

the triplet that consists of an adjacency matrix A for the graph G, a probability

vector α on the set of paths P(s) that start at s and end at a sink, and a reward

β associated with correctly preparing for a target reaching the goal. When neces-

sary, we add a subindex to denote that an element corresponds to the parameters

specified by θ. For instance, Jθ and Mθ denote the objective function (4.1) and

the optimal stopping problem associated to θ, respectively. Finally, we denote by

ukθ ∈ U the kth best control policy for the problem with data θ. Therefore,

Jθ(u
1
θ) ≥ Jθ(u

2
θ) ≥ · · · ≥ Jθ(u

|U|
θ). (4.5)

According to this notation, Jθ′(u
k
θ) is the value of the objective function (4.1)

associated to θ′ obtained by using the kth best control policy for the problem with

data θ. Ideally, given the problem with data θ ∈ Y, we would like to determine

the set of parameters with the same optimal control policy, i.e.,

Y(θ) = {θ′ ∈ Y | u1
θ′ = u1

θ}.

Unfortunately, finding a general closed-form expression for Y(θ) is not possible.

Instead, our strategy is to find a subset of Y(θ) which can be described explicitly.

We start by stating a result that bounds the changes in the value of the

objective function for the kth best control policy in terms of the changes in the

problem data.

56

Lemma 4.4.1 (Bounds on performance variation of a control policy under param-

eter changes). For θ = (A,α, β), θ′ = (A′, α′, β′) ∈ Y, let

∆+(θ, θ′) =
n∑

µ=1

max
x∈S(pµ)

{c(x)αµ − c′(x)α′
µ + α′

µβ
′
P

′(g| x)− αµβP(g| x)},

∆−(θ, θ′) =
n∑

µ=1

min
x∈S(pµ)

{c(x)αµ − c′(x)α′
µ + α′

µβ
′
P

′(g| x)− αµβP(g| x)}.

Then, for any k ∈ {1, . . . , |U|},

∆−(θ, θ′) ≤ Jθ′(u
k
θ)− Jθ(u

k
θ) ≤ ∆+(θ, θ′). (4.6)

Proof. This can be seen by expanding out

Jθ′(u
k
θ) =

∑

x∈Inv
uk
θ

P
′(x| s)Qθ′(x) =

∑

{µ | xkµ∈Invuk
θ
}

α′
µ(β

′
P

′(g| x)− c′(x)),

and verifying that (4.6) follows.

Combining Lemma 4.4.1 with the ordering (4.5), we can deduce the follow-

ing useful result.

Corollary 4.4.2 (Bounds on performance of different control policies under pa-

rameter changes). For θ, θ′ ∈ Y and any k ∈ {1, . . . , |U|},

Jθ′(u
z
θ′) ≤ Jθ(u

k
θ) + ∆+(θ, θ′), for z ≥ k, (4.7a)

Jθ′(u
z
θ′) ≥ Jθ(u

k
θ) + ∆−(θ, θ′), for z ≤ k. (4.7b)

Proof. We prove the first statement here. The proof of the second statement is

analogous. Note that, for all z ≥ k,

Jθ′(u
z
θ) ≤ Jθ(u

z
θ) + ∆+(θ, θ′) ≤ Jθ(u

k
θ) + ∆+(θ, θ′),

where we have used Lemma 4.4.1 in the first inequality and the ordering (4.5) in

the second. Therefore, the right-hand side is an upper bound on the performance

of at least |U| − k + 1 control policies. In other words, the inequality

Jθ′(u) > Jθ(u
k
θ) + ∆+(θ, θ′) (4.8)

57

can only be true for at most k − 1 control policies u ∈ U . To show that (4.7a)

holds, we now reason by contradiction. Suppose there exists z ≥ k such that

Jθ′(u
z
θ′) > Jθ(u

k
θ) +∆+(θ, θ′). Then, because of the ordering (4.5), we deduce that

Jθ′(u
l
θ′) ≥ Jθ′(u

z
θ′) > Jθ(u

k
θ) + ∆+(θ, θ′) for all l ∈ {1, . . . , z}. Since z ≥ k, this

contradicts the fact that the inequality (4.8) can only be true for at most k − 1

control policies.

The next result builds on Lemma 4.4.1 to provide an easy test of whether

the solution to Mθ remains optimal for Mθ′ .

Proposition 4.4.3 (Criterium for best solution to remain optimal). For θ ∈ Y,

let

Ỹ(θ) = {θ′ ∈ Y | Jθ′(u
1
θ) ≥ Jθ(u

2
θ) + ∆+(θ, θ′)}. (4.9)

Then, Ỹ(θ) ⊂ Y(θ).

Proof. To prove the result, we must show that if θ′ ∈ Ỹ(θ), then θ′ ∈ Y(θ), i.e.,

u1
θ′ = u1

θ. We begin by noting that, given the ordering of values (4.5) associated to

the control policies u1
θ, u

2
θ, . . . , condition (4.9) implies that, for any k ≥ 2,

Jθ′(u
1
θ) ≥ Jθ(u

k
θ) + ∆+(θ, θ′).

Combining this inequality with Lemma 4.4.1, we deduce that

Jθ′(u
1
θ) ≥ Jθ′(u

k
θ),

implying that u1
θ is better than ukθ , k ≥ 2, for the problem with data θ′, i.e., u1

θ

remains optimal.

4.5 Event- and self-triggered decision algorithms

Having identified in Section 4.4 conditions under which the best solution

remains optimal under parameter changes, here we turn our attention to the study

of scenarios where the parameters of the problem are changing according to some

58

discrete-time dynamics, and the decision maker has some (possibly partial) knowl-

edge of it. We assume the decision maker can obtain the true parameters at any

point in time, but that doing so has some associated cost. We assume that the

timescale of the target motion in the network is much faster than the timescale

of the evolution of the parameters. The goal is then to ensure that the optimal

strategy is being used at all times based on the current parameters of the problem.

We are finally ready to apply the event- and self-triggered control ideas to

this decision making problem. Of course, the simplest way to ensure that we are

always using the optimal strategy is to use a time-triggered or period strategy, i.e.,

recompute the optimal solution by execution Best Investment Algorithmeach time

the parameters change. However, as outlined in Section 3.1 this can wasteful. Es-

pecially in this scenario where obtaining the true parameters has a cost associated

with it and also each time the control strategy needs to be recomputed a Dynamic

Program needs to be solved which can be quite expensive in itself.

4.5.1 Event-triggered decision algorithm

Leveraging the results of Section 4.4, we begin by proposing an event-

triggered control strategy to minimize the amount of times the Best Investment

Algorithmneeds to be executed. Proposition 4.4.3 provides a checkable condition

to determine if the optimal control policy remains optimal after the problem pa-

rameters change. Observing (4.9), the role that the second best solution plays in

evaluating these conditions becomes clear.

For the problem described in Figures 4.1-4.2, we run the Best Investment

Algorithmto compute the optimal solution u1
θ and the Second Best Investment Al-

gorithmto find u2
θ. We then randomly vary the data of the problem θ = (A,α, β)

by up to 3 percent of their previous value in subsequent iterations. At each step,

instead of running these algorithms again, we can check whether the new param-

eters belong to Ỹ(θ). If they do not, only then does this trigger a re-execution of

the Best Investment Algorithm. Figure 4.6 demonstrates the benefit of perform-

ing this additional test. In this case we see that the condition is satisfied until

59

iteration 25 and thus the optimal solution does not need to be recomputed until

then. Corollary 4.4.2 implies that Jθ(u
2
θ) + ∆+(θ, θ′) is an upper bound on the

value obtained by any suboptimal policy Jθ′(u
k
θ′) for k ≥ 2. Although u2

θ′ does not

need to be recomputed at each timestep, Figure 4.6 shows the value Jθ′(u
2
θ′) to

illustrate this upper bound on suboptimal policies.

5 10 15 20 25
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

best investment policy

bound on suboptimal policies

2nd best investment policy

J

Iteration

Figure 4.6: Illustration of the application of the event-triggered decision algo-

rithm using Proposition 4.4.3 for the problem described in Figures 4.1-4.2. In each

iteration, the problem parameters are randomly changed by up to 3 percent. The

curves correspond to the value obtained by the optimal investment (solid), the sec-

ond best investment (dashed), and the upper bound on all suboptimal investment

policies (dotted).

Using this event-triggered strategy is already a great benefit because the

Best Investment Algorithmdoes not need to be executed as much as the time-

triggered strategy as can be seen Figure 4.6; however, implementing this requires

knowledge of the exact parameters at all times which is still wasteful. We address

this issue with the self-triggered decision algorithm.

60

4.5.2 Self-triggered decision algorithm

Since the dynamics of the parameters are completely uncontrolled, to im-

plement a self-triggered control strategy we first need to assume some information

is available to the decision maker.

Information available to the decision maker

Here, we describe the information available to the decision maker about the

parameter dynamics. Let the parameter evolution {θ(ℓ) | ℓ ∈ Z≥0} be described

by

θ(ℓ+ 1) = θ(ℓ) + w(ℓ) + γ(ℓ). (4.10)

The model that describes the decision maker’s knowledge is as follows. The se-

quence {w(ℓ) | ℓ ∈ Z≥0} is a priori known by the decision maker, whereas the

sequence {γ(ℓ) | ℓ ∈ Z≥0} is not. We assume that the magnitude of each compo-

nent of γ is upper bounded. Specifically, if the components of γ are

γ = (γ1,1, . . . , γ|V |,|V |, γ1, . . . , γn, γβ) ∈ Y,

then the decision maker is also aware of a vector γ̄ such that

|γi,j(ℓ)| ≤ γ̄i,j, |γµ(ℓ)| ≤ γ̄µ, and |γβ(ℓ)| ≤ γ̄β, (4.11)

for all i, j ∈ {1, . . . , |V |} and µ ∈ {1, . . . , n}. Therefore, at any given time ℓ ∈ Z≥0,

the decision maker has some uncertainty about the exact value of the parameters

θ(ℓ) (note that if γ̄ = 0, then there is no uncertainty at all). Finally, we recall

that the decision maker has the ability to acquire the true values of the parameters

but that this has an associated cost that it would rather not pay. In the face of

this uncertainty, the objective of the decision maker is to determine for how long

it can operate without exact knowledge of the parameters and still guarantee that

its last computed best investment policy remains optimal. Our analysis starts

by considering initial parameter values θ(ℓ∗) corresponding to the last time ℓ∗ for

61

which the decision maker computed the best and second best investment policies.

Note that one can rewrite (4.10) as

θ(ℓ) = θ(ℓ∗) + v(ℓ) + δ(ℓ),

where v(ℓ) =
∑ℓ−1

k=ℓ∗
w(k) and δ(ℓ) =

∑ℓ−1
k=ℓ∗

γ(k). Note also that (4.11) implies

that δ is upper bounded linearly in time.

Rationale for self-triggered algorithm design

To simplify the exposition, in this section we reason for general θ̂ and

θ̂′ = θ̂ + v + δ. One can readily draw the connection with the parameter dy-

namics described above by setting θ̂ = θ(ℓ∗) and θ̂′ = θ(ℓ), for ℓ ≥ ℓ∗. Given the

uncertainty of θ̂′, the decision maker cannot test the condition (4.9) directly. In-

stead, our approach leverages the partial knowledge θ̂+v about θ̂′ by checking (4.9)

for θ̂ and θ̂ + v, i.e., whether

Jθ̂+v(u
1
θ̂
) ≥ Jθ̂(u

2
θ̂
) + ∆+(θ̂, θ̂ + v) (4.12)

holds. If this condition fails, we cannot make any guarantee about the optimal

solution corresponding to θ̂′ and thus it is necessary for the decision maker to

access the true parameters. However, if (4.12) holds, then u1
θ̂+v

= u1
θ̂
. To determine

whether u1
θ̂′
is the same policy as these, we utilize (4.9) to check if

Jθ̂′(u
1
θ̂+v

) = Jθ̂′(u
1
θ̂
) ≥ Jθ̂+v(u

2
θ̂+v

) + ∆+(θ̂ + v, θ̂′) (4.13)

holds. Unfortunately, since both θ̂′ and u2
θ̂+v

are unknown, we cannot evaluate

either side of (4.13) directly. The following result is our first step towards solving

this dilemma.

Lemma 4.5.1 (Alternative criterium for best solution to remain optimal). For θ̂

and θ̂′ = θ̂ + v + δ, if

Jθ̂+v(u
1
θ̂
) + ∆−(θ̂ + v, θ̂ + v + δ)

≥ Jθ̂(u
2
θ̂
) + ∆+(θ̂, θ̂ + v) + ∆+(θ̂ + v, θ̂ + v + δ), (4.14)

then both (4.12) and (4.13) hold.

62

Proof. The fact that (4.14) implies (4.12) readily follows by noting that ∆+(θ, θ′)−

∆−(θ, θ′) ≥ 0 for any θ, θ′. To show (4.13), with the notation of Corollary 4.4.2,

letting θ = θ̂, θ′ = θ̂′, and k = 2, we can upper bound the RHS of (4.13) by

Jθ̂+v(u
2
θ̂+v

) + ∆+(θ̂ + v, θ̂′) ≤ Jθ̂(u
2
θ̂
) + ∆+(θ̂, θ̂ + v) + ∆+(θ̂ + v, θ̂′).

On the other hand, since (4.12) holds, we have that u1
θ̂+v

= u1
θ̂
by Proposition 4.4.3.

This fact, together with Lemma 4.4.1, allows us to lower bound the LHS of (4.13)

by

Jθ̂′(u
1
θ̂+v

) ≥ Jθ̂+v(u
1
θ̂
) + ∆−(θ̂ + v, θ̂′).

As a consequence, we deduce that (4.14) implies that (4.13) holds.

Lemma 4.5.1 provides an alternative condition to (4.13) that is easier to

check because it does not require knowledge of u2
θ̂
. However, the presence of the

unknown vector δ still makes it uncheckable by the decision maker. Therefore, our

next step consists of using the knowledge (4.11) available to the decision maker to

upper bound the term

∆+(θ, θ′)−∆−(θ, θ′), (4.15)

for θ = θ̂+v and θ′ = θ̂+v+δ. Given the result in Lemma 4.4.1, we refer to (4.15) as

the size of performance variation between θ and θ′. Before stating our next result,

we need to introduce a piece of notation. Let m(θ) = min{lngthsw(x, g) | x ∈

X such that g 6∈ x} be the minimum shortest weighted length of all states that do

not contain g.

Lemma 4.5.2 (Bounds on size of performance variation). Given θ and θ′, let the

magnitude of θ′ − θ be bounded by some vector ω component-wise. Assume there

exists d∗ > 0 such that d 7→ f(1/d) is globally Lipschitz on [d∗,∞) with Lipschitz

constant D, i.e., |f
(
1
d

)
− f

(
1
d′

)
| ≤ D|d− d′|, for all d, d′ ≥ d∗. For θ ∈ Y, define

G(θ, ω) = ωβ +D

|V |∑

i,j=1

ωi,j +
n∑

µ=1

Kµωµ,

63

with Kµ = diamx∈S(pµ) c(x) + 2β(n + 1), for µ ∈ {1, . . . , n}. If m(θ),m(θ′) ≥ d∗,

then

∆+(θ, θ′)−∆−(θ, θ′) ≤ G(θ, ω).

Proof. Let diamx∈X(g(x)) = maxx∈X g(x)−minx∈X g(x) for any real-valued func-

tion g. Two useful properties of the diam function are that

diamx∈X eg(x) = |e| diamx∈X g(x),

diamx∈X [g1(x) + g2(x)] ≤ diamx∈X g1(x) + diamx∈X g2(x),

for any e ∈ R and real-valued functions g1 and g2. One can write out ∆+(θ, θ′)−

∆−(θ, θ′) as

n∑

µ=1

diamx∈S(pµ)[c(x)(αµ − α′
µ) + α′

µ(c(x)− c′(x)) (4.16)

+ α′
µP

′(g| x)(β′ − β) + β(α′
µP

′(g| x)− αµP(g| x))].

Using the two properties above, (4.16) can be upper bounded by

n∑

µ=1

|αµ − α′
µ| diamx∈S(pµ) c(x) + α′

µ diamx∈S(pµ)(c(x)− c′(x))

+ α′
µ|β

′ − β| diamx∈S(pµ) P
′(g| x) + β diamx∈S(pµ)(α

′
µP

′(g| x)− αµP(g| x)).

Given the statement of the result, we need to work on all but the first term. Using

the definition of the cost c and the globally Lipschitz assumption on d 7→ f(1
d
), we

upper bound

α′
µ diamx∈S(pµ)(c(x)− c′(x)) ≤ α′

µD

|V |∑

i,j=1

|a′i,j − ai,j|.

The third term is readily upper bounded using the fact that diamx∈S(pµ) P(g| x) ≤

1. Finally, the fourth term can be dealt with as follows. Given x, let Z(x) = {ν ∈

Ind(x) | last(pν) = g} denote the set of indices of the paths that contain x and

64

finish at the goal g. Then,

(∑

ν∈Ind(x)

αν
∑

υ∈Ind(x)

α′
υ

)(
α′
µP

′(g| x)− αµP(g| x)
)

= α′
µ

∑

ψ∈Z(x)

α′
ψ

∑

ν∈Ind(x)

αν − αµ
∑

χ∈Z(x)

αχ
∑

υ∈Ind(x)

α′
υ

= α′
µ

∑

ν∈Ind(x)

αν
∑

χ∈Z(x)

(α′
χ − αχ) + α′

µ

∑

χ∈Z(x)

αχ
∑

ν∈Ind(x)

(αν − α′
ν)

+
∑

χ∈Z(x)

αχ
∑

υ∈Ind(x)

α′
υ(α

′
µ − αµ).

Denoting W (x) = Ind(x) \ Z(x), one can further simplify this expression as

α′
µ

∑

φ∈W (x)

αφ
∑

χ∈Z(x)

(α′
χ − αχ) + α′

µ

∑

χ∈Z(x)

αχ
∑

φ∈W (x)

(αφ − α′
φ)

+
∑

χ∈Z(x)

αχ
∑

υ∈Ind(x)

α′
υ(α

′
µ − αµ).

Given that Ind(x) = Z(x) ∪W (x) and µ ∈ Ind(x),

max
x∈S(pµ)

[α′
µP

′(g| x)− αµP(g| x)]

≤ α′
µ max
x∈S(pµ)

(∑
χ∈Z(x) |α

′
χ − αχ|+

∑
φ∈W (x) |αφ − α′

φ|∑
υ∈Ind(x) α

′
υ

)
+ |α′

µ − αµ|

≤
n∑

ν=1

|α′
ν − αν |+ |α′

µ − αµ|.

Similarly, −minx∈S(pµ)[α
′
µP

′(g| x) − αµP(g| x)] is upper bounded by the same

quantity, thus

diamx∈S(pµ)[α
′
µP

′(g| x)− αµP(g| x)] ≤ 2(|α′
µ − αµ|+

n∑

ν=1

|α′
ν − αν |),

from which the result follows.

Using Lemma 4.5.2 in (4.14) with θ = θ̂ + v, θ′ = θ̂ + v + δ and ω = δ, we

deduce

Jθ̂+v(u
1
θ̂
) ≥ Jθ̂(u

2
θ̂
) + ∆+(θ̂, θ̂ + v) +G(θ̂ + v, δ). (4.17)

65

Therefore, if this condition is satisfied, Lemma 4.5.1 implies that (4.12) and (4.13)

hold, which means u1
θ̂′

= u1
θ̂
. Fortunately, (4.17) can be checked by the decision

maker with the information it possesses. This sets the basis for the design of

self-triggered policies, which we address next.

The Self-Triggered Acquisition&Decision Algorithm

This section presents the self-triggered strategy that builds on the condi-

tions identified above in the section “Rationale for self-triggered algorithm design”

to determine, with the information available to the decision maker about the pa-

rameter dynamics described in the section “Information available to the decision

maker”, the longest period of time for which the best investment policy is guaran-

teed to remain optimal. We refer to this strategy as the Self-Triggered Acquisition-

&Decision Algorithmand present it formally in Table 4.3. The term ‘self-triggered’

is meant to emphasize the fact that the decision maker determines this period of

time autonomously.

The output of the Self-Triggered Acquisition&Decision Algorithmis the

number of timesteps ∆ℓsleep for which the decision maker can ‘sleep’, i.e., starting

from the time ℓ at which the strategy is executed, the current optimal solution is

guaranteed to remain optimal for at least ∆ℓsleep timesteps.

We highlight here the fact that we are combining event- and self-triggered

strategies for a more efficient operation. In the self-triggered acquisition&-

decision algorithm we are using the self-triggered control idea to decide when the

next time the parameters should be sampled is; however, because our information

is uncertain there is a chance that the optimal solution still has not changed after

this time. Thus, after the new parameters are obtained, we then use the event-

triggered control strategy leveraging Proposition 4.4.3 to then decide if the Best

Investment Algorithmshould be executed again based on the true parameters. This

self-triggered sampling and event-triggered control strategy ensures that we are not

only sampling the parameters when necessary, but also that we only recompute the

optimal solution when necessary. The following remark shows how the standard

66

Table 4.3: Self-Triggered Acquisition&Decision Algorithm.

-2

Information kept in memory:

1: θold = θ(ℓ∗) {parameter vector at the last execution of the best and second best

investment algorithms}

2: u1 = u1
θold

and u2 = u2
θold

At current time ℓ:

1: acquire new parameters θnew = θ(ℓ)

2: initialize ∆ℓsleep = ∞ and ∆ℓtest = 1

3: initialize v(ℓ′) =
∑ℓ′−1

k=ℓ w(k)

Perform:

1: if Jθnew(u
1) < Jθnew(u

2) + ∆+(θold, θnew) then

2: execute the Best Investment Algorithmand update u1

3: execute the Second Best Investment Algorithmand update u2

4: set θold = θnew

5: end if

6: while ∆ℓsleep > ∆ℓtest do

7: if Jθnew+v(ℓ+∆ℓtest)(u
1) < Jθold(u

2) + ∆+(θold, θnew + v(ℓ+∆ℓtest)) +G(θnew + v(ℓ+

∆ℓtest), γ̄∆ℓtest) then

8: ∆ℓsleep = ∆ℓtest

9: end if

10: ∆ℓtest = ∆ℓtest + 1

11: end while

self-triggered control strategy described in Section 3.1.3 would be implemented

here but note that in general it leads to more unnecessary recomputations of the

optimal investment policy.

Remark 4.5.3 (Self-Triggered Acquisition&Recomputation Algorithm). An al-

ternative, simpler version of Table 4.3 consists of eliminating the ‘if’ condition in

steps 1: and 5: so that, each time the strategy prescribes a ‘wake-up call’, the best

and second best control policies are recomputed with the newly acquired param-

eters. We refer to this policy as the Self-Triggered Acquisition&Recomputation

Algorithm. Instead, the Self-Triggered Acquisition&Decision Algorithmaims to

save on executions of the best and second best investment algorithms by

checking whether the control policy u1 in memory remains optimal for the new

67

parameters before scheduling the next ‘wake-up call’. •

The following result states the correctness of the algorithm.

Proposition 4.5.4 (Correctness of the Self-Triggered Acquisition&Decision Al-

gorithm). Under the model for parameter evolution described in Section 4.5.2,

let ∆ℓsleep and u1 be as defined by the Self-Triggered Acquisition&Decision Algo-

rithmexecuted at time ℓ ∈ Z≥0. Then, the control policy u1 is guaranteed to be

optimal for timesteps ℓ, ℓ+ 1, . . . , ℓ+∆ℓsleep − 1.

Proof. We show that the Self-Triggered Acquisition&Decision Algorithmensures

that condition (4.17) is satisfied for ℓ, ℓ+1, . . . , ℓ+∆ℓsleep− 1 and thus u1 remains

optimal. For ℓ′ ≥ ℓ, let v(ℓ′) =
∑ℓ′−1

k=ℓ w(k) and δ(ℓ′) =
∑ℓ′−1

k=ℓ γ(k). Steps 1:-5: of

Table 4.3 guarantee that the control policy u1 in memory is the optimal one for the

parameters θ(ℓ) at time ℓ. With the notation of Section 4.5.2, let θ̂ = θ(ℓ∗), where

ℓ∗ corresponds to the last time when the best and second best investment

algorithms were executed, and let v = θ(ℓ)−θ(ℓ∗)+v(ℓ′) and δ = δ(ℓ′). Step 7:

ensures that (4.17) is satisfied where G(θ̂ + v, δ) is replaced by G(θ̂ + v, γ̄(ℓ′ − ℓ))

using the upper bound on δ(ℓ′) induced by (4.11).

Remarkably, if the decision maker has full knowledge of how parameters

evolve, i.e., γ̄ = 0, then the Self-Triggered Acquisition&Decision Algorithmsimply

consists of checking the first time that (4.9) will be violated. In particular, the

event-triggered execution in Figure 4.6 can be seen as an execution of the Self-

Triggered Acquisition&Decision Algorithmfor this case without needing samples

in between recomputations of the best investment policy. This is the exact same

observation we made in Section 3.1.3 when no uncertainty was present in the

dynamics.

Figure 4.7 shows an execution of the algorithm in a simple example where

three parameters are changed linearly in such a way that the initial second best

control policy eventually becomes optimal. When the parameter evolution is com-

pletely unknown, the strategy yields ∆ℓsleep = 1. Instead, when the parameter evo-

lution is completely known, the strategy greatly improves to ∆ℓsleep = 19 timesteps.

68

This is a remarkable match with the fact that the first time the optimal solution

changes is after 20 timesteps. The monotonically increasing plot in Figure 4.7(c)

corresponds to the fact that, as the part of the parameter dynamics that is known

to the decision maker becomes dominant, the periods of guaranteed optimality of

the current best investment decision policy become larger.

2

6

1

5

4

3

(a)

 0.05 0.15 0.8

 1 0.667 0.333 1

1

1 2 1 3 1 4

1 2 5 1 3 5 1 3 6 1 4 6

(b)

4

8

12

16

20

00 0.2 0.4 0.6 0.8 1

(c)

κ

∆ℓsleep

Figure 4.7: Illustration of the application of the Self-Triggered Acquisition-

&Decision Algorithmfor the example problem displayed in (a) with α =

[.05, .1, .05, .8]. The goal of interest is Node 5. The corresponding optimal stopping

problem and optimal solution (black circles) are shown in (b). In each iteration, the

edge weight between Node 2 and Node 5 is decreased by 0.08, the probability α1 is

decreased by 0.002, and α2 is increased by 0.002. The result of the Self-Triggered

Acquisition&Decision Algorithmis shown in (c) for various levels of knowledge

κ = |v(ℓ)|
|v(ℓ)|+γ̄

on the perturbations in the parameters. The perfect-knowledge case

is captured by κ = 1 corresponding to γ̄ = 0 and recovers condition (4.9). The

no-knowledge case is captured by κ = 0 corresponding to v(ℓ) = 0 for all ℓ. The

red circle in the top right corner of (c) corresponds to the exact time when the

optimal solution changes.

4.5.3 Worst-case performance guarantees

In this section we analyze how often the Best Investment Algorithmis called

while the parameters of the problem are changing. Although we have proposed the

Self-Triggered Acquisition&Decision Algorithmto avoid calling the Best Investment

Algorithmas much as possible, we have not yet shown that this is possible. For

69

example as a worst case scenario, it could be the case that the algorithm cannot

guarantee any timesteps without an update, and the newly acquired parameters

cause the test (4.9) to fail every time. To show that this will not happen in general,

our aim is to obtain guarantees on the minimum amount of time that the decision

maker can go without having to recompute the optimal solution.

Depending on the dynamics of the parameters, we would like to characterize

the minimal changing time which is defined implicitly by

ℓ∗ = min
{ℓ∈Z≥0 | θ(ℓ)/∈Y(θ(0))}

ℓ, (4.18)

where θ(0) are the parameters when the Best Investment Algorithmwas last ex-

ecuted. The rationale is that for ℓ ≤ ℓ∗, the optimal solution has remained the

same. Note that our analysis here is indifferent to whether or not the decision

maker knows a priori how parameters evolve. The following result provides an

explicit guarantee on how long the optimal solution remains optimal while the

problem parameters change in the worst possible way.

Corollary 4.5.5 (Worst-case performance guarantee). Let the parameter evolution

be described by θ(ℓ + 1) = θ(ℓ) + γ(ℓ), where the magnitude of each component

of γ is upper bounded by γ̄ as in (4.11). Given θ(0) = θ, choose d∗ such that

{θ(ℓ) | ℓ ∈ Z≥0} satisfies m(θ(ℓ)) ≥ d∗ for all ℓ ∈ Z≥0 and d 7→ f(1/d) is globally

Lipschitz on [d∗,∞) with Lipschitz constant D. Then, the number of timesteps for

which the control policy u1
θ remains optimal is lower bounded by

Jθ(u
1
θ)− Jθ(u

2
θ)

G(θ, γ̄)
. (4.19)

The proof of this result follows from the discussion in the section “Rationale

for self-triggered algorithm design” by using the fact that (4.11) induces a bound

for δ(ℓ) =
∑ℓ−1

k=0 γ(k) linear in time and that G is linear in its second argument. In

general, the bound provided by Corollary 4.5.5 is conservative because of our worst-

case considerations. We consider a simple example in Figure 4.8 in which only one

parameter is changed linearly in such a way as to decrease the performance gap

between the best and second best policies. Applying the result of Corollary 4.5.5,

70

we obtain 6 timesteps as a lower bound. Figure 4.8 shows that in fact it takes 31

iterations until the optimal solution changes. This mismatch can be traced back

to the proof of Lemma 4.5.2 where we bound the size of performance variation.

0 5 10 15 20 25 30
0.5

1

1.5

2

best investment policy

bound on suboptimal policies

2nd best investment policy

Iteration

Figure 4.8: Illustration of the application of Corollary 4.5.5 for the simple example

problem displayed in Figure 4.7. In each iteration, the edge weight between Node

2 and Node 5 is decreased by 0.05. The curves in (c) correspond to the value

obtained by the optimal investment (solid), the second best investment (dashed),

and the upper bound on all suboptimal investment policies (dotted). The optimal

solution changes after 31 iterations, whereas the worst-case lower bound given by

Corollary 4.5.5 is 6.

Remark 4.5.6. (Connection between the robustness of the best solu-

tion and its performance gap with the second best solution) From Corol-

lary 4.5.5 it is clear that the larger the initial performance gap between the best

and second best control policies, the more ‘robust’ the optimal solution is. As

noted in Remark 4.3.5, the second best control policy u2
θ may be different for Minv

and M̂inv. Since the state space X̂ of M̂inv is contained in the state space X of

71

Minv, the allowable control policies for M̂inv are a subset of the control policies

for Minv. Therefore, the performance of the second best control policy of M̂inv can

be no worse than that of the second best control policy of Minv, and thus we can

make better guarantees on M̂inv. •

Chapter 4 is a partial reprint of the material [2] as it appears in Self-

Triggered Optimal Servicing in Dynamic Environments with Acyclic Structure,

IEEE Transactions on Automatic Control, vol. 58, no. 5, pp. 1236-1249, 2013.

The dissertation author was the primary investigator and author of this paper.

Chapter 5

Event-triggered consensus

In Chapter 4 we demonstrated how event- and self-triggered control can be

applied to a class of decision problems with a single decision maker. For the re-

mainder of this dissertation we shift our focus to consider control problems carried

out over wireless networks.

In this chapter we look at one of the most common tasks studied in the area

of multi-agent systems: consensus. A large number of works that study consensus

consider cases where each subsystem or agent has continuous, or at least periodic

and synchronous information about their neighbors at all times. Unfortunately

as systems become larger and larger, it becomes more unrealistic to allow agents

to communicate at all times in a synchronous manner. Furthermore, if all agents

are trying to access a wireless network simultaneously, it is conceivable that this

will be more likely to cause problems such as communication delays or packet

drops. Instead, we propose a novel event-triggered communication scheme that

allows agents to decide for themselves when to broadcast updated information to

their neighbors. This naturally gives rise to an asynchronous implementation that

reduces the total network demands on the system while preserving the desired

convergence result.

The tutorial [78] and references therein provide a large overview of the many

different results available regarding multi-agent consensus. For the continuous

72

73

case, [79] provide various sufficient conditions for the convergence of the system

to a consensus state both in undirected and directed graphs. Since continuous

availability of state information and control updates is often unrealistic, a natural

relaxation is to use periodic samples and controller updates for which [80] provide

sufficient conditions for convergence such as an upper bound on the sampling

period.

Instead, we are interested in using event-triggered strategies to design a

communication and control law that can be implemented on real systems that

lower the amount of communication required by the network while ensuring that

the network still achieves the desired consensus task. In [46], the authors propose

a Lyapunov-based event-triggering strategy that dictates when agents should up-

date their control signals; however, this trigger relies on each agent having perfect

information about their neighbors at all times. While this allows agents to no

longer require continuous updates of their control signals, this may often not be as

important compared to the continuous availability of perfect information. If this

information is to be obtained through digital sensing, or even worse through wire-

less communication, this becomes a very strict assumption. In [81], the authors

apply the event-triggered control updates with periodically sampled data idea to

the consensus problem. This allows for a more realistic implementation; however,

the agents are still required to communicate with one another in a periodic and

synchronous fashion. The event-triggered broadcasting idea is explored in [48] with

time-dependent triggering functions. More specifically, once the error between an

agent’s true state and its last broadcast state exceeds some time-varying thresh-

old, it will trigger a new broadcast of its current state. This is in contrast to

[46] because each agent only requires exact information about itself rather than

its neighbors to employ, which is much more reasonable. The drawback of this

approach is that it is not clear how the time-dependent triggering functions should

be designed. In [82], the authors propose a event-triggered broadcasting law with

state-dependent triggering functions similar to the one proposed in this chapter.

However, it is unclear whether the law proposed in [82] is guaranteed not to exhibit

Zeno behavior which can defeat the whole purpose of such a communication and

74

control law. Instead, we propose a similar communication and control law that

guarantees Zeno behavior does not occur.

5.1 Problem statement

Consider a group of N agents that are able to communicate wirelessly with

a subset of the agents in the network. Let G denote the connected, undirected

graph in which neighbors of the graph are agents who are able to communicate

with one another. We denote by xi ∈ R the state of agent i ∈ {1, . . . , N}. We

consider single-integrator dynamics

ẋi(t) = ui(t), (5.1)

for all i ∈ {1, . . . , N}. It is well known that the distributed continuous control law

ui(t) = −
∑

j∈Ni

(xi(t)− xj(t)) (5.2)

drives each agent of the system to asymptotically converge to the average of the

agents’ initial conditions [79]. The problem with this control law is that each agent

requires continuous information about its neighbors and also needs to update its

control law continuously, making it impractical to implement on real cyber-physical

systems.

An agent i is only able to communicate with its neighbors Ni in the commu-

nication graph G. Neighbors of i only receive state information from agent i when

agent i decides to broadcast this to its neighbors. The last broadcast state of agent

i at any time t is denoted by x̂i(t). We assume that each agent i has continuous

access to its own state. We then utilize an event-triggered implementation of the

controller (5.2) given by

ui(t) = −
∑

j∈Ni

(x̂i(t)− x̂j(t)). (5.3)

Note that although agent i has access to its own state xi(t), we use the last broad-

cast state x̂i(t) in the controller (5.3). This is done to preserve the average state

of the agents at all times.

75

We are now interesting in finding conditions for each agent on when they

should broadcast their state to their neighbors such that the system can still con-

verge to the average of the initial conditions of all agents in the network.

5.2 Event-triggered design

In this section we design an event-triggered law that prescribes when agents

should broadcast state information and update their control signals that solves the

consensus problem.

5.2.1 Basic algorithm design

We begin by considering the candidate Lyapunov function

V (x) =
1

2
xTLx, (5.4)

where x = (xT1 , . . . , x
T
N)

T and L is the Laplacian of the communication graph G.

The time derivative of V under the control law (5.3) is then

V̇ = xTLẋ = −xTL(Lx̂),

where x̂ = (x̂T1 , . . . , x̂
T
N)

T . Let ei(t) = x̂i(t) − xi(t) be the error between agent i’s

last broadcast state and its true current state and e = (eT1 , . . . , e
T
N)

T be the vector

of errors of all agents. Then, noting that L = LT , this becomes

V̇ = −(x̂T − eT)LLx̂ = −‖Lx̂‖2 + (Lx̂)TLe.

Letting ẑ = Lx̂, we can rewrite this as

V̇ = −
N∑

i=1

ẑ2i +
N∑

i=1

∑

j∈Ni

ẑi(ei − ej) = −
N∑

i=1

ẑ2i +
N∑

i=1

|Ni|ẑiei −
N∑

i=1

∑

j∈Ni

ẑiej.

We can now use Young’s inequality to bound

N∑

i=1

|Ni|ẑiei ≤
N∑

i=1

1

2
|Ni|ẑ

2
i ai +

1

2ai
|Ni|e

2
i ,

76

and

−
N∑

i=1

∑

j∈Ni

ẑiej ≤
N∑

i=1

∑

j∈Ni

1

2
ẑ2i aj +

1

2aj
e2j ,

for ai > 0 for all i ∈ {1, . . . , N}. Since the graph is symmetric, we can rewrite the

last term as

N∑

i=1

∑

j∈Ni

1

2aj
e2j =

N∑

i=1

∑

j∈Ni

1

2ai
e2i =

N∑

i=1

1

2ai
|Ni|e

2
i .

Using the above equations we can bound

V̇ ≤
N∑

i=1

(
1

2
ai|Ni|+

1

2

∑

j∈Ni

aj − 1

)
ẑ2i +

|Ni|

ai
e2i .

If each i ∈ {1, . . . , N} chooses ai <
1

maxj∈Ni∪{i} |Nj |
, and enforces the condi-

tion

e2i ≤ σi
ai

(
1− 1

2

(
ai|Ni|+

∑
j∈Ni

aj

))

|Ni|
ẑ2i , (5.5)

for some σi ∈ (0, 1), then we have

V̇ ≤
∑

i∈{1,...,N}

(σi − 1)

(
1−

1

2

(
ai|Ni|+

∑

j∈Ni

aj

))
ẑ2i (5.6)

at all times.

Remark 5.2.1. Here we point out that we have used the exact same controller (5.3)

and Lyapunov function (5.4) used in [46]. The difference comes from the way we

expand out the Lyapunov function and arrive at the condition (5.7) that ensures

monotonicity of the Lyapunov function. Our condition only relies on information

readily available to the agents based on our model whereas the condition in [46]

requires agents to have continuous information about their neighbors to check this

condition. We also highlight the fact that our trigger can be implemented in a

fully distributed way as each agent i only needs to know the parameter ai for itself

and aj for its neighbors j ∈ Ni to check if (5.7) is satisfied in contrast to a global

parameter a considered in [46, 82]. •

77

For a simpler presentation, we consider ai = a < 1
|Ni|

for all i ∈ {1, . . . , N}

for the remainder of the paper which simplifies (5.5) to

e2i ≤ σi
a(1− a|Ni|)

|Ni|
ẑ2i , (5.7)

and (5.6) to

V̇ ≤
∑

i∈{1,...,N}

(σi − 1)(1− a|Ni|)ẑ
2
i . (5.8)

We can now design the natural triggering function

fi(ei) = e2i − σi
a(1− a|Ni|)

|Ni|
ẑ2i . (5.9)

When the triggering function (5.9) satisfies fi(ei) = 0, this triggers an event causing

agent i to broadcast its current state xi to its neighbors which resets ei = 0.

Unfortunately, due to the discontinuous nature of ẑi, this trigger might be

completely “missed” when a jump in ẑi occurs. This jump would be due to a

neighboring agent of i broadcasting a new state to it. Successive jumps may also

cause Zeno behavior to occur which is undesirable. Another problem with the

trigger (5.9) is that it is also possible for fi(ei) = 0 even after agent i broadcasts

its new state to its neighbors (because ẑi = 0) which implies that continuous

broadcasts are necessary, giving rise to yet another source of Zeno behavior. We

deal with this by slightly modifying (5.9) and adding an additional requirement

that must be met before a broadcast occurs. We discuss this and propose the

complete Event-Triggered Communication and Control Lawnext.

5.2.2 Event-Triggered Communication and Control Law

Rather than defining events as times when fi(ei) = 0, we instead define the

events as times when

fi(ei) < 0 (5.10)

78

or

fi(ei) = 0, (5.11a)

ẑi 6= 0. (5.11b)

The reasoning behind the triggers (5.10) and (5.11) is as follows. Note that

when fi(ei) = 0 is satisfied, (5.7) is still satisfied; however, the trigger is defined as

such because we want to ensure that (5.7) is never violated. Given some time tilast

that agent i last broadcast its information and thus ei(t
i
last) = 0, we can compute

ei(t) =

∫ t

tilast

ẑi(s)ds, (5.12)

for all t ≥ tilast. Therefore, if at any time t we have that (5.11a) is satisfied, it is

not necessary to broadcast new information if (5.11b) is not also satisfied because

we know (5.7) will also continue to be satisfied.

We also introduce here a design parameter εi <
√

σia(1−a|Ni|)
|Ni|

< 0, the reason

for this will become clear in establishing that Zeno behavior does not occur. Let

tilast be the last time at which agent i has received information from some neighbor.

If at some time t agent i receives new information from a neighbor j ∈ Ni, agent

i will immediately broadcast its state if

t < tilast + εi. (5.13)

This is an additional triggering condition that is not found in the triggering law

proposed in [82]. This additional condition helps establish the lack of Zeno behavior

occurring as will become more clear later.

The Event-Triggered Communication and Control Lawis formally presented

in Table 5.1.

Remark 5.2.2 (Event-triggered communication and control law). In between

event-triggers, agents are not communicating nor are they updating their con-

trol signals. Each time an event is triggered by an agent i it means that agent i is

broadcasting its current state to its neighbors and updating its control signal while

its neighbors j ∈ Ni update their control signal. This is in contrast to [83, 46] in

79

which events triggered only correspond to updates of control signals because exact

information is available to them at all times. •

Table 5.1: Event-Triggered Communication and Control Law.

At all times t agent i ∈ {1, . . . , n} performs:

1: if fi(ei(t)) < 0 then

2: broadcast state information xi(t) and update control signal

3: end if

4: if fi(ei(t)) = 0 and ẑi 6= 0 then

5: broadcast state information xi(t) and update control signal

6: end if

7: if new information xj(t) is received from some neighbor(s) j ∈ Ni

then

8: update control signal

9: if information from agent j was received in the last εi seconds

then

10: broadcast state information xi(t)

11: end if

12: end if

5.3 Properties of the event-triggered algorithm

Here we analyze the properties of the Event-Triggered Communication and

Control Lawproposed in Section 5.2. Specifically, we prove convergence of the

trajectories to the desired consensus state, show that Zeno behavior does not occur,

and provide a lower bound on the convergence rate. We begin with the main

convergence result.

Theorem 5.3.1 (Asymptotic convergence to average). Given the system (5.1) with

control (5.3) executing the Event-Triggered Communication and Control Law, all

80

agents asymptotically converge to the average of the initial states, i.e., limt→∞ xi(t) =

x̄ =
∑N

j=1
xj(0)

N
for each i ∈ {1, . . . , N}.

Proof. By design of the event-triggers (5.10)-(5.13) we know that for the Lyapunov

function V (x) = xTLx,

V̇ ≤
N∑

i=1

(σi − 1)(1− a|Ni|)ẑ
2
i < 0

for all ẑ 6= 0. Since V is bounded from below by zero, we know that V̇ → 0 and thus

ẑ → 0 which means x → diag
(
R
N
)
. Finally, because the graph G is undirected,

we know that the average is conserved ˙̄x = 1
N

∑N
i=1 ẋi = − 1

N
1TNLx̂ = 0. which

concludes the proof.

We now show that the Event-Triggered Communication and Control Lawof

Section 5.2 is guaranteed not to exhibit Zeno behavior. The trigger (5.13) is an

additional trigger that causes a broadcast which is only checked at time instants

when new information is received. This is introduced to ensure Zeno behavior does

not occur as explained in the following result.

Proposition 5.3.2 (No Zeno behavior). Given the system (5.1) with control (5.3)

executing the Event-Triggered Communication and Control Law, the agents will not

be required to communicate an infinite number of times in any finite time period.

Proof. We are interested in showing here that no agent will broadcast its state an

infinite number of times in a finite time period. We begin by showing that if an

agent i does not receive new information from neighbors, it will broadcast its state

periodically with some period τi > 0 as long as ẑi 6= 0. Assume that agent i has

just broadcast its state at time t0, and thus ei(t0) = 0. If no new information is

received for t ≥ t0, the evolution of the error (5.12) becomes simply

ei(t) = ẑi(t0)(t− t0).

Note that if ẑi(t0) = 0, no broadcasts will ever happen because ei(t) = 0 for

all t ≥ t0. Also since we are now assuming no neighbors of i are broadcasting

81

information, the trigger (5.13) is irrelevant. We are then interested in finding out

the time t∗ when (5.11a) occurs, triggering a broadcast of agent i’s state. Using

the above description of the error, we rewrite the trigger (5.11a) as

ẑi(t0)
2(t∗ − t0)

2 = σi
a(1− a|Ni|)

|Ni|
ẑi(t0)

2.

From this, it is clear to see that agent i will not broadcast its state for τi seconds

where

τi = t∗ − t0 =

√
σia(1− a|Ni|)

|Ni|
> 0.

We now show that messages cannot be sent an infinite number of times between

agents in a finite time period. Again, let time t0 be the time at which agent i

has broadcast its information to neighbors and thus ei(t0) = 0. If no information

is received by time t0 + εi < t0 + τi there is no problem, so we now consider

the case that at least one neighbor of i broadcasts its information at some time

t1 ∈ (t0, t0 + εi). In this case it means that at least one neighbor j ∈ Ni has

broadcast new information, thus agent i would also rebroadcast its information at

time t1 due to trigger (5.13). Let I denote the set of all agents who have broadcast

information at time t1, we refer to these agents as synchronized. This means that

as long as no agent k /∈ I sends new information to any agent in I, the agents in I

will not broadcast new information for at least minj∈I τj seconds, which includes

the original agent i. As before, if no new information is received by any agent in

I by time t1 + εi there is no problem, so we now consider the case that at least

one agent k sends new information to some agent j ∈ I at time t2 ∈ (t1, t1 + εi).

By trigger (5.13), this would require all agents in I to also broadcast their state

information at time t2 and agent k will now be added to the set I. Reasoning

repeatedly in this way, the only way for infinite communications to occur in a

finite time period is for an infinite number of agents to be added to set I, which is

clearly not possible.

Remark 5.3.3 (Conditions for Zeno). We note here that the introduction of the

trigger (5.13) is sufficient to ensure Zeno behavior does not occur but it is not

known if it is necessary. It certainly helps to simplify the proof of Proposition 5.3.2

82

but may not be necessary. In other words is not clear whether the law without the

additional trigger (5.13) (which is the one proposed in [82]) guarantees that Zeno

behavior does not occur. •

The next result provides a lower bound on the exponential convergence rate

of the network.

Theorem 5.3.4 (Convergence rate). Given the system (5.1) with control (5.3)

executing the Event-Triggered Communication and Control Lawwith σi ∈ (0, 1) for

all i, the system converges exponentially to the agreement space.

Proof. We begin by noticing that for V = 1
2
xTLx, using (2.8) we have

V̇ ≤
N∑

i=1

(σi − 1)(1− a|Ni|)ẑ
2
i

≤ −(1− σ)(1− aN̄)λ2(L)x̂
TLx̂,

where σ = maxi∈{1,...,N} σi and N̄ = maxi∈{1,...,N} |Ni|. We now rewrite the Lya-

punov function V in terms of x̂,

V =
1

2
x̂TLx̂− x̂TLe+

1

2
eTLe.

Since we know that our triggering function is designed such that (5.7) is enforced

at all times, using (2.8) we can upper bound the second term by

−x̂TLe ≤ |Lx̂|T |e| ≤

√
σa(1− aN̄)

N̄
|Lx̂|T |Lx̂|

≤

√
σa(1− aN̄)

N̄
λN x̂

TLx̂,

and the last term by

1

2
eTLe ≤

1

2

σa(1− aN̄)

N̄
|Lx̂|TL|Lx̂|

≤
1

2

σa(1− aN̄)

N̄
λ2
N x̂

TLx̂.

Then, letting V̂ = 1
2
x̂TLx̂ we have that

V ≤

(
1 + 2

√
σa(1− aN̄)

N̄
λN +

σa(1− aN̄)

N̄
λ2
N

)
V̂ .

83

Combining this with the fact that

V̇ ≤ −(1− σ)(1− aN̄)λ2V̂ ,

we have shown

V̇ ≤ −
(1− σ)(1− aN̄)λ2

1 + 2
√

σa(1−aN̄)

N̄
λN + σa(1−aN̄)

N̄
λ2
N

V,

which shows that V decays at least exponentially. This means that V̇ → 0 expo-

nentially and thus xi → x̄ exponentially for all i as well.

Remark 5.3.5 (Conjectured convergence rate). The proof of Theorem 5.3.4 gives

a very conservative lower bound on the exponential convergence rate of the system.

We conjecture that a tighter lower bound of (1− σ)(1− aN̄)λ2 also holds but this

has yet to be proven. •

Chapter 6

Self-triggered optimal deployment

In this chapter we study the application of a distributed self-triggered com-

munication and control algorithm to an optimal deployment problem. Our objec-

tive is to design a self-triggered coordination algorithm where agents autonomously

decide when they need new, up-to-date location information in order to successfully

perform the required task.

There are two main areas related to the contents of this chapter. In the

context of robotic sensor networks, this work builds on [1], where distributed al-

gorithms based on centroidal Voronoi partitions are presented, and [84], where

limited-range interactions are considered. Other works on deployment coverage

problems include [85, 86, 87, 88]. We note that the locational optimization prob-

lem as defined in Section 2.2 is a static coverage problem, in contrast to dynamic

coverage problems, e.g., [89, 90], that seek to visit or continuously sense all points

in the environment. A feature of the algorithms mentioned above is the common

assumption of constant communication among agents and up-to-date information

about each others’ locations.

The other area of relevance to this work is discrete-event systems [8], and

the research in triggered control [32, 33, 34, 31], particularly as related to sensor

and actuator networks. Of particular relevance are works that study self-triggered

or event-triggered decentralized strategies that are based on local interactions with

84

85

neighbors defined in an appropriate graph. Among them, we highlight [91] on col-

lision avoidance while performing point-to-point reconfiguration, [46] on achieving

agreement, [92] on distributed optimization, and [42] on implementing nonlinear

controllers over sensor and actuator networks.

6.1 Problem statement

Consider a group of N agents moving in a convex polygon S ⊂ R
2 with posi-

tions (p1, . . . , pN). For simplicity, we consider arbitrary continuous-time dynamics

such that

(i) all agents’ clocks are synchronous, i.e., given a common starting time t0,

subsequent timesteps occur for all agents at tℓ = t0 + ℓ∆t, for ℓ ∈ Z≥0;

(ii) each agent can move at a maximum speed of vmax, i.e., ‖pi(tℓ+∆t)−pi(tℓ)‖ ≤

vmax∆t;

(iii) for pgoal ∈ S, there exists a control such that ‖pi(tℓ+∆t)− pgoal‖ < ‖pi(tℓ)−

pgoal‖, pi(tℓ +∆t) ∈ [pi(tℓ), pgoal] and pi([tℓ, tℓ+1]) ⊂ S.

We will relax assumption (i) in Section 6.5.2. In our later developments, we assume

in (iii) that, if ‖pi(tℓ) − pgoal‖ ≤ vmax∆t, then pi(tℓ + ∆t) = pgoal for simplicity.

Dropping this assumption does not affect any results.

Given a density function φ : S → R≥0, our objective is to achieve optimal

deployment with respect to H as defined in (2.2) in Section 2.2 which is restated

here for convenience,

H(P,W) =
N∑

i=1

∫

Wi

‖q − pi‖
2φ(q)dq.

Since agents must use energy to wirelessly communicate with neighbors and obtain

updated information, agents have to balance the need for updated information with

the desire of spending as little energy as possible. Our goal is to understand how

communication effort affects deployment performance.

86

The data structure that each agent i maintains about other agent j ∈

{1, . . . , N} \ {i} is the last known location pij and the time elapsed τ ij ∈ R≥0 since

this information was received (if i does not ever receive information about j, then

pij and τ ij are never initiated). For itself, agent i has access to up-to-date location

information, i.e., pii = pi and τ ii = 0 at all times. For neighboring agents whose

information are available, agent i knows that, at the current time, agent j will not

have traveled more than rij = vmaxτ
i
j from pij, and hence i can construct a ball

B(pij, r
i
j) that is guaranteed to contain the true location of j. Once any radius rij

becomes diam(S), it does not make sense to grow it any more. Note that these

balls are then precisely the reachability sets defined in Section 3.2.3. Since we are

only considering balls here rather than any general set, we can easily store the

data of agent i in a vector

Di = ((pi1, r
i
1), . . . , (p

i
N , r

i
N)) ∈ (S × R≥0)

N . (6.1)

Additionally, agent i maintains a set Ai ⊂ {1, . . . , N} with i ∈ Ai that, at any

time t, corresponds to the agents whose position information should be used in its

computation of its control signal. For instance, Ai = {1, . . . , N} would mean that

agent i uses all the information contained in Di, although this is not necessary, as

we will explain in Section 6.3.2. In fact, an individual agent does not need to know

the total number of agents in the network or maintain a place holder for every

other agent in its memory. We have only chosen to define the agent memory as

in (6.1) to simplify the exposition of the technical arguments later.

We refer to D = (D1, . . . ,DN) ∈ (S × R≥0)
N2

as the entire memory of

the network. We find it convenient to define the map loc : (S × R≥0)
N2

→ SN ,

loc(D) = (p11, . . . , p
N
N), to extract the exact agents’ location information from D.

Remark 6.1.1 (Errors in position information). The model described above as-

sumes, for simplicity, that each agent knows and transmits its own position ex-

actly. Errors in acquiring exact information can easily be incorporated into the

model if they are upper bounded by δ ∈ R≥0 by setting rij = vmaxτ
i
j + δ, for all

i, j ∈ {1, . . . , n}. •

87

To optimize H, the knowledge of its own Voronoi cell is critical to each

agent, cf. Section 2.2. However, with the data structure described above, agents

cannot compute the Voronoi partition exactly. We address this next.

6.2 Space partitions with uncertain information

Since we are looking at scenarios with imperfect data, we introduce parti-

tioning techniques with uncertainty.

6.2.1 Guaranteed Voronoi diagram

Here, we follow [93, 94]. Let S ⊂ R
2 be a convex polygon and consider

a set of uncertain regions D1, . . . , DN ⊂ S, each containing a site pi ∈ Di. The

guaranteed Voronoi diagram of S generated by D = (D1, . . . , DN) is the collection

gV(D1, . . . , DN) = {gV1, . . . , gVN},

gVi = {q ∈ S | max
x∈Di

‖q − x‖ ≤ min
y∈Dj

‖q − y‖ for all j 6= i}.

With a slight abuse of notation, we denote by gVi(D) the ith component of

gV(D1, . . . , DN). Note that gVi contains the points of S that are guaranteed to be

closer to pi than to any other of the nodes pj, j 6= i. Due to the uncertainties in

positions, there is a neutral region in S which is not assigned to anybody: those

points for which no guarantee can be established. The guaranteed Voronoi dia-

gram is not a partition of S, see Figure 6.1(a). Each point in the boundary of gVi

belongs to a set of the form

∆g
ij = {q ∈ S | max

x∈Di

‖q − x‖ = min
y∈Dj

‖q − y‖}, (6.2)

for some j 6= i. Note that in general ∆g
ij 6= ∆g

ji. If every region Di is a point,

Di = {pi}, then gV(D1, . . . , DN) = V(p1, . . . , pN). For any collection of points

pi ∈ Di, i ∈ {1, . . . , N}, the guaranteed Voronoi diagram is contained in the

Voronoi partition, i.e., gVi ⊂ Vi, for all i ∈ {1, . . . , N}. Agent pj is a guaranteed

88

(a) (b)

Figure 6.1: Guaranteed (a) and dual guaranteed (b) Voronoi diagrams.

Voronoi neighbor of pi if ∆g
ij ∩ ∂gVi is not empty nor a singleton. The set of

guaranteed Voronoi neighbors of agent i is gNi(D).

Throughout the paper, we consider uncertain regions given by balls, Di =

B(pi, ri), for all i ∈ {1, . . . , N}. Then, the edges (6.2) composing the boundary of

gVi are given by

∆g
ij = {q ∈ S | ‖q − pi‖+ ri = ‖q − pj‖ − rj}, (6.3)

thus they lie on the arm of the hyperbola closest to pi with foci pi and pj, and

semimajor axis 1
2
(ri + rj). Note that each cell is convex. The following results

states a useful property of the guaranteed Voronoi diagram.

Lemma 6.2.1. Given p1, . . . , pN ∈ S and r1, . . . , rN , a ∈ R≥0, let Di = B(pi, ri)

and D′
i = B(pi, ri + a), for all i ∈ {1, . . . , N}. Then, for all i ∈ {1, . . . , N}, it

holds that gNi(D
′
1, . . . , D

′
N) ⊂ gNi(D1, . . . , DN).

Proof. Let j ∈ gNi(D
′). This fact implies, according to (6.3), that there exists

q ∈ S such that

‖q − pi‖+ ri + a = ‖q − pj‖ − rj − a

< ‖q − pk‖ − rk − a, (6.4)

89

for all k ∈ {1, . . . , N} \ {i, j}. Now, let q′ be the unique point in [q, pj] such that

‖q′ − pi‖ + ri = ‖q′ − pj‖ − rj. Note that, since q′ ∈ [q, pj], then ‖q′ − pj‖ =

‖q − pj‖ − ‖q′ − q‖. Therefore, we can write

‖q′ − pj‖ − rj = ‖q − pj‖ − rj − ‖q′ − q‖

< ‖q − pk‖ − rk − ‖q′ − q‖,

for all k ∈ {1, . . . , N} \ {i, j}, where we have used (6.4). Now, using the triangle

inequality ‖q−pk‖ ≤ ‖q− q′‖+‖q′−pk‖, we deduce ‖q
′−pj‖−rj < ‖q′−pk‖−rk,

for all k ∈ {1, . . . , N} \ {i, j}, and hence j ∈ gNi(D).

6.2.2 Dual guaranteed Voronoi diagram

Here we introduce the concept of dual guaranteed Voronoi diagram. We

first define a covering of Q as a collection of N polytopes W = {W1, . . . ,WN}

whose union is Q but do not necessarily have disjoint interiors. The dual guar-

anteed Voronoi diagram of S generated by D1, . . . , DN is the collection of sets

dgV(D1, . . . , DN) = {dgV1, . . . , dgVN} defined by

dgVi = {q ∈ S | min
x∈Di

‖q − x‖ ≤ max
y∈Dj

‖q − y‖ for all j 6= i}.

With a slight abuse of notation, we denote by dgVi(D) the ith component of

dgV(D1, . . . , DN). Note that the points of S outside dgVi are guaranteed to be

closer to some other node pj, j 6= i than to pi. Because the information about the

location of these nodes is uncertain, there are regions of the space that belong to

more than one cell. The dual guaranteed Voronoi diagram is a covering of the set

S, see Figure 6.1(b). Each point in the boundary of dgVi belongs to a set of the

form

∆dg
ij = {q ∈ S | min

x∈Di

‖q − x‖ = max
y∈Dj

‖q − y‖}, (6.5)

for some j 6= i. Note that in general ∆dg
ij 6= ∆dg

ji . If every region Di is a point,

Di = {pi}, then dgV(D1, . . . , DN) = V(p1, . . . , pN). For any collection of points

pi ∈ Di, i ∈ {1, . . . , N}, the guaranteed Voronoi covering contains the Voronoi

90

partition, i.e., Vi ⊂ dgVi, for all i ∈ {1, . . . , N}. Agent pj is a dual guaranteed

Voronoi neighbor of pi if ∆
dg
ij ∩∂dgVi is not empty nor a singleton. The set of dual

guaranteed Voronoi neighbors of i is dgNi(D).

Consider the uncertain regions given by balls Di = B(pi, ri), i ∈ {1, . . . , n}.

Then, the edges (6.5) composing the boundary of dgVi are given by

∆dg
ij = {q ∈ S | ‖q − pi‖ − ri = ‖q − pj‖+ rj}, (6.6)

thus they lie on the arm of the hyperbola farthest from pi with foci pi and pj, and

semimajor axis 1
2
(ri+ rj). Cells are generally not convex. The next result states a

useful property of the dual guaranteed Voronoi diagram.

Lemma 6.2.2. Given p1, . . . , pN ∈ S and r1, . . . , rN , a ∈ R≥0, let Di = B(pi, ri)

and D′
i = B(pi, ri + a), for i ∈ {1, . . . , N}. Then, for all i ∈ {1, . . . , N}, it holds

that dgNi(D1, . . . , DN) ⊂ dgNi(D
′
1, . . . , D

′
N).

Proof. Let j ∈ dgNi(D). This fact implies, according to (6.6), that there exists

q ∈ S such that

‖q − pi‖ − ri = ‖q − pj‖+ rj

< ‖q − pk‖+ rk, (6.7)

for all k ∈ {1, . . . , N} \ {i, j}. Now, let q′ be the unique point in [q, pj] such that

‖q′ − pi‖ − ri − a = ‖q′ − pj‖+ rj + a.

Note that, since q′ ∈ [q, pj], then ‖q′ − pj‖ = ‖q − pj‖ − ‖q′ − q‖. Therefore, we

can write

‖q′ − pj‖+ rj + a = ‖q − pj‖+ rj + a− ‖q′ − q‖

< ‖q − pk‖+ rk + a− ‖q′ − q‖,

for all k ∈ {1, . . . , N} \ {i, j}, where we have used (6.7). Now, using the triangle

inequality ‖q − pk‖ ≤ ‖q − q′‖+ ‖q′ − pk‖, we deduce that

‖q′ − pj‖+ rj + a < ‖q′ − pk‖+ rk + a,

for all k ∈ {1, . . . , N} \ {i, j}, and hence j ∈ dgNi(D
′) as claimed.

91

The next result is another useful property of the dual guaranteed Voronoi

diagram.

Lemma 6.2.3. Given sets D1, . . . , DN+M ⊂ S, for all i ∈ {1, . . . , N} it holds that

dgVi(D1, . . . , DN , DN+1, . . . , DN+M) ⊆ dgVi(D1, . . . , DN).

Proof. Let us recall the construction of the set dgVi. The set is given by

dgVi = {q ∈ S | min
x∈Di

‖q − x‖ ≤ max
y∈Dj

‖q − y‖ for all j 6= i}.

with boundary points that look like

∆dg
ij = {q ∈ S | ‖q − pi‖ − ri = ‖q − pj‖+ rj},

Notice that each curve ∆dg
ij is a halfplane, and the set dgVi must be on the side of

this halfplane that contains pi.

We will define these halfplanes by

Γdg
ij = {q ∈ S | ‖q − pi‖ − ri ≤ ‖q − pj‖+ rj},

We can now rewrite the dual guaranteed sets as the intersections of these halfplanes

dgVi(D1, . . . , DN) =
⋂

j∈{1,...,N}\{i}

Γdg
ij ,

dgVi(D1, . . . , DN , DN+1, . . . , DN+M) =
⋂

j∈{1,...,N+M}\{i}

Γdg
ij .

It is now easy to see that dgVi(D1, . . . , DN , DN+1, . . . , DN+M) ⊆ dgVi(D1, . . . , DN).

6.3 Self-triggered coverage optimization

Here we design an algorithm to solve the problem described in Section 6.1.

From the point of view of an agent, the algorithm is composed of two components:

a motion control part that determines the best way to move given the available

information and an update decision part that determines when new information is

needed.

92

6.3.1 Motion control

If an agent had perfect knowledge of other agents’ positions, then to op-

timize H, it could compute its own Voronoi cell and move towards its centroid,

as in [1]. Since this is not the case we are considering, we instead propose an

alternative motion control law. Let us describe it first informally:

[Informal description]: At each timestep, each agent uses its stored
information about other agents’ locations to calculate its own guaran-
teed Voronoi and dual guaranteed Voronoi cells. Then, the agent moves
towards the centroid of its guaranteed Voronoi cell.

Note that this law assumes that each agent has access to the value of the

density φ over its guaranteed Voronoi cell. In general, there is no guarantee that

following the Motion Control Lawwill lead the agent to get closer to the centroid

of its Voronoi cell. A condition under which this statement holds is characterized

by the next result.

Lemma 6.3.1. Given p 6= q, q∗ ∈ R
2, let p′ ∈ [p, q] such that ‖p′ − q‖ ≥ ‖q∗ − q‖.

Then, ‖p′ − q∗‖ ≤ ‖p− q∗‖.

Proof. We reason by contradiction. Assume ‖p′ − q∗‖ > ‖p− q∗‖. Since p′ ∈ [p, q],

we have ∠(q − p′, q∗ − p′) = π − ∠(p− p′, q∗ − p′). Now,

(p− p′) · (q∗ − p′) = (p− q∗ + q∗ − p′) · (q∗ − p′)

= (p− q∗) · (q∗ − p′) + ‖q∗ − p′‖2.

Since ‖p′ − q∗‖ > ‖p − q∗‖, it follows that ∠(p − p′, q∗ − p′) ∈ [0, π/2), and hence

∠(q − p′, q∗ − p′) ∈ (π/2, π]. Now the application of the law of cosines to the

triangle with vertices q∗, q, and p′ yields

‖q∗ − q‖2 =‖q∗ − p′‖2 + ‖q − p′‖2 (6.8)

− 2‖q∗ − p′‖‖q − p′‖ cos∠(q − p′, q∗ − p′) > ‖q − p′‖2,

where we use the fact that p′ 6= q∗ (otherwise, ‖p′−q∗‖ > ‖p−q∗‖ would imply that

p = q∗ which is a contradiction). Finally, the result follows by noting that (6.8)

contradicts the hypothesis ‖p′ − q‖ ≥ ‖q∗ − q‖.

93

Hence, with the notation of Lemma 6.3.1, if agent i is at p = pi and com-

putes the goal q = CgVi and moves towards it to p′, then the distance to q∗ = CVi

decreases as long as

‖p′ − CgVi‖ ≥ ‖CVi − CgVi‖ (6.9)

holds. This is illustrated in Figure 6.2. The right-hand side cannot be computed

by i because of lack of information about CVi but can be upper bounded, as we

show next.

p p′ q

q∗

Figure 6.2: Graphical illustration of Lemma 6.3.1.

Proposition 6.3.2. Let L ⊂ V ⊂ U . Then, for any density function φ, the

following holds

‖ cm(V)− cm(L)‖ ≤ 2 cr(U)
(
1−

mass(L)

mass(U)

)
. (6.10)

Proof. For convenience, let a = mass(L), b = mass(V), and c = mass(U). By

hypothesis, a ≤ b ≤ c. Note also that mass(U \L) = c− a. By definition, we have

cm(V)− cm(L) =
1

b

∫

V

qφ(q)dq −
1

a

∫

L

qφ(q)dq. (6.11)

For any v ∈ R
2, v = 1

b

∫
V
vφ(q)dq = 1

a

∫
L
vφ(q)dq. Summing and subtracting

v ∈ R
2, we get that (6.11) equals

1

b

∫

V

(q − v)φ(q)dq −
1

a

∫

L

(q − v)φ(q)dq

=
1

b

∫

V \L

(q − v)φ(q)dq +
(1
b
−

1

a

)∫

L

(q − v)φ(q)dq.

94

Taking norms, we deduce that for v = cc(U), we have

‖ cm(V)− cm(L)‖ ≤
1

b
cr(U)(b− a) +

∣∣∣1
b
−

1

a

∣∣∣ cr(U)a.

The result now follows after some manipulations.

In general, the bound in Proposition 6.3.2 is tight, i.e., there exist density

functions for which (6.10) is an equality. The following example shows how φ can

be chosen to do this.

Example 6.3.3. Notice first that ‖CV−CL‖ ≤ 2 cr(U), and thus 0 ≤ ‖CV −CL‖
2 cr(U)

≤ 1.

Now we simply need to show that φ can be chosen such that

‖CV − CL‖

2 cr(U)
=
(
1−

mass(L)

mass(U)

)
.

If we now fix φ in the set V , we are effectively fixing the entire LHS to a constant

because cr(U) does not depend on φ. Since the LHS can take any value in [0, 1],

we need to show that by simply changing φ in only the set U \ V , we can get the

RHS to be any value in [0, 1] as well. We rewrite the RHS

(
1−

mass(L)

mass(U)

)
=

mass(U)−mass(L)

mass(U)

It can now be seen that as mass(U) ranges from mass(L) up to infinity, this term

ranges from [0, 1). It is fairly easy to see that φ can now be chosen such that

mass(U) ∈ [mass(L),∞) and so there exists a φ such that the bound is an equality.

•

Exploiting Proposition 6.3.2, agent i can use L = gVi and U = dgVi to

upper bound the distance ‖CVi − CgVi‖ by

bndi ≡ bnd(gVi, dgVi) = 2 cr(dgVi)
(
1−

mass(gVi)

mass(dgVi)

)
. (6.12)

This bound is computable with information inDi only and can be used to guarantee

that (6.9) holds by ensuring

‖p′ − CgVi‖ ≥ bndi (6.13)

95

holds. The point p′ to which agent i moves to is determined as follows: move

towards CgVi as much as possible in one time step until it is within distance bndi

of it.

To precisely describe this motion we introduce the to-ball-boundary map

tbb : (Rd × R≥0)
2 → R

d that takes (p, δ, q, r) to




p+ δ unit(q − p) if ‖p− prB(q,r)(p)‖ > δ,

prB(q,r)(p) if ‖p− prB(q,r)(p)‖ ≤ δ.

Figure 6.3 illustrates the action of tbb. The point p′ to which agent i moves to is

tbb(p, δ, q, r)

δ

p

q

r

(a)

tbb(p, δ, q, r)

≤ δ

p

q

r

(b)

Figure 6.3: Graphical representation of the action of tbb when (a) ‖p −

prB(q,r)(p)‖ > vmax and (b) ‖p− prB(q,r)(p)‖ ≤ vmax.

then given by

p′ = tbb(pi, vmax, CgVi , bndi).

The Motion Control Lawis formally described in Table 6.1.

If time elapses without new location information, then the uncertainty radii

in the agent’s memory grows causing the bound (6.12) to grow larger and (6.13)

becomes harder to satisfy until it becomes unfeasible. Therefore, agents need a

decision mechanism that establishes when new information is required in order

96

Table 6.1: Motion Control Law.

-2

Agent i ∈ {1, . . . , N} performs:

1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)

3: compute q = CL and r = bnd(L,U)

4: move to tbb(pi, vmax∆t, q, r)

5: set Di
j = (pij,min{rij + vmax∆t, diam(S)}

6: set Di
i = (tbb(pi, vmax∆t, q, r), 0)

for the execution of the motion control law to be useful. This is addressed in

Section 6.3.2.

6.3.2 Update decision policy

The second component of our coordination strategy takes care of updating

the memory of the agents, and in particular, of deciding when new information

is needed. To specify this component, we build on the discussion of the previous

section, specifically on making sure that condition (6.13) is feasible. Two reasons

can make this condition invalid for a given agent i. One reason is the bound

bndi might be large due to outdated location information about other agents’

location in Di. This should trigger the need for up-to-date information through

communication with other agents. Another reason is that agent i might be close to

CgVi , requiring bndi to be very small. We deal with this by specifying a tolerance

ε > 0 that is selected a priori by the designer.

We describe the decision policy informally next.

[Informal description]: At each timestep, each agent uses its stored
information about other agents’ locations to calculate its own guaran-
teed Voronoi and dual guaranteed Voronoi cells, and the bound (6.12).
Then, it decides that up-to-date location information is required if its
computed bound is larger than ε and the distance to the centroid of its
guaranteed cell.

97

Formally, the memory updating mechanism followed by each agent is de-

scribed by the pseudo-code in Table 6.2.

Table 6.2: One-Step-Ahead Update Decision Policy.

-2

Agent i ∈ {1, . . . , N} performs:

1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)

3: compute q = CL and r = bnd(L,U)

4: if r ≥ max {‖q − pi‖, ε} then

5: reset Di by acquiring up-to-date location information

6: end if

According to Table 6.2, agent i checks at each time step if condition (6.13) is

feasible or bndi ≤ ε, and therefore it is advantageous to execute the Motion Control

Law. As long as an agent i does not receive updated information, the uncertainty

radii simply grow linearly in time with vmax. Thus, an equivalent way of describing

this decision policy that more clearly displays its self-triggered property is given

by the Multiple-Steps-Ahead Update Decision Policyof Table 6.3. According to

Table 6.3, agent i determines when in the future it will have to update its location

information again as a function of the current state of its memory as described in

Section 3.1.3.

6.3.3 The Self-Triggered Centroid Algorithm

Here, we synthesize the self-triggered algorithm to achieve optimal deploy-

ment with outdated information. The algorithm is the result of combining the

motion control law of Section 6.3.1 and the update decision policies of Section 6.3.2

with a procedure to acquire up-to-date information about other agents when this

requirement is triggered (cf. 5: in both Tables 6.2 and 6.3). Let us discuss this

latter point in detail. A trivial update mechanism will be to provide each agent

with up-to-date information about the location of all other agents in the network.

98

Table 6.3: Multiple-Steps-Ahead Update Decision Policy.

-2

Agent i ∈ {1, . . . , n} performs:

1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)

3: compute q = CL and r = bnd(L,U)

4: if r ≥ max {‖q − pi‖, ε} then

5: reset Di by acquiring up-to-date location information

6: else

7: initialize tsleep = 0

8: while r < max {‖q − pi‖, ε} do

9: set tsleep = tsleep + 1

10: set Di
j = (pij,min{rij + vmax∆t, diam(S)}) for j 6= i

11: set Di
i = (tbb(pi, vmax∆t, q, r), 0)

12: set D = Di

13: compute L = gVi(D) and U = dgVi(D)

14: compute q = CL and r = bnd(L,U)

15: end while

16: execute policy again in tsleep timesteps

17: end if

However, the implementation of such a mechanism is costly from a communications

point of view. We instead propose to use an alternative algorithm that only pro-

vides up-to-date location information of the Voronoi neighbors at the specific times

when step 5: is executed. This algorithm, termed the Voronoi Cell Computation,

is borrowed from [1]. We present it in Table 6.4, adapted to our scenario.

The Voronoi Cell Computationdetermines a radius Ri with the property

that agent i does not need location information about agents farther away than Ri

from pi to compute exactly its Voronoi cell. There are multiple ways as to how an

agent might physically acquire location information about agents located within a

distance less than or equal to this radius, including point-to-point communication,

99

Table 6.4: Voronoi Cell Computation.

-2

At timestep ℓ ∈ Z≥0, agent i ∈ {1, . . . , N} performs:

1: initialize Ri = mink∈{1,...,N}\{i} ‖pi − pik‖+ vmaxτ
i
k

2: detect all pj within radius Ri

3: set W (pi, Ri) = B(pi, Ri) ∩
(
∩j:‖pi−pj‖≤Ri

Hpipj

)

4: while Ri < 2maxq∈W (pi,Ri) ‖pi − q‖ do

5: set Ri := 2Ri

6: detect all pj within radius Ri

7: set W (pi, Ri) = B(pi, Ri) ∩
(
∩j:‖pi−pj‖≤Ri

Hpipj

)

8: end while

9: set Vi = W (pi, Ri)

10: set Ai = Ni ∪ {i} and Di
j = (pj, 0) for j ∈ Ni

multi-hop communication, and sensing. For simplicity, we assume that agents

have the capability to acquire this information for arbitrarily large Ri. Implicit

in this model is the fact that larger radii correspond to more costly acquisition of

information.

The next result justifies why an agent i may use only the subset Ai pre-

scribed by Voronoi Cell Computationto compute L and U in the algorithms pre-

sented above. In the statement, πAi denotes the map that extracts from Di the

information about the agents contained in Ai.

Lemma 6.3.4. Assume that at timestep ℓ∗ ∈ Z≥0, agent i gets updated information

about the location of its current Voronoi neighbors (e.g., by executing the Voronoi

Cell Computation). Let Dall(ℓ∗) = ((p1(tℓ∗), 0), . . . , (pN(tℓ∗), 0)) ∈ (S ×R≥0)
N and

let DVr(ℓ∗) ∈ (S ×R≥0)
N be any vector whose jth component is (pj(tℓ∗), 0), for all

j ∈ Ai = Ni ∪ {i}. For ℓ ≥ ℓ∗, define recursively

LVr(ℓ) = gV (πAi(DVr(ℓ))), UVr(ℓ) = dgV (πAi(DVr(ℓ))),

Lall(ℓ) = gV (Dall(ℓ)), Uall(ℓ) = dgV (Dall(ℓ)),

where DVr(ℓ + 1) = Evlℓ(DVr(ℓ)), Dall(ℓ + 1) = Evlℓ(Dall(ℓ)) and Evlℓ : (S ×

100

R≥0)
N → (S × R≥0)

N , corresponding to the time evolution of the data structure,

is given by (Evlℓ)j(D) = (pj, rj + vmax∆t) for j 6= i, and

(Evlℓ)i(D) = (tbb(pi, vmax, CLVr(ℓ), bnd(LVr(ℓ), UVr(ℓ))), 0),

otherwise. Then, for ℓ ≥ ℓ∗,

LVr(ℓ) = Lall(ℓ) and UAll(ℓ) ⊂ UVr(ℓ).

Lemma 6.3.4 states that the information provided by the Voronoi Cell Com-

putationis sufficient to compute the quantities required by the motion control law

and the update decision policies. Its proof follows from Lemmas 6.2.1 and 6.2.3.

Lemma 6.2.1 implies that taking into account only the uncertain positions of agents

in Ai is enough to compute correctly the guaranteed Voronoi cell. Lemma 6.2.3

implies that using only this information an upper bound of the dual guaranteed

Voronoi cell can be computed. Thus the Self-Triggered Centroid Algorithmcan be

run by agent i using only the information in πAi(Di). In particular, this implies

that, from an implementation viewpoint, an individual agent i does not need to

know the total number of agents in the network or maintain information about

agents other than those determined by Ai.

Combining the Voronoi Cell Computationand the Motion Control Lawfrom

Section 6.3.1 with the One-Step-Ahead Update Decision Policyfrom Section 6.3.2

leads to the synthesis of the Self-Triggered Centroid Algorithmpresented in Ta-

ble 6.5. A similar version of this algorithm can be written using the Multiple-

Steps-Ahead Update Decision Policyin which agents can instead schedule the next

time information should be updated as opposed to checking condition (6.13) in

each intermediate timestep. Since the latter corresponds to multiple executions

of the One-Step-Ahead Update Decision Policy, the trajectories described by the

network would be the same, and hence we just concentrate on the analysis of the

Self-Triggered Centroid Algorithm.

Remark 6.3.5 (Robustness against agent departures and arrivals). With a slight

modification, the Self-Triggered Centroid Algorithmcan be made robust to agent

departures and arrivals. Consider the case of a failing agent i that can no longer

101

Table 6.5: Self-Triggered Centroid Algorithm.

-2

Initialization

1: execute Voronoi Cell Computation

At timestep ℓ ∈ Z≥0, agent i ∈ {1, . . . , N} performs:

1: set D = πAi(Di)

2: compute L = gVi(D) and U = dgVi(D)

3: compute q = CL and r = bnd(L,U)

4: if r ≥ max {‖q − pi‖, ε} then

5: reset Di and Ai by running Voronoi Cell Computation

6: set D = πAi(Di)

7: set L = gV (D) and U = dgV (D)

8: set q = CL and r = bnd(L,U)

9: end if

10: move to tbb(pi, vmax∆t, q, r)

11: set Di
i = (tbb(pi, vmax∆t, q, r), 0)

12: set Di
j = (pij,min{rij + vmax∆t, diam(S)}) for j 6= i

send or receive information to/from any other agent j. Once all other agents

j have updated their information according to Voronoi Cell Computation, notice

that i /∈ Aj for all the remaining agents j, which continue to run the Self-Triggered

Centroid Algorithmnormally without agent i. On the other hand if a new agent

i appears in the system, we require it to immediately update its information and

send a request to its Voronoi neighbors to do the same thing. After this, the Self-

Triggered Centroid Algorithmcan continue running having incorporated agent i.

•

6.4 Convergence of synchronous executions

In this section, we analyze the asymptotic convergence properties of the

Self-Triggered Centroid Algorithm. Note that this algorithm can be written as a

102

map fstca : (S × R≥0)
N2

→ (S × R≥0)
N2

which corresponds to the composition

of a “decide/acquire-up-to-date-information” map finfo and a “move-and-update-

uncertainty” map fmotion, i.e., fstca(D) = fmotion(finfo(D)) for D ∈ (S × R≥0)
N2

.

Our analysis strategy here is shaped by the fact that finfo, and consequently, fstca

are discontinuous.

Our objective is to prove the following result characterizing the asymptotic

convergence properties of the trajectories of the Self-Triggered Centroid Algorithm.

Proposition 6.4.1. For ε ∈ [0, diam(S)), the agents’ positions evolving under

the Self-Triggered Centroid Algorithmfrom any initial network configuration in SN

converges to the set of centroidal Voronoi configurations.

Since the map fstca is discontinuous, we cannot readily apply the discrete-

time LaSalle Invariance Principle. Our strategy to prove Proposition 6.4.1 is to

construct a closed set-valued map Tsync, whose trajectories include the ones of fstca,

and apply the LaSalle Invariance Principle for set-valued maps as defined in 2.3.5.

Next, we define Tsync formally. For convenience, we recall that the memory

D = (D1, . . . ,DN) ∈ (S × R≥0)
N2

, and that the elements of Di are referred to as

((pi1, r
i
1), . . . , (p

i
N , r

i
N)), for each i ∈ {1, . . . , N}. To ease the exposition, we divide

the construction of Tsync in two steps: the first one captures the agent motion and

the uncertainty update to the network memory, and the second one captures the

acquisition of up-to-date network information.

Motion and uncertainty update. We define the continuous motion and

time update map as M : (S × R≥0)
N2

→ (S × R≥0)
N2

whose ith component is

Mi(D) =
(
(pi1,min

{
ri1 + vmax∆t, diam(S)

}
), . . . ,

(tbb(pii, vmax, CgVi(πAi(Di)), bnd(πAi(Di))), 0),

. . . , (piN ,min
{
riN + vmax∆t, diam(S)

})
,

where Ai = {i} ∪ argminj∈{1,...,N}\{i} r
i
j.

Acquisition of up-to-date information. At each possible state of the

network memory, agents are faced with the decision of whether to acquire up-

to-date information about the location of other agents. This is captured by the

103

set-valued map U : (S × R≥0)
N2

→ P
c((S × R≥0)

N2
) that, to D ∈ (S × R≥0)

N2
,

associates the Cartesian product U(D) whose ith component is either Di (agent i

does not get any up-to-date information) or the vector

((p′1, r
′
1), . . . , (p

′
N , r

′
N))

where (p′j, r
′
j) = (pjj, 0) for j ∈ {i} ∪ Ni and (p′j, r

′
j) = (pij, r

i
j) otherwise (agent

i gets updated information). Recall that Ni is the set of neighbors of agent i

given the partition V(loc(D)). It is not difficult to show that U is closed, recall

Definition 2.3.1.

We define the set-valued map Tsync : (S×R≥0)
N2

⇒ (S×R≥0)
N2

by Tsync =

U ◦ M. Given the continuity of M and the closedness of U , the map Tsync is

closed. Moreover, if γ = {D(tℓ)}ℓ∈Z≥0
is an evolution of the Self-Triggered Centroid

Algorithm, then γ′ = {D′(tℓ)}ℓ∈Z≥0
, with D′(tℓ) = finfo(D(tℓ)), is a trajectory of

D′(tℓ+1) ∈ Tsync(D
′(tℓ)). (6.14)

The next result establishes the monotonic evolution of the aggregate function H

along the trajectories of Tsync. With a slight abuse of notation, denote also by H

the extension of the aggregate function to the space (S × R≥0)
N2

, i.e., H(D) =

H(loc(D)), for D ∈ (S × R≥0)
N2

.

Lemma 6.4.2. H : (S × R≥0)
N2

→ R is monotonically nonincreasing along the

trajectories of Tsync.

Proof. Let D ∈ (S × R≥0)
N2

and D′ ∈ Tsync(D). For convenience, let P = loc(D)

and P ′ = loc(D′) = loc(M(D)). To establish H(P ′) ≤ H(P), we use the formula-

tion (2.2) and divide our reasoning in two steps. First, we fix the partition V(P).

For each i ∈ {1, . . . , N}, if ‖pii − CgVi(πAi(Di))‖ ≤ bnd(πAi(Di)), then p′ii = pii

because agent i does not move according to the definition of tbb. If, instead,

‖pii−CgVi(πAi(Di))‖ > bnd(πAi(Di)), then, by Lemma 6.3.1 and Proposition 6.3.2,

we have that ‖p′ii −CVi‖ < ‖pii−CVi‖. In either case, it follows from Lemma 2.2.1

that H (P ′,V (P)) ≤ H (P,V (P)). Second, the optimality of the Voronoi partition

stated in Lemma 2.2.1 guarantees that H (P ′,V (P ′)) ≤ H (P ′,V (P)), and the

result follows.

104

One can establish the next result using Lemma 6.4.2 and the fact that Tsync

is closed and its trajectories are bounded and belong to the closed set (S×R≥0)
N2

.

Lemma 6.4.3. Let γ′ be a trajectory of (6.14). Then, the ω-limit set ∅ 6= Ω(γ′) ⊂

(S ×R≥0)
N2

belongs to H−1(c), for some c ∈ R, and is weakly positively invariant

for Tsync, i.e., for D ∈ Ω(γ′), ∃ D′ ∈ Tsync(D) with D′ ∈ Ω(γ′).

Proof. Let γ′ be a trajectory of (6.14). The fact that Ω(γ′) 6= ∅ follows from γ′ be-

ing bounded. LetD′ ∈ Ω(γ′). Then there exists a subsequence {D′(tℓm) | m ∈ Z≥0}

of γ′ such that limm→+∞ D′(tℓm) = D′. Consider {D′(tℓm+1) | m ∈ Z≥0}. Since this

sequence is bounded, it must have a convergent subsequence, i.e., there exists D̂′

such that limm→+∞ D′(tℓm+1) = D̂′. By definition, D̂′ ∈ Ω(γ′). Also, since Tsync is

closed, we have D̂′ ∈ Tsync(D
′), which implies that Ω(γ′) is weakly positively invari-

ant. Now consider the sequence H ◦ γ = {H(γ(l)) | l ∈ Z≥0}. Since γ is bounded

andH is non-increasing along γ onW , the sequenceH◦γ is decreasing and bounded

from below, and therefore, convergent. Let c ∈ R satisfy liml→+∞H(γ(l)) = c.

Next, we prove that the value of V on Ω(γ) is constant and equal to c. Take

any z ∈ Ω(γ). Accordingly, there exists a subsequence {γ(lm) | m ∈ Z≥0} such

that limm→+∞ γ(lm) = z. Since H is continuous, limm→+∞ H(γ(lm)) = H(z). From

liml→+∞H(γ(l)) = c, we conclude H(z) = c.

We are finally ready to present the proof of Proposition 6.4.1.

Proof of Proposition 6.4.1. Let γ = {D(tℓ)}ℓ∈Z≥0
be an evolution of the trajec-

tories of the Self-Triggered Centroid Algorithm. Define γ′ = {D′(tℓ)}ℓ∈Z≥0
by

D′(tℓ) = finfo(D(tℓ)). Note that loc(D(tℓ)) = loc(D′(tℓ)). Since γ
′ is a trajectory of

Tsync, Lemma 6.4.3 guarantees that Ω(γ′) is weakly positively invariant and belongs

to H−1(c), for some c ∈ R. Next, we show that

Ω(γ′) ⊆ {D ∈ (S × R≥0)
N2

| for i ∈ {1, . . . , N}, (6.15)

‖pii − CgVi(πAi(Di))‖ ≤ bnd(πAi(Di))}.

We reason by contradiction. Assume there exists D ∈ Ω(γ) for which there is

i ∈ {1, . . . , N} such that ‖pii − CgVi(πAi(Di))‖ > bnd(πAi(Di)). Then, using Lem-

mas 2.2.1 and 6.3.1 together with Proposition 6.3.2, we deduce that any possible

105

evolution from D under Tsync will strictly decrease H, which is a contradiction with

the fact that Ω(γ′) is weakly positively invariant for Tsync.

Furthermore, note that for each i, the inequality bndi < max{‖pii−CgVi‖, ε}

is satisfied at D′(tℓ), for all ℓ ∈ Z≥0. Therefore, by continuity, it also holds on Ω(γ′),

i.e.,

bnd(πAi(Di)) ≤ max{‖pii − CgVi(πAi(Di))‖, ε}, (6.16)

for all i ∈ {1, . . . , N} and all D ∈ Ω(γ′). Let us now show that Ω(γ′) ⊆ {D ∈

(S × R≥0)
N2

| for i ∈ {1, . . . , N}, pii = CVi}. Consider D̃ ∈ Ω(γ′). Since Ω(γ′) is

weakly positively invariant, there exists D̃1 ∈ Ω(γ′) ∩ Tsync(D̃). Note that (6.15)

implies that loc(D̃1) = loc(D̃). We consider two cases, depending on whether

or not agents have got up-to-date information in D̃1. If agent i gets up-to-date

information, then bnd(πAi(D̃i
1)) = 0, and consequently, from (6.15), pii = p′ii =

CgVi(πAi(D̃i
1) = CVi , and the result follows. If agent i does not get up-to-date

information, then bnd(πAi(D̃i
1)) > bnd(πAi(D̃i)) and gVi(πAi(D̃i

1)) ⊂ gVi(πAi(D̃i))

by Lemma 6.2.1. Again, using the fact that Ω(γ′) is weakly positively invariant

set, there exists D̃2 ∈ Ω(γ′)∩Tsync(D̃1). Reasoning repeatedly in this way, the only

case we need to discard is when agent i never gets up-to-date information. In such

a case, ‖pii − CgVi‖ → 0 while bndi monotonically increases towards diam(S). For

sufficiently large ℓ, we have that ‖pii − CgVi(πAi(D̃i
ℓ))‖ < ε. Then (6.16) implies

bndi(πAi(D̃i
ℓ)) < ε, which contradicts the fact that bnd(πAi(D̃i

ℓ)) tends to diam(S).

This ends the proof.

Remark 6.4.4 (Convergence with errors in position information). A convergence

result similar to Proposition 6.4.1 can be stated in the case when errors in position

information are present, as discussed in Remark 6.1.1. In this case, for sufficiently

small maximum position error δ, it can be shown that the network will converge

to within a constant factor of δ of the set of centroidal Voronoi configurations. •

The following result states that the Self-Triggered Centroid Algorithmwill

not exhibit Zeno behavior meaning that no agent will request information from its

neighbors an infinite number of times in any finite time period. This is a direct

106

consequence of the fact that each agent i ∈ {1, . . . , N} only checks if the inequality

in step 4: of Table 6.2 is satisfied every ∆t > 0 seconds.

Proposition 6.4.5 (No Zeno behavior). Under the Self-Triggered Centroid Algo-

rithm, the system does not exhibit Zeno behavior.

6.5 Extensions

In this section, we briefly discuss two important variations that can be added

to the Self-Triggered Centroid Algorithm. Section 6.5.1 discusses a procedure that

agents can implement to decrease their maximum velocity as they get close to

their optimal locations. Section 6.5.2 discusses the convergence of asynchronous

executions.

6.5.1 Maximum velocity decrease

The agents update their individual memories along the execution of the

Self-Triggered Centroid Algorithmby growing the regions of uncertainty about the

position of other agents at a rate vmax. However, as the network gets close to

the optimal configuration (as guaranteed by Proposition 6.4.1), agents move at

velocities much smaller than the nominal maximum velocity vmax per timestep.

Here, we describe a procedure that the network can implement to diminish this

mismatch and reduce the need for up-to-date location information.

The strategy is based on the simple observation that the gradient∇H of the

objective function vanishes exactly on the set of centroidal Voronoi configurations.

Therefore, as the network gets close to this set, the norm of ∇H tends to zero.

From [55, 10], we know that ∂H
∂pi

= 2mass(Vi)(pi − CVi) for each i ∈ {1, . . . , N},

and hence

∥∥∥∂H
∂pi

∥∥∥ ≤ 2mass(dgVi)(‖pi − CgVi‖+ bndi).

Note that this upper bound is computable by agent i. The objective of the network

107

is then to determine if, for a given design parameter δ, with 0 < δ ≪ 1,

2mass(dgVi)(‖pi − CgVi‖+ bndi) < δ (6.17)

for all i ∈ {1, . . . , n}. This check can be implemented in a number of ways. Here,

we use a convergecast algorithm, see e.g., [95].

The strategy can informally be described as follows. Each time an agent

i communicates with its neighbors, it checks if (6.17) is satisfied for Ai ∪ {i}. If

this is the case, then agent i triggers the computation of a spanning tree (e.g., a

breadth-first-search spanning tree [95]) rooted at itself which is used to broadcast

the message ‘the check is running’. An agent j passes this message to its children

or sends an acknowledgement to its parent if and only if (6.17) is satisfied for j.

At the end of this procedure, the root i has the necessary information to determine

if (6.17) holds for all agents. If this is the case, agent i broadcasts a message to all

agents to set v+max = vmax/2 and δ+ = δ/2. The benefits of this are shown through

simulations in Section 6.6.

6.5.2 Asynchronous executions

Here, we relax assumption (i) in Section 6.1 and consider asynchronous

executions of the Self-Triggered Centroid Algorithm. We begin by describing a

totally asynchronous model for the operation of the network agents, cf. [96]. Let

T i = {ti0, t
i
1, t

i
2, . . . } ⊂ R≥0 be a time schedule for agent i ∈ {1, . . . , N}. Assume

agent i executes the algorithm according to T i, i.e., the agent executes the steps

1:-12: described in Table 6.5 at time tiℓ, for ℓ ∈ Z≥0, with timestep (tiℓ+1 − tiℓ)

instead of ∆t. In general, the time schedules of different agents do not coincide

and this results in an overall asynchronous execution. Our objective is to show

that, under mild conditions on the time schedules of the agents, one can establish

the same asymptotic convergence properties for asynchronous evolutions.

Our analysis strategy has two steps. First, we synchronize the network

operation using the procedure of analytic synchronization, see [20]. Second, we

use this to lay out a proof strategy similar to the one used for the synchronous

108

case.

Analytic synchronization is a procedure that consists of merging together

the individual time schedules T i, i ∈ {1, . . . , N}, of the network’s agents into a

global time schedule T = {t0, t1, t2, . . . } by setting T = ∪ni=1T
i. This synchroniza-

tion is performed only for analysis purposes, i.e., T is unknown to the individual

agents. Note that more than one agent may be active at any given t ∈ T . For

convenience, we define ∆tℓ = tℓ+1 − tℓ > 0, for ℓ ∈ Z≥0, i.e., ∆tℓ is the time from

tℓ until at least one agent is active again.

The procedure of analytic synchronization allows us to analyze the conver-

gence properties of asynchronous executions by mimicking the proof strategy used

in Section 6.4 for the synchronous case. We do not include the full proof here to

avoid repetition. Instead, we provide the necessary elements to carry it over.

The main tool is the definition of a set-valued map Tasync whose trajectories

include the asynchronous executions of the Self-Triggered Centroid Algorithm. As

before, the construction of Tasync is divided in two parts: the first one captures the

agents’ motion and uncertainty update to the network memory, and the second

one captures the acquisition of up-to-date information. The definition of Tasync

also takes into account the global time schedule T in order to capture the different

schedules of the agents. For convenience, we define the network state to be (x, ℓ) ∈

((S × R≥0)
N × S)N × Z≥0, where

x = ((D1, u1), . . . , (DN , uN)),

ui denotes the waypoint of agent i ∈ {1, . . . , N} and ℓ is a time counter. For ease

of notation, let

(S × R≥0)
N2

e = ((S × R≥0)
N × S)N × Z≥0.

Motion and uncertainty update. The motion and time update mapM :

(S×R≥0)
N2

e → (S×R≥0)
N2

e simply corresponds to all agents moving towards their

waypoints while increasing in their memories the uncertainty about the locations

109

of other agents. The map is given by M(x, ℓ) = (M1(x, ℓ), . . . ,Mn(x, ℓ), ℓ) where

Mi(x, ℓ) =
(
(pi1,min

{
ri1 + vmax∆tℓ, diam(S)

}
), . . . ,

(
tbb(pii, vmax∆tℓ, u

i, 0), 0
)
, . . . ,

(piN ,min
{
riN + vmax∆tℓ, diam(S)

}
, ui
)
.

Note that tbb(pii, vmax∆tℓ, u
i, 0) corresponds to where agent i can get to in time

∆tℓ while moving towards its waypoint ui. The map M is continuous.

Acquisition of up-to-date information. Any given time might belong

to the time schedules of only a few agents. Moreover, these agents are faced

with the decision of whether to acquire up-to-date information about the location

of other agents. This is captured with the set-valued map U : (S × R≥0)
N2

e →

P
c((S × R≥0)

N2

e). Given the global time schedule T , the map U associates the

Cartesian product U(x, ℓ) whose (N + 1)th component is ℓ + 1 and whose ith

component, i ∈ {1, . . . , N}, is one of the following three possibilities: either (i) the

vector (Di, ui), which means i is not active at time step ℓ, (ii) the vector

(Di, tbb(pii, vmax(tℓ′ − tℓ), CgVi , bndi)),

for some ℓ′ > ℓ, with CgVi = CgVi(πAi(Di)), bndi = bnd(πAi(Di)), and Ai =

{i} ∪ argminj∈{1,...,N}\{i} r
i
j, which means i is active at time step ℓ and recomputes

its waypoint but does not get any up-to-date information, or (iii) the vector

((p′1, r
′
1), . . . , (p

′
N , r

′
N), tbb(p

i
i, vmax(tℓ′ − tℓ), CgVi , bndi)),

for some ℓ′ > ℓ, where (p′j, r
′
j) = (pjj, 0) for j ∈ {i} ∪ Ni and (p′j, r

′
j) = (pjj, r

j
j)

otherwise, which means i is active at time step ℓ, gets up-to-date information

and recomputes its waypoint. In this case, CgVi = CgVi(πAi((p′1, r
′
1), . . . , (p

′
N , r

′
N))),

bndi = bnd(πAi((p′1, r
′
1), . . . , (p

′
n, r

′
n))), and Ai = {i} ∪ Ni. The set-valued map U

is closed.

Finally, we define the set-valued map Tasync : (S×R≥0)
N2

e ⇒ (S×R≥0)
N2

e by

Tasync = U ◦M. Given the continuity of M and the closedness of U , the map Tasync

is closed. Moreover, the asynchronous executions of the Self-Triggered Centroid

110

Algorithmwith time schedules T i, i ∈ {1, . . . , n} are trajectories of

(x(ℓ+ 1), ℓ+ 1) ∈ Tasync(x(ℓ), ℓ).

Equipped with the definition of Tasync, one can now reproduce the proof

strategy followed in Section 6.4 and establish the monotonic evolution of the ob-

jective function, the weakly positively invariant nature of the omega limit sets

of its trajectories, and finally, the same asymptotic convergence properties of the

asynchronous executions of the Self-Triggered Centroid Algorithm, which we state

here for completeness.

Proposition 6.5.1. Assume the time schedules T i, i ∈ {1, . . . , n} are infinite and

unbounded. For ε ∈ [0, diam(S)), the agents’ position evolving under the asyn-

chronous Self-Triggered Centroid Algorithmwith time schedules T i, i ∈ {1, . . . , N}

from any initial network configuration in Sn converges to the set of centroidal

Voronoi configurations.

6.6 Simulations

Here, we provide several simulations to illustrate our results and compare

executions of the self-triggered strategy with the time-triggered or periodic strat-

egy. All simulations are done with N = 8 agents moving in a 4m × 4m square,

with a maximum velocity vmax = 1m/s. The synchronous executions operate

with ∆t = .025s. In the asynchronous execution shown in Figure 6.4(b), agents

in {1, 2, 3, 4} and {5, 6, 7, 8} share their time schedules, respectively. These time

schedules are generated as follows: the four first time steps are randomly generated,

and then they repeat periodically. We compare our algorithm against the move-

to-centroid strategy where agents have perfect location information at all times,

see [1]; we refer to this as the benchmark case. For each agent i ∈ {1, . . . , N}, we

adopt the following model [97] for quantifying the total power Pi used by agent i

to communicate, in dBmW power units,

Pi = 10 log10

[n∑

j∈{1,...,n},i 6=j

β100.1Pi→j+α‖pi−pj‖
]
,

111

where α > 0 and β > 0 depend on the characteristics of the wireless medium and

Pi→j is the power received by j of the signal transmitted by i in units of dBmW .

In our simulations, all these values are set to 1.

(a) (b) (c)

Figure 6.4: Network trajectories of (a) a synchronous execution and (b) an asyn-

chronous execution of the Self-Triggered Centroid Algorithmwith ε = 0.30, and (c)

the time-triggered or periodic algorithm (benchmark case). The black and grey

dots correspond to the initial and final agent positions, respectively.

Figures 6.4 and 6.5 illustrate an execution of the Self-Triggered Centroid

Algorithmfor a density φ which is a sum of two Gaussian functions

φ(q) = e−‖q−q1‖2 + e−‖q−q2‖2 ,

with q1 = (2, 3) and q2 = (3, 1), and compare its performance against the bench-

mark case. The communication power in a given timestep is the sum of the energy

required for all the directed point-to-point messages to be sent in that timestep.

Additionally, Figure 6.5 shows an execution that is also incorporating the dis-

tributed algorithm for decreasing velocity as described in Section 6.5.1.

Figure 6.6 shows the average communication power expenditure and the

average time to convergence of the Self-Triggered Centroid Algorithmfor varying

ε over 20 random initial agent positions based on uniformly sampling the domain.

One can see how as ε gets larger, the communication effort of the agents decreases

at the cost of a slower convergence on the value of H. Interestingly, for small ε, the

112

ε = 0.55
ε∗ = 0.55

benchmark

0
0 10 20 30 40

50

50 60 70 80 90

100

150

200

(a)

Timestep

P

ε = 0.55
ε∗ = 0.55

benchmark

0
0

2

4

6

8

10

10 20 30 40 50 60 70 80 90

(b)

Timestep

H

Figure 6.5: Plots of (a) the communication power P used by the network and (b)

the value of H at each time step of the synchronous self-triggered execution with

ε = 0.55, the synchronous self-triggered execution with ε = 0.55 also executing the

maximum velocity decrease strategy (denoted by ε∗) and the time-triggered exe-

cution (benchmark). The vertical lines denote the timesteps where agents reduce

their maximum velocity.

network performance does not deteriorate significantly while the communication

effort by the individual agents is substantially smaller. The lower cost associated

with the Self-Triggered Centroid Algorithmis due to requiring less communication

than the time-triggered or periodic algorithm.

Chapter 6 is a partial reprint of the material [3] as it appears in Self-

Triggered Coordination of Robotic Networks for Optimal Deployment, Automat-

ica, vol. 48, no. 6, pp. 1077-1087, 2012. The dissertation author was the primary

investigator and author of this paper.

113

self-triggered
benchmark

0
0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

140

160

180

200

(a)

ε

Pavg

self-triggered
benchmark

0
0 0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

70

80

90

100

(b)

ε

Tavg

Figure 6.6: Plots of the average (a) communication power consumption Pavg and

(b) timesteps to convergence Tavg over 20 simulations for varying ε.

Chapter 7

Team-triggered coordination

In this chapter we consider the same problem as in Chapter 3 where we re-

viewed three different methods of real-time control of a networked cyber-physical

system and highlighted the drawbacks of each method. The shortcomings of time-

triggered or periodic control is that computing the sampling and controller update

period T requires global information; moreover, the period is generally far smaller

than it needs to be in most cases as described in Section 3.2.1. Event-triggered

communication methods then seemed appealing but we saw in Section 3.2.2 that

it is not always straightforward to apply to a distributed cyber-physical system.

We showed a method of how event-triggered broadcasting can be beneficial in

Chapter 5 which we will build on here. The self-triggered communication and

control strategy of Section 3.2.3 demonstrated how it can be implemented in a

distributed networked system; however, the times between communication are of-

ten very conservative because worst-case conditions must always be considered to

ensure nothing goes wrong in between state samples.

Some prior work has studied similar problems on how agents should share

information to complete various different goals. In [98], the authors study agents

sharing different levels of information with one another and comparing simulation

results. In [99], many different specific algorithms are proposed for how agents

should share information with one another for completing different tasks. Unlike

these works, we consider a much more general, mathematical framework for how

114

115

sharing certain types of information at different times can be beneficial in a network

of agents.

Here we build on the strengths of event- and self-triggered communication

and control strategies as discussed in Chapters 3-6 to synthesize a unified approach

for controlling networked cyber-physical systems in real time that combines the

best of both worlds.

7.1 Problem statement

Here we briefly review the important parts of the problem posed in Sec-

tion 3.2. We consider a distributed control problem carried out over a wireless

network. Consider N agents whose communication topology is described by an

undirected graph G. The state of agent i ∈ {1, . . . , N}, denoted xi, belongs to

a closed set Xi ⊂ R
ni . The network state x = (x1, . . . , xN) therefore belongs to

X =
∏N

i=1 Xi. We denote by xiN = (xi, {xj}j∈N (i)) the state information about

agents i and all its neighbor j ∈ N (i).

We consider linear dynamics for each i ∈ {1, . . . , N},

ẋi = fi(xi, ui) = Aixi + Biui, (7.1)

with Ai ∈ R
ni×ni , Bi ∈ R

ni×mi , and ui ∈ Ui. Here, Ui ⊂ R
mi is a closed set of

allowable controls for agent i. We assume that the pair (Ai, Bi) is controllable

with controls taking values in Ui. We further assume the existence of a safe-mode

controller usf
i : Xi → Ui such that

Aixi + Biu
sf
i (xi) = 0, for all xi ∈ Xi,

i.e., a controller able to keep agent i’s state fixed.

Remark 7.1.1 (Safe mode availability). The existence of a safe mode control

for a general dynamic subsystem may seem quite restrictive, but there are many

physical models that do have this property such as single integrators or vehicles

with unicycle dynamics. •

116

The goal of the network is to drive the agents’ states to some desired closed

set of configurations D ⊂ X and ensure that it stays there. The objective here is

not to design the controller that achieves this, but rather synthesize an efficient

strategy for the real-time implementation of a given idealized controller.

Given the agent dynamics, the communication graph G, and the set D,

our starting point is the availability of a continuous distributed control law that

drives the system asymptotically to D. Formally, we assume that a continuous

map u∗ : X → R
m and a continuously differentiable function V : X → R, bounded

from below exist such that D is the set of local minimizers of V and, for all x /∈ D,

∇iV (x) (Aixi + Biu
∗
i (x)) ≤ 0, i ∈ {1, . . . , N}, (7.2a)

N∑

i=1

∇iV (x) (Aixi + Biu
∗
i (x)) < 0. (7.2b)

Recall that both the control law u∗ and the gradient ∇V are distributed over G.

By this we mean that, for each i ∈ {1, . . . , N}, the ith component of each of these

objects only depends on xiN , rather than on the full network state x. For simplicity,

and with a slight abuse of notation, we write u∗
i (x

i
N) and ∇iV (xiN) to emphasize

this fact when convenient.

7.2 Team-triggered communication and control

This section presents the team-triggered approach for the real-time imple-

mentation of distributed controllers on networked cyber-physical systems. The

team-triggered approach incorporates the reactive nature of event-triggered ap-

proaches and, at the same time, endows individual agents with the autonomy

characteristic of self-triggered approaches to determine when and what informa-

tion is needed. Agents make promises to their neighbors about their future states

and inform them if these promises are violated later (hence the connection with

event-triggered control). With the extra information provided by the availability

of the promises, each agent computes the next time that an update is required to

guarantee the monotonicity of the Lyapunov function V introduced in Section 7.1

117

(hence the connection with self-triggered control). As we show later, the resulting

team-triggered approach has the same convergence properties as the self-triggered

approach with the potential for additional savings in terms of communication be-

cause of the more accurate information available to the agents.

7.2.1 Promises

A promise can be either a time-varying set of states (state promise) or

controls (control promise) that an agent sends to another agent. Specifically, a

state promise that agent j makes to agent i at time t is a set-valued, continuous

(with respect to the Hausdorff distance) function X i
j [t] ∈ C0([t,∞);Pcc(Xj)). This

means that agent j promises to agent i that its state at any time t′ ≥ t will satisfy

xj(t
′) ∈ X i

j [t](t
′). Similarly, a control promise that agent j makes to agent i at

time t is conveyed by a set-valued, continuous function U i
j [t] ∈ C0([t,∞);Pc(Uj)).

This means that agent j promises to agent i to only use controls uj(t
′) ∈ U i

j [t](t
′)

for all t′ ≥ t. Given the dynamics of agent j and state xj(t) at time t, agent i can

compute the state promise for t′ ≥ t,

X i
j[t](t

′) = {z ∈ Xj | ∃uj : [t, t
′] → Uj with uj(s) ∈ U i

j [t](s) for s ∈ [t, t′]

such that z = eAj(t
′−t)xj(t) +

∫ t′

t

eAj(t
′−τ)Bjuj(τ)dτ}. (7.3)

For simplicity, when the time at which the promise is received is not relevant, we

use the notation X i
j[·] and U i

j [·] or simply X i
j and U i

j , respectively. All promise in-

formation available to agent i ∈ {1, . . . , N} at some time t is given by X i
N [·]|[t,∞) =

(xi|[t,∞), {X
i
j [·]|[t,∞)}j∈N (i)) ∈ C0

(
[t,∞);

∏
j∈N (i)∪{i} P

cc(Xj)
)
. To extract informa-

tion from this about a specific time t′, we use X i
N [·](t′) or simply X i

N (t′) =

(xi(t
′), {X i

j [·](t
′)}j∈N (i)) ∈

∏
j∈N (i)∪{i} P

cc(Xj). The generality of the above defi-

nitions allow promise sets to be arbitrarily complex. Here, we restrict ourselves to

promise sets that can be described with a finite number of parameters.

Promises can be generated in various ways. A promise rule is a method

to create promises. Formally, a state promise rule for agent j ∈ {1, . . . , N} gen-

erated at time t is a continuous (with respect to the distance dfunc between set-

118

valued functions, cf. (2.5)) map of the form Rs
j : C

0
(
[t,∞);

∏
i∈N (j)∪{j} P

cc(Xi)
)
→

C0 ([t,∞);Pcc (Xj)). This means that if agent j must send information to agent

i at time t, it sends the state promise X i
j [t] = Rs

j(X
j
N [·]|[t,∞)). A control promise

rule for agent j ∈ {1, . . . , N} generated at time t is a continuous map Rc
j :

C0
(
[t,∞);

∏
i∈N (j)∪{j} P

cc(Xi)
)
→ C0 ([t,∞);Pc (Uj)). This means that when agent

j must send information to agent i at time t, it sends the control promise U i
j [t] =

Rc
j(X

j
N [·]|[t,∞)). We make the assumption that, in the absence of communication

delays or noise in the state measurements, the promises generated by these rules

have the property that X i
jt = {xj(t)}. Note that because of this fact, it is un-

necessary to send the current state xj(t) in addition to a state promise, since this

information is already contained in the promise X i
j[t]. However, when a control

promise U i
j [t] is sent, the current state xj(t) should also be sent.

Example 7.2.1 (Static ball-radius promise rule). Here we describe one simple

control promise rule, termed the static ball-radius rule, to create promises that

can be described with a finite number of parameters. Given j ∈ {1, . . . , N}, a

continuous control law uj :
∏

i∈N (j)∪{j} P
cc(Xi) → R

mj , and δ > 0, the static

ball-radius control promise rule for agent j generated at time t is

Rsb
j (X

j
N [·]|[t,∞))(t

′) = B(uj(X
j
N (t)), δ) ∩ Uj t′ ≥ t. (7.4)

Note that this promise is a fixed ball of radius δ in the control space Uj centered

at the control signal used at time t. This promise can be sent with two parameters

(assuming δ is known by all agents), the state xj(t) when the promise was sent,

and the control action uj(X
j
N (t)) at that time. •

Example 7.2.2. (Dynamic ball-radius promise rule) A potential drawback

of the static ball-radius promise rule is that the size of the generated promise set

is fixed, regardless of the agents’ actions. Instead, promise rules can also have a

dynamic nature that adapts to the control actions of the agents. Here we present

a dynamic promise rule, termed dynamic ball-radius promise rule, that generalizes

the one described in Example 7.2.1. Given j ∈ {1, . . . , N}, a continuous control

law uj :
∏

i∈N (j)∪{j} P
cc(Xi) → R

mj , and δ1, δ2 > 0, the dynamic-ball radius control

119

promise rule for agent j generated at time t is defined as

Rdb
j (Xj

N [·]|[t,∞))(t
′) = B(uj(X

j
N (t)), δ2‖uj(X

j
N (t))− usf

j (xj(t))‖+ δ1) ∩ Uj, t′ ≥ t.

(7.5)

This promise is similar to that of the static ball-radius rule in that it is also a ball in

the control space Uj centered at the control signal used at time t; however, the size

of this ball is not a priori fixed. Intuitively, as the overall system nears convergence,

we expect agents to be using the safe-mode control usf and thus promises become

tighter. •

Having introduced the notion of promise, several observations can be made.

First, the availability of promises equips agents with set-valued information models

about the state of other agents. This fact makes it necessary to address the defini-

tion of distributed controllers that operate on sets, rather than points. We discuss

this point in Section 7.2.2. Second, the additional information that promises rep-

resent is beneficial to the agents because it decreases the amount of uncertainty

when making action plans. Section 7.2.3 discusses this point in detail. Third, these

advantages rely on the assumption that promises hold throughout the evolution.

As the state of the network changes and the level of task completion evolves, agents

might decide to break former promises and make new ones. We examine this point

in Section 7.2.4.

7.2.2 Controllers on set-valued information models

In this section we briefly discuss the type of controllers that the team-

triggered approach relies on. The underlying idea is that since agents possess

set-valued information about the state of other agents through promises, con-

trollers themselves should be defined on sets, rather than on points. Our start-

ing point is therefore the availability of a continuous controller of the form u∗∗ :

120

∏
j∈{1,...,N} P

cc(Xj) → R
m that satisfies

∇iV (x) (Aixi +Biu
∗∗
i ({x})) ≤ 0, i ∈ {1, . . . , N}, (7.6a)

N∑

i=1

∇iV (x) (Aixi +Biu
∗∗
i ({x})) < 0. (7.6b)

In other words, if exact, singleton-valued information is available to the agents,

then the controller u∗∗ guarantees the monotonic evolution of the Lyapunov func-

tion V . We assume that u∗∗ is distributed over the communication graph G. As

before, this means that for each i ∈ {1, . . . , N}, the ith component u∗∗
i can be

computed with information in
∏

j∈N (i)∪{i} P
cc(Xj) rather than in the full space

∏
j∈{1,...,N} P

cc(Xj).

Controllers of the form described above can be obtained using a number

of design methods. We do not enter into the specific details, but briefly mention

how one such controller can be derived from the availability of the controller u∗ :

X → R
m introduced in Section 7.1. Let E :

∏N
j=1 P

cc(Xj) → X be a continuous

map that is distributed over the communication graph G and satisfies, for each

i ∈ {1, . . . , N}, that Ei(Y) ∈ Yi for each Y ∈
∏N

j=1 P
cc(Xj) and Ei({y}) = yi for

each y ∈ X . Now, define

u∗∗(Y) = u∗(E(Y)). (7.7)

Note that this controller satisfies (7.6a) and (7.6b) because u∗ satisfies (7.2a)

and (7.2b).

Example 7.2.3 (Controller definition with the ball-radius promise rules). Here

we construct a controller u∗∗ using (7.7) for the case when promises are generated

according to the ball-radius control rules described in Examples 7.2.1 and 7.2.2.

To do so, note that it is sufficient to define the map E :
∏N

j=1 P
cc(Xj) → Xj only for

tuples of sets of the form given in (7.3), where the corresponding control promise

is defined by either (7.4) or (7.5). This can be defined as

Ej(X1[t](t
′), . . . , XN [t](t

′)) = eAj(t
′−t)xj(t) +

∫ t′

t

eAj(t
′−τ)Bjuj(X

j
N (t))dτ,

which is guaranteed to be in Xj[t](t
′) for t′ ≥ t. •

121

7.2.3 Self-triggered information updates

Here we discuss in detail how agents use the promises received from other

agents to generate self-triggered information requests in the future. Let tilast be

some time at which agent i receives updated information (i.e., promises) from

its neighbors. Until the next time information is obtained, agent i has access to

the collection of functions X i
N describing its neighbors’ state and can compute its

evolution under the controller u∗∗ via

xi(t) = eAi(t−tilast)xi(t
i
last) +

∫ t

tilast

eAi(t−τ)Biu
∗∗
i (X i

N (τ))dτ, t ≥ tilast. (7.8)

Note that this evolution of agent i can be viewed as a promise that it makes to

itself, i.e., X i
i [·](t) = {xi(t)}. With this in place, agent i can schedule the next

time tinext at which it will need updated information from its neighbors. To do so,

we define, for any YN ∈
∏

j∈N (i)∪{i} P
cc(Xj),

LiV
sup(YN) = sup

yN∈YN

∇iV (yN) (Aiyi + Biu
∗∗
i (YN)) , (7.9)

where yi is the element of yN corresponding to i. Then, the trigger for when agent

i needs new information from its neighbors is similar to (3.17), where we now use

the promise sets instead of the guaranteed sets. Specifically, the critical time at

which information is requested is given by tinext = max{tilast + Td,self, t
∗}, where

Td,self > 0 is an a priori chosen parameter that we discuss below and t∗ is implicitly

defined as the first time t∗ ≥ tilast such that

LiV
sup(X i

N (t∗)) = 0. (7.10)

We refer to tinext − tilast as the self-triggered request time for the team-triggered

strategy.

Remark 7.2.4 (Comparison with self-triggered strategy). We highlight here the

resemblance of the trigger (7.10) with the trigger (3.17) defined in Section 3.2.3.

The only difference is that here we are taking the supremum of the Lie derivative

of V over all possible states in the promise rather than the guaranteed or reachable

set defined in (3.16). As a result, given the same information at some time tilast, the

122

next update time tinext computed by (7.10) cannot be smaller than that computed

using (3.17). This means that in general the the agents in the team-triggered

strategy are requesting information from one another less often than in the self-

triggered strategy described in Section 3.2.3. •

Note that as long as (7.10) has not yet been satisfied for all agents i ∈

{1, . . . , N} at some time t and the promises have not been broken, the assump-

tions (7.6a) and (7.6b) and the continuity of (7.9) guarantee that

d

dt
V (x(t)) ≤

N∑

i=1

LiV
sup(X i

N (t)) < 0.

The parameter Td,self > 0 is known as the self-triggered dwell time. We introduce

it because, in general, it is possible that t∗ = tilast, implying that continuous com-

munication would be required. The dwell time is used to prevent this behavior

as follows. Note that LiV
sup(X i

N (t′)) ≤ 0 is only guaranteed while t′ ∈ [tilast, t
∗].

Therefore, in case that tinext = tilast + Td,self, i.e., if t
∗ < tilast + Td,self, the agent

uses the safe-mode control during t′ ∈ (t∗, tilast + Td,self] to leave its state fixed.

This design ensures the monotonicity of the evolution of the Lyapunov function V

along the network execution. The team-triggered controller is therefore defined,

for t ∈ [tilast, t
i
next), by

uteam
i (t) =




u∗∗
i (X i

N (t)), if LiV
sup(X i

N (t)) ≤ 0,

usf
i (xi(t)), if LiV

sup(X i
N (t)) > 0.

(7.11)

Remark 7.2.5 (Requesting information from a subset of neighbors only). The

above discussion assumes that when an agent executes an information request

from neighbors, it receives information from all of them. This is only a simplifying

assumption. In general, it is enough for an agent i ∈ {1, . . . , N} to receive enough

information (maybe from just a subset of neighbors) to make LiV
sup(X i

N (tinext)) <

0 hold true. •

Note that the nonincreasing property of V is now only guaranteed if promises

that agents make to one another are kept at all times. We address this point next.

123

7.2.4 Event-triggered information updates

Agent promises may need to be broken for a variety of reasons. For instance,

an agent might receive new information from its neighbors and causing to change

its former plans. Another example is given by an agent that made a promise that is

not able to keep for as long as it anticipated. Disturbances in the agent dynamics

or new requirements imposed by the level of completion of the network task are

yet more reasons for why promises might be broken.

Consider an agent i ∈ {1, . . . , N} that has sent a promise Xj
i [tlast] to a

neighboring agent j at some time tlast. If agent i ends up breaking its promise

at time t∗ ≥ tlast, i.e., xi(t
∗) /∈ Xj

i [tlast](t
∗), then it is responsible for sending a

new promise Xj
i [tnext] to agent j at time tnext = max{tlast + Td,event, t

∗}, where

Td,event > 0 is an a priori chosen parameter that we discuss below. This implies

that agent i must keep track of promises made to its neighbors and monitor them

in case they are broken. Note that this mechanism is implementable because each

agent only needs information about its own state and the promises it has made to

determine whether the trigger is satisfied.

The parameter Td,event > 0 is known as the event-triggered dwell time. We

introduce it because, in general, the time t∗ − tlast between when agent i makes

and breaks a promise to an agent j might be arbitrarily small. The issue, however,

is that if t∗ < tlast + Td,event, agent j operates under incorrect information about

agent i for t ∈ [t∗, tlast + Td,event). We deal with this by introducing a warning

message WARN that agent i must send to agent j when it breaks its promise at

time t∗ < tlast + Td,event. If agent j receives such a warning message, it redefines

the promise X i
j as follows,

Xj
i [·](t) =

⋃

xi∈X
j
i [·](t

∗)

Ri(t− t∗, xi), (7.12)

for t ≥ t∗, until the new message arrives at time tnext = tlast+Td,event. By definition

of the reachable set, the promise Xj
i [·](t) is guaranteed to contain xi(t) for t ≥ t∗.

Remark 7.2.6 (Promise expiration times). It is also possible to introduce an

expiration time Texp > Td,event for the validity of promises. If a promise is made at

124

some time tlast, it is only valid for t ∈ [tlast, tlast + Texp]. Once the promise expires,

this triggers the formulation of a new promise. •

Finally, the combination of the self- and event-triggered information up-

dates described above together with the team-triggered controller uteam as defined

in (7.11) gives rise to the Team-Triggered Law, which is formally presented in Ta-

ble 7.1. Note that the self-triggered information request in Table 7.1 is executed by

an agent anytime new information is received, whether it was actively requested

by the agent, or was received from some neighbor due to the breaking of a promise.

Remark 7.2.7 (Connection with self-triggered strategy). It is worth mentioning

that the self-triggered approach described in Section 3.2.3 can be seen as a partic-

ular case of the team-triggered approach, where the promises made among agents

are the guaranteed sets described in (3.16). Therefore, the class of team-triggered

strategies cannot do worse than self-triggered strategies in terms of communication

complexity. In general, the use of promises that are strict subsets of the guaran-

teed sets allow agents executing a team-triggered strategy to compute longer self-

triggered information request times than those computed in a purely self-triggered

implementation (given promises are not broken). If promises in the team-triggered

approach are seldom broken, the communication required by the network can be

drastically reduced compared to the self-triggered approach. Section 7.5 illustrates

this comparison in simulations. •

7.3 Convergence analysis of the Team-Triggered

Law

In this section we analyze the convergence properties of the Team-Triggered

Lawproposed in Section 7.2. Our first result establishes the monotonic evolution

of the Lyapunov function V along the network trajectories.

Proposition 7.3.1. Consider a networked cyber-physical system as described in

Section 7.1 executing the Team-Triggered Law(cf. Table 7.1). Then, the function

125

V is monotonically nonincreasing along the network evolution.

Proof. We start by noting that the time evolution of V under Table 7.1 is con-

tinuous and piecewise continuously differentiable. Moreover, at the time instants

when the time derivative is well-defined, one has

d

dt
V (x(t)) =

N∑

i=1

∇iV (xiN (t))
(
Aixi(t) + Biu

team
i (t)

)
(7.13)

≤
N∑

i=1

sup
yN∈Xi

N (t)

∇iV (yN)
(
Aixi(t) + Biu

team
i (t)

)
≤ 0.

As we justify next, the last inequality follows by design of the Team-Triggered

Law. For each i ∈ {1, . . . , N}, if LiV
sup(X i

N (t)) ≤ 0, then uteam
i (t) = u∗∗

i (X i
N (t))

(cf. (7.11)). Thus, the corresponding summand of (7.13) is exactly LiV
sup(X i

N (t))

as defined in (7.9). If LiV
sup(X i

N (t)) > 0, then uteam
i (t) = usf

i (xi(t)), for which the

corresponding summand of (7.13) is exactly 0.

The next result characterizes the convergence properties of coordination

strategies designed with the team-triggered approach.

Proposition 7.3.2. Consider a networked cyber-physical system as described in

Section 7.1 executing the Team-Triggered Law(cf. Table 7.1) with dwell times

Td,self, Td,event > 0. Then any bounded network evolution with uniformly bounded

promises asymptotically approaches D.

There are two main challenges in proving Proposition 7.3.2. The first chal-

lenge is that agents operate asynchronously, i.e., agents receive and send informa-

tion, and update their control laws possibly at different times. To model asyn-

chronism, we use a procedure called analytic synchronization, see e.g. [20]. Let

the time schedule of agent i be given by T i = {ti0, t
i
1, . . . }, where tiℓ corresponds

to the ℓth time that agent i receives information from one or more of its neigh-

bors (the time schedule T i is not known a priori by the agent). Note that this

information can be received because i requests it itself, or a neighbor sends it to i

because an event is triggered. Analytic synchronization simply consists of merging

126

together the individual time schedules into a global time schedule T = {t0, t1, . . . }

by setting

T = ∪Ni=1T
i.

Note that more than one agent may receive information at any given time t ∈

T . This synchronization is done for analysis purposes only. For convenience, we

identify the set Z≥0 with T via ℓ 7→ tℓ.

The second challenge is that a strategy resulting from the team-triggered

approach has a discontinuous dependence on the network state and the agent

promises. More precisely, the information possessed by any given agent are trajec-

tories of sets for each of their neighbors, i.e., promises. For convenience, we denote

by

S =
N∏

i=1

Si, where

Si = C0
(
R;Pcc(X1)× · · · × P

cc(Xi−1)×Xi × P
cc(Xi+1)× · · · × P

cc(XN)
)
,

the space that the state of the entire network lives in. Note that this set allows us to

capture the fact that each agent i has perfect information about itself. Although

agents only have information about their neighbors, the above space considers

agents having promise information about all other agents to facilitate the analysis.

This is only done to allow for a simpler technical presentation, and does not impact

the validity of the arguments made here. The information possessed by all agents

of the networks at some time t is collected in

(
X1[·]|[t,∞), . . . , X

N [·]|[t,∞)

)
∈ S,

where X i[·]|[t,∞) =
(
X i

1[·]|[t,∞), . . . , X
i
N [·]|[t,∞)

)
∈ Si. The Team-Triggered Lawcan

be formulated as a discontinuous map of the form S × Z≥0 → S × Z≥0. This fact

makes it difficult to use standard stability methods to analyze the convergence

properties of the network. Our approach to this problem consists then of defining

a set-valued map M : S × Z≥0 → P
c(S × Z≥0) whose trajectories contain the

trajectories of the Team-Triggered Law. Although this ‘overapproximation pro-

cedure’ enlarges the set of trajectories to consider, the gained benefit is that of

127

having a set-valued map with suitable continuity properties that is amenable to

set-valued stability analysis, namely the LaSalle Invariance Principle for set-valued

maps defined in Theorem 2.3.5. We describe this in detail next.

We start by defining the set-valued map M . Let (Z, ℓ) ∈ S × Z≥0. We

define the (N + 1)th component of all the elements in M(Z, ℓ) to be ℓ + 1. The

ith component of the elements in M(Z, ℓ) is given by one of following possibilities.

The first possibility is simply the ith component of Z,

(
Zi

1[·]|[tℓ+1,∞), . . . , Z
i
N [·]|[tℓ+1,∞)

)
, (7.14)

which models the case when the agent i does not receive any information from its

neighbors. The second is

(
Y i
1 [·]|[tℓ+1,∞), . . . , Y

i
N [·]|[tℓ+1,∞)

)
, (7.15)

where for j 6= i

Y i
j [·]|[tℓ+1,∞) =




Zi
j[·]|[tℓ+1,∞), if i does not receive information from j,

Rs
j(Z

j
N [·]|[tℓ+1,∞)), otherwise,

(7.16a)

and

Y i
i [·](t) = eAi(t−tℓ+1)Zi

i(tℓ+1) +

∫ t

tℓ+1

eAi(t−τ)Biu
team
i (τ)dτ, t ≥ tℓ+1, (7.16b)

which models the case when the agent i has received updated information from at

least one neighbor (here, with a slight abuse of notation, we use the notation uteam

to denote the controller evaluated at the set Y i[·]).

Two properties regarding the set-valued map M are worth emphasizing.

First, any trajectory of the Team-Triggered Lawis also a trajectory of the nonde-

terministic dynamical system defined by M ,

(Z(tℓ+1), ℓ+ 1) ∈ M(Z(tℓ), ℓ).

Second, unlike the map defined by the Team-Triggered Law, which is discontinuous,

the set-valued map M is closed, as we show next (a set-valued map T : X ⇒ Y is

closed as defined in Definition 2.3.1.

128

Lemma 7.3.3 (Set-valued map is closed). The set-valued map M : S × Z≥0 →

P
c(S × Z≥0) is closed.

Proof. To show this we appeal to the fact that a set-valued map composed of

a finite collection of continuous maps is closed [10, E1.9]. Given (Z, ℓ), the set

M(Z, ℓ) is finitely comprised of all possible combinations of whether or not updates

occur for every agent pair i, j ∈ {1, . . . , N}. In the case that an agent i does not

receive any information from its neighbors, it is trivial to show that (7.14) is

continuous in (Z, ℓ) because Zi
j[·][tℓ+1,∞) is simply the restriction of Zi

j[·][tℓ,∞) to

the interval [tℓ+1,∞), for each i ∈ {1, . . . , N} and j ∈ N (i). In the case that

an agent i does receive updated information, we know that for agents j that did

not send information to agent i, the above argument still holds. If an agent j

sends information to agent i, Y i
j [·]|[tℓ+1,∞) is continuous in (Z, ℓ) by definition of

the function Rs
j. Finally, one can see that Y i

i [·]|[tℓ+1,∞) is continuous in (Z, ℓ) from

the expression (7.16b).

We are now ready to prove Proposition 7.3.2.

Proof of Proposition 7.3.2. Here we resort to the LaSalle Invariance Principle for

set-valued discrete-time dynamical systems defined in Theorem 2.3.5. Let W =

S × Z≥0, which is closed and strongly positively invariant with respect to M . A

similar argument to that in the proof of Proposition 7.3.1 shows that the function V

is nonincreasing along M . Combining this with the fact that the set-valued map M

is closed (cf. Lemma 7.3.3), the application of the LaSalle Invariance Principle

implies that the trajectories of M that are bounded in the first N components

approach the largest weakly positively invariant set contained in

S∗ = {(Z, ℓ) ∈ S × Z≥0 | ∃(Z
′, ℓ+ 1) ∈ M(Z, ℓ) such that V (Z ′) = V (Z)},

= {(Z, ℓ) ∈ S × Z≥0 | LiV
sup(Zi

N) ≥ 0 for all i ∈ {1, . . . , N}}. (7.17)

We now restrict our attention to those trajectories of M that correspond

to the Team-Triggered Law. For convenience, let loc(Z, ℓ) : S × Z≥0 → X be the

129

map that extracts the true position information in (Z, ℓ), i.e.,

loc(Z, ℓ) =
(
Z1

1(tℓ), . . . , Z
N
N (tℓ)

)
.

Given a trajectory γ of the Team-Triggered Lawthat satisfies all the assumptions of

the statement of Proposition 7.3.2, the bounded evolutions and uniformly bounded

promises ensure that the trajectory γ is bounded. Then, the omega limit set Ω(γ)

is weakly positively invariant and hence is contained in S∗. Our objective is to

show that, for any (Z, ℓ) ∈ Ω(γ), we have loc(Z, ℓ) ∈ D. We show this reasoning

by contradiction. Let (Z, ℓ) ∈ Ω(γ) but suppose loc(Z, ℓ) /∈ D. This means that

LiV
sup(Zi

N) ≥ 0 for all i ∈ {1, . . . , N}. Take any agent i, by the Self-Triggered

Information Updates, agent i will request new information from neighbors in at

most Td,self seconds. This means there exists a state (Z ′, ℓ + ℓ′) ∈ Ω(γ) for which

agent i has just received updated information from its neighbors j ∈ N (i). Since

(Z ′, ℓ+ ℓ′) ∈ S∗, we know LiV
sup(Zi

N
′
) ≥ 0. We also know, since information was

just updated, that Zi
j
′
= locj(Z

′, ℓ + ℓ′) is exact for all j ∈ N (i). But, by (7.6a),

LiV
sup(Zi

N
′
) ≤ 0 because loc(Z ′, ℓ+ℓ′) /∈ D. This means that each time any agent i

updates its information, we must have LiV
sup(Zi

N
′
) = 0. However, by (7.6b), there

must exist at least one agent i such that LiV
sup(Zi

N
′
) < 0 since loc(Z ′, ℓ+ ℓ′) /∈ D,

which yields a contradiction. Thus for the trajectories of the Team-Triggered Law,

(Z, ℓ) ∈ S∗ implies that loc(Z, ℓ) ∈ D.

Note that the bounded network evolution assumption in Proposition 7.3.2

is automatically guaranteed if the network state space is compact. Alternatively, if

the Lyapunov function is radially unbounded, then Proposition 7.3.1 implies that

the network trajectories are bounded. We also note that the use of expiration

times for promises, cf. Remark 7.2.6, would automatically imply that promises are

uniformly bounded.

The following result states the fact that under the Team-Triggered Law,

continuous communication is never required when using positive dwell times.

Lemma 7.3.4 (No Zeno behavior). Consider a networked cyber-physical system

as described in Section 7.1 executing the Team-Triggered Law(cf. Table 7.1) with

dwell times Td,self, Td,event > 0. Then the network does not exhibit Zeno behavior.

130

Proof. Due to the self-triggered dwell time Td,self, the self-triggered information

request steps in Table 7.1 guarantee that the minimum time before an agent i asks

its neighbors for new information is Td,self > 0. Similarly, due to the event-triggered

dwell time Td,event, agent i will never receive more than 1 message from a neighbor

j in a period of Td,event > 0 seconds. The result then follows from the fact that the

number of neighbors |N (i)| for each agent i ∈ {1, . . . , N} is finite.

Remark 7.3.5 (Adaptive self-triggered dwell time). Dwell times play an impor-

tant role in guaranteeing that Zeno behavior does not occur. However, a constant

self-triggered dwell time across the agents throughout the network evolution might

result in wasted communication effort. This is because some agents might reach

a state where their effect on the evolution of the Lyapunov function is negligible

compared to other agents. In such cases, the former agents could implement larger

dwell times, thus decreasing communication effort, without affecting the overall

performance. Let us give an example of such an adaptive dwell time scheme. Let

t be a time at which agent i ∈ {1, . . . , N} has just received new information from

its neighbors N (i). Then, the agent sets its dwell time to

T i
d,self(t) = max



δd

∑

j∈N (i)

1

|N (i)|

‖u∗∗
j (Xj

N (t))− usf
j (xj(t)))‖

‖u∗∗
i (X i

N (t))− usf
i (xi(t))‖

,∆d



 , (7.18)

for some a priori chosen δd,∆d > 0. Note that in order to implement this, in

addition to current state information and promises, each neighbor j ∈ N (i) also

needs to send the value of ‖u∗∗
j (Xj

N (t)) − usf
j (xj(t)))‖ at time t. With this in

place, agent i will not request new information until time t + T i
d,self(t). In the

case that information is not received from all neighbors, agent i simply uses the

last computed dwell time. We illustrate the usefulness of this adaptive dwell time

scheme through simulation in Section 7.5. •

131

7.4 Robustness in the presence of unreliable com-

munication

This section studies the robustness of the team-triggered approach in sce-

narios with packet drops, delays, and communication noise. We start by intro-

ducing the possibility of packet drops in the network. For any given message an

agent sends to another agent, assume there is an unknown probability 0 ≤ p < 1

that the packet is dropped, and the message is never received. We also consider an

unknown (possibly time-varying) communication delay ∆(t) ≤ ∆̄ in the network

for all t where ∆̄ ≥ 0 is known. In other words, if agent j sends agent i a mes-

sage at time t, agent i will not receive it with probability p or receive it at time

t + ∆(t) with probability 1 − p. We assume that small messages (i.e., 1-bit mes-

sages) can be sent reliably with negligible delay. This assumption is similar to the

“acknowledgments” and “permission” messages used in other works, see [100, 101]

and references therein. Lastly, we also account for the possibility of communica-

tion noise or quantization. We assume that messages among agents are corrupted

with an error which is upper bounded by some known ω̄ ≥ 0.

With the model for delays, packet drops, and communication noise intro-

duced above, the Team-Triggered Lawas described in Table 7.1 does not guarantee

convergence because the monotonic behavior of the Lyapunov function no longer

holds. The problem occurs when an agent j breaks a promise to agent i at some

time t. If this occurs, agent i will operate with invalid information (due to the

sources of error described above) and compute LiV
sup(X i

N (t′)) (as defined in (7.9))

incorrectly for t′ ≥ t.

Next, we discuss how the Team-Triggered Lawcan be conveniently modified

in scenarios with unreliable communication. To deal with the communication noise,

when an agent i receives an estimated promise X̂ i
j from another agent j, it must be

able to create a valid promise X i
j that contains the promise that agent j intended

to send. Note that the specific way of doing this depends on how promises are

exchanged between agents. We refer to this action as making a promise set valid.

132

The following example shows how it can be done for the static ball-radius promises

described in Example 7.2.1.

Example 7.4.1 (Valid static ball-radius promise rule with communication noise).

In the scenario with communication noise bounded by ω̄, when agent j attempts

to send the control promise B(uj(X
j
N (t)), δ) to agent i at time t as defined in

Example 7.2.1, it will instead receive Û i
j [t] = B(ûij(X

j
N (t)), δ), where uj(X

j
N (t)) ∈

B(ûij(X
j
N (t)), ω̄). To ensure that the promise agent i operates with about agent j

contains the true promise made by agent j, it can set

U i
j [t](t

′) = B(ûij(X
j
N (t)), δ + ω̄) ∩ Uj t′ ≥ t.

To create the state promise from this agent i would need the true state xj(t) of j

at time t. However, since only the estimate x̂ij(t) is available, we must modify (7.3)

by

X i
j[t](t

′) = ∪xj∈B(x̂ij(t),ω̄)
{z ∈ Xj | ∃uj : [t, t

′] → Uj with uj(s) ∈ U i
j [t](s)

for s ∈ [t, t′] such that z = eAj(t
′−t)xj +

∫ t′

t

eAj(t
′−τ)Bjuj(τ)dτ}. •

We deal with the packet drops and communication delays with warning

messages similar to the ones introduced in Section 7.2.4. Let an agent j break

its promise to agent i at time t, then agent j sends i a new promise set X i
j [t] for

t′ ≥ t and warning message WARN. Since agent i only receives WARN at time

t, the promise set X i
j[t] may not be available to agent i for t′ ≥ t. If the packet

is dropped, then the message never comes through, if the packet is successfully

transmitted, then X i
j[t](t

′) is only available for t′ ≥ t + ∆(t). In either case, we

need a promise set X i
j [·](t

′) for t′ ≥ t that is guaranteed to contain xj(t
′). We

do this by redefining the promise using the reachable set as we did in (7.12). By

definition of the reachable set, this promise X i
j[·](t

′) is guaranteed to contain xj(t
′)

for t′ ≥ t. If at time t+∆̄, agent i has still not received the promise X i
j[t] from j, it

can send agent j a request REQ for a new message at which point j would send i

a new promise X i
j [t + ∆̄]. Note that WARN is not sent in this case because the

message was requested from j by i and not a cause of j breaking a promise to

133

i. The Robust Team-Triggered Law, formally presented in Table 7.2, ensures the

monotonic evolution of the Lyapunov function V even in the presence of packet

drops, communication delays, and communication noise.

Corollary 7.4.2. Consider a networked cyber-physical system as described in Sec-

tion 7.1 with packet drops occurring with some unknown probability 0 ≤ p < 1,

messages being delayed by some known maximum delay ∆̄, and communication

noise bounded by ω̄, executing the Robust Team-Triggered Law(cf. Table 7.2) with

dwell times Td,self, Td,event > 0. Then, any bounded network evolution with uni-

formly bounded promises asymptotically converges to the neighborhood of D given

by

D′(∆̄, ω̄) = {x ∈ X | inf
xiN

′
∈B(xiN ,ω̄)

LiV
sup
(
{xi} ×

∏

j∈N (i)

∪yj∈B(xij
′
,ω̄)Rj(∆̄, yj)

)
≥ 0

(7.19)

for all i ∈ {1, . . . , N}},

with probability 1.

Proof. We begin by noting that by equation (7.6b), the definition (7.9), and the

continuity of u∗∗, D can be written as

D′(0, 0) = {x ∈ X |
N∑

i=1

∇iV (x)(Aixi + Biu
∗∗
i ({xiN})) ≥ 0}.

One can see that D ⊂ D′(ω̄, ∆̄) by noticing that, for any x ∈ D, ω̄, ∆̄ ≥

0, no matter which point xiN
′
∈ B(xiN , ω̄) is taken, the point xiN ∈ {xi} ×

∏
j∈N (i) ∪yj∈B(xij

′
,ω̄)Rj(∆̄, yj).

To show that the bounded trajectories of the Robust Team-Triggered Law-

converge to D′, we begin by noting that all properties of M used in the proof

of Proposition 7.3.2 still hold in the presence of packet drops, delays, and com-

munication noise as long as the time schedule T i remains unbounded for each

agent i ∈ {1, . . . , N}. In order for the time schedule T i to be unbounded, each

agent i must receive an infinite number of messages, and tiℓ → ∞. Since packet

drops have probability 0 ≤ p < 1, the probability that there is a finite number of

134

updates for any given agent i is 0. Thus, with probability 1, there are an infinite

number of information updates for each agent. Using a similar argument to that of

Lemma 7.3.4, one can show that the positive dwell times Td,self, Td,event > 0 ensure

that Zeno behavior does not occur, meaning that tiℓ → ∞. Then, by the analysis

in the proof of Proposition 7.3.2, the bounded trajectories of M still converge to

S∗ as defined in (7.17).

For a bounded evolution γ of the Robust Team-Triggered Law, we have that

Ω(γ) ⊂ S∗ is weakly positively invariant. Note that, since agents may never have

exact information about their neighbors, we can no longer leverage properties (7.6a)

and (7.6b) to precisely characterize Ω(γ). We now show that for any (Z, ℓ) ∈ Ω(γ),

we have loc(Z, ℓ) ∈ D′. Let (Z, ℓ) ∈ Ω(γ). This means that LiV
sup(Zi

N) ≥ 0 for

all i ∈ {1, . . . , N}. Take any agent i, by the Robust Team-Triggered Law, agent i

will request new information from neighbors in at most Td,self seconds. This means

there exists a state (Z ′, ℓ+ ℓ′) ∈ Ω(γ) for which agent i has just received updated,

possibly delayed, information from its neighbors j ∈ N (i). Since (Z ′, ℓ+ ℓ′) ∈ S∗,

we know LiV
sup(Zi

N
′
) ≥ 0. We also know, since information was just updated,

that Zi
N

′
⊂ {Zi

i
′
} ×

∏
j∈N (i) ∪yj∈B(zij

′
,ω̄)R(∆̄, yj). Since (Z ′, ℓ + ℓ′) ∈ S∗, we know

that LiV
sup(Zi

N
′
) ≥ 0, for all i ∈ {1, . . . , N}. This means that loc(Z ′, ℓ+ ℓ′) ⊂ D′,

thus loc(Z, ℓ) ∈ S∗ ⊂ D′.

7.5 Simulations

In this section we present simulations of coordination strategies derived

from the team- and self-triggered approaches in the optimal deployment problem

considering in Section 6.6 and a planar multi-agent formation control problem.

7.5.1 Optimal deployment

This section presents simulations of the optimal deployment problem stud-

ied in Chapter 6 to illustrate the performance of the team-triggered approach and

compare it with the time- and self-triggered approaches. Our starting point is the

135

distributed coordination algorithm based on Voronoi partitioning introduced in [1].

The dynamics of each agent is a single integrator

ẋi = ui, i ∈ {1, . . . , N}, (7.20)

where ‖ui‖ ≤ umax. Given a convex polygon Q ⊂ R
2 and some known density

function φ : Q → R≥0, recall the objective function from Section 2.2

H(x) = Eφ

[
min

i∈{1,...,N}
‖q − xi‖

2

]
=

N∑

i=1

∫

Vi

‖q − xi‖
2φ(q)dq. (7.21)

Here, {V1, . . . , VN} denotes the Voronoi partition of Q, cf. Section 2.2.1. Roughly

speaking, the value H encodes the expected value of the minimum distance from

some agent in the network to a generic point in the polygon, given the density

function φ. The continuous control law u∗ = (u∗
1, . . . , u

∗
N) is the gradient of H,

u∗
i = −2MVi(pi − CVi),

where MVi and CVi are the mass and centroid of Vi, respectively. Note that this

control law is distributed on the Delaunay graph, i.e., where each agent’s neighbors

are its Voronoi neighbors. The system (7.20) under the control law u∗ converges to

the set of centroidal Voronoi configurations, i.e., configurations where each agent

is at the centroid of its own Voronoi cell.

In the following simulations, we consider N = 8 agents operating in a

square environment of side lengths 4 with umax = 1. The density function is

given by φ(q) = e−‖q−q1‖ + e−‖q−q2‖, where q1 = (2, 3) and q2 = (3, 1). The

promises among agents are generated using the static ball-radius rule described

in Example 7.2.1 with δ = 0.5umax. The controller we use in the team-triggered

approach is defined from u∗ using the procedure described in Example 7.2.3, using

yij = cc(X i
j) ⊂ X i

j for each j ∈ N (i). The dwell time in the team-triggered

execution is Td,self = 0.05. According to Corollary 7.4.2, under communication

delays bounded by ∆̄ and sensor noise bounded by ω̄, the system converges to a

neighborhood of the set of centroidal Voronoi configurations. In this case, one can

actually provide a characterization of this asymptotic behavior as follows: in the

limit, each agent is within 2(∆̄umax + ω̄) of the centroid of its own Voronoi cell.

136

(a) (b) (c)

Figure 7.1: Executions of the (a) time-triggered, (b) self-triggered, and (c) team-

triggered implementations of the gradient-based continuous controller for optimal

deployment in [1]. The black and gray dots correspond to initial and final condi-

tions, respectively.

Time-triggered
Self-triggered
Team-triggered

0 0.5 1 1.52 2 2.5 3 3.5

4

4

6

8

10

12

14

16

18

20

(a)

Time

H

Time-triggered
Self-triggered
Team-triggered

00 0.5 1 1.5 2 2.5 3 3.5 4

20

40

60

80

100

120

140

160

180

200

(b)

Time

Power

Time-triggered
Self-triggered
Team-triggered

00 0.5 1 1.5 2 2.5 3 3.5 4

100

200

300

400

500

600

(c)

Time

Energy

Figure 7.2: Plots of (a) the evolution of the objective function (7.21), (b) the com-

munication power (Watts) consumption over time and (c) the total transmission

energy used (Joules) for the three executions in Figure 7.1.

Figure 7.1 shows network executions under time-triggered, self-triggered,

and team-triggered implementations of the controller. This figure also compares

the evolution of the objective function (7.21). Figure 7.2 compares the total energy

used to transmit messages by the entire network as the system evolves. For each

137

agent i ∈ {1, . . . , N}, we quantify the power Pi used by i to communicate using [97],

Pi = 10 log10

[n∑

j∈{1,...,n},i 6=j

β100.1Pi→j+α‖xi−xj‖
]
,

where α > 0 and β > 0 depend on the characteristics of the wireless medium and

Pi→j is the power received by j of the signal transmitted by i. In our simulations,

all these values are set to 1. We can see from Figure 7.2(c) that the total amount

of transmission energy used with the team-triggered approach is significantly less

than those of the time-triggered and self-triggered approaches. Remarkably, this

comes without compromising the stability of the system, cf. Figure 7.1. For

instance, Figure 7.2 shows that the speed of convergence is a little slower in the

self- and team-strategies, but yields a large amount of savings in terms of message

transmission energy.

We also explore here how tightness of promises affect the performance of

the network. We do this by varying the parameter δ in the definition (7.4) of

the static-ball radius rule. This parameter captures how large the promise sets

that agents send to each other are. We define λ = δ
2
, so that λ = 0 corresponds

to exact information (the control promise is a point in the allowable control set)

and λ = 1 corresponds to no promises at all (the control promise is the entire

allowable control set). Note that the latter case exactly corresponds to a self-

triggered strategy because agents are simply using reachability sets about their

neighbors as the promises, see Remark 7.2.7. Figure 7.3 shows the average power

consumption and the time to converge to 99% of the final value of the objective

function for varying tightness on the promises. Note that for small λ, the amount

of energy required for sending messages is minimal while the time to convergence

only increases slightly.

7.5.2 Formation control

In this section we apply the team-triggered strategy to a planar formation

control problem and compare it against the self-triggered strategy. We also illus-

trate the benefits of using the various extensions to the team-triggered strategy

138

Team-triggered
Time-triggered

0
0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

140

(a)

λ

Power

Team-triggered
Time-triggered

0
0 0.2 0.4 0.6 0.8

1

1

0.5

1.5

2

2.5

3

3.5

4

(b)

λ

Time

Figure 7.3: Implementation of the team-triggered strategy with varying tightness

of promises. Plot (a) shows average communication power consumption (Watts)

by the whole network and (b) shows time to converge to 99% of the final value

(seconds). The parameter λ captures tightness of promises, with λ = 0 corre-

sponding to exact information and λ = 1 corresponding to the self-triggered case

(no promises at all, just the description of the reachability set).

such as adaptive promises and dwell times. Our starting point is the distributed

coordination algorithm based on graph rigidity analyzed in [102]. Consider N = 4

agents communicating over the complete graph which seek to attain a rectangle

formation of side lengths 1 and 2. The dynamics of each agent is a single integrator

ẋi = ui, i ∈ {1, . . . , N},

where ‖ui‖ ≤ umax = 50. The safe-mode controller is then simply usf
i ≡ 0. The dis-

tributed continuous-time controller that makes the network asymptotically achieve

the desired formation is, for each i ∈ {1, . . . , N},

u∗
i (x) =

∑

j∈N (i)

(
‖xj − xi‖

2 − d2ij
)
unit(xj − xi), (7.22)

where dij is the pre-specified desired distance between agents i and j. In turn, this

controller corresponds to the gradient descent law for the function V : (R2)
N

→

R≥0 given by

V (x) =
1

2

∑

(i,j)∈E

(
‖xj − xi‖

2 − d2ij
)2

,

139

which serves as a Lyapunov function to establish the correctness of u∗. For the

team-triggered approach, we use both the static and dynamic ball-radius promise

rules. The controller uteam is then defined by (7.11), where controller u∗∗ is given

by (7.7) as described in Example 7.2.3.

The initial conditions in the simulations are x1(0) = (6, 10)T , x2(0) =

(7, 3)T , x3(0) = (14, 8)T , and x4(0) = (7, 13)T . We begin by simulating the team-

triggered approach using fixed dwell times of Td,self = 0.03 and Td,event = 0.0003

and the static ball-radius promise of Example 7.2.1 with δ = 0.50. Figure 7.4

shows the trajectories of the Team-Triggered Law.

Agent 1
Agent 2
Agent 3
Agent 4

3

4

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13 14

Figure 7.4: Trajectories of an execution of the Team-Triggered Lawwith fixed

dwell times and promises. The initial and final condition of each agent is denoted

by an ‘x’ and an ‘o’, respectively.

To compare the team- and self-triggered approaches, we let N i
S be the num-

ber of times agent i has requested new information and thus has received a message

from each one of its neighbors and N i
E be the number of messages an agent i has

sent to a neighboring agent because it decided to break its promise. Given that

each agent has 3 neighbors, the total number of messages for an execution is then

given by Ncomm =
∑4

i=1 3N
i
S + N i

E. Figures 7.5 and 7.6 compare the evolution of

the Lyapunov function and the number of required communications in both ap-

proaches. Remarkably, the team-triggered approach outperforms the self-triggered

approach both in terms of required communication and time to convergence. In

140

Figure 7.5(a), we see that very quickly all agents are requesting information as

often as they can (as restricted by the self-triggered dwell time), due to the con-

servative nature of the self-triggered time computations. In the execution of the

Team-Triggered Lawin Figure 7.6(a), we see that only Agent 1 requests informa-

tion when possible, and only after some time. This is because Agent 1 is the first

to reach a point where it can no longer help decrease the value of the Lyapunov

function. This can be seen in Figure 7.4 by noticing that Agent 1 does not have to

move as far as the other agents to reach the desired configuration. Interestingly,

none of the other agents request new information during the duration of the sim-

ulation due to the self-triggered update times computed by the Team-Triggered

Lawbeing far less conservative. Note that this does not mean these agents are not

receiving information, but they are instead receiving information when promises

are broken by their neighboring agents, see Figure 7.6(b).

Agent 1

Agent 2

Agent 3

Agent 4

Self-triggered

10

20

30

40

50

0.5 1 1.500

(a)

NS

Time

Team-triggered law
Self-triggered law

10

20

30

40

50

60

70

80

90

0.5 1 1.500

(b)

V

Time

Figure 7.5: Plots of (a) the number of self-triggered information requests made

by each agent and (b) the evolution of the Lyapunov function for both the self and

team-triggered communication laws.

Next, we illustrate the role that the tightness of promises has on the network

performance. With the notation of Example 7.2.1 for the static ball-radius rule,

let λ = δ
2
, so that λ = 0 corresponds to exact promises and λ = 1 corresponds to

no promises at all (i.e., the self-triggered approach, cf. Remark 7.2.7). Figure 7.7

compares the value of the Lyapunov function after a fixed amount of time (1.5

141

Agent 1

Agent 2

Agent 3

Agent 4

5

10

15

20

25

0.5 1 1.5
0
0

(a)

NS

Time

Agent 1

Agent 2

Agent 3

Agent 4

5

10

15

20

25

0.5 1 1.500

(b)

NE

Time

Figure 7.6: Plots of (a) the number of self-triggered requests made by each agent

and (b) the number of event-triggered messages sent (broken promises) by each

agent in an execution of the team-triggered approach with fixed dwell times and

promises.

seconds) and the total number of messages sent Ncomm between agents by this time

for varying tightness of promises. The dwell times here are fixed at Td,self = 0.03

and Td,event = 0.0003. Remarkably, one can see that a suitable choice of λ optimizes

the rate of convergence while still requiring less communication than the self-

triggered approach.

Finally, we demonstrate the added benefits of using adaptive promises and

dwell times as opposed to fixed ones. Figure 7.8(a) compares the total number

of messages sent in the self-triggered approach and the team-triggered approaches

with fixed promises and dwell times (FPFD), fixed promises and adaptive dwell

times (FPAD), adaptive promises and fixed dwell times (APFD), and adaptive

promises and dwell times (APAD). The parameters of the adaptive dwell time

used in (7.18) are δd = 0.015 and ∆d = 0.03. The parameters of the dynamic

ball-radius rule of Example 7.2.2 are δ1 = 10−6 and δ2 = 0.50. This plot shows

the advantage of the team-triggered approach in terms of required communication

over the self-triggered one and also shows the additional benefits of implementing

the adaptive promises and dwell time. This is because by using the adaptive dwell

time, Agent 1 decides to wait longer periods for new information while its neighbors

142

0 0.2 0.6 0.8 1
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.4

0.42

(a)

V (1.5)

λ 0 0.2 0.6 0.8 10.4
100

200

300

400

500

600

700

800

900

1000

(b)

Ncomm

λ

Figure 7.7: Plots of (a) the value of the Lyapunov function at a fixed time (1.5

sec) and (b) the total number of messages exchanged in the network by this time

for the team-triggered approach with varying tightness of promises λ.

are still moving. By using the adaptive promises, as agents near convergence,

they are able to make tighter and tighter promises to one another which allows

them to request information from each other less frequently. As can be seen in

Figure 7.8(b), the performance of the network is not compromised despite the

reduction in communication.

Chapter 7 is a partial reprint of the material [4] as it appears in Robust

Team-Triggered Coordination of Networked Cyberphysical Systems, Lecture Notes

in Control and Information Sciences, vol. 449, Springer-Verlag, pp. 317-336, 2013.

Chapter 7, in part, has been submitted for publication of the material [5] as it

may appear in Team-Triggered Coordination for Real-Time Control of Networked

Cyberphysical Systems, IEEE Transactions on Automatic Control, Special Issue

on Cyber-Physical Systems, 2014. The dissertation author was the primary inves-

tigator and author of these papers.

143

Self-triggered
Team FPFD
Team FPAD
Team APFD
Team APAD

100

200

300

400

500

0.5 1 1.500

(a)

Ncomm

Time

Self-triggered
Team FPFD
Team FPAD
Team APFD
Team APAD

10

20

30

40

50

60

70

80

90

10.5 1.500

(b)

V

Time

Figure 7.8: Plots of (a) the total number of messages sent and (b) the evo-

lution of the Lyapunov function V for executions of self-triggered approach and

the team-triggered approaches with fixed promises and dwell times (FPFD), fixed

promises and adaptive dwell times (FPAD), adaptive promises and fixed dwell

times (APFD), and adaptive promises and dwell times (APAD).

144

Table 7.1: Team-Triggered Law.

-2

At any time t agent i ∈ {1, . . . , N} receives new promise(s) Xi
j [t] from neighbor(s) j ∈ N (i),

agent i performs:

1: compute own state evolution xi(t
′) for t′ ≥ t using (7.8)

2: compute first time t∗ ≥ t such that LiV
sup(Xi

N (t∗)) = 0

3: schedule information request to neighbors in max{t∗ − t, Td,self} seconds

4: apply controller uteam(t′) for t′ ∈ [t, t+max{t∗ − t, Td,self})

(Respond to information request)

At any time t agent j ∈ N (i) requests information, agent i per-

forms:

1: send new promise Xj
i [t] = Rs

i(X
i
N [·][t,∞)) to agent j

(Event-trigger information update)

At all times t, agent i performs:

1: if there exists j ∈ N (i) such that xi(t) /∈ Xj
i [·](t) then

2: if agent i has sent a promise to j at some time tlast ∈ (t− Td,event, t] then

3: send warning message WARN to agent j at time t

4: schedule to send new promise Xj
i [tlast + Td,event] = Rs

i(X
i
N [·]|[tlast+Td,event,∞)) to

agent j in tlast + Td,event − t seconds

5: else

6: send new promise Xj
i [t] = Rs

i(X
i
N [·]|[t,∞)) to agent j at time t

7: end if

8: end if

(Respond to warning message)

At any time t agent i ∈ {1, . . . , N} receives a warning message WARN from agent j ∈ N (i)

1: redefine promise set Xi
j [·](t

′) = ∪xj∈Xi
j
[·](t)Rj(t

′ − t, xj) for t
′ ≥ t

145

Table 7.2: Robust Team-Triggered Law.

-2

(Self-trigger information update)

At any time t agent i ∈ {1, . . . , N} receives new promise(s) X̂i
j [t] from neighbor(s) j ∈ N (i),

agent i performs:

1: create valid promise Xi
j [t] with respect to ω̄

2: compute own state evolution xi(t
′) for t′ ≥ t using (7.8)

3: schedule information request to neighbors in max{t∗ − t, Td,self} seconds

4: apply controller uteam(t′) for t′ ≥ t

5: while message from j has not been received do

6: if current time equals t+max{t∗ − t, Td,self}+ k∆̄ for k ∈ Z≥0 then

7: send agent j a request REQ for new information

8: end if

9: end while

(Respond to information request)

At any time t a neighbor j ∈ N (i) requests information, agent i per-

forms:

1: send new promise Y j
i [t] = Rs

i(X
i
N [·]|[t,∞)) to agent j

(Event-trigger information update)

At all times t, agent i performs:

1: if there exists j ∈ N (i) such that xi(t) /∈ Y j
i [·](t) then

2: send warning message WARN to agent j

3: if agent i has sent a promise to j at some time tlast ∈ (t− Td,event, t] then

4: schedule to send new promise Y j
i [tlast + Td,event] = Rs

i(X
i
N [·]|[tlast+Td,event,∞)) to

agent j in tlast + Td,event − t seconds

5: else

6: send new promise Y j
i [t] = Rs

i(X
i
N [·]|[t,∞)) to agent j

7: end if

8: end if

(Respond to warning message)

At any time t agent i ∈ {1, . . . , N} receives a warning message WARN from agent j ∈ N (i)

1: redefine promise set Xi
j [·](t

′) = ∪x0
j
∈Xi

j
[·](t)Rj(t

′ − t, x0
j) for t

′ ≥ t

2: while message from j has not been received do

3: if current time equals t+ k∆̄ for k ∈ Z≥0 then

4: send agent j a request REQ for new information

5: end if

6: end while

Chapter 8

Closing remarks

There are many different challenges that need to be addressed to control

different kinds of cyber-physical systems in an efficient and robust manner, espe-

cially when considering networked systems. This dissertation has reviewed various

methods of implementing controllers on cyber-physical systems where continuous

feedback control is not possible. In Chapter 4 we have shown how event- and

self-triggered sampling and control ideas can be applied to a class of optimal deci-

sion making problems. In Chapters 5 and 6 we turned our attention to networked

systems and saw how event- and self-triggered strategies can be used to imple-

ment controllers more efficiently than using periodic or time-triggered samples

and control updates. In Chapter 7 we proposed a novel team-triggered strategy

that combines ideas from event- and self-triggered communication and control that

can outperform existing methods in terms of communication efficiency. The main

contributions of this dissertation are reviewed here and we also discuss several

avenues of future work.

8.1 Conclusions

In Chapter 4 we have considered a class of problems where targets emerge

from some known location and move towards some unknown destination in a

146

147

weighted acyclic digraph. We have designed the Best Investment Algorithmand

shown that it is guaranteed to find the optimal control policy for deciding when to

make preparations for the arrival of a target at a specific destination. The resulting

optimal solution depends on the different rewards associated with the goals, the

weights on the various edges of the digraph, and most importantly, the targets’

trajectories as they move towards their destinations. We have also designed the

Second Best Investment Algorithmto find the second-to-optimal control policy and

used it to investigate the robustness of the optimal solution against changes in the

problem parameters. We have built on these conditions to obtain lower bounds,

under arbitrary dynamics of the problem parameters, on the number of timesteps

until the optimal solution changes. Our study has resulted in the synthesis of the

Self-Triggered Acquisition&Decision Algorithmto schedule in advance when future

actions should be taken. This work shows the flexibility of the event- and self-

triggered ideas and how they can be applied to problems beyond standard control

systems.

In Chapter 5 we looked at how event-triggered communication and con-

trol can be applied to the consensus problem. Specifically, we have proposed

a novel event-triggered communication and control strategy for the multi-agent

consensus problem. Unlike most prior works, special attention was given to the

event-triggered communication side of things and was implemented in a way such

that individual agents do not require continuous, or even periodic, information

about the states of their neighbors. We have shown that the proposed triggering

law ensures convergence to the desired consensus configuration and that Zeno be-

havior will not occur. Furthermore, we have characterized a lower bound on the

exponential convergence rate of the system utilizing the proposed triggering law.

In Chapter 6 we looked at how self-triggered communication and control can

be applied to an optimal deployment problem. Specifically, we have proposed the

Self-Triggered Centroid Algorithm. This strategy combines an update law to de-

termine when old information needs to be refreshed and a motion control law that

uses this information to decide how to best move. We have analyzed the correctness

of both synchronous and asynchronous executions of the proposed algorithm us-

148

ing tools from computational geometry and set-valued analysis. Our results have

established the same convergence properties that a synchronous algorithm with

perfect information at all times would have. Simulations have illustrated the sub-

stantial communication savings of the Self-Triggered Centroid Algorithm, which

can be further improved by employing an event-triggered strategy to prescribe

maximum velocity decreases as the network gets closer to its final configuration.

In Chapter 7 we have proposed a novel approach, termed team-triggered,

that combines ideas from event- and self-triggered control into a real-time im-

plementation method for distributed coordination strategies on networked cyber-

physical systems. The team-triggered approach is based on agents making promises

to each other about their future states. If a promise is broken, this triggers an event

where the corresponding agent provides a new commitment. As a result, the infor-

mation available to the agents is set-valued and can be used to schedule when in

the future further updates will be needed. We have provided a formal description

of the team-triggered framework and analyzed the correctness and performance of

the coordination strategies resulting from its application. We have also established

robustness guarantees in scenarios where communication is unreliable.

8.2 Future work

This dissertation is a great starting point for creating widely accessible gen-

eral tools for designing efficient and reliable controllers for cyber-physical systems.

There are many possible avenues for future research ranging from extending results

in this dissertation for specific problems to expanding on the general concepts and

team-triggered framework proposed here.

In the context of the optimal decision making problem considered in Chap-

ter 4, future work can be devoted to studying the setup where the decision maker

only has access to some nodes of the network of roads or the sensors are noisy

and may therefore have an incomplete knowledge of target histories. In this case

the Markov chain will have to be replaced by a hidden Markov model instead.

149

Other possible directions of research include the case where the parameters of the

problem are changing quickly compared to how fast the targets move through the

network or understanding how the parameters of the problem must be selected in

order to make optimal an a priori chosen investment policy. We are also interested

in the case of distributed decision making. In this scenario, each node would not

only be a sensor, but also a decision maker. The sensors would then have to all

agree on a single decision based on the distributed information available to them.

In the context of the multi-agent consensus and deployment problems con-

sidered in Chapters 5 and 6, future work can be devoted to scenarios with more gen-

eral dynamics or various different physical sources of error. Some common sources

of error include disturbances in the dynamics or unreliable wireless communication.

We would also like to analytically characterize the tradeoff between performance

and communication cost, provide guarantees on the network energy savings by

studying for how long agents can execute the proposed laws without fresh infor-

mation, and explore the extension of these ideas to scenarios with limited-range

interactions and other coordination tasks.

The team-triggered coordination strategy proposed in Chapter 7 opens

many doors for possible future work. As emphasized in Section 7.2.2, we are

very interested in methods of designing controllers that operate on set-valued in-

formation rather than points. This goes hand in hand with both the self-triggered

and team-triggered ideas, where we attempt to have agents make decisions about

when to obtain information and take action based on the task and performance

required. In this dissertation we have only laid out the general framework of the

team-triggered approach for a general problem and thus applying this idea to a

number of different multi-agent systems is also of great interest to us. The ap-

proach can also be naturally extended to nonlinear systems with a few appropriate

modifications.

In addition to how to design controllers that operate on sets, we would

also like to develop methods for generating promises among agents that can be

used in the team-triggered coordination strategy. As with the controllers, these

promises should be generated keeping the global desired task in mind. By looking

150

at specific problems rather than the general setup considered in Chapter 7 we

imagine different types of promises and controllers will yield very different levels of

performance. We are interested in seeing how these promises can be catered to the

task at hand to optimize various properties of the algorithm such as convergence

time, robustness, or amount of required communication.

More generally, we are very interested in being able to rigorously charac-

terize the benefits of the triggered approaches against existing methods such as

periodic control. We have shown through extensive simulations the vast potential

this work has in the field, such as by minimizing the amount of communication

required in a network, but this has yet to be shown analytically. The role of in-

formation contained by different subsystems in a network is also a key element in

how networked cyber-physical systems behave. We would like to be able to find

what kind of information is most useful to agents in a network depending on the

collective task of the system. By doing so, we envision networked cyber-physical

systems to run far more efficiently and reliably.

Bibliography

[1] J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Transactions on Robotics and Automation,
vol. 20, no. 2, pp. 243–255, 2004.

[2] C. Nowzari and J. Cortés, “Self-triggered optimal servicing in dynamic envi-
ronments with acyclic structure,” IEEE Transactions on Automatic Control,
vol. 58, no. 5, pp. 1236–1249, 2013.

[3] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic networks
for optimal deployment,” Automatica, vol. 48, no. 6, pp. 1077–1087, 2012.

[4] C. Nowzari and J. Cortés, “Robust team-triggered coordination of networked
cyber-physical systems,” in Control of Cyber-Physical Systems (D. C. Tarraf,
ed.), vol. 449 of Lecture Notes in Control and Information Sciences, pp. 317–
336, New York: Springer, 2013.

[5] C. Nowzari and J. Cortés, “Team-triggered coordination for real-time con-
trol of networked cyberphysical systems,” IEEE Transactions on Automatic
Control, 2013. Submitted.

[6] R. Kumar and V. K. Garg, Modeling and Control of Logical Discrete Event
Systems, vol. 300 of Kluwer International Series in Engineering and Com-
puter Science. Dordrecht, The Netherlands: Kluwer Academic Publishers,
1995.

[7] K. M. Passino and K. L. Burgess, Stability Analysis of Discrete Event Sys-
tems, vol. 16 of Adaptive and Learning Systems for Signal Processing, Com-
munications and Control Series. New York: Wiley, 1998.

[8] C. G. Cassandras and S. Lafortune, Introduction to Discrete-Event Systems.
Springer, 2 ed., 2007.

[9] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1997.

151

152

[10] F. Bullo, J. Cortés, and S. Mart́ınez, Distributed Control of Robotic Networks.
Applied Mathematics Series, Princeton University Press, 2009. Electronically
available at http://coordinationbook.info.

[11] W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle Cooperative
Control. Communications and Control Engineering, Springer, 2008.

[12] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Net-
works. Applied Mathematics Series, Princeton University Press, 2010.

[13] G. Tel, Introduction to Distributed Algorithms. Cambridge University Press,
2 ed., 2001.

[14] N. A. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O automata,” Infor-
mation and Computation, vol. 185, no. 1, pp. 105–157, 2003.

[15] J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang, and S. S. Sastry, “Dy-
namical properties of hybrid automata,” IEEE Transactions on Automatic
Control, vol. 48, no. 1, pp. 2–17, 2003.

[16] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,”
IEEE Control Systems Magazine, vol. 29, no. 2, pp. 28–93, 2009.

[17] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, 2012.

[18] Y. Liu, K. M. Passino, and M. M. Polycarpou, “Stability analysis of one-
dimensional asynchronous swarms,” IEEE Transactions on Automatic Con-
trol, vol. 48, no. 10, pp. 1848–1854, 2003.

[19] D. A. Castañón and C. Wu, “Distributed algorithms for dynamic reassign-
ment,” in IEEE Conf. on Decision and Control, (Maui, HI), pp. 13–18, Dec.
2003.

[20] J. Lin, A. S. Morse, and B. D. O. Anderson, “The multi-agent rendezvous
problem. Part 2: The asynchronous case,” SIAM Journal on Control and
Optimization, vol. 46, no. 6, pp. 2120–2147, 2007.

[21] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, “Gathering of
asynchronous oblivious robots with limited visibility,” in STACS 2001, 18th
Annual Symposium on Theoretical Aspects of Computer Science (Dresden,
Germany) (A. Ferreira and H. Reichel, eds.), vol. 2010 of Lecture Notes in
Computer Science, pp. 247–258, Springer, 2001.

[22] M. Cao, A. S. Morse, and B. D. O. Anderson, “Reaching a consensus in
a dynamically changing environment - convergence rates, measurement de-
lays and asynchronous events,” SIAM Journal on Control and Optimization,
vol. 47, no. 2, pp. 601–623, 2008.

153

[23] L. Fang and P. J. Antsaklis, “Asynchronous consensus protocols using non-
linear paracontractions theory,” IEEE Transactions on Automatic Control,
vol. 53, no. 10, pp. 2351–2355, 2008.

[24] D. Hristu and W. Levine, Handbook of Networked and Embedded Control
Systems. Boston, MA: Birkhäuser, 2005.

[25] K. J. Åström and B. Wittenmark, Computer Controlled Systems: Theory
and Design. Englewood Cliffs, NJ: Prentice Hall, 3rd ed., 1996.

[26] D. S. Laila, D. Nesic, and A. Astolfi, “Sampled-data control of nonlinear
systems,” in Advanced Topics in Control Systems Theory: Lecture Notes from
FAP (A. Loria, F. Lamnabhi-Lagarrigue, and E. Panteley, eds.), vol. 328,
pp. 91–137, New York: Springer, 2005.

[27] K. J. Åström and B. M. Bernhardsson., “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems,” in IEEE Conf. on
Decision and Control, (Las Vegas, NV), pp. 2011–2016, Dec. 2002.

[28] K. E. Årzén, “A simple event based PID controller,” in IFAC World
Congress, (Beijing, China), p. 423428, 1999.

[29] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1680–
1685, 2007.

[30] W. P. M. H. Heemels, J. H. Sandee, and P. P. J. van den Bosch, “Analysis of
event-driven controllers for linear systems,” International Journal of Control,
vol. 81, no. 4, pp. 571–590, 2008.

[31] A. Anta and P. Tabuada, “To sample or not to sample: self-triggered control
for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 55,
no. 9, pp. 2030–2042, 2010.

[32] M. Velasco, P. Marti, and J. M. Fuertes, “The self triggered task model
for real-time control systems,” in Proceedings of the 24th IEEE Real-Time
Systems Symposium, pp. 67–70, 2003.

[33] R. Subramanian and F. Fekri, “Sleep scheduling and lifetime maximization
in sensor networks,” in Symposium on Information Processing of Sensor Net-
works, (New York, NY), pp. 218–225, 2006.

[34] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems with
finite-gain L2 stability,” IEEE Transactions on Automatic Control, vol. 54,
no. 3, pp. 452–467, 2009.

154

[35] R. W. Brockett and D. Liberzon, “Quantized feedback stabilization of linear
systems,” IEEE Transactions on Automatic Control, vol. 45, no. 7, pp. 1279–
1289, 2000.

[36] N. Elia and S. K. Mitter, “Stabilization of linear systems with limited infor-
mation,” IEEE Transactions on Automatic Control, vol. 46, no. 9, pp. 1384–
1400, 2001.

[37] D. Liberzon, “Hybrid feedback stabilization of systems with quantized sig-
nals,” Automatica, vol. 39, no. 9, pp. 1543–1554, 2003.

[38] G. N. Nair and R. J. Evans, “Stabilization with data-rate-limited feedback:
Tightest attainable bounds,” Systems & Control Letters, vol. 41, no. 1,
pp. 49–56, 2000.

[39] M. Branicky, S. Phillips, and W. Zhang, “Scheduling and feedback co-design
for networked control systems,” in IEEE Conf. on Decision and Control,
(Las Vegas, NV), pp. 1211–1217, 2002.

[40] K. D. Kim and P. R. Kumar, “Cyberphysical systems: A perspective at the
centennial,” Proceedings of the IEEE, vol. 100, no. Special Centennial Issue,
pp. 1287–1308, 2012.

[41] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis,
V. Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a science of cy-
berphysical system integration,” Proceedings of the IEEE, vol. 100, no. 1,
pp. 29–44, 2012.

[42] M. Mazo Jr. and P. Tabuada, “Decentralized event-triggered control over
wireless sensor/actuator networks,” IEEE Transactions on Automatic Con-
trol, vol. 56, no. 10, pp. 2456–2461, 2011.

[43] X. Wang and N. Hovakimyan, “L1 adaptive control of event-triggered
networked systems,” in American Control Conference, (Baltimore, MD),
pp. 2458–2463, 2010.

[44] M. C. F. Donkers and W. P. M. H. Heemels, “Output-based event-triggered
control with guaranteed L∞-gain and improved and decentralised event-
triggering,” IEEE Transactions on Automatic Control, vol. 57, no. 6,
pp. 1362–1376, 2012.

[45] D. V. Dimarogonas and E. Frazzoli, “Distributed event-triggered control
strategies for multi-agent systems,” in Allerton Conf. on Communications,
Control and Computing, (Monticello, IL), pp. 906–910, Sept. 2009.

155

[46] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed event-
triggered control for multi-agent systems,” IEEE Transactions on Automatic
Control, vol. 57, no. 5, pp. 1291–1297, 2012.

[47] G. Shi and K. H. Johansson, “Multi-agent robust consensus-part II: ap-
plication to event-triggered coordination,” in IEEE Conf. on Decision and
Control, (Orlando, FL), pp. 5738–5743, Dec. 2011.

[48] G. S. Seybotha, D. V. Dimarogonas, and K. H. Johansson, “Event-based
broadcasting for multi-agent average consensus,” Automatica, vol. 49, no. 1,
pp. 245–252, 2013.

[49] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed self-
triggered control for multi-agent systems,” in IEEE Conf. on Decision and
Control, (Atlanta, GA), pp. 6716–6721, Dec. 2010.

[50] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-triggered
strategies for decentralized model predictive controllers,” in IFAC World
Congress, (Milano, Italy), Aug. 2011.

[51] M. Zhong and C. G. Cassandras, “Asynchronous distributed optimization
with event-driven communication,” IEEE Transactions on Automatic Con-
trol, vol. 55, no. 12, pp. 2735–2750, 2010.

[52] E. Garcia and P. J. Antsaklis, “Model-based event-triggered control for sys-
tems with time-varying network delays,” in IEEE Conf. on Decision and
Control, (Orlando, FL), pp. 1650–1655, Dec. 2011.

[53] W. P. M. H. Heemels and M. C. F. Donkers, “Model-based periodic event-
triggered control for linear systems,” Automatica, vol. 49, no. 3, pp. 698–711,
2013.

[54] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Wiley Series in Probability
and Statistics, Wiley, 2 ed., 2000.

[55] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessellations:
Applications and algorithms,” SIAM Review, vol. 41, no. 4, pp. 637–676,
1999.

[56] J. P. Aubin and H. Frankowska, Set-Valued Analysis. Boston, MA:
Birkhäuser, 1990.

[57] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, vol. 317 of Com-
prehensive Studies in Mathematics. New York: Springer, 1998.

156

[58] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to
event-triggered and self-triggered control,” in IEEE Conf. on Decision and
Control, (Maui, HI), pp. 3270–3285, 2012.

[59] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of Dynamic
Systems. Boston, MA: Addison-Wesley Longman Publishing, 1997.

[60] N. V. Sahinidis, “Optimization under uncertainty: State-of-the-art and op-
portunities,” Computers and Chemical Engineering, vol. 28, pp. 971–983,
2004.

[61] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. 1. Athena
Scientific, 2 ed., 2001.

[62] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley Series in Probability and Statistics, New York: Wiley,
2008.

[63] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming.
Springer Series in Operations Research, New York: Springer, 1997.

[64] Y. Kadota, M. Kurano, and M. Yasuda, “Utility-optimal stopping in a de-
numerable Markov chain,” Bulletin of informatics and cybernetics, vol. 28,
no. 1, pp. 15–21, 1996.

[65] A. N. Shiryaev, Optimal Stopping Rules. Springer, 1978.

[66] T. S. Ferguson, Optimal Stopping and Applications. University of California,
Los Angeles, 2008.

[67] N. H. Bingham and G. Peskir, “Optimal stopping and dynamic program-
ming,” in Encyclopedia of Quantitative Risk Analysis and Assessment (E. L.
Melnick and B. Everitt, eds.), vol. 1, pp. 1236–1243, Chichester, England:
Wiley, 2008.

[68] A. Ruiz-Moncayo, “Optimal stopping for functions of Markov chains,” The
Annals of Mathematical Statistics, vol. 39, no. 6, pp. 1905–1912, 1968.

[69] H. J. Kushner, “Computational procedures for optimal stopping problems for
Markov chains,” Journal of Mathematical Analysis and Applications, vol. 25,
no. 3, pp. 607–615, 1969.

[70] I. Sonin, “The elimination algorithm and its application to the optimal stop-
ping problem,” in IEEE Conf. on Decision and Control, (San Diego, CA),
Dec. 1997.

157

[71] I. Sonin, “The optimal stopping of Markov chain and recursive solution of
Poisson and Bellman equations,” in The Shiryaev Festschrift: From Stochas-
tic Calculus to Mathematical Finance (Y. Kabanov, R. Lipster, and J. Stoy-
anov, eds.), vol. XXXVIII, pp. 609–621, New York: Springer, 2006.

[72] M. Huang and G. N. Nair, “Detection of random targets in sensor networks
with applications,” in IFAC World Congress, (Prague, CZ), July 2005. Elec-
tronic proceedings.

[73] G. E. Monahan, “Optimal stopping in a partially observable binary-valued
Markov chain with costly perfect information,” Journal of Applied Probabil-
ity, vol. 19, no. 1, pp. 72–81, 1982.

[74] M. L. Liu and N. V. Sahindis, “Optimization in process planning under
uncertainty,” Industrial & Engineering Chemistry Research, vol. 35, no. 11,
pp. 4154–4165, 1996.

[75] A. Bemporad, D. M. de la Peña, and P. Piazzesi, “Optimal control of in-
vestments for quality of supply improvement in electrical energy distribution
networks,” Automatica, vol. 42, no. 8, pp. 1331–1336, 2006.

[76] K. D. Glazebrook, P. S. Ansell, R. T. Dunn, and R. R. Lumley, “On the opti-
mal allocation of service to impatient tasks,” Journal of Applied Probability,
vol. 41, no. 1, pp. 51–72, 2004.

[77] A. Thiele, “Robust stochastic programming with uncertain probabilities,”
IMA Journal of Management Mathematics, vol. 19, pp. 289–321, 2008.

[78] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 215–233, 2007.

[79] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions on Au-
tomatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[80] G. Xie, H. Liu, L. Wang, and Y. Jia, “Consensus in networked multi-agent
systems via sampled control: fixed topology case,” in American Control
Conference, (St. Louis, MO), pp. 3902–3907, 2009.

[81] X. Meng and T. Chen, “Event based agreement protocols for multi-agent
networks,” Automatica, vol. 49, no. 7, pp. 2125–2132, 2013.

[82] E. Garcia, Y. Cao, H. Yu, P. Antsaklis, and D. Casbeer, “Decentralised
event-triggered cooperative control with limited communication,” Interna-
tional Journal of Control, vol. 86, no. 9, pp. 1479–1488, 2013.

158

[83] L. Zhongxin and C. Zengqiang, “Event-triggered average-consensus for multi-
agent systems,” in Chinese Control Conference, pp. 4506–4511, July 2010.

[84] J. Cortés, S. Mart́ınez, and F. Bullo, “Spatially-distributed coverage op-
timization and control with limited-range interactions,” ESAIM. Control,
Optimisation & Calculus of Variations, vol. 11, no. 4, pp. 691–719, 2005.

[85] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed scalable solution to the area
coverage problem,” in Int. Conference on Distributed Autonomous Robotic
Systems, (Fukuoka, Japan), pp. 299–308, June 2002.

[86] M. Schwager, D. Rus, and J. J. Slotine, “Decentralized, adaptive coverage
control for networked robots,” International Journal of Robotics Research,
vol. 28, no. 3, pp. 357–375, 2009.

[87] A. Kwok and S. Mart́ınez, “Deployment algorithms for a power-constrained
mobile sensor network,” International Journal on Robust and Nonlinear Con-
trol, vol. 20, no. 7, pp. 725–842, 2010.

[88] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Distributed algorithms for
environment partitioning in mobile robotic networks,” IEEE Transactions
on Automatic Control, vol. 56, no. 8, pp. 1834–1848, 2011.

[89] H. Choset, “Coverage for robotics – A survey of recent results,” Annals of
Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–126, 2001.

[90] I. I. Hussein and D. M. Stipanovic̀, “Effective coverage control for mobile
sensor networks with guaranteed collision avoidance,” IEEE Transactions
on Control Systems Technology, vol. 15, no. 4, pp. 642–657, 2007.

[91] K. Kang, J. Yan, and R. R. Bitmead, “Cross-estimator design for coordinated
systems: Constraints, covariance, and communications resource assignment,”
Automatica, vol. 44, no. 5, pp. 1394–1401, 2008.

[92] P. Wan and M. D. Lemmon, “Event-triggered distributed optimization in
sensor networks,” in Symposium on Information Processing of Sensor Net-
works, (San Francisco, CA), pp. 49–60, 2009.

[93] J. Sember and W. Evans, “Guaranteed Voronoi diagrams of uncertain sites,”
in Canadian Conference on Computational Geometry, (Montreal, Canada),
2008.

[94] M. Jooyandeh, A. Mohades, and M. Mirzakhah, “Uncertain Voronoi dia-
gram,” Information Processing Letters, vol. 109, no. 13, pp. 709–712, 2009.

159

[95] D. Peleg, Distributed Computing. A Locality-Sensitive Approach. Mono-
graphs on Discrete Mathematics and Applications, SIAM, 2000.

[96] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

[97] S. Firouzabadi, “Jointly optimal placement and power allocation in wireless
networks,” Master’s thesis, University of Maryland at College Park, 2007.

[98] T. Balch and R. C. Arkin, “Communication in reactive multiagent robotic
systems,” Autonomous Robots, vol. 1, no. 1, pp. 27–52, 1994.

[99] M. J. Miller, An interaction framework for multiagent systems. PhD thesis,
Kansas State University, 2012.

[100] X. Wang and M. D. Lemmon, “Event-triggering in distributed networked
control systems,” IEEE Transactions on Automatic Control, vol. 56, no. 3,
pp. 586–601, 2011.

[101] M. Guinaldo, D. Lehmann, J. S. Moreno, S. Dormido, and K. H. Johansson,
“Distributed event-triggered control with network delays and packet losses,”
in IEEE Conf. on Decision and Control, (Hawaii, USA), pp. 1–6, Dec. 2012.

[102] L. Krick, M. E. Broucke, and B. Francis, “Stabilization of infinitesimally
rigid formations of multi-robot networks,” International Journal of Control,
vol. 82, no. 3, pp. 423–439, 2009.

