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Preface

Algorithms are detailed sequences of instructions, and are useful to describe

and automate processes. Hence, an expression of our Language and Culture. With

the help of Science and Engineering, they can infuse behavior in inanimate matter,

our computers. Companies, indeed, are harnessing these advances to profit from

products and services very efficiently, and still, with the unprecedented access to

knowledge and technology by individuals, a fundamental question arises of how

we construct organizations, companies, and institutions that preserve and create

opportunity, as members of a complex system that is far from the socio-economic

equilibrium both geographically and in time. John M. Culkin wrote, rephrasing

Marshall McLuhan, that “we shape our tools and then our tools shape us” [Cul67],

including the conditions that surround us: our buildings, our media, our education...

It is within this feedback loop where we hope that the Arts will inform our pursue,

Politics will push the collective wisdom, and Companies will try to realize their vision.

It is a complex way of engaging with the future, each other, and the environment,

and is an experiment never done before. Poised to follow the technological race

to some “inevitable” conclusion, we nonetheless hope to load our values in the

infrastructures of our society, but the challenge remains that in all the negotiations

the currency will be the collective perception of both our potential and also the way

we can realize that potential from the current state. Although the unequal share

x



of the machines and the means to capture resources influence our participation in

defining currencies and meaning, there must be hope to engage the best of ourselves,

protect the things we love, and use our resourcefulness. Our actions will echo in

the collective narrative.

xi



ACKNOWLEDGEMENTS

For those traveling with me

and for you, dear reader,

I say first the “why”

and then the “who”.

(You are about to read

the one thing I ask you

to take from me.)

For four years,

society backed me up,

letting me and my peers

be the only judge.

People seldom are trusted,

supported,

and respected like this.

The outcome of this gift,

I need to justify.

The aim for sure I’ll miss,

xii



but I will give a try.

How do you take a gift

and make it grow?

How do we echo

the efforts of all?

Dear reader,

think of this;

the answer to society

is constantly at risk.

Wanting to say more,

I should stop,

‘cause the important ritual

can be ignored.

But for weakness I go on

and cheers I share;

since our happiness we owe,

be idle... don’t you dare!

xiii



To the ones who work hard

for necessity or convenience;

because you play your card,

you build our resilience.

So I am glad to say thanks

to you pupils of Reason

for working in peace

and honoring people.

March 4, 2015.

To the departments at UCSD

Special thanks I want to give to Jorge, for helping me manage the rigors

of this journey and for respecting so much this profession. After nearly 200 weeks

of constructive attitude on his side, I have learned many lessons that time will

put into perspective, specially the organization and way of working that favors the

cumulative effort. He also listened to more concerns that is generally accustomed

and made sure I could continue my search through all the obstacles.

Seemingly a coincidence, I have known the people in this committee, Jorge,

Philip, Tara, Maurício and Miroslav, for the quality of their teaching, which I

celebrate and love for very particular reasons. I also enjoyed the courses taught by

Bob Bitmead, to whom we owe the personality of Kalman Filters, and by Jiawang

Nie, who has the tenderest inclination to student participation. I was lucky to be

a teaching assistant with Maurício, twice! I will always treasure that. Bahman

Gharesifard, our post-doc at the time I arrived, gave me a starting point for my

xiv



research and a warm welcome to the profession. Mike Ouimet encouraged my

scientific distractions across the board, and one day, after some insisting, finally

partnered with Beth to take us to sail in Catamaran. Dean Richert, and later

Ashish Cherukuri, gave me a constant example of discipline and vocation in research.

Thanks to the company of Dean in the lab, day after day, I slowly got convinced

that every obstacle tells you the way around it after enough effort. Thanks to this

I was able to pull off the first two papers during that difficult initiation period.

A similar merit goes to Letty Malouf, my landlady for two years, who became a

family member and a friend to me and listened untiringly to my stories from Spain.

Hamed Foroush was a brother at that time and María Barrantes came to complete

our unlikely gang with her amazing humor. With them, I saw another life beyond

the horizons of the campus. I also wish to thank Daniele Cavaglieri and Minyi Ji

for creating the other home for the rest of us international students to celebrate

Thanksgiving and Easter. My regards to César, Andrés, Aman, Minu, Lucas,

Eduardo, Johanna, Robert, Azad, Farinaz, Solmaz, and Shuxia, for sharing a bit of

their lives and interests along the way. The Southern California Control Workshops

gave me the adrenaline of the one minute talk in Caltech, the discovery of Santa

Barbara, and the beginning of a friendship with Justin Pearson and David A. Copp.

Another appreciated ritual was our Friday paper presentation promoted by Jorge

and Sonia Martínez and made possible through the participation of the people

in our group. The University of California San Diego afforded all the conference

trips to present the results of this thesis, and J.V. Agnew, Marina Robenko, Linda

McKamey, and others in the humorously decorated offices did a great job behind

the scenes.

xv



To the journals and research grants

This thesis is the fruit of many patient iterations of improvement and

refinement to add a solid brick on top of a formidable body of previous work in

optimization, dynamical systems and networks. The following is an account of the

journals where our results have been published.

Chapter 3 is taken from the journal paper “Noise-to-state exponentially

stable distributed convex optimization on weight-balanced digraphs”, by D. Mateos-

Núñez and J. Cortés, submitted for publication in SIAM Journal on Control and

Optimization.

Chapter 4 is taken from the journal paper “Distributed online convex

optimization over jointly connected digraphs,” by D. Mateos-Núñez and J. Cortés,

published in IEEE Transactions on Network Science and Engineering 1 (1) (2014),

23-37.

Chapter 5 is taken from the journal paper “Distributed saddle-point sub-

gradient algorithms with Laplacian averaging,” by D. Mateos-Núñez, J. Cortés,

submitted for publication in IEEE Transactions on Automatic Control.

Chapter 6 is an extended version of the conference paper “Distributed opti-

mization for multi-task learning via nuclear-norm approximation,” by D. Mateos-

Núñez, J. Cortés, presented in IFAC Workshop on Distributed Estimation and

Control in Networked Systems, Philadelphia, Pennsylvania, USA, 2015.

Chapter 7 is taken from the journal paper “pth moment noise-to-state stabil-

ity of stochastic differential equations with persistent noise,” by D. Mateos-Núñez,

J. Cortés, published in SIAM Journal on Control and Optimization 52 (4) (2014),

2399-2421. A revised version can be found in arXiv:1501.05008v1.

The authors would like to thank the anonymous reviewers from these journals

and conference proceedings because their comments helped improve our manuscripts

xvi



and thus the presentation of this thesis. This research was supported by NSF

awards CMMI-0908508 and CMMI-1300272.

To the welcome encounters

Research is by definition always an incomplete journey, and although I

yearned for the mystic mountain, the places beyond the map defy any personal

romantic vision. We belong to a collective, iterative search, wisely constrained by

our communities to impose the necessary alliance of necessity and joint courage. At

my own scale, I sought knowledge everywhere, and found people who encouraged

and mentored me. Borja Ibarz accompanied me through the landmarks of life in

San Diego with wit and wisdom, being loyal to his friends across the years and

bringing more company to the rest of us, like Romi Thakur and Dhanya Gopal,

who became the fellow explorers of the natural beauty of California. Jean Baptiste

Passot shared with us his garden, his cooking, and the magical spaces that he

creates. The same goes for Eileen Motta, whose resourcefulness made us enjoy

the most pleasurable gatherings. Juan Nogales filled the silent breaks of Summer

afternoons with entertaining explanations about metabolic networks. Alex Breslow

and Min Zhang brought me back the lost habit of jogging while talking about

books and other curiosities. Israel Lopez Coto became my bouldering partner, at

which time we also met Melisa, Andreas, Helena, Jacob, Martin, Tim, and Will,

who got us fully immersed in the climbing experience. To Jacob Huffman I owe

a lasting enthusiasm in the work led by Jeff Hawkins on Hierarchical Temporal

Memories by sharing his book “On Intelligence”. Along these lines, Bruno Pedroni

was always eager to explain concisely his research on Neuromorphic computing.

Yicong Ma and Yanjin Kuang invited me to paddle in their team for the Dragon

xvii



Boat Race, and thanks to Poy Supanee, I was able to make it a second year. Bruno

Buchberger, from the Research Institute for Symbolic Computation in Austria,

answered my questions about his Theorema Project during a period where I was

deeply interested in symbolic search engines and collaborative knowledge bases

assisted by machine learning algorithms. TEDxUCSD brought me the pleasure

of hugging my admired Science-Fiction writer David Brin, some of his books I

had read before I ever dreamed to come to the city where he studied and lives.

Fengzhong Li contacted me from Shandong University, in China, to inform me that

my proof about noise dissipative Lyapunov functions appeared to be incomplete.

His careful reading and kindness produced a chain of emails where he criticized

my attempts until the proof looked satisfactory. I cherish that encounter for its

many implications ranging from the amazement of his reaching out, and my journey

from nightmare to confrontation, to the confirmation that a good reasoning is one

that let others pinpoint where you are wrong. Helen Henninger transformed the

conference trip to Groningen into a tale trip of discovery. Karan Sikka became my

mentor in kitchen rituals in my second home and shared many Indian teas and

discussions on machine learning and optimization. Federico Pistono helped me

transcend the online medium last Christmas by gifting me the personal satisfaction

of translating into Spanish his book “A Tale of Two Futures”. During this task,

I explored another mind with such engagement that I can confirm the insight of

Marshall McLuhan that the medium is the message. Saket Navlakha, from the Salk

Institute, engaged me in discussions about learning and the brain, inspiring me

much during the last months. For the people whose company I enjoyed without

ever meeting them, I would like to mention John Green for his History online crash

courses, the sublime show “Cosmos” by Neil deGrasse Tyson, and also my late

discovery of the science fiction writers Robert Heinlein, Stephen Baxter and Karl

xviii



Schroeder.

To the dancing communities

Dancing is a language for reconciliation that flows through the depths of

the body. It also welcomes great teachers and makes lasting friends. For the ones

in Alcalá de Henares, I wish to thank Alberto and Rodrigo Villarrubia, Esper-

anza Alarcón, Talía Gamarra, and Noemí Chao Palacios. For the people in San

Diego, I am grateful to the voluntary organizers and instructors of the UCSD

Argentine Tango club across the years for sharing their passion: Grigor Aslanyan,

Ten Mendoza, Ivana Guarrasi, Erika Cheng, Reza Farsian, Eduardo Santana, Effie

Quattrociocchi, Avi Jain, Rie Avinash, Trista Brophy, Viraj Deshpande, and Min

Zhang. The same goes to the adorable people in the broader Tango scene, including

the instructors and old friends Florentino Guizar, Isabelle Simonne, Linda Garwood,

Amanda, Sandy, Richard, Serena, Keiko, Jittra, Irina, Mariana, and so many others

whose close embrace I hope to keep warm for many years. I thank Vera Alverdi and

Vincent for their unscripted brilliance teaching us the choreography and rekindling

the long forgotten joys of team work when I needed them most. My love for the

team members Alexia, Mario, Autumn, Gamo, Cinzia, Alex, Julie, Marcus, César,

Yesenia, and Riz. Mariza Suárez gave me the sweetest year of the Ph.D as my

cheerful and supportive partner, introducing me to West Coast Swing and planning

the best trips. My love also goes to Scampy, my favorite dog in the World, for

being so happy to be with us.

xix



To the people in Spain

The farther in time, the more the experiences are entangled with the process

of growing up. These people I can only thank enough during the most lucid of

moments, when all the memories make their pass and years are felt in seconds.

The friendship and hobbies shared with Javier Pérez Álvaro convinced me that I

could continue my learning journey in Mathematics during a period where that

goal appeared to be unreachable. Luckily enough, some time down the road I got

to spend many hours doing so, and met Aurelio Labanda Alonso, María González

García, and Coralina Hernández Trujillo, who contributed to create the atmosphere

to better ourselves and overcome difficulties that makes everything memorable.

The gatherings at the cafeteria with María Aguirre, Guillermo Rey, and other dear

people, completed the blessing of being a student at a University, which all in

all is a experience that we should strive to protect despite all its faults. For the

privilege of learning Maths, my tenderest love to all the students and professors

in the Department of Mathematics at University Autónoma de Madrid. From my

experiences in High School and before, where sports and games, and books and new

friends reach the prehistory of my journey, my special thanks to Enrique Valencia

Gómez and Víctor González Martín for caring and sharing over the years. Wanting

to acknowledge the teachers in Middle School and High School, my thoughts fly

to Teresa, Ramón, Jesús, Carmen Hermida, Eva Aranzana, Ángel Barahona, and

Concha Albertos, and others, the people who I am truly most identified with. I

thank my neighbors in Alcalá de Henares and Robleda, the places where I grew up

and still inspire me in ways that I am beginning to comprehend. My family was

specially responsible to make me feel what it means to arrive home and to leave

home. Aunts, uncles and cousins made life sweet with hugs and familiarity. My

aunt and my grandmother where always there for me, keeping a house full of pretty

xx



and dear things, where we were comfortable and could make friends and play and

have adventures. My admiration goes to my sister Eva, for fulfilling every task with

dignity and beauty and for discovering still another passion in the sign language.

To my brother Jesús, my respect for the many hours that he surprised us studying

in the last years. My cousin Raquel used to be my attention rapture time and

again with the things she did and said, and used to listen untiringly to everything

that inspired me. My parents worked hard to make our entire life comfortable and

helped us grow up with many good memories.

To the people who I cannot mention

The nicest memories are the less deserved thanks to our inheritance and

the generosity of life awakening. I conclude saying thanks for a lasting legacy of

pro-active passion in a poem that I think of as “Loyal to no end” started in March

19, 2015, that honors a poem of Borges brought up one day by Concha Albertos in

High School.

(Ongoing) poem of the gifts.

For the enlightenment experiment

that a postman spread,

by the writer of San Diego,

with his big, big, head.

For the movie of Brave and Merida’s mind,

heir of Ulysses and Wallace combined,

subduing a castle with measured speech,

xxi



winning her allies in a warehouse of meat.

For the visible faces,

Diamandis and Musk,

rocketing Heinlein

above Earth’s crust.

For the playground of Consensus,

where iterating the greeks,

with Lagrangians and Laplacians

we agree with greed.

For dogs

who crave outdoors,

and own a mind

that can be kind.

For Tartaglia, Cardano and Ferrari,

for playing well in their time,

because their work and passion

made History sublime.

For “how I met your mother”

and self-conscious living,

and the laughable things

like slaps in Thanksgiving.

xxii



For crying,

as someone said,

when there’s more beauty

than we expect.

For Home and the sisters

intellectually hungry,

Asu and Angelia,

and this dear country.

For Wikipedia,

wanting to be born.

Never saw a child

that we needed more.

For the people in our team,

and the work and the lead

of Jorge and Sonia,

through these many weeks.

For the shoulders of giants,

like boulders of History

that we climb defiant

and sweating for mystery.
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For the eloquent truth

of working machines;

if I give you my youth,

redeem then my genes.

For dwelling clear thoughts

between completion and loss.

Before surrender to love,

we struggle, why, my gosh?

For the patience of Minsky

and resourceful thinking.

Let us look at the living

with the eyes of building.

For the sharp symbols in the screen

and for my friends dancing serene;

for the hours devoted to think,

and the strangeness of this dream.

For the explosions postponed

towards the gems of Space

in these skies that were loaned.

Soon the asteroids we’ll chase!

For my friends from Spain
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and their lasting example,

your presence in my brain

often gives me the angle.

For the things that will come...
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This thesis contributes to the body of research in the design and analysis of

distributed algorithms for the optimization of a sum of convex functions, that finds

applications in networked and multi-agent systems. In this framework, a group

of agents cooperate with each other to optimize the sum of their local objectives

in a decentralized way by means of local interactions. We consider four aspects.

In the first scenario, the agents need to agree on a global decision vector that

minimizes the unconstrained sum. In this case, we study a family of distributed,
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continuous-time algorithms that have each agent update its estimate of the global

optimizer doing gradient descent on its local cost function while, at the same time,

seeking to agree with its neighbors’ estimates via proportional-integral feedback on

their disagreement. Our aim is to characterize the algorithm robustness properties

against the additive persistent noise resulting from errors in communication and

computation. We model this algorithm as a stochastic differential equation and

develop a novel Lyapunov technique to establish the noise-to-state stability property

in 2nd moment.

In the second scenario, we consider the online case, whereby each agent

in the network commits to a decision and incurs a local cost given by functions

that are revealed over time and whose unknown evolution might be adversarially

adaptive to the agent’s behavior. The goal of each agent is to incur a cumulative

cost over time with respect to the sum of local functions across the network that is

competitive with the best centralized decision in hindsight. The proposed algorithms

evolve in discrete time using first-order information of the objectives in the form

of subgradients, and the communication topology is modeled as a sequence of

time-varying weight-balanced digraphs such that the consecutive unions over time

periods of some length are strongly connected. We illustrate our results in an

application to medical diagnosis, where networked hospitals use patient data to

improve their decision models cooperatively in an online fashion.

In the third scenario, we depart from the cooperative search of a global

decision vector. Instead, the agents now wish to estimate local decision vectors that

minimize the sum of their objectives and are coupled through a constraint that

is a sum of convex functions. Motivated by dual-decompositions of constrained

optimization problems through the Lagrangian formulation, we consider subgradient

algorithms to find a saddle-point of general convex-concave functions under agree-
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ment constraints. These distributed strategies are suitable for monotone variational

inequality problems, which are equivalent to convex-concave saddle-point problems.

In the fourth scenario, we show a distributed treatment of nuclear-norm

regularization, a widely used convex surrogate of the rank function on the spectral

ball. To this end, we exploit our previous strategies for saddle-point problems using

two variational characterizations of the nuclear norm that are separable under an

agreement condition on auxiliary matrices that are independent of the size of the

network. As a result, we derive two novel distributed algorithms to address standard

optimization models for multi-task learning and low-rank matrix completion.
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Chapter 1

Introduction

Algorithms are often employed to optimize, to produce answers with proper-

ties that are the best with respect to some criteria. Hence the fourth part of the title

distributed algorithms for convex optimization. The distributed aspect is the main

single topic of this thesis, and among other connotations that we shortly discuss, it

means that the optimization goal is achieved through the participation of entities,

or agents, that use resources that are spread as opposed to centralized, pointing

to the idea of local resources. One can think of these resources as information,

sensing, computational, and storage capabilities, for instance. When we use the

word network, we may refer to the collective of agents or, most commonly, to the

communication network, that codifies which agents can communicate information

with whom in the sequence of instructions in our algorithm. This points to the

idea of local communication, or communication between neighboring agents in

the network. Summarizing, distributed optimization refers to the participation of

agents to optimize some criteria using local resources and local communication.

Finally, the word convex is a mathematical property of the criterion that we are

optimizing. It refers to real-valued functions in arbitrary dimensions that admit a

1
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linear estimator from below at every point, and define many useful performance

models in applications. In this thesis, we, as designers of the algorithms, prescribe

the response of the agents with respect to the set of criteria that needs to be

optimized. These are the objective functions associated to each agent, whose sum

determines the collective performance. The design of the objectives is still another

design stage independent from the broader design of the algorithm that allows to

frame the specific problem to be solved. The distributed paradigm that we employ

for cooperative optimization is synonym of decentralized, or peer-to-peer, which is

a theme of active research nowadays, including decentralized trust and reputation

systems.

To mention some examples, the tools that we present can be applied to

resource allocation and cooperative control in networked systems using ad hoc

infrastructures and peer-to-peer interactions, and they can also be applied to

large-scale machine learning problems. To make a connection with the latter, let

us recall that machine learning is about the estimation of unknown parameters,

which is done via optimization. However, the creation of models of how the

available information relates to the unknown parameters is not the focus of this

thesis, although we do illustrate the suitability of our tools in this context. Our

focus is on the design and analysis of algorithms to solve general families of convex

optimization problems in a distributed way. These formulations can then be specified

by expert modelers to fit specific applications. Our algorithms automatically

particularize to those cases, and the convergence properties that we establish hold

if fairly general hypotheses like convexity are satisfied by the models. While the

optimization problems that are solved in machine learning are not always convex

(like in deep neural networks, to mention an example that is currently the focus

of intense research), there are widely used models for regression and classification
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and multi-task feature learning that fit the assumptions of convexity. There is great

modeling power in the intersection of optimization, learning, decision making, and

networks, so it is better to search first for the problem and then for the tool. Next

we present briefly the problems that we address.

1.1 Problems considered

In a nutshell, we consider the optimization of a sum of convex functions,

with aspects such as agreement on the optimizer, nuclear norm regularization, noisy

communication channels, time-varying objectives, and constraints coupling the

agents’ variables. We now present briefly each of them.

In the first class of problems the agents wish to agree on an optimal parameter

vector, which we call global decision vector,

min
x∈Rd

N∑
i=1

f i(x), (1.1)

where f i : Rd → R is the cost function available to agent i. In regression and

classification problems this function represents the fitness of a model with parameter

vector x with respect to the data set of agent i. This motivates calling the above

problem cooperative data fusion. Other applications demand the global decision

vector to be replaced by a set of parameter vectors, which we call local decision

vectors, constrained in a more flexible way than agreement to capture patterns in

the decentralized data. In particular, the nuclear norm of the matrix composed of

the local parameter vectors across the network promotes low-rank solutions, and as

such is less rigid than the agreement constraint. This general principle motivates
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our second class of problems,

min
wi∈Rd,∀i

N∑
i=1

f i(wi)+γ‖W‖∗, (1.2)

where ‖ · ‖∗ is the nuclear norm1 of the matrix W = [w1| . . . |wN ] ∈ Rd×N formed

by aggregating the vectors {wi}Ni=1 as columns. The nuclear norm is weighted by

the design parameter γ ∈ R>0 and the hope from a modeler perspective is that, by

tuning this parameter appropriately, one induces the set of local decision vectors to

belong approximately to a low-dimensional vector space.

What we mean by solving problems (1.1) and (1.2) in a distributed way is

the following, which we can call the distributed imperative: agent i updates

iteratively an estimate of the optimal values by using information from f i and by

sharing its estimate with their neighbors in the communication network. The agents

are allowed to share additional auxiliary variables as long as the communication

and computational cost is non prohibitive. In addition, each agent can project their

iterates into simple convex sets. We anticipate that our algorithms employ first-order

information from the objective functions in the form of subgradients, and the agents’

interactions occur through Laplacian averaging, which is essentially linear averaging.

The auxiliary variables employed by the agents are usually motivated by Lagrange

multipliers or, in the case of nuclear norm, by a characterization in terms of a

min-max problem employing auxiliary local matrices. The dimension of these

matrices is d(d+1)/2, ideally independent of N , giving an idea of what it means

to get close to prohibitive communication costs. The appeal of the distributed

framework is many-fold:

• Privacy concerns are respected because the private data sets are codified
1The sum of the singular values.
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“wholesale” in the agents’ objective functions, which are not shared.

• Communication bandwidth is efficiently used because communications

are sparse and because the local estimates are a “compressed” version, in a

sense, of the entire data sets.

• Commodity hardware is aggregated across the network of agents, including

computation, storage and data-collection/sensing capabilities.

• Fault tolerance is assured because the solution to the problem is achieved

cooperatively through the non-privileged interaction of many agents.

• Scaling only requires localized additional infrastructure and adjustment of

algorithm parameters.

In addition to these features, in problem (1.1) we also include the treatment of

noise in the communication channels and scenarios with time-varying objective

functions, and in problem (1.2) we also consider, instead of the nuclear norm

regularization, constraints coupling the local variables through a sum of convex

functions.

The case of noise concerns the modeling of the algorithm as a stochastic

dynamical system, and indeed the language of dynamical systems and their asymp-

totic behavior, quantified in detail, is in the core of our contributions. Precisely,

our model in this case is a stochastic differential equation, which is an ordinary

differential equation whose integration is perturbed by Brownian motion. The

performance of our distributed algorithm with noisy communication channels is

then characterized using the notion of noise-to-state stability in second moment,

which describes a specific type of stochastic convergence to a neighborhood whose

size depends on the magnitude of the noise.
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The above problems are off-line in the sense that the data set defining the

problem is available from the start of the execution of the algorithm. In contrast,

we consider an alternative scenario wherein the objective functions, or the data,

are revealed sequentially in an unpredictable manner. This refers to the online,

or real-time, scenario, which for an arbitrary agent j consists of showing the agent regret

of a sequence of estimates {xjt}Tt=1 with respect to the best centralized choice in

hindsight over some time horizon T ,

Rj
T :=

T∑
t=1

N∑
i=1

f it (x
j
t )− min

y∈Rd

T∑
t=1

N∑
i=1

f it (y).

The function f it is the cost incurred by agent i at time t. The online imperative

is that each agent i in the network observes f it only upon calculating its estimate xit,

and for this it can only use historical knowledge from previous objectives {f is}t−1
s=1

(usually just the last one) and also the estimates from its neighbors. The intuition

about the regret comes from the fact that if it can be bounded by a sub-linear

function of T , then we can guarantee that in temporal average, an arbitrary agent

j is doing nearly as well, asymptotically, as the best choice had all the information

been centrally available. The appeal of the online framework complements the

distributed framework:

• Real time processing of data streams provides adaptability.

• Data rate can be faster than the diffusion of information across the network.

• Sub-linear regret (only) says that trends that can be captured by a single

decision in hindsight, can also be approximated “on the fly”.

The addition of constraints coupling the local decision vectors through a

sum of convex functions has applications in multi-agent systems outside machine
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learning, including

• Traffic and routing problems where the constraints are given by conservation

equations.

• Resource allocation problems where the constraints include budgets and/or

demand satisfaction.

• Optimal control problems in discrete time where the constraints refer to

the system evolution.

• Network formation where the constraints refer to relative distances and

angles.

• Metric learning where the optimization constraints are given, for instance,

by Large Margin Nearest Neighbor relations.

Many of these problems can be written in the following form,

min
wi∈Wi,∀i,D∈D

N∑
i=1

f i(wi,D)

s.t.
N∑
i=1

gi(wi,D) ≤ 0,

where f i and gi are functions available to agent i that might depend on both a

local decision vector and a global decision vector in which the agents need to agree.

A crucial aspect is that we consider constraints that couple the local variables

of agents even if they are not neighbors in the communication network, motivating

the distinction between constraint graph and communication graph. The

nodes of these graphs represent the agents, but the edges codify different things.

In the constraint graph there is an edge between two nodes whenever there is a

constraint coupling the decisions of the corresponding agents. In the communication
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graph, there is a directed edge, pointing from one agent to another, if the first agent

can receive information from the second. As an example, consider the agreement

constraint in problem (1.1). It turns out that the constraint graph associated to

agreement can be represented in terms of any connected graph, meaning that all

the agents agree if they agree pair-wise over a set of relations that connect all

the agents. In fact, the agreement condition has a special character in distributed

optimization, partly due to the extensive research in consensus algorithms. Thanks

to the current understanding of these algorithms, we know that consensus can be

achieved under very general assumptions on the connectivity of the communication

graphs. For instance, the communication graph can vary with time and only the

consecutive unions over bounded periods of time need to contain a directed path

between any two nodes. This makes consensus-based distributed strategies very

valuable as we explain next.

To address the dichotomy between constraint and communication graphs, we

use the following insight. In the Lagrangian formulation of the above constrained

optimization problems, the linearity with respect to the component functions in

the constraints allows to introduce copies of the Lagrange multipliers subject to

agreement. The constraints can then be split in their component functions among

the agents by assigning them the corresponding copy of the multipliers. This is a

good strategy, because the agents can deal with the agreement condition on the

copies of the multipliers by relying just on the communication graph. For the

sake of generality, we consider formulations where the Lagrangian is replaced by a

general convex-concave function and study the corresponding saddle-point problems

with explicit agreement constraints on a subset of the arguments of both the convex

and concave parts. This holds the key for the treatment of the nuclear norm

introduced in problem (1.2) thanks to a characterization of the nuclear norm as a
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min-max problem in additional variables. In this case, a preliminary formulation

as a minimization problem reveals an additive structure in the objective function

under an agreement condition, while a further transformation into a min-max

problem through explicit Fenchel conjugacy avoids the computation of the inverse

of local matrices by candidate subgradient algorithms. Crossing this conceptual

bridge in the opposite direction, in the case of minimization problems with linear

constraints, one can also eliminate the primal variables in the Lagrange formulation

in favor of the maximization of the sum of Fenchel conjugates under agreement on

the multipliers, which also favors the distributed strategies studied in this thesis.

With the unifying role of agreement, we complete our overview.

1.2 Literature review

The following presentation is divided in four categories: the broad field of

distributed optimization, including the constrained and the unconstrained cases; the

regret perspective for online optimization; the significance and treatment of nuclear

norm regularization; and finally the stability analysis of stochastic differential

equations that places in context the development of our tools for noise-to-state

stability.

1.2.1 Distributed optimization

Our work on distributed optimization builds on three related areas: iterative

methods for saddle-point problems [AHU58, NO09b], dual decompositions for

constrained optimization [PB13, Ch. 5], [BPC+11], and consensus-based distributed

optimization algorithms; see, e.g., [NO09a, JKJJ08, WO12, ZM12, GC14, WE11]

and references therein. Historically, these fields have been driven by the need of
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solving constrained optimization problems and by an effort of parallelizing the

computations [Tsi84, BT97], leading to consensus approaches that allow different

processors with local memories to update the same components of a vector by

averaging their estimates (see the pioneer work [TBA86]).

Saddle-point or min-max problems arise in optimization contexts such as

worst-case design, exact penalty functions, duality theory, and zero-sum games,

see e.g. [BNO03]. In a centralized scenario, the work [AHU58] studies iterative

subgradient methods to find saddle points of a Lagrangian function and establishes

convergence to an arbitrarily small neighborhood depending on the gradient step-

size. Along these lines, [NO09b] presents an analysis for general convex-concave

functions and studies the evaluation error of the running time-averages, showing

convergence to an arbitrarily small neighborhood assuming boundedness of the

estimates. In [NO09b, NO10a], the boundedness of the estimates in the case

of Lagrangians is achieved using a truncated projection onto a closed set that

preserves the optimal dual set, which [HUL93] shows to be bounded when the

strong Slater condition holds. This bound on the Lagrange multipliers depends on

global information and hence must be known beforehand for its use in distributed

implementations.

Dual decomposition methods for constrained optimization are the melting

pot where saddle-point approaches come together with methods for parallelizing the

computations, like the alternating direction method of multipliers (ADMM) and

primal-dual subgradient methods. These methods constitute a particular approach

to split a sum of convex objectives by introducing agreement constraints on the

primal variable, leading to distributed strategies such as distributed ADMM [WO12]

and distributed primal-dual subgradient methods [GC14, WE11]. Ultimately, these

methods allow to distribute constraints that are also sums of convex functions via
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agreement on the multipliers [CNS14].

In distributed constrained optimization, we highlight two categories of

constraints that determine the technical analysis and the applications: the first type

concerns a global decision vector in which agents need to agree. See, e.g., [YXZ11,

ZM12, YHX15], where all the agents know the constraint, or see, e.g., [Ozd07,

NOP10, NDS10, ZM12], where the constraint is given by the intersection of abstract

closed convex sets. The second type couples the local decision vectors across the

network. Examples of the latter include [CNS14], where the inequality constraint is

a sum of convex functions and each one is only known to the corresponding agent.

Another example is [MARS10], where in the case of linear equality constraints

there is a distinction between constraint graph and communication graph. In this

case, the algorithm is proved to be distributed with respect to the communication

graph, deepening on previous paradigms where each agent needs to communicate

with all other agents involved in a particular constraint [RC15]. Employing dual

decomposition methods previously discussed, this thesis addresses a combination of

the two types of constraints, including the least studied second type. This is possible

using a strategy that allows an agreement condition to play an independent role on

a subset of both primal and dual variables. We in fact tackle these constraints from

a more general perspective, namely, we provide a multi-agent distributed approach

for the class of saddle-point problems in [NO09b] under an additional agreement

condition on a subset of the variables of both the convex and concave parts. We do

this by combining the saddle-point subgradient methods in [NO09b, Sec. 3] and the

kind of linear proportional feedback on the disagreement employed by [NO09a] for

the minimization of a sum of convex functions. The resulting family of algorithms

particularize to a novel class of primal-dual consensus-based subgradient methods

when the convex-concave function is the Lagrangian of the minimization of a sum
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of convex functions under a constraint of the same form.

In this particular case, the recent work [CNS14] uses primal-dual perturbed

methods, which require the extra updates of the perturbation points to guarantee

asymptotic convergence of the running time-averages to a saddle point. These

computations require subgradient methods or proximal methods that add to the

computation and the communication complexity.

We can also provide a taxonomy of distributed algorithms for convex op-

timization depending on how the particular work deals with a multiplicity of

aspects that include the network topology, the type of implementation, and the

assumptions on the objective functions and the constraints, and the obtained

convergence guarantees. Some algorithms evolve in discrete time with associated

gradient stepsize that is vanishing [DAW12, SN11, TLR12, ZM12], nonvanish-

ing [NO09a, RNV10, SN11], or might require the solution of a local optimization

at each iteration [DAW12, WO12, TLR12, NLT11]; others evolve in continuous

time [WE10, GC14, LT12] and even use separation of time scales [ZVC+11]; and

some are hybrid [WL09]. Most algorithms converge asymptotically to the solu-

tion, while others converge to an arbitrarily good approximation [NO09a, RNV10].

Some examples of convergence rates, or size of the cost error as a function of

the number of iterations, are 1/
√
k [DAW12, TLR12] and 1/k [WO12]. The com-

munication topologies might be undirected [NO09a, WO12, LT12, NLT11, WE10,

ZVC+11], directed and weight-balanced or with a doubly stochastic adjacency

matrix [DAW12, GC14, ZM12, RNV10, SN11], or just directed under some knowl-

edge about the number of in-neighbors and out-neighbors [TLR12]; also, they

can be fixed [GC14, WO12, LT12, NLT11, ZVC+11], or change over time under

joint connectivity [DAW12, NO09a, ZM12, TLR12, RNV10, NLT11, SN11]. On

the other hand, the objective functions might be required to be twice continuously
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differentiable [LT12, ZVC+11] or once differentiable [GC14, Sec. V], [NLT11], or

just Lipschitz [DAW12], [GC14, Sec. IV], [NO09a, WO12, ZM12, TLR12, RNV10,

SN11]; in addition, they might need to be strongly convex [LT12], strictly con-

vex [WO12, NLT11, ZVC+11], or just convex [DAW12, GC14, NO09a, ZM12,

TLR12, RNV10, SN11]. Some algorithms use the Hessian of the objective functions

in addition to the gradients [LT12, NLT11, ZVC+11]. Also, the agents might need

to share their gradients or second derivatives [LT12, ZVC+11] or even their objec-

tives [NLT11]. Some incorporate a global constraint known to all the agents using a

projection method [DAW12, ZM12, TLR12, RNV10] or a dual method [NLT11], and

in same cases each agent has a different constraint [ZM12, SN11]. Some algorithms

impose a constraint on the initial condition [LT12, NLT11] in order to guarantee

convergence. The algorithm execution can be synchronous [GC14, WO12, LT12],

allow gossip/randomized communication [LTRB11, SN11], or use event-triggered

communication [WL09, KCM15]. Of particular interest to one of our chapters

are the works that consider noise affecting the dynamics through stochastically

perturbed gradients with associated vanishing stepsize [DAW12] or nonvanishing

stepsize [RNV10], while [SN11] considers both noisy communication links and sub-

gradient errors. The characterization of the (discrete-time) algorithm performance

under noise provided in these works builds on the fact that the projection onto a

compact constraint set at every iteration effectively provides a uniform bound on

the subgradients of the component functions.

Our work on distributed unconstrained optimization under noise generalizes

the class of continuous-time algorithms studied in [WE10] for undirected graphs and

in [GC14] for weight-balanced digraphs. Specifically, in the case of weight-balanced

communication digraphs, we also account for the presence of noise in the communi-

cation channels and in the agent computations. Under this strategy, each agent
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updates its estimate of the global solution using the gradient of its local objective

function while, at the same time, performing proportional-integral distributed

feedback on the disagreement among neighboring agents. As a result, the set of

equilibria is given by the solution of the optimization problem together with an

affine subspace of the integrator variables. The introduction of noise makes the

resulting dynamical system a stochastic differential equation [Mao11, Ö10, Kha12],

with the particular feature that the stochastic perturbations do not decay with time

and are present even at the equilibria of the underlying deterministic dynamics.

The persistent nature of the noise rules out many classical stochastic notions of

stability [Thy97, Mao99, Mao11]. Instead, the concept of noise-to-state stability

(NSS) [DK00] with respect to an equilibrium of the underlying ordinary differential

equation is a notion of stochastic convergence to a neighborhood of that point.

More precisely, it provides an ultimate bound for the state of the stochastic sys-

tem, in probability, that depends on the magnitude of the covariance of the noise.

Asymptotic convergence to the equilibrium follows in the absence of noise. In this

regard, we build on our extension [MNC14b] of this concept to NSS in pth moment

with respect to subspaces to establish NSS in second moment with respect to the

subspace of equilibria of the underlying ordinary differential equation.

1.2.2 Distributed online optimization

Online learning is about sequential decision making given historical observa-

tions on the loss incurred by previous decisions, even when the loss functions are

adversarially adaptive to the behavior of the decision maker. Interestingly, in online

convex optimization [Zin03, CBL06, SS12, Haz11], it is doable to be competitive

with the best single decision in hindsight. These works show how the regret, i.e.,

the difference between the cumulative cost over time and the cost of the best single
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decision in hindsight, is sublinear in the time horizon. Online convex optimization

has applications to information theory [CBL06], game theory [SSS07], supervised

online machine learning [SS12], online advertisement placement, and portfolio

selection [Haz11]. Algorithmic approaches include online gradient descent [Zin03],

online Newton step [HAK07], follow-the-approximate-leader [HAK07], and online

alternating directions [WB12]. A few recent works have explored the combination

of distributed and online convex optimization. The work [DGBSX12] proposes

distributed online strategies that rely on the computation and maintenance of

spanning trees for global vector-sum operations and work under suitable statistical

assumptions on the sequence of objectives. The work [RKW11] studies decentral-

ized online convex programming for groups of agents whose interaction topology is

a chain. The works [YSVQ13, HCM13] study agent regret without any statistical

assumptions on the sequence of objectives. On the one hand [YSVQ13] introduces

distributed online projected subgradient descent and shows square-root regret (for

convex cost functions) and logarithmic regret (for strongly convex cost functions).

The analysis critically relies on a projection step onto a compact set at each time step

(which automatically guarantees the uniform boundedness of the estimates), and

therefore excludes the unconstrained case (given the non-compactness of the whole

state space). In contrast, [HCM13] introduces distributed online dual averaging

and shows square-root regret (for convex cost functions) using a general regularized

projection that admits both unconstrained and constrained optimization, but the

logarithmic bound is not established. Both works only consider static and strongly-

connected interaction digraphs. Our approach to online optimization generalizes a

family of distributed saddle-point subgradient algorithms [WE11, GC14] that enjoy

asymptotic (exponenial) convergence with constant stepsizes and robust asymptotic

behavior in the presence of noise [MNC13].
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1.2.3 Nuclear norm regularization

Mathematical models that use a low-rank matrix estimate are key in

applications such as recommender systems through matrix completion [CR09],

dimension reduction in multivariate regression [YL07], multi-task feature learn-

ing [AZ05, AEP06, AEP08], and convex relaxations of optimal power flow [MFSL14],

where it is necessary to recover a low-rank solution of a semidefinite program. The

basic underlying structure is the same: an estimate of a matrix that is assumed or

postulated to be of low rank. While the rank function is nonconvex, it turns out that

the nuclear norm, defined as the one norm of the vector of singular values, is the

convex surrogate of the rank function [Faz02]. When used as a regularization in opti-

mization problems, the nuclear norm promotes a low-rank solution and in some cases

even allows to recover the exact low-rank solution [CT10, RFP10]. The applications

of nuclear norm regularization described above have inspired research in parallel

computation following the model of stochastic gradient descent [RR13], but these

developments emphasize the parallel aspect alone, rather than other aspects such

as geographically distributed data, communication bandwidth, and privacy. Other

strategies to address the problem do not consider the parallel or the distributed as-

pects, but instead try to overcome the nonsmooth nature of the nuclear norm using

techniques such as approximate singular value decompositions [WLRT08, WC15];

coordinate descent and subspace selection [DHM12, HO14]; and successive over-

relaxation [WYZ12]. Our approach builds on our recent work [MNC15], presented

in Chapter 5, which develops a general analytical framework combining distributed

optimization and subgradient methods for saddle-point problems.
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1.2.4 Stability of stochastic differential equations

Stochastic differential equations (SDEs) go beyond ordinary differential

equations (ODEs) to deal with systems subject to stochastic perturbations of a

particular type, known as white noise. Applications are numerous and include option

pricing in the stock market, networked systems with noisy communication channels,

and, in general, scenarios whose complexity cannot be captured by deterministic

models. In this thesis we study SDEs subject to persistent noise (including the case

of additive noise), i.e., systems for which the noise is present even at the equilibria

of the underlying ODE and does not decay with time. Such scenarios arise, for

instance, in control-affine systems when the input is corrupted by persistent noise.

For these systems, the presence of persistent noise makes it impossible to establish

in general a stochastic notion of asymptotic stability for the (possibly unbounded)

set of equilibria of the underlying ODE. Our focus is therefore to develop notions

and tools to study the stability properties of these systems and provide probabilistic

guarantees on the size of the state of the system.

In general, it is not possible to obtain explicit descriptions of the solutions of

SDEs. Fortunately, the Lyapunov techniques used to study the qualitative behavior

of ODEs [Kha02, LMS91] can be adapted to study the stability properties of SDEs

as well [Kha12, Thy97, Mao99]. Depending on the notion of stochastic convergence

used, there are several types of stability results in SDEs. These include stochastic

stability (or stability in probability), stochastic asymptotic stability, almost sure

exponential stability, and pth moment asymptotic stability, see e.g., [Thy97, Mao99,

Mao11, Tan03]. However, these notions are not appropriate in the presence of

persistent noise because they require the effect of the noise on the set of equilibria

to either vanish or decay with time. To deal with persistent noise, as well as other

system properties like delays, a concept of ultimate boundedness is required that
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generalizes the notion of convergence. As an example, for stochastic delay differential

equations, [WK13] considers a notion of ultimate bound in pth moment [Sch01]

and employs Lyapunov techniques to establish it. More generally, for mean-square

random dynamical systems, the concept of forward attractor [KL12] describes a

notion of convergence to a dynamic neighborhood and employs contraction analysis

to establish it. Similar notions of ultimate boundedness for the state of a system,

now in terms of the size of the disturbance, are also used for differential equations,

and many of these notions are inspired by dissipativity properties of the system

that are captured via dissipation inequalities of a suitable Lyapunov function:

such inequalities encode the fact that the Lyapunov function decreases along the

trajectories of the system as long as the state is “big enough” with regards to the

disturbance. As an example, the concept of input-to-state stability (ISS) goes

hand in hand with the concept of ISS-Lyapunov function, since the existence of the

second implies the former (and, in many cases, a converse result is also true [SW95]).

Along these lines, the notion of practical stochastic input-to-state stability (SISS)

in [LZJ08, WXZ07] generalizes the concept of ISS to SDEs where the disturbance

or input affects both the deterministic term of the dynamics and the diffusion term

modeling the role of the noise. Under this notion, the state bound is guaranteed

in probability, and also depends, as in the case of ISS, on a decaying effect of the

initial condition plus an increasing function of the sum of the size of the input and

a positive constant related to the persistent noise. For systems where the input

modulates the covariance of the noise, SISS corresponds to noise-to-state-stability

(NSS) [DK00], which guarantees, in probability, an ultimate bound for the state

that depends on the magnitude of the noise covariance. That is, the noise in this

case plays the main role, since the covariance can be modulated arbitrarily and can

be unknown. This is the appropriate notion of stability for the class of SDEs with
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persistent noise considered in this thesis, which are nonlinear systems affine in the

input, where the input corresponds to white noise with locally bounded covariance.

Such systems cannot be studied under the ISS umbrella, because the stochastic

integral against Brownian motion has infinite variation, whereas the integral of a

legitimate input for ISS must have finite variation.

1.3 Contributions

The contributions are organized according to chapter of the same title, which

can be read independently.

1.3.1 Noise-to-state exponentially stable distributed con-

vex optimization on weight-balanced digraphs

In the distributed approach to the optimization of an unconstrained sum of

convex functions, we assume that both inter-agent communications and agent com-

putations are corrupted by Gaussian white noise of locally bounded covariance, and

the communication topology is represented by a strongly connected weight-balanced

digraph. We study a family of distributed continuous-time coordination algorithms

where each agent keeps track and interchanges with its neighbors two variables:

one corresponding to its current estimate of the global optimizer and the other one

being an auxiliary variable to guide agents towards agreement. According to this

coordination strategy, each agent updates its estimate using gradient information of

its local cost function while, at the same time, seeking to agree with its neighbors’

estimates via proportional-integral feedback on their disagreement. The presence of

noise both in the communication channels and the agent computations introduces

errors in the algorithm execution that do not decay with time and are present even
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at the equilibria.

Our main contribution establishes that the resulting dynamics, modeled as

a stochastic differential equation, is noise-to-state exponentially stable in second

moment and, therefore, robust against additive persistent noise. Precisely, we char-

acterize the exponential rate of convergence in second moment to a neighborhood

that depends on the size of the disturbance. Our technical approach relies on

the construction of a suitable candidate noise-to-state (NSS) Lyapunov function

whose nullspace is the affine subspace corresponding to the solution of the convex

optimization problem plus a direction of the auxiliary variables that absorbs the

variance of the noise. To verify that the candidate function is in fact an NSS

Lyapunov function, we analyze the interaction between local optimization and

local consensus through the co-coercivity of a family of vector fields comprising a

gradient of a convex function plus a linear transformation with a nonsymmetric

Laplacian. Specifically, we give sufficient conditions for this family of vector fields to

be co-coercive under small perturbations. When noise is present, the expected rate

of change of the NSS Lyapunov function is proportional to the difference between

the square Frobenius norm of the covariance of the noise and the distance to its

nullspace. In the absence of noise, our NSS-Lyapunov function renders the system

exponentially stable with respect to the solution.

1.3.2 Distributed online convex optimization over jointly

connected digraphs

We consider the online unconstrained convex optimization scenario where no

model is assumed about the evolution of the local objectives available to the agents.

In this scenario, we propose a class of distributed coordination algorithms and

study the associated agent regret in the optimization of the sum of the local cost



21

functions across the network. Our algorithm design combines subgradient descent

on the local objectives revealed in the previous round and proportional-integral

(and/or higher-order) distributed feedback on the disagreement among neighboring

agents. Assuming bounded subgradients of the local cost functions, we establish

logarithmic agent regret bounds under local strong convexity and square-root agent

regret under convexity plus a mild geometric condition. We also characterize

the dependence of the regret bounds on the network parameters. Our technical

approach uses the concept of network regret, which captures the performance of the

sequence of collective estimates across the group of agents. The derivation of the

sublinear regret bounds results from three main steps: the study of the difference

between network and agent regret; the analysis of the cumulative disagreement

of the online estimates via the input-to-state stability property of a generalized

Laplacian consensus dynamics; and the uniform boundedness of the online estimates

(and auxiliary variables) when the set of local optimizers is uniformly bounded.

With respect to previous work, the contributions advance the current state of the art

because of the consideration of unconstrained formulations of the online optimization

problem, which makes the discussion valid for regression and classification and

raises major technical challenges to ensure the uniform boundedness of estimates;

the synthesis of a novel family of coordination algorithms that generalize distributed

online subgradient descent and saddle-point dynamics; and the development of

regret guarantees under jointly connected interaction digraphs. Our novel analysis

framework modularizes the main technical ingredients (the disagreement evolution

via linear decoupling and input-to-state stability; the boundedness of estimates and

auxiliary states through marginalizing the role of disagreement and learning rates;

and the role played by network topology and the convexity properties) and extends

and integrate techniques from distributed optimization (e.g., Lyapunov techniques
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for consensus under joint connectivity) and online optimization (e.g., Doubling

Trick bounding techniques for square-root regret). We illustrate our results in a

medical diagnosis example.

1.3.3 Distributed saddle-point subgradient algorithms with

Laplacian averaging

We consider general saddle-point problems with explicit agreement con-

straints on a subset of the arguments of both the convex and concave parts. These

problems appear in dual decompositions of constrained optimization problems,

and in other saddle-point problems where the convex-concave functions, unlike

Lagrangians, are not necessarily linear in the arguments of the concave part. This is

a substantial improvement over prior work that only focuses on dual decompositions

of constrained optimization. When considering constrained optimization problems,

the agreement constraints are introduced as an artifact to distribute both primal

and dual variables independently. For instance, separable constraints can be de-

composed using agreement on dual variables, while a subset of the primal variables

can still be subject to agreement or eliminated through Fenchel conjugation; local

constraints can be handled through projections; and part of the objective can be

expressed as a maximization problem in extra variables. Driven by these important

classes of problems, our main contribution is the design and analysis of distributed

coordination algorithms to solve general convex-concave saddle-point problems

with agreement constraints, and to do so with subgradient methods, which have

less computationally complexity. The coordination algorithms that we study can

be described as projected saddle-point subgradient methods with Laplacian aver-

aging, which naturally lend themselves to distributed implementation. For these

algorithms we characterize the asymptotic convergence properties in terms of the
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network topology and the problem data, and provide the convergence rate. The

technical analysis entails computing bounds on the saddle-point evaluation error

in terms of the disagreement, the size of the subgradients, the size of the states

of the dynamics, and the subgradient stepsizes. Finally, under assumptions on

the boundedness of the estimates and the subgradients, we further bound the

cumulative disagreement under joint connectivity of the communication graphs,

regardless of the interleaved projections, and make a choice of decreasing stepsizes

that guarantees convergence of the evaluation error as 1/
√
t, where t is the iteration

step. We particularize our results to the case of distributed constrained optimization

with objectives and constraints that are a sum of convex functions coupling local

decision vectors across a network. For this class of problems, we also present a

distributed strategy that lets the agents compute a bound on the optimal dual

set. This bound enables agents to project the estimates of the multipliers onto a

compact set (thus guaranteeing the boundedness of the states and subgradients of

the resulting primal-dual projected subgradient dynamics) in a way that preserves

the optimal dual set. We illustrate our results in simulation for an optimization

scenario with nonlinear constraints coupling the decisions of agents that cannot

communicate directly.

1.3.4 Distributed optimization for multi-task learning via

nuclear-norm approximation

We motivate the nuclear norm regularization in two problems that can

benefit from distributed strategies: multi-task feature learning and matrix comple-

tion. Then we introduce two distributed formulations of the resulting optimization

problems: a separable convex minimization, and a separable saddle-point problem,

and we make the presentation systematic as to the automatic derivation of dis-



24

tributed coordination algorithms. After introducing each formulation, we establish

the existence of critical points that solve the original problem and also present the

corresponding distributed subgradient dynamics. To the best of our knowledge,

our subgradient saddle-point method is a novel coordination algorithm even in its

centralized version and we argue its advantages and general application to each of

the motivational problems. For both families of distributed strategies, we establish

the convergence guarantees. The subgradient saddle-point method relies on the

input-to-state stability properties of auxiliary states, necessary for the boundedness

of the estimates. The convergence results are illustrated in a simulation example of

low-rank matrix completion.

1.3.5 pth moment noise-to-state stability of stochastic

differential equations with persistent noise

The contributions in this topic are twofold. Our first contribution con-

cerns the noise-to-state stability of systems described by SDEs with persistent

noise. We generalize the notion of noise-dissipative Lyapunov function, which is

a positive semidefinite function that satisfies a dissipation inequality that can be

nonexponential (by this we mean that the inequality admits a convex K∞ gain

instead of the linear gain characteristic of exponential dissipativity). We also

introduce the concept of pthNSS-Lyapunov function with respect to a closed set,

which is a noise-dissipative Lyapunov function that in addition is proper with

respect to the set with a convex lower-bound gain function. Using this framework,

we show that noise-dissipative Lyapunov functions have NSS dynamics and we

characterize the overshoot gain. More importantly, we show that the existence of a

pthNSS-Lyapunov function with respect to a closed set implies that the system

is NSS in pth moment with respect to the set. Our second contribution is driven
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by the aim of providing alternative, structured ways to check the hypotheses of

the above results. We introduce the notion of two functions being proper with

respect to each other as a generalization of the notion of properness with respect to

a set. We then develop a methodology to verify whether two functions are proper

with respect to each other by analyzing the associated pair of inequalities with

increasingly strong refinements that involve the classes K, K∞, and K∞ plus a

convexity property. We show that these refinements define equivalence relations

between pairs of functions, thereby producing nested partitions on the space of

functions. This provides a useful way to deal with these inequalities because the

construction of the gains is explicit when the transitivity property is exploited. This

formalism motivates our characterization of positive semidefinite functions that are

proper, in the various refinements, with respect to the Euclidean distance to their

nullset. This characterization is technically challenging because we allow the set

to be noncompact, and thus the pre-comparison functions can be discontinuous.

We devote special attention to the case when the set is a subspace and examine

the connection with seminorms. Finally, we show how this framework allows us to

develop an alternative formulation of our stability results.

1.4 Organization

The technical chapters can be read independently. Chapter 2 presents

some notational conventions and preliminary notions in Optimization, Graph

Theory and Stochastic Differential Equations. In Chapters 3 and 4, we present

our distributed coordination algorithms for the unconstrained minimization of a

sum of convex functions in two scenarios: first having the agents communicate

under noisy communication channels, a scenario in which we study the noise-to
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state stability property in second moment; and, second, having the agents make

decisions “on the fly” using information that is incrementally revealed over time, a

scenario in which we study the agent regret. In Chapter 5, we develop a distributed

strategy for saddle-point problems with convex-concave functions with explicit

agreement constraints in a subset of the arguments. These algorithms particularize

to primal-dual subgradient algorithms for distributed constrained optimization. This

framework also encodes the distributed treatment of nuclear norm regularization

that we present in Chapter 6. The development of a novel Lyapunov technique to

asses the stability in second moment of stochastic differential equations is given in

Chapter 7. Finally, Chapter 8 gathers our conclusions and ideas for future research

directions.

Saddle-point problems are the most general formulations that we address,

because these include the variational formulation of the nuclear norm and also the

treatment of constrained optimization problems through the Lagrangian, which

naturally includes the unconstrained case. However, this hierarchy does not reflect

the classification of the mathematical tools and models that we develop to address

aspects such as noise in the communication channels or different performance

metrics such as the agent regret. Therefore, we stick to the order in which we have

developed the results, with the exception of the Lyapunov techniques to assess the

stability of stochastic differential equations that we relegate to the end.



Chapter 2

Preliminaries

In this chapter we introduce some notational conventions and review basic

notions about convex analysis, characterizations of the nuclear norm, graph theory,

and stochastic differential equations.

2.1 Notational conventions

We let R and R≥0 denote the sets of real and nonnegative real numbers,

respectively. We denote by Rn the n-dimensional Euclidean space, by In ∈ Rn×n

the identity matrix in Rn, by ei ∈ Rn the ith column of In, and by 1 the vector

of ones. Given two vectors, u, v ∈ Rn, we denote by u ≥ v the entry-wise set of

inequalities ui ≥ vi for each i = 1, . . . ,n. The linear subspace generated by a set

{u1, ...,um} ⊆ Rn of vectors is denoted by span{u1, ...,un}. For simplicity, we often

use (v1, . . .vn) to represent the column vector [v>
1 , . . .v

>
n ]>. Given an array v whose

entries are matrices, we denote by diag(v) the block-diagonal matrix whose blocks

are the entries of v.

Given a vector v ∈ Rn, we denote its one-norm by ‖v‖1 = ∑n
i=1 |vi|, the

Euclidean norm, or two-norm, by ‖v‖2 =
√∑n

i=1 v
2
i , and the Euclidean distance

27
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from x to a set U ⊆ Rn by |x|U := inf{‖x− u‖2 : u ∈ U}. The function |.|U is

continuous when U is closed. The Euclidean open ball of radius ε centered at

x is represented by B(x,ε) := {y ∈ Rn : ‖y−x‖2 < ε}, while B̄(x,ε) is the closed

counterpart. Given D ⊆ Rn, we denote by C(D ;R≥ 0) and C2(D ;R≥ 0) the set of

positive semidefinite functions defined on D that are continuous and continuously

twice differentiable (if D is open), respectively. Given normed vector spaces X1, X2,

a function f :X1 →X2 is Lipschitz with constant κ if ‖f(x)−f(y)‖X1 ≤ κ‖x−y‖X2

for each x,y ∈X1, where ‖.‖X denotes the norm in X. Given f,g : R≥0 → R≥0, we

say that f(s) is in O(g(s)) as s → ∞ if there exist constants κ,s0 > 0 such that

f(s)< κg(s) for all s > s0.

Given a closed convex set C ⊆ Rn, the orthogonal projection PC(·) onto C is

PC(x) ∈ argmin
x′∈C

‖x−x′‖2. (2.1)

This value exists and is unique. (Note that compactness could be assumed without

loss of generality taking the intersection of C with balls centered at x.) We use the

following basic property of the orthogonal projection: for every x ∈ C and x′ ∈ Rn,

(
PC(x′)−x′

)
(x′ −x) ≤0. (2.2)

If f :Rn →R is twice continuously differentiable, we denote its gradient and Hessian

by ∇f and ∇2f , respectively. Given a differentiable vector field F : Rn → Rm, we

let DF : Rn → Rm×n denote its Jacobian, where DF(x)ij = ∂Fi(x)
∂xj

for all x ∈ Rn.
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2.1.1 Seminorms

A seminorm is a function S : Rn → R that is positively homogeneous, i.e.,

S(λx) = |λ|S(x) for any λ∈R, and satisfies the triangular inequality, i.e., S(x+y) ≤

S(x) + S(y) for any x,y ∈ Rn. From these properties it can be deduced that

S ∈ C(Rn;R≥ 0) and its nullset is always a subspace. If, moreover, the function S

is positive definite, i.e., S(x) = 0 implies x= 0, then S is a norm. For any matrix

A ∈ Rm×n, the function ‖x‖A , ‖Ax‖2 is a seminorm and can be viewed as a

distance to N (A). (Note that we depart here from the usual convention of defining

‖x‖A :=
√
x>Ax, which has the inconvenience of requiring A to be symmetric and

positive semidefinite). The nullset of the seminorm corresponds to the nullspace

of A, N (A) = {x ∈ Rn : Ax= 0}.

2.1.2 Matrix analysis

For a square matrix A ∈ Rn×n, the set of eigenvalues is denoted by spec(A).

If the eigenvalues of A are real (for instance if A is real and symmetric), we

label them in increasing order from the minimum to the maximum as λmin(A) =

λ1(A), . . . ,λn(A) = λmax(A), except in Chapter 3 and Chapter 7 where the order

is the opposite, i.e., λmax(A) = λ1(A) and λmin(A) = λn(A). For convenience,

we also use the notation λ∅max(A) to denote the maximum nonzero eigenvalue

of A. Given a subspace U j Rn, and a symmetric matrix A ∈ Rn×n, we let

λU⊥
max(A) := max{x>u=0 :u∈U ,‖x‖2=1}x

>Ax. The singular values of A ∈ Rn×m are the

square roots of the eigenvalues of A>A. We order them according to σmax(A) :=

σ1(A) ≥ ·· · ≥ σr(A) := σmin(A), where r = rank(A) is the rank of A. We denote

by A† the Moore-Penrose pseudoinverse of A, and by C(A) the column space of A,

i.e., the vector space generated by the columns of A. The Kronecker product of
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A∈ Rn×m and B ∈ Rp×q is denoted by A⊗B ∈ Rnp×mq. Recall that spec(A⊗B) =

spec(A) × spec(B). A matrix A ∈ Rn×n is diagonalizable if it can be written

as A = SADAS
−1
A , where DA ∈ Rn×n is a diagonal matrix whose entries are the

eigenvalues of A, and SA ∈ Rn×n is an invertible matrix whose columns are the

corresponding eigenvectors. The sets Sd, Sd�0, Od ⊆ Rd×d represent, respectively

the symmetric, positive semidefinite, and orthogonal matrices in Rd×d. When a

matrix A ∈ Rd×d is symmetric positive semidefinite, we often write A � 0, while

A�B is an equivalent notation for A−B � 0.

2.1.3 Matrix norms

The spectral norm, or two-norm, of a rectangular matrix A∈Rn×m is defined

by ‖A‖2 := σmax(A), and its condition number is given by κ(A) := ‖A‖2‖A−1‖2 =

σmax(A)/σmin(A). The nuclear norm, or trace norm, is ‖A‖∗ = trace(
√
A>A).

This coincides with the sum of the singular values of A, ‖A‖∗ =∑min{n,m}
i=1 σi. The

Frobenius norm is given by ‖A‖F =
√

trace(A>A) =
√

trace(AA>) =
√∑min{n,m}

i=1 σ2
i .

Note that for any A ∈ Rn×m with rank r, the nuclear norm and the Frobenius norm

are related by

‖A‖∗ ≤
√
r‖A‖F ≤

√
min{n,m}‖A‖F . (2.3)

We also denote the L2,1-norm of A by ‖A‖2,1 := ‖(‖a1‖2, . . . ,‖am‖2)‖1, which is

the one-norm of the vector of two-norms of the columns of A.
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2.2 Convex functions

Given a convex set C ⊆ Rn, a function f : C → R is convex if f(αx+ (1 −

α)y) ≤ αf(x) + (1 −α)f(y) for all α ∈ [0,1] and x,y ∈ C. A vector ξx ∈ Rn is a

subgradient of f at x ∈ C if f(y) − f(x) ≥ ξ>
x (y−x), for all y ∈ C. We denote by

∂f(x) the set of all such subgradients. Alternatively, the function f is concave

if −f is convex, and a subgradient of a concave function is defined through a

subgradient of −f . The characterization in [Nes04, Lemma 3.1.6] asserts that

a function f : C → R is convex if and only if ∂f(x) is nonempty for each x ∈ C.

Equivalently, f is convex if ∂f(x) is nonempty and for each x ∈ C and ξx ∈ ∂f(x),

f(y)−f(x) ≥ ξ>
x (y−x)+ p(x,y)

2 ‖y−x‖2
2,

for all y ∈ C, where the nonnegative-valued function p : C ×C → R≥0 is the modulus

of strong convexity (whose value may be 0). For p > 0, a function f is p-strongly

convex on C if p(x,y) = p for all x,y ∈ C. Equivalently, f is p-strongly convex on C

if

(ξy − ξx)>(y−x) ≥ p‖y−x‖2
2,

for each ξx ∈ ∂f(x), ξy ∈ ∂f(y), for all x,y ∈ C. For convenience, we denote by

argmin(f) the set of minimizers of a convex function f in its domain. The following

definition comes in handy when we introduce the next class of functions. Given

w ∈ Rn \{0} and c ∈ [0,1], we let

Fc(w) :=
{
v ∈ Rn : v>w ≥ c‖v‖2‖w‖2

}
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denote the convex cone of vectors in Rn whose angle with w has a cosine lower

bounded by c. Using this notation, for β ∈ [0,1], a convex function f : Rn → R with

argmin(f) 6= ∅ is β-central on Z ⊆ Rn \ argmin(f) if for each x ∈ Z, there exists

y ∈ argmin(f) such that −∂f(x) ⊂ Fβ(y−x), i.e.,

−ξ>
x (y−x) ≥ β ‖ξx‖2‖y−x‖2,

for all ξx ∈ ∂f(x). Note that any convex function f : Rn → R with a nonempty set

of minimizers is at least 0-central on Rn \argmin(f). Finally, a convex function f

has H-bounded subgradient sets if there exists H ∈ R>0 such that ‖ξx‖2 ≤H for

all ξx ∈ ∂f(x) and x ∈ Rn.

2.2.1 Comparison functions

The following classes of comparison functions [Kha02] are useful in our

technical treatment in Chapter 3 and Chapter 7. A continuous function α : [0, b) →

R≥0, for b > 0 or b = ∞, is class K if it is strictly increasing and α(0) = 0, and

it belongs to class K∞ if α ∈ K and is unbounded. A continuous function µ :

R≥0 ×R≥0 → R≥0 is class KL if, for each fixed s ≥ 0, the function r 7→ µ(r,s)

is class K, and, for each fixed r ≥ 0, the function s 7→ µ(r,s) is decreasing and

lims→∞µ(r,s) = 0. If α1, α2 are class K and the domain of α1 contains the range of

α2, then their composition α1 ◦α2 is class K too. If α3, α4 are class K∞, then both

the inverse function α−1
3 and their composition α3 ◦α4 are class K∞. In our technical

treatment, it is sometimes convenient to require comparison functions to satisfy

additional convexity properties. By [BV09, Ex. 3.3], if f : [a,b] → [f(a),f(b)] is a

strictly increasing convex (respectively, concave) function, then the inverse function

f−1 : [f(a),f(b)] → [a,b] is strictly increasing and concave (respectively, convex).
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Also, following [BV09, Section 3], if f,g : R → R are convex (respectively, concave)

and f is nondecreasing, then the composition f ◦ g is also convex (respectively,

concave).

2.3 Optimization

For any function L : W ×M → R, the max-min inequality [BV09, Sec 5.4.1]

states that

inf
w∈W

sup
µ∈M

L(w,µ) ≥ sup
µ∈M

inf
w∈W

L(w,µ). (2.4)

When equality holds, we say that L satisfies the strong max-min property (also

called the saddle-point property). A point (w∗,µ∗) ∈ W × M is called a saddle

point if

w∗ = inf
w∈W

L(w,µ∗) and µ∗ = sup
µ∈M

L(w∗,µ).

[BNO03, Sec. 2.6] discusses sufficient conditions to guarantee the existence of

saddle points. Note that the existence of saddle points implies the strong max-min

property. Given functions f : Rn → R, g : Rm → R and h : Rp → R, the Lagrangian

for the problem

min
w∈Rn

f(w) s.t. g(w) ≤ 0, h(w) = 0, (2.5)

is defined as

L(w,µ,λ) = f(w)+µ>g(w)+λ>h(w) (2.6)
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for (µ,λ) ∈ Rm≥0 ×Rp. In this case, inequality (2.4) is called weak-duality, and

if equality holds, then we say that strong-duality (or Lagrangian duality) holds.

If a point (w∗,µ∗,λ∗) is a saddle point for the Lagrangian, then w∗ solves the

constrained minimization problem (2.5) and (µ∗,λ∗) solves the dual problem, which

is maximizing the dual function q(µ,λ) := infw∈Rn L(w,µ,λ) over Rm≥0 ×Rp. This

implication is part of the Saddle Point Theorem. (The reverse implication establishes

the existence of a saddle-point –and thus strong duality– adding a constraint

qualification condition.) Under the saddle-point condition, the optimal dual vectors

(µ∗,λ∗) coincide with the Lagrange multipliers [Ber99, Prop. 5.1.4]. In the case

of affine linear constraints, the dual function can be written using the Fenchel

conjugate of f , defined in Rn as

f?(x) := sup
w∈Rn

{x>w−f(w)}. (2.7)

2.4 Variational characterizations of the nuclear

norm

The following characterizations of the nuclear norm play a key role in the

distributed formulations that we study in Chapter 6,

2‖W‖∗ = min
D∈Sd

�0
C(W )⊆C(D)

trace
(
D†WW>

)
+trace(D), (2.8a)

‖W‖2
∗ = min

D∈Sd
�0, trace(D)≤1

C(W )⊆C(D)

trace
(
D†WW>

)
. (2.8b)
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Defining C :=WW>, the minimizers are, respectively,

D∗
1 :=

√
C and D∗

2 :=
√
C

trace(
√
C)
. (2.9)

A proof sketch of the latter can be found in [AEP06, Thm 4.1]. A different proof,

valid when C is positive definite, can also be found in [AEP08, Appendix A].

Adding the penalty εtrace(D†) in either minimization, and factoring out D†, gives

Cε =WW> + εId in the formula for the optimizers (2.9). The optimal values then

change according to

trace
(√

WW> + εId
)

= trace
(√

[W |
√
εId][W |

√
εId]>

)
=‖[W |

√
εId]‖∗,

which is the nuclear norm of the block matrix comprised of W and
√
εId. Also, for

any W ∈ Rd×N , one has

‖W‖∗ = min
U∈Od

‖W>U‖2,1 . (2.10)

This result can be found in the proof by [AEP06, Thm 4.1], where we clarify that

the cited reference is not consistent in the use of the notation ‖ · ‖2,1 (mixing

columns and rows).

For convenience, we also define the following sets that appear in the opti-

mization problems of Chapter 6. For any c,r ∈ R>0, let

D(c,r) :={D ∈ Sd�0 : D � cI, ‖D‖F ≤ r} , (2.11a)

∆(c) :={D ∈ Sd�0 : D � cI, trace(D) ≤ 1} . (2.11b)
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We refer to these sets as reduced ice-cream and reduced spectraplex, respectively,

based on the fact that they correspond to the intersection of the reduced cone {D ∈

Sd : D � cId} ⊆ Sd�0 with the ball given by the Frobenius norm and with the trace

constraint, respectively.

2.5 Graph theory

The following notions in graph theory follow the exposition in [BCM09]. A

(weighted) digraph G := (I,E ,A) is a triplet where I := {1, . . . ,N} is the vertex

set, E ⊆ I × I is the edge set, and A ∈ RN×N
≥ 0 is the weighted adjacency matrix

with the property that aij := Aij > 0 if and only if (i, j) ∈ E . The complete graph

is the digraph with edge set I × I. Given G1 = (I,E1,A1) and G2 = (I,E2,A2),

their union is the digraph G1 ∪ G2 = (I,E1 ∪ E2,A1 + A2). A path is an ordered

sequence of vertices such that any pair of vertices appearing consecutively is an

edge. A digraph is strongly connected if there is a path between any pair of

distinct vertices. A sequence of digraphs
{
Gt := (I,Et,At)

}
t≥1

is δ-nondegenerate,

for δ ∈ R>0, if the weights are uniformly bounded away from zero by δ whenever

positive, i.e., for each t ∈ Z≥1, aij,t := (At)ij > δ whenever aij,t > 0. A sequence

{Gt}t≥1 is B-jointly connected, for B ∈ Z≥1, if for each k ∈ Z≥1, the digraph

GkB ∪·· ·∪G(k+1)B−1 is strongly connected. The (out-)Laplacian matrix L ∈ RN×N

of a digraph G is L := diag(A1N )−A. Note that L1N = 0. The weighted out-degree

and in-degree of i ∈ I are, respectively, dout(i) :=∑N
j=1 aij and din(i) :=∑N

j=1 aji.

A digraph is weight-balanced if dout(i) = din(i) for all i ∈ I, that is, 1>
NL = 0,

which is also equivalent to the condition of L+L> being positive semidefinite. If

G is weight-balanced and strongly connected, then L+L> is positive semidefinite

and N (L + L>) = span{1N}. For comparison purposes, we let LK denote the
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Laplacian of the complete graph with edge weights 1/N , i.e., LK := IN −M, where

M := 1
N 1N1

>
N . Note that LK is idempotent, i.e., L2

K = LK. For the reader’s

convenience, Table 2.1 collects the shorthand notation combining Laplacian matrices

and Kronecker products used in some chapters of the thesis.

Table 2.1: Shorthand notation for graph matrices employed throughout the
thesis. Here, {Gt}t≥1, K ∈ Z≥1, and E ∈ RK×K .

M = 1
N 1N1

>
N M = M⊗ Id

LK = IN −M LK = LK ⊗ Id L̂K = IK ⊗LK
Lt = diag(At1N )−At Lt = Lt⊗ Id Lt = E⊗Lt

2.6 Stochastic differential equations

This section is intended to provide the basic notation and results used in

Chapter 3, including a distillation of the main result of Chapter 7. We relegate a

more thorough introduction to the subject in Chapter 7. A stochastic differential

equation (SDE) [Mao11, Ö10] is, roughly speaking, an ordinary differential equation

driven by a “random process” called Brownian motion, B : Ω× [t0,∞) → Rm. Here,

Ω is the outcome space and P is a probability measure defined on the sigma-algebra F

of measurable events (subsets) of Ω. These elements together form the probability

space (Ω,F ,P). For each outcome ω ∈ Ω, the mapping B(ω, .) : [t0,∞) → Rm is a

sample path of the Brownian motion and is continuous with probability 1 and with

B(., t0) = 0; and for each time t ∈ [t0,∞), the function B(t) := B(., t) : Ω → Rm is a

random variable such that the increments B(t)−B(s) have a multivariate Gaussian

distribution of zero mean and covariance (t− s)Im and are independent from B(s)

for all t0 ≤ s < t. Formally, we consider the SDE

dx(ω,t) = g(x(ω,t), t)dt+G(x(ω,t), t)Σ(t)dB(ω,t) , (2.12)
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where x(ω,t0) = x0 with probability 1 for some x0 ∈ Rn. The vector field g :

Rn × [t0,∞) → Rn is sometimes called the drift, the matrix valued function G :

Rn× [t0,∞) → Rn×q is the diffusion term and models the way in which the noise

enters the dynamics, and the matrix Σ : [t0,∞) →Rq×m modulates the covariance of

the noise. The matrix Σ(t)Σ(t)> is called the infinitesimal covariance. The following

result, from [Mao11, Th. 3.6, p. 58], guarantees the existence and uniqueness of

solutions.

Lemma 6.1. (Existence and uniqueness). Let g and G be measurable, and let Σ be

measurable and essentially locally bounded. For any T > t0 and n≥ 1, let KT,n ∈R>0

be such that, for almost every t∈ [t0,T ] and all x,y ∈Rn with max
{
‖x‖2,‖y‖2

}
≤ n,

it holds that

max
{

‖g(x,t)−g(y, t)‖2
2 , ‖G(x,t)−G(y, t)‖2

F

}
≤KT,n‖x−y‖2

2.

Furthermore, assume that for any T > t0, there exists KT > 0 such that, for almost

every t ∈ [t0,T ] and all x ∈ Rn,

x>g(x,t)+ 1
2‖G(x,t)‖2

F ≤KT (1+‖x‖2
2).

Then, the SDE (2.12) enjoys global existence and uniqueness of solutions for each

initial condition x0 ∈ Rn.

In particular, under the hypotheses of Lemma 6.1, the solution inherits

some properties of the Brownian motion. For instance, x : Ω × [t0,∞) → Rn has

continuous sample paths x(ω, .) : [t0,∞) → Rn with probability 1, and for each

t ≥ t0, x(t) := x(., t) : Ω → Rn is a random variable with certain distribution (so

that we are able to measure the probabilities of certain events that involve them).
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Looking at (2.12), during a small time interval δ, the random outcome x(ω,t)

changes approximately its value by an amount that is normally distributed with

expectation g(x(ω,t))δ and covariance G(x(ω,t), t)Σ(t)Σ(t)>G(x(ω,t), t)>δ, and

this change is independent of the previous history of the solution {x(s)}s≤t.

Next we introduce an important operator in the stability analysis of stochas-

tic differential equations. For any twice continuously differentiable function

V : Rn → R, we denote the generator of the SDE (2.12) acting on the function V as

the mapping L[V] : Rn× [t0,∞) → R given by

L[V](x,t) := ∇V(x)>g(x)+ 1
2 trace

(
Σ(t)>G(x,t)>∇2V(x)G(x,t)Σ(t)

)
. (2.13)

The above quantity is the expected rate of change of the function V along the

solutions of the SDE (2.12) that take the value x at time t. Because of this, it can

be considered a generalization of Lie derivative to SDEs. In fact, the SDE that

the function V(x(ω,t)) itself satisfies, called Itô formula [Mao11, Th. 6.4, p. 36]

contains the evaluation of (2.13) as a term. The following result provides a useful

tool to study the stability properties of SDEs, and we use it in Chapter 3. It is a

distilled version of one of our main results in Chapter 7.

Theorem 6.2. (Exponential pth moment noise-to-state stability). Under the hy-

potheses of Lemma 6.1, further assume that Σ is continuous, and let V ∈ C2(Rn;R≥ 0)

satisfy the following properties with respect to a closed set U ⊆ Rn: there exist p > 0

and class K∞ functions α1 and α2, where α1 is convex, such that

α1(|x|pU) ≤ V(x) ≤ α2(|x|pU),

for all x ∈ Rn, and there exist W ∈ C(Rn;R≥ 0), σ ∈ K, and concave η ∈ K∞ such
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that

L[V](x,t) ≤ −W(x)+σ
(
‖Σ(t)‖F

)
,

for all (x,t) ∈ Rn × [t0,∞), where, in addition, V(x) ≤ η(W(x)), for all x ∈ Rn.

Then the system (2.12) is pth moment noise-to-state stable (pthNSS) with respect

to U , i.e., there exist µ ∈ KL and θ ∈ K such that

E
[
|x(t)|pU

]
≤ µ

(
|x0|U , t− t0

)
+ θ

(
max
t0≤s≤t

‖Σ(s)‖F

)
,

for all t ≥ t0 and any x0 ∈ Rn. Specifically, µ(r,s) := α−1
1
(
2µ̃(α2(rp), s)

)
and

θ(r) := α−1
1
(
2η(2σ(r))

)
, where the class KL function (r,s) 7→ µ̃(r,s) is well defined

as the solution y(s) to the initial value problem

ẏ(s) = −1
2η

−1(y(s)), y(0) = r.

We refer to the function V satisfying the hypotheses of this result as a pth

moment NSS-Lyapunov function with respect to U for the system (2.12). If the

functions α1 and η are linear, then we refer to the above property as pth moment

noise-to-state exponential stability.



Chapter 3

Noise-to-state exponentially

stable distributed convex

optimization

Our first technical chapter considers the scenario where the agents need to

agree on a global decision vector that minimizes an unconstrained sum of convex

functions. We study a family of distributed, continuous-time algorithms that have

each agent update its estimate of the global optimizer doing gradient descent on

its local cost function while, at the same time, seeking to agree with its neighbors’

estimates via proportional-integral feedback on their disagreement. Our aim is to

characterize the algorithm robustness properties against the additive persistent

noise resulting from the errors in communication and computation. We model

this algorithm with a stochastic differential equation and apply a novel Lyapunov

technique to establish the noise-to-state stability property in 2nd moment.

41
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3.1 Network model and problem statement

This section describes the model for the network of agents and the opti-

mization problem we set out to solve in a distributed way. Consider a group of N

agents with identities {1, . . . ,N} whose communication topology is modeled by a

strongly connected and weight-balanced digraph G. An edge (i, j) ∈ E represents

the ability of agent i to receive information sent from agent j. We consider sce-

narios where the inter-agent communication is corrupted by Gaussian white noise

signals. Our description here is only meant to motivate the rigorous formalization

of the dynamics presented in the forthcoming section using stochastic differential

equations. For now, if agent j sends the signal x(t) ∈ Rd to agent i at time t≥ t0,

agent i receives the corrupted signal

x(t)+Jij(t)W (i,j)
cmm(ω,t), (3.1)

where the vector W (i,j)
cmm(ω,t) ∈ Rd contains d independent Gaussian white noise

signals, and Jij(t) ∈ Rd×d is a weighting matrix. The noise we consider is additive,

might be always present no matter what the value of the transmitted signal is, and

we call it persistent because it is not assumed to decay with time. Our forthcoming

algorithm design does not require that agent i ∈ {1, . . . ,N} knows the weighting

matrices Jij for any (i, j) ∈ E . We also consider the possibility of the information

available to any given agent being corrupted by noise when incorporated into its

computations. Specifically, if agent i attempts to incorporate the quantity qi(t) ∈Rd

into its computations, what the agent instead uses is

qi(t)+ J̃ii(t)W i
cmp(ω,t), (3.2)
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where the entries of W i
cmp(ω,t) ∈ Rd are independent Gaussian white noise signals,

and J̃ii(t) ∈ Rd×d is a weighting matrix. As before, our algorithm design does not

require that agent i ∈ {1, . . . ,N} knows the weighting matrix J̃ii.

With the model for the network in place, we next define the network objective.

Consider a function f : Rd → R of the form

f(x) =
N∑
i=1

fi(x), (3.3)

where the local function fi : Rd → R is only known to agent i ∈ {1, . . . ,N}. We

assume each fi is convex and that at least one of them is strongly convex, so that

the function f has a unique minimizer, which we denote by xmin ∈ Rd. Our goal

is to design a distributed continuous-time coordination algorithm that helps the

network collectively find the minimizer xmin in the presence of noise both in the

communication channels and in the agent computations.

3.2 Robust distributed optimization

This section introduces a distributed coordination algorithm that allows the

network of agents to solve the optimization problem as described in Section 7.2. Our

study here generalizes the work in [GC14] to scenarios where the communication

channels and the computations performed by the agents are subject to noise. In

order to synthesize a strategy that allows the network to agree on the solution

of the optimization problem, we have each agent i ∈ {1, . . . ,N} keep an estimate

xi ∈ Rd about the minimizer of the function f in (3.3). For convenience, we denote

by xxx := [(x1)>
, . . . ,(xN )>]> ∈ (Rd)N the collection of estimates across the network
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and consider the function f̃ : (Rd)N → R defined by

f̃(xxx) :=
N∑
i=1

fi(xi). (3.4)

In this computation, each agent can evaluate fi at its own estimate xi and the

network objective function in (3.3) can be evaluated when agreement holds, f̃(1⊗x)

= f(x).

The continuous-time algorithm we consider is then given by the following

system of stochastic differential equations,

dxxx=−(∇f̃(xxx)+ γ̃Lxxx+Lzzz)dt+G1(xxx,zzz, t)Σ1(t)dB(t), (3.5a)

dzzz =Lxxxdt+G2(xxx,zzz, t)Σ2(t)dB(t), (3.5b)

where we use the shorthand notation L := L ⊗ Id and L is the Laplacian of the

digraph G modeling inter-agent communication. We assume that the matrix-valued

functions G1,G2 : R2Nd× [t0,∞) → RNd×q are uniformly bounded and uniformly

globally Lipschitz in the first two arguments, and measurable and essentially

bounded in time. Also, we assume that the matrix-valued functions Σ1,Σ2 :

[t0,∞) →Rq×m, withm≥ 1, are continuous and locally bounded and that {B(t)}t≥t0
is an m-dimensional Brownian motion defined in the probability space.

We next provide some intuition behind the algorithm design in (3.5) and

properly justify its distributed character. The deterministic part of the dynamics

prescribes that each agent updates its estimate by following the gradient of its

local cost function while, at the same time, seeking to agree with its neighbors’

estimates. The latter is implemented through a second-order system of differential

equations that involves the auxiliary variables zzz := [(z1)>
, . . . ,(zN )>]> ∈ (Rd)N and

employs proportional-integral feedback on the disagreement. When the graph G
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is undirected, one can in fact see [GC14] that the deterministic part corresponds

exactly to the saddle-point dynamics associated with the augmented Lagrangian

L(xxx,zzz) = f̃(xxx)+ γ̃ xxx>Lxxx+zzz>Lxxx, corresponding to the minimization of f̃ under the

constraints Lxxx= 0. The stochastic part of the dynamics (3.5) is motivated by the

desire to capture the presence of noise affecting the execution of the coordination

algorithm. In particular, Remark 2.3 below discusses how the noise model described

in Section 7.2 affecting the communication channels and the agent computations

is captured by the stochastic differential equation (3.5). Finally, the dynamics

is distributed over the digraph G because each agent i ∈ {1, . . . ,N} can update

its variables xi and zi using only the information sent from its neighbors and its

knowledge of its local function fi. This is not difficult to see from the observation

that the gradient of f̃ takes the form ∇f̃(xxx) = [∇f1(x1)>, . . . ,∇fN (xN )>]> and that

the agent i can compute the ith d-dimensional block (Lxxx)i ∈ Rd.

Remark 2.3. (Noise model for communication and computation is captured by

the dynamics (3.5)). Although the dynamics described by (3.5) cannot be exactly

implemented in practice, it is a reasonable model of evolution in continuous time

with network communications also in continuous time. We justify this statement

here as follows. When communication along an edge (i, j) ∈ E occurs continuously

over time, the model (3.1) gives rise to functions Jij : [t0,∞) → Rd×d, which we

assume measurable and essentially locally bounded, and W
(i,j)
cmm : Ω× [t0,∞) → Rd.

Similarly, when considering continuous-time dynamics, the computation model (3.2)

gives rise to functions J̃ii : [t0,∞) → Rd×d, which we also assume measurable and

essentially locally bounded, and W i
cmp : Ω× [t0,∞) → Rd. Under this noise model,

the implementation of the dynamics ẋxx= −(∇f̃(xxx)+ γ̃Lxxx+Lzzz) and żzz = Lxxx by the
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agent i actually results in the dynamics,

dxi(t) = γ̃
N∑
j=1

aij
((
xj(t)−xi(t)

)
dt+Jij(t)dB1,(i,j)(t)

)

+
N∑
j=1

aij
((
zj(t)− zi(t)

)
dt+Jij(t)dB2,(i,j)(t)

)

−∇fi(xi(t))dt− J̃ii(t)dB3,i(t), (3.6a)

dzi(t) = −
N∑
j=1

aij
((
xj(t)−xi(t)

)
dt+Jij(t)dB1,(i,j)(t)

)
, (3.6b)

where B1,(i,j), B2,(i,j) and B3,i are independent d-dimensional Brownian motions for

each edge (i, j) ∈ E and each agent i ∈ {1, . . . ,N}, respectively. We next show how

this dynamics is captured by (3.5). First, we set G1(xxx,zzz, t) =G2(xxx,zzz, t) = INd for

all xxx, zzz, t. Second, let J(t) ∈ RNd×Nd be the matrix whose (i, j)th d-dimensional

block is aijJij(t) and J̃(t) = diag
(
J̃11(t), . . . , J̃NN (t)

)
∈ RNd×Nd. Define Σ̂1(t) :=[

γ̃J(t) J(t) −J̃(t)
]

∈ RNd×3Nd and Σ̂2(t) :=
[
−J(t) 0 0

]
∈ RNd×3Nd, and set

Σ1(t)

Σ2(t)

 :=


(
(e1e>

1 )⊗ Id
)
Σ̂1(t) · · ·

(
(eNe>

N )⊗ Id
)
Σ̂1(t)(

(e1e>
1 )⊗ Id

)
Σ̂2(t) · · ·

(
(eNe>

N )⊗ Id
)
Σ̂2(t)

 ∈ R2Nd×3N2d.

Then, the dynamics (3.5) with this selection of functions G1, G2, Σ1, and Σ2

corresponds to (3.6). •

The main result of the paper is the characterization of the asymptotic

stability properties of the stochastic differential equation (3.5) with respect to

the solution of the optimization problem. To achieve this, we rely on selecting

appropriately the design parameter γ̃. This is described precisely in the following

assumption.

Assumption 2.4. (Selection of the parameter γ̃). Given any ε > 0, let K1 :=
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λmin
(
r ei0e

>
i0 + ε(L+L>)

)
and K2 :=R+2εσmax(L), and, for any δ ∈ (0, K1K

−2
2 ),

let β∗
1 ≡ β∗

1(δ,ε) :=
√
K2

1K
−2
2 −K1δ and β∗

2 ≡ β∗
2(δ) be such that h(β,δ) < 0 for

β ∈ (0,β∗
2(δ)), where

h(β,δ) :=
(

− β4+3β2+2
2β +

√(
β4+3β2+2

2β

)2
−1

)
λ2(L+L>)+ β2

2δ . (3.7)

Under the above selections, select the design parameter γ̃ as,

γ̃(ε,δ) := 2+β2

β +2ε, β ∈ (0,min{β∗
1(δ,ε),β∗

2(δ)}).

Note that the selection of γ̃ is determined by the bounds on the Hessians of

the objective functions and the network topology. The reasons behind the specific

form of the functions employed in Assumption 2.4 will become fully clear later in

our technical derivations, but we provide the basic insight in Remark 2.7 below.

Our main result states that, under Assumption 2.4, the dynamics of xxx is

noise-to-state exponentially stable in second moment with respect to 1⊗xmin.

Theorem 2.5. (Exponential noise-to-state stability of the dynamics (3.5)). Assume

the functions {fi}Ni=1 are convex and twice continuously differentiable with uniformly

upper-bounded Hessians, i.e., there exists R > 0 such that 0 4 ∇2fi 2 R Id, for

i ∈ {1, . . . ,N}. Further assume that at least one of the functions is strongly convex,

i.e., there exists r > 0 such that r Id 4 ∇2fi0 for some i0 ∈ {1, . . . ,N}. If, in

addition, γ̃ is selected according to Assumption 2.4, then the dynamics (3.5) executed

over a strongly connected and weight-balanced digraph has the following stability

property: there exist constants Cµ, Dµ, Cθ > 0 such that, for any initial condition
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(xxx0, zzz0) ∈ (Rd)N × (Rd)N and all t≥ t0, it holds that

E
[
‖xxx(t)−1⊗xmin‖2

2
]

≤ E
[
‖xxx(t)−1⊗xmin‖2

2 +‖zzz(t)− zzz∗‖2
LK

]
≤ Cµ(‖xxx0 −1⊗xmin‖2

2 +‖zzz0 − zzz∗‖2
LK)e−Dµ(t−t0) +Cθ

(
max
t0≤τ≤t

‖Σ(τ)‖F

)2
, (3.8)

where LK := LK ⊗ Id, Σ(t) := [Σ1(t)>,Σ2(t)>]>, xmin ∈ Rd is the unique minimizer

of (3.3), and zzz∗ ∈ Rd is any point satisfying Lzzz∗ = −∇f̃(1⊗xmin).

The expression (3.8) states that the dynamics (3.5) is noise-to-state stable

in second moment with respect to the affine subspace of equilibria. In other words,

the agreement direction of the agents’ auxiliary states in zzz absorbs the cumulative

variance of the noise while the estimates in xxx converge asymptotically, in second

moment, to a neighborhood of the minimizer of (3.3). The size of this neighborhood

depends on the size of the noise, quantified by ‖Σ(t)‖F :=
√

trace(Σ(t)Σ(t)>), which

is related to the infinitesimal covariance Σ(t)Σ(t)>.

Example 2.6 (4-agent network over directed ring). Here we briefly illustrate the

results of Theorem 2.5. Consider the evolution of the distributed algorithm (3.5)

with noise over a group of N = 4 agents communicating over a directed ring with

edge set E = {(1,3),(3,2), (2,4),(4,1)}. This digraph is indeed strongly connected

and weight-balanced, with Laplacian matrix

L =



1 0 −1 0

0 1 0 −1

0 −1 1 0

−1 0 0 1
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Figure 3.1: Simulation example of our distributed continuous-time algo-
rithm (3.5) under persistent noise. The three plots correspond to the 4-agent
network in Example 2.50. Plot (a) shows the evolution of the first and second co-
ordinates of the agents’ estimates with γ̃ = 3, G1 = G2 = I8, and Σ1 = Σ2 = 0.2I8.
Despite the additive persistent noise, the estimates converge, in probability,
to a neighborhood of the minimizer xmin = (1.10,−2.74). For three different
values of the design parameter γ̃, plot (b) shows the asymptotic convergence in
second moment to a neighborhood of the solution. Plot (c) depicts the ultimate
bound for the second moment of the error when the size of the noise varies as
Σ1 = Σ2 = s I8, with s ranging from 0 to 0.7 with increments of 0.05. It is worth
observing that, as the design parameter gets larger (putting more emphasis on
consensus among the agents) the effective error gets smaller. In all plots, the ini-
tial conditions are xxx0 = (−3,−3,−1,−1,1,1,3,3), and zzz0 = 18. The dynamics is
simulated using the Euler discretization with stepsize 0.01, and the expectations
are computed averaging over 100 realizations of the noise.

The local objective functions, defined on R2, are given by

f1(x1,x2) = 1
2((x1 −4)2 +(x2 −3)2), f2(x1,x2) = x1 +3x2 −2,

f3(x1,x2) = log(ex1+3 + ex2+1), f4(x1,x2) = (x1 +2x2 +5)2 +(x1 −x2 −4)2.

The first set of hypotheses of Theorem 2.5 concerns the Hessians

∇2f1(x1,x2) = I2, ∇2f2(x1,x2) = 02×2, ∇2f4(x1,x2) =

4 2

2 10

 ,

∇2f3(x1,x2) =

 u2

(u+v)2
uv

(u+v)2

uv
(u+v)2

v2

(u+v)2

+

 u
u+v 0

0 v
u+v

 ,
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where u := ex1+3 > 0 and v := ex2+1 > 0. Upper bounds for the Hessians can be found

as ∇2f3(x1,x2) � 2I2 and ∇2f4(x1,x2) � 11I2 for all (x1,x2) ∈ R2. Hence, ∇2fi �

11I2 for all i∈ {1, . . . ,4}, i.e., R= 11. Also, at least one Hessian is lower bounded; for

instance, ∇2f1 � 1I2, i.e., r= 1. Using this information, we compute now an interval

for γ̃ following Assumption 2.4. Taking ε= 0.1, we obtain K1 ≈ 0.05 and K2 = 11.4.

Choosing then δ = 0.98K1K
−2
2 so that β∗

1(δ,ε) ≈ 6.1 × 10−4 is approximately the

biggest attainable value smaller than β∗
2(δ), one gets γ̃ ∈ [3.25 × 103,∞). Our

experiments suggest that this range is conservative because we observe a correct

behavior for values as comparatively low as γ̃ = 3. Figure 7.1 illustrates the evolution

of our algorithm using several realizations of the noise and also shows the bounds

on the error as a function of the size of the noise. •

Remark 2.7. (Dependencies of the constant Cθ). It is worth observing that the

constant Cθ in (3.8) is independent of the infinitesimal covariance of the noise.

Hence, the size of the noise has a quadratic influence on the ultimate error bound.

The explicit expression depends on the bounds on the Hessians of the objective

functions and the network topology as follows,

Cθ = 4κ2
2

min{1,K1(1+K2
2)−1}

max{1,λmax(L+L>)}
min{1,λN−1(L+L>)}

λmax(Pβ)
λ(2N−1)d(Pβ)

trace(Pβ)
λ(3N−2)d(Qβ)

,

where κ2 is a global bound on the functions G1 and G2 (in the sense of essential
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supremum with respect to the last argument) and

Pβ :=

I+β2LK βLK

βLK LK

 ∈ R2Nd×2Nd,

Qβ :=



β3 +2β+ 2
β (1+β2)

(1+β2) β

⊗ (L+L>)
0

βLK

0 βLK 2δI

 ∈ R3Nd×3Nd.

Interestingly, Cθ is also independent of the parameter γ̃. The above matrices play

a crucial role in our technical approach. In a nutshell, our candidate Lyapunov

function V is a quadratic function defined by Pβ and the generator of the SDE (3.5)

acting on this function, L[V], is bounded by a quadratic function W defined by the

matrix Qβ in an embedding of R2Nd in R3Nd. Thus, the matrices Pβ and Qβ are

key in characterizing the pth moment NSS-Lyapunov function in the hypotheses

of Theorem 6.2. In particular, the value of the design parameter γ̃ is chosen to

establish the negative semidefiniteness of Qβ. •

We devote Section 3.3 to prove Theorem 2.5, where we provide explicit

characterizations of the class KL function µ(r,s) := Cµr
2 e−Dµ s and also derive

the class K∞ function θ(r) := Cθ r
2. We end this section by noting that, in the

noiseless case, a byproduct of Theorem 2.5 is a refinement of the result in [GC14],

showing exponential convergence to the solution.

Corollary 2.8. (Global exponential stability in the noiseless case). In the noiseless

case (i.e., Σ1 = Σ2 = 0), and under the hypotheses of Theorem 2.5, the trajectory of

the dynamics (3.5) starting from an arbitrary initial condition (xxx0, zzz0) ∈ (Rd)N ×
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(Rd)N satisfies, for all t≥ t0,

‖xxx(t)−1⊗xmin‖2
2 ≤ ‖xxx(t)−1⊗xmin‖2

2 +‖zzz(t)− zzz∗‖2
2

≤ Cµ(‖xxx0 −1⊗xmin‖2
2 +‖zzz0 − zzz∗‖2

LK)e−Dµ(t−t0) +‖zzz0 − zzz∗‖2
M,

(3.9)

where M = 1
N 11

> ⊗ Id, and zzz∗ ∈ Rd is any point satisfying Lzzz∗ = −∇f̃(1⊗xmin).

In particular, choosing zzz∗ ∈ Rd such that Mzzz∗ = Mzzz0 shows that the convergence

of the trajectory starting from (xxx0, zzz0) to the point (1⊗xmin, zzz∗) is exponential.

Proof. Since Σ1 = Σ2 = 0, the system of SDEs (3.5) becomes a system of ordinary

differential equations. Let zzzagree(t) := Mzzz(t). By left-multiplying the dynamics of

zzz(t) in (3.5) by M, we obtain that żzzagree = 0 and therefore zzzagree(t) = zzzagree(t0) for

all t ≥ t0. Using that M is symmetric and M = M2, if we define zzz∗
agree := Mzzz∗,

then

(zzz(t)− zzz∗)>M(zzz(t)− zzz∗) = (zzzagree(t)− zzz∗
agree)>M(zzzagree(t)− zzz∗

agree)

= (zzzagree(t0)− zzz∗
agree)> M(zzzagree(t0)− zzz∗

agree)

= (zzz0 − zzz∗)> M(zzz0 − zzz∗) = ‖zzz0 − zzz∗‖2
M.

On the other hand, using that INd = LK +M and L2
K = LK, we obtain

‖zzz(t)− zzz∗‖2
2 = (zzz(t)− zzz∗)>

(
LK +M

)
(zzz(t)− zzz∗) = ‖zzz(t)− zzz∗‖2

LK +‖zzz0 − zzz∗‖2
M.

Equation (3.9) follows from this fact together with (3.8). Finally, noting that

Mzzz = 1⊗ ( 1
N

∑N
i=1 z

i) and L(1⊗ a) = 0 for any a ∈ Rd, it is clear that, given

an initial condition zzz0 ∈ (Rd)N , one can choose zzz∗ that satisfies at the same

time Lzzz∗ = −∇f̃(1⊗xmin) and Mzzz∗ = Mzzz0. If this is the case, ‖zzz0 − zzz∗‖M = 0,
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and (3.9) shows exponential convergence of the trajectory starting from (xxx0, zzz0) to

(1⊗xmin, zzz∗).

3.3 Algorithm properties and stability analysis

In this section, we establish a series of properties of the distributed coordina-

tion algorithm (3.5) leading up to the characterization of its asymptotic correctness

stated in Theorem 2.5. We begin by expressing the dynamics in compact form. Let

v := (xxx>, zzz>)> ∈ R2Nd and consider

dv = (Av+N(xxx))dt+G(v, t)Σ(t)dB

:=
(−γL −L

L 0

v+

−∇f̃(xxx)−2εLx

0


)

dt+

G1(xxx,zzz, t) 0

0 G2(xxx,zzz, t)

Σ(t)dB,

(3.10)

where, for convenience, we have split the parameter γ̃ as γ̃ = γ+2ε. This dynamics

fits the model (2.12) with g(v) := Av+N(xxx). As mentioned earlier, Σ : [t0,∞) →

Rq×m is continuous and locally bounded, and G : R2Nd × [t0,∞) → R2Nd×q is

measurable in time, uniformly globally Lipschitz in the first argument, say with

Lipschitz constant κ1 ∈ R>0, and bounded in its domain (essentially in time) by

κ2 ∈ R>0. Formally,

‖G(v, t)−G(v′, t)‖F ≤ κ1‖v−v′‖2, sup
v∈R2Nd

esssup
t≥t0

‖G(v, t)‖F ≤ κ2, (3.11)

for all v,v′ ∈ R2Nd.

With this notation in place, we proceed with our technical analysis leading

up to the proof of our main result. We structure the discussion as follows: In
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Section 3.3.1 we characterize the equilibrium points of the deterministic part of

the dynamics in terms of the solution that we are seeking for our optimization

problem. In Section 3.3.2, we define and prove several properties of the vector field

that governs the flow; this vector field combines the gradients of the local objective

functions and the non-symmetric Laplacian. As a side result, in Section 3.3.3 we

establish the existence and uniqueness of solutions for the stochastic differential

equation modeling the dynamics with noise. Finally, in Section 3.3.4 we present

the core of our analysis, which is the identification of a 2nd moment noise-to-state

stability Lyapunov function satisfying the hypotheses of Theorem 6.2.

3.3.1 Equilibrium points

In this section we show, for completeness, the correspondence between

the equilibrium points o (3.10) in the absence of noise and the solutions of the

optimization problem stated in Section 7.2.

Lemma 3.9. (Equilibrium points and Karush-Kuhn-Tucker conditions). Let G be

weight-balanced and strongly connected. Then, there exists xxx∗ such that [xxx∗>, zzz∗>]>

satisfies the equilibrium conditions for the dynamics (3.5) without noise,

∇f̃(xxx∗)+Lzzz∗ = 0Nd and Lxxx∗ = 0Nd, (3.12)

for some zzz∗ ∈ (Rd)N , if and only if there exists xxxKKT such that [xxx>
KKT, zzz

>
KKT]> satisfies

the Karush-Kuhn-Tucker conditions for the minimization of f̃ in (3.4) subject to

Lxxx= 0,

∇f̃(xxxKKT)+L>zzzKKT = 0Nd and LxxxKKT = 0Nd, (3.13)
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for some zzzKKT ∈ (Rd)N . Moreover, both (3.12) and (3.13) are equivalent to

(1> ⊗ Id)∇f̃(xxx) = 0Nd and Lxxx= 0Nd, (3.14)

and, if either xxx∗ or xxxKKT exists and is unique, then so is the other one and xxx∗ = xxxKKT.

Proof. Since G is weight-balanced and strongly connected, then N (L + L>) =

span{1}. The first equation in (3.14) follows by left-multiplying the first equation in

(3.12) and (3.13) by (1> ⊗ Id) and using that 1>L = 0 because G is weight-balanced.

The reason why (3.14) is equivalent to both (3.12) and (3.13) is the following: if

there exists any xxx such that (1> ⊗ Id)∇f̃(xxx) = 0d, then ∇f̃(xxx) is in the column

space of both L and L>, which means that there exist zzz∗ and zzzKKT, respectively,

that satisfy (3.12) and (3.13). This is because L(1⊗ Id) = L>(1⊗ Id) = 0Nd×d, and

rank(L)+rank(1⊗ Id) = rank(L>)+rank(1⊗ Id) = (N −1)d+d=Nd. The result

now follows by observing that xxx∗ and xxxKKT are both defined by (3.14).

As a consequence of this result and since there exists a unique minimizer xmin

of (3.3), we deduce that the equilibrium points of the dynamics (3.5) in the absence

of noise are xxx∗ = 1⊗xmin ∈ (Rd)N and any zzz∗ ∈ (Rd)n with Lzzz∗ = −∇f̃(1⊗xmin).

3.3.2 Co-coercivity properties of the dynamics

In this section, we study the co-coercivity properties of the vector field N in

the dynamics (3.10). Our results here play a key role later in establishing the global

existence and uniqueness of the solutions and the noise-to-state stability properties

of the dynamics. We first provide a general discussion on co-coercivity and then

focus our attention on the properties of the dynamics (3.10). Given S ∈ Rm×m and

δ > 0, we refer to a vector field F : Rm → Rm as (S,δ)−co-coercive with respect to
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x̄xx ∈ Rm if,

(xxx− x̄xx)>S(F (xxx)−F (x̄xx)) ≥ δ‖F (xxx)−F (x̄xx)‖2
2, (3.15)

for all xxx ∈ Rm. This corresponds to the notion of co-coercivity of S>F as defined

in [ZM96] but here we define it for a vector field that is not necessarily the gradient

of a scalar function. The following result provides sufficient conditions for a family

of vector fields to be co-coercive under transformations that are small perturbations

of the identity.

Theorem 3.10. (Sufficient conditions for (I + β2S̃, δ) − co-coercivity). Let G :

(Rd)N → (Rd)N be a continuously differentiable vector field such that DG(xxx) ∈

RNd×Nd is symmetric positive semidefinite for all xxx∈ (Rd)N . Also, let T : (Rd)N →

(Rd)N be the linear vector field T(xxx) = 2(L ⊗ Id)xxx, where L is the Laplacian matrix

of a strongly connected and weight-balanced digraph. Assume that there exist

i0 ∈ {1, . . . ,N} and r,R > 0 such that r (ei0ei0 >) ⊗ Id 2 DG(xxx) 2 R INd for all

xxx ∈ (Rd)N . Given ε > 0, let K1 := λmin
(
r ei0e

>
i0 + ε(L + L>)

)
, K2 :=R+2εσmax(L),

and F := G+ εT. Then,

(i) K1 > 0 and 2K1 INd 2 DF(xxx)+(DF(xxx))> for any xxx ∈ (Rd)N .

(ii) K1‖xxx− x̄xx‖2 ≤ ‖F(xxx)−F(x̄xx)‖2 ≤K2‖xxx− x̄xx‖2 for any xxx, x̄xx ∈ (Rd)N .

(iii) F is (I+β2S̃, δ)−co-coercive with respect to every x̄xx ∈ (Rd)N for any nonzero

matrix S̃ ∈ RNd×Nd if δ ∈ [0,K1K
−2
2 ) and

β ∈
[
0,
√(

K1K
−2
2 − δ

)
/(‖S̃‖2K

−1
1 )

]
.

Proof. Regarding (i), we first show that λmin
(
r ei0e

>
i0 + ε(L + L>)

)
> 0. For this,

note that the matrices r ei0ei0 > and ε(L+L>) are positive semidefinite. In addition,
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their sum has rank N as we show next. Arguing by contradiction, assume that

y ∈ RN \{0} is in its nullspace, i.e.,
(
r ei0ei0

> + ε(L+L>)
)
y = 0. Pre-multiplying by

y>, it follows then that 0 ≤ εy>(L+L>)y> = −r (yi0)2 ≤ 0, which implies that yi0 = 0

and y>(L+L>)y> = 0. As L+L> is symmetric positive semidefinite (because the

graph is weight-balanced), we have y ∈ N (L+L>). Since N (L+L>) = span{1N},

because the graph is strongly connected, and yi0 = 0, we obtain that y = 0N , which

is a contradiction. Therefore, r (ei0ei0 >)⊗ Id+ ε(L+L>)⊗ Id is positive definite, and

hence K1 > 0. On the other hand,

2K1 INd 22
(
r ei0ei0

> + ε(L+L>)
)

⊗ Id

22DG(xxx)+DT(xxx)+(DT(xxx))> 2 DF(xxx)+(DF(xxx))>,

for any xxx ∈ (Rd)N , as required. Before proving (ii) and (iii), we derive some useful

expressions. We start by defining j : [0,1] → (Rd)N as j(t) := F
(
x̄xx+t(xxx− x̄xx)

)
−F(x̄xx).

By the Fundamental Theorem of Calculus, we have that

j(1) = j(1)− j(0) =
∫ 1

0
j′(t)dt= E(xxx)(xxx− x̄xx), (3.16)

where the integral is taken component-wise and the matrix-valued function E :

(Rd)N → RNd×Nd is defined by

E(xxx) :=
∫ 1

0
DF

(
x̄xx+ t(xxx− x̄xx)

)
dt =

∫ 1

0
DG

(
x̄xx+ t(xxx− x̄xx)

)
dt+2ε(L⊗ Id)

:= D(xxx)+2ε(L⊗ Id),

for xxx ∈ (Rd)N . We derive next some useful facts about E.

(a) Since D(xxx) is symmetric positive semidefinite and D(xxx) 2 R I for all
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xxx ∈ (Rd)N , using [Ber05, Fact 5.11.2], we deduce

σmax(E(xxx)) ≤ σmax(D(xxx))+σmax(2ε(L⊗ Id))

= λmax(D(xxx))+2εσmax(L⊗ Id) ≤R+2εσmax(L) =K2, (3.17)

where in the last inequality we have used σmax(L ⊗ Id) =
√
λmax((L>L)⊗ Id) =√

λmax(L>L) = σmax(L).

(b) Using (i), we deduce

2K1 I 2 E(xxx)+E(xxx)>. (3.18)

(c) Using [Ber05, Fact 8.14.4] and (3.18), we get

σmin(E(xxx)) ≥ 1
2 λmin(E(xxx)+E(xxx)>) ≥K1 > 0. (3.19)

(d) Since E(xxx) is a square matrix, we have λi(E(xxx)E(xxx)>) = λi(E(xxx)>E(xxx)) =(
σi(E(xxx))

)2
for i= 1, . . . ,Nd, and, therefore, both E(xxx)E(xxx)> and E(xxx)>E(xxx) are

lower and upper bounded by (σmin(E(xxx)))2 I and (σmax(E(xxx)))2 I, respectively.

(e) Taking the invertible congruence given by the matrix E(xxx)−1 ∈ RNd×Nd

(which is invertible by (c)) on both sides of (3.18), that is, multiplying on the left

by (E(xxx)>)−1 = (E(xxx)−1)> := E(xxx)−> and on the right by E(xxx)−1, we get

2K1 E(xxx)−>E(xxx)−1 2 E(xxx)−> +E(xxx)−1. (3.20)
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Now, since E(xxx)−>E(xxx)−1 =
(
E(xxx)E(xxx)>

)−1
we obtain from (3.20) that

E(xxx)−> +E(xxx)−1 3 2K1

λmax

(
E(xxx)E(xxx)>

) I = 2K1
(
σmax(E(xxx))

)−2
I 3 2K1K

−2
2 I,

(3.21)

for all xxx ∈ (Rd)N , where we used (d) in the identity and (a) in the last inequality.

Equipped with these facts, we are ready to establish items (ii) and (iii).

Regarding (ii), notice that ‖F(xxx)−F(x̄xx)‖2
2 = ‖j(1)‖2

2 = (xxx−x̄xx)>E(xxx)>E(xxx)(xxx−

x̄xx), and therefore the result follows from (d) using the bound for σmin(E(xxx)) in (3.19)

and for σmax(E(xxx)) in (3.17).

Regarding (iii), we rewrite the inequality (3.15), which we need to establish

for the vector field F and the matrix transformation S := I+β2S̃, as (xxx− x̄xx)>Sj(1) ≥

δ j(1)>j(1), for all xxx ∈ (Rd)N . Using (3.16), this becomes

(xxx− x̄xx)>SE(xxx)(xxx− x̄xx) ≥ δ (xxx− x̄xx)>E(xxx)>E(xxx)(xxx− x̄xx), ∀xxx ∈ (Rd)N ,

which follows from the stronger condition given by

1
2

(
E(xxx)>S> +SE(xxx)

)
< δE(xxx)>E(xxx), ∀xxx ∈ (Rd)N . (3.22)

We now proceed verifying an equivalent linear matrix inequality. Taking now on

both sides of (3.22) the same congruence as in (e) and substituting S = I +β2S̃,

we get

(I+β2S̃>)E(xxx)−1 +E(xxx)−>(I+β2S̃) < 2δI, ∀xxx ∈ (Rd)N ,
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which, after reordering terms and defining Ẽ(xxx) := E(xxx)−1 − δI, becomes

Ẽ(xxx)+ Ẽ(xxx)> < −β2
(
S̃>E(xxx)−1 +E(xxx)−>S̃

)
, ∀xxx ∈ (Rd)N . (3.23)

To guarantee that (3.23) holds, we seek bounds on both sides that are uniform.

Regarding the left-hand side of (3.23), we get from (3.21) that

Ẽ(xxx)+ Ẽ(xxx)> = E(xxx)−1 +E(xxx)−> −2δI 3 2
(
K1K

−2
2 − δ

)
I, ∀xxx ∈ (Rd)N . (3.24)

Regarding the right-hand side of (3.23), using (3.19) we first observe that

‖E(xxx)−1‖2 = σmax(E(xxx)−1) =
(
σmin(E(xxx))

)−1
≤K−1

1 , ∀xxx ∈ (Rd)N .

Thus, using the triangular inequality, the fact that ‖A‖2 = ‖A>‖2, and the sub-

multiplicativity of the norm, we get that for all xxx ∈ (Rd)N ,

‖S̃>E(xxx)−1 +E(xxx)−>S̃‖2 ≤ 2‖S̃>E(xxx)−1‖2 ≤ 2‖S̃‖2 ‖E(xxx)−1‖2 ≤ 2‖S̃‖2K
−1
1 .

Since ±A4 ‖A‖2 I, we deduce

−
(
S̃>E(xxx)−1 +E(xxx)−1S̃

)
4 2‖S̃‖2K

−1
1 I, ∀xxx ∈ (Rd)N . (3.25)

Therefore, relating the uniform bounds (3.24) and (3.25), we conclude that if β ≤ β∗
1 ,

then (3.23) holds for every xxx ∈ (Rd)N because

Ẽ(xxx)+ Ẽ(xxx)> 3 2
(
K1K

−2
2 − δ

)
I < 2‖S̃‖2K

−1
1 β2 I < −β2

(
S̃>E(xxx)−1 +E(xxx)−1S̃

)
,

which concludes the proof.
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Note that, under the hypotheses of Theorem 2.5, the above result is applicable

to G = ∇f̃ (so that DG = ∇2f̃ is symmetric and conveniently lower and upper

bounded by the hypotheses on the local functions), F(xxx) = F̃ε(xxx) := ∇f̃(xxx)+2εLxxx,

and S̃ = LK (which has ‖S̃‖2 = ‖LK‖2 = 1). In particular, we have

K1‖xxx′ −xxx‖2 ≤ ‖F̃ε(xxx′)− F̃ε(xxx)‖2 ≤K2‖xxx′ −xxx‖2, (3.26)

for all xxx′,xxx ∈ (Rd)N , and

(xxx−xxx∗)>(I+β2LK)(F̃ε(xxx)− F̃ε(xxx∗)) ≥ δ‖F̃ε(xxx)− F̃ε(xxx∗)‖2
2, (3.27)

for all xxx ∈ (Rd)N , δ ∈ (0, K1K
−2
2 ) and β ∈

[
0,
√
K2

1K
−2
2 −K1δ

]
.

3.3.3 Global existence and uniqueness of solutions

Here we establish the global existence and uniqueness of solutions of the

dynamics (3.5) by verifying the hypotheses in Lemma 6.1. We obtain the following

bound for almost every t≥ t0:

max
{

‖g(v)−g(v′)‖2 , ‖G(v, t)−G(v′, t)‖F

}
≤ ‖A(v−v′)‖2 +‖F̃ε(xxx)− F̃ε(xxx′)‖2 +‖G(v, t)−G(v′, t)‖F

≤ ‖A‖2‖v−v′‖2 +K2‖xxx−xxx′‖2 +κ1‖v−v′‖2 ≤
(
‖A‖2 +K2 +κ1

)
‖v−v′‖2,
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where in the second inequality we have used (3.26) and the Lipschitz condition for

G in (3.11). In addition, for almost every t≥ t0,

v>g(v)+ 1
2‖G(v, t)‖2

F = v>Av+v>N(xxx)+ 1
2‖G(v, t)‖2

F

≤‖A‖2‖v‖2
2 +‖v‖2‖F̃ε(xxx)‖2 + 1

2κ
2
2

≤‖A‖2‖v‖2
2 +‖v‖2

(
K2‖xxx−xxx∗‖2 +‖F̃ε(xxx∗)‖2

)
+ 1

2κ
2
2

≤‖A‖2‖v‖2
2 +‖v‖2

(
K2‖xxx‖2 +K2‖xxx∗‖2 +‖F̃ε(xxx∗)‖2

)
+ 1

2κ
2
2

≤
(
‖A‖2 +K2

)
‖v‖2

2 +‖v‖2
(
K2‖xxx∗‖2 +‖F̃ε(xxx∗)‖2

)
+ 1

2κ
2
2

≤
(
1+‖v‖2

2
)(

‖A‖2 +K2 +K2‖xxx∗‖2 +‖F̃ε(xxx∗)‖2 + 1
2κ

2
2
)
.

The global existence and uniqueness of the solutions of the dynamics (3.5) now

follows from Lemma 6.1 as a consequence of these two facts.

3.3.4 NSS Lyapunov function

Our strategy to establish the noise-to-state stability properties of the dis-

tributed coordination algorithm (3.5) is based on identifying a suitable NSS Lya-

punov function for the dynamics. Our first result of this section identifies a candidate

Lyapunov function whose derivative in the sense of Itô can be conveniently upper

bounded. To obtain this bound, we build on the co-coercivity properties stated

in Theorem 3.10 of the vector fields that combine local gradient descent and local

consensus.

Proposition 3.11. (Candidate second moment NSS-Lyapunov function). Under
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the hypotheses of Theorem 2.5, let

Pβ :=

I+β2LK βLK

βLK LK

 ∈ R2Nd×2Nd, (3.28a)

Qβ :=



β3 +2β+ 2
β (1+β2)

(1+β2) β

⊗ (L+L>)
0

βLK

0 βLK 2δI

 ∈ R3Nd×3Nd, (3.28b)

and define the functions V,W : R2Nd → R by

V(v) := 1
2 [(xxx−xxx∗)>,(zzz− zzz∗)>] Pβ

xxx−xxx∗

zzz− zzz∗

 ,

W(v) := 1
2

[
(xxx−xxx∗)> (zzz− zzz∗)> (F̃ε(xxx)− F̃ε(xxx∗))>

]
Qβ


xxx−xxx∗

zzz− zzz∗

F̃ε(xxx)− F̃ε(xxx∗)

 ,

where xxx∗ = 1⊗xmin ∈ (Rd)N and zzz∗ ∈ (Rd)n is such that Lzzz∗ = −∇f̃(1⊗xmin).

Then the following holds:

(i) The matrix Pβ is positive semidefinite for any β ∈ R with nullspace

N (Pβ) = span
{[

0 (1⊗ b)>
]>

: b ∈ Rd
}
.

(ii) The matrix Qβ is positive semidefinite for the range of values of β specified

in Theorem 2.5, and has nullspace

N (Qβ) = span
{[

(1⊗ b1)> 0 0
]>
,
[
0 (1⊗ b2)> 0

]>
: b1, b2 ∈ Rd

}
.
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(iii) The function V is twice continuously differentiable and bounded by

α1
(
‖v−v∗‖2

Î

)
≤ V(v) ≤ α2

(
‖v−v∗‖2

Î

)
, (3.29)

where v∗ := (xxx∗, zzz∗), α1(r) := λ(2N−1)d(Pβ)r, α2(r) := λmax(Pβ)r, and the

matrix Î ∈ R2Nd is defined as

Î := diag
(
INd,LK

)
.

(iv) The function W is continuous, and the following dissipation inequality holds,

L[V](v, t) ≤ −W(v)+σ
(
‖Σ(t)‖F

)
, (3.30)

for all (v, t) ∈ R2Nd× [t0,∞), where σ(r) := trace(Pβ)κ2
2 r

2.

Proof. To show (i), we note that Pβ is a congruence by an invertible matrix of the

positive semidefinite matrix Î,

Pβ =

 I 0

βI I


>I 0

0 LK


 I 0

βI I

 .

Therefore, rank(Pβ) = rank (̂I) = rank(I)+rank(LK) =Nd+(N −1)d= (2N −1)d.

The statement follows now by noting that the subspace span
{[

0 (1⊗ b)>
]>

: b ∈ Rd
}

has dimension d and lies in the nullspace of Pβ.

To establish (ii), we show that −Qβ is negative semidefinite for the range of
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values of β in the statement. For convenience, define the matrices

B :=

β3 +2β+ 2
β (1+β2)

(1+β2) β

 ,
Q1 := −B⊗ (L+L>) ,

and note that Q1 corresponds to the first block of −Qβ. Since B is symmetric,

det(B) = 1, and trace(B) = β3 +3β+ 2
β > 0 for β > 0, we deduce that −B ≺ 0 for

any β > 0. Therefore, Q1 is symmetric negative semidefinite with nullspace

N (Q1) = span
{[

(1⊗ b1)> 0
]>
,
[
0 (1⊗ b2)>

]>
: b1, b2 ∈ Rd

}
.

Next, defining

Q2 :=

0 0

0 β2

2δ

⊗LK
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and using L2
K = LK, we simplify the following invertible congruence,

−


I 0 0

0 I 0

0 − β
2δLK I



>

Qβ


I 0 0

0 I 0

0 − β
2δLK I



=


I 0 0

0 I − β
2δLK

0 0 I





Q1
0

0

0 0 0

+


0 0 0

0 0 −βLK

0 −βLK −2δI





I 0 0

0 I 0

0 − β
2δLK I



=


Q1 +

0 0

0 β2

2δ

⊗LK 0

0 −2δI

=

Q1 +Q2 0

0 −2δI

 .

Since this is a block-diagonal matrix whose lower block, −2δI, is negative definite,

to establish the result is sufficient to show that for the specified values of β, the

sum Q1 +Q2 is negative semidefinite. Note the maximum nonzero eigenvalue of

Q1, denoted λ∅max(Q1), is

(
− β4+3β2+2

2β +
√(

β4+3β2+2
2β

)2
−1

)
λ2(L+L>) .

On the other hand, Q2 is symmetric positive semidefinite with rank(Q2) = rank(LK) =

(N−1)d and spec(Q2) = {0, β
2

2δ }, so the maximum eigenvalue of Q2 is λmax(R) = β2

2δ .

Now, since N (Q1) ⊆ N (Q2), it follows that N (Q1) ⊆ N (Q1 +Q2). Thus, in order to

check the semidefiniteness of Q1 +Q2, we can restrict our attention to the subspace
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U⊥ := N (Q1)⊥. By Weyl’s Theorem [HJ85, Theorem 4.3.7],

λ∅max(Q1 +Q2) = λU⊥
max(Q1 +Q2) ≤ λU⊥

max(Q1)+λU⊥
max(Q2)

= λ∅max(Q1)+λmax(Q2) = h(β,δ) .

Since, by Lemma 0.65, h(β,δ)< 0 for δ ∈ (0, K1K
−2
2 ) and β ∈ (0,min{β∗

1(δ,ε),β∗
2(δ)}),

we deduce that Q1 +Q2 is negative definite in the subspace N (Q1)⊥. Therefore,

N (Q1 +Q2) = N (Q1), which in turn implies that N (Qβ) = span
{
[u>,0]> : u ∈ N (Q1)

}
.

Regarding (iii), it is clear from its definition that V is twice (in fact, infinitely)

continuously differentiable. Furthermore, notice that Î and Pβ are symmetric positive

semidefinite with the same nullspace, so that

λ(2N−1)d(Pβ)
λmax(̂I) y> Îy ≤ y> Pβ y ≤ λmax(Pβ)

λ(2N−1)d(̂I) y
> Îy,

for all y ∈ R2Nd. Since Î is idempotent, Î = Î2, we have y> Îy = ‖y‖2
Î . The result

now follows by observing that all nonzero eigenvalues of Î are 1.

Finally, we turn our attention to (iv). We first compute the elements

of L[V] in (2.13). With the notation of (3.10), using that Pβ = P>
β and the sub-

multiplicativity of the Frobenius norm, the diffusion term yields

1
2 trace

(
Σ(t)>G(v, t)>∇2

vV(v)G(v, t)Σ(t)
)

= 1
2 trace

(
Σ(t)>G(v, t)>PβG(v, t)Σ(t)

)
= ‖P1/2

β G(v, t)Σ(t)‖2
F ≤ ‖P1/2

β ‖2
F ‖G(v, t)‖2

F ‖Σ(t)‖2
F

≤ trace(Pβ)κ2
2 ‖Σ(t)‖2

F = σ(‖Σ(t)‖F).

On the other hand, defining Q̃1 := 2sym
(
PβA

)
:= PβA+A>Pβ and ṽ := v−v∗, and
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subtracting the quantity Av∗ +N(xxx∗) = 0, the drift term yields

∇vV(v)>
(
Av+N(xxx)

)
=∇vV(v)>

(
Aṽ−N(xxx∗)+N(xxx)

)
= 1

2 ṽ
>Q̃1ṽ+ ṽ>Pβ(−N(xxx∗)+N(xxx)).

Summarizing, we have

L[V](v, t) ≤ 1
2 ṽ

>Q̃1ṽ+ ṽ>Pβ(−N(xxx∗)+N(xxx))+σ
(
‖Σ(t)‖F

)
(3.31)

for all (v, t) ∈ R2Nd× [t0,∞). We look first at the quadratic term in (3.31) arising

from the linear part of the dynamics. Since LKL = IL = L, splitting the matrix Pβ,

we obtain the factorization

Q̃1 = 2sym
((1 0

0 0

⊗ INd+

β2 β

β 1

⊗LK

)(−γ −1

1 0

⊗L
))

= 2sym
((1+β2 β

β 1


−γ −1

1 0

)⊗
(
LKL

))

= 2sym
(−γ(1+β2)+β −(1+β2)

−γβ+1 −β

⊗L
)
.

Now, recalling that (2 +β2)/β+ 2ε = γ̃ = γ+ 2ε, we have γ = (2 +β2)/β, so the

first matrix is indeed symmetric and we can factor out 2sym(L) := L+L> using

the Kronecker product. In fact, −γ(1+β2)+β = −β3 −2β− 2
β , and we deduce

Q̃1 = −

β3 +2β+ 2
β (1+β2)

(1+β2) β

⊗ (L+L>) = Q1. (3.32)
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Next, we turn our attention to the nonlinear term in (3.31). Note that

ṽ>Pβ
(

−N(xxx∗)+N(xxx)
)

= ṽ>

I+β2LK βLK

βLK LK


I

0

(− F̃ε(xxx∗)+ F̃ε(xxx)
)

= −(xxx−xxx∗)>(I+β2LK)
(
F̃ε(xxx)− F̃ε(xxx∗)

)
− (zzz− zzz∗)>βLK

(
F̃ε(xxx)− F̃ε(xxx∗)

)
≤ −δ‖F̃ε(xxx)− F̃ε(xxx∗)‖2

2 − (zzz− zzz∗)>βLK
(
F̃ε(xxx)− F̃ε(xxx∗)

)
.

Here, the last inequality follows from (3.27). Therefore, the nonlinear term can be

expressed as

ṽ>Pβ
(

−N(xxx∗)+N(xxx)
)

= 1
2
[
ṽ>,

(
F̃ε(xxx)− F̃ε(xxx∗)

)>]

0 0 0

0 0 −βLK

0 −βLK −2δI


 ṽ

F̃ε(xxx)− F̃ε(xxx∗)

 . (3.33)

The result now follows from substituting (3.32) and (3.33) into (3.31).

Given the result in Proposition 3.11, the missing piece to establish that V is a

second moment NSS-Lyapunov function with respect to span
{[

0 (1⊗ b)>
]>

: b ∈ Rd
}

is to relate its value to that of W. To this end, we define the constraint set

Dxxx∗ :=
{
y ∈ R3Nd : y3 = F̃ε(y1 +xxx∗)− F̃ε(xxx∗)

}
⊂ R3Nd,
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and the quadratic functions VP̃β
,WQβ

: Dxxx∗ → R≥0,

VP̃β
(y) := 1

2y
>P̃βy, P̃β :=

Pβ 0

0 0

 ,
WQβ

(y) := 1
2y

>Qβy.

Note that V(v) = VP̃β
(v−v∗, F̃ε(xxx)−F̃ε(xxx∗)) and W(v) = WQβ

(v−v∗, F̃ε(xxx)−F̃ε(xxx∗))

for all v ∈ R2Nd. The following result relates the value of these quadratic functions.

Proposition 3.12. (Bound on candidate second moment NSS-Lyapunov function).

Under the hypotheses of Theorem 2.5, the next bound holds,

VP̃β
(y) ≤ η(WQβ

(y)), ∀y ∈ Dxxx∗ , (3.34)

with linear gain η(r) := Cη r, for r ≥ 0, where

Cη := max{1,λmax(L+L>)} λmax(Pβ)
min{1, K1

(1+K2
2 )}λ(3N−2)d(Qβ) min{1,λN−1(L+L>)}

.

and Pβ and Qβ are defined in (3.28).

Proof. ForA := diag
(
I,

√
L+L>, I

)
∈R3Nd×3Nd, whose nullspace is N (A) = span

{[
0 (1⊗ b)> 0

]>
: b ∈ Rd

}
,

we define the functions φ2,A, ψ2,A : R≥0 → R≥0,

φ2,A(s) := sup
{y∈Dxxx∗ : ‖y‖2

A≤s}
VP̃β

(y),

ψ2,A(s) := inf
{y∈Dxxx∗ : ‖y‖2

A≥s}
WQβ

(y).

Before preceding with our proof strategy we show that the infimum and supremum

are taken over nonempty sets. Consider the bijective map ` : R2Nd → R3Nd given
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by

`(xxx,zzz) := (xxx−xxx∗, zzz− zzz∗, F̃ε(xxx)− F̃ε(xxx∗)),

which is continuous with image `(R2Nd) = Dxxx∗ . We deduce that, as (xxx,zzz) ranges

over R2Nd, the norm ‖`(xxx,zzz)‖2
A = ‖xxx−xxx∗‖2

2 + q(zzz− zzz∗)+‖F̃ε(xxx)− F̃ε(xxx∗)‖2
2 takes

all the values in R≥0 (because the composition is continuous), where

q(y) := y>(L+L>)y

for y ∈ (Rd)N . Therefore, the sets {y ∈ Dxxx∗ : ‖y‖A ≥ s} and {y ∈ Dxxx∗ : ‖y‖A ≤ s}

are nonempty for each s≥ 0.

Our proof strategy consists of showing that for all y ∈ Dxxx∗ it holds that

VP̃β
(y) ≤φ2,A

(
‖y‖2

A

)
≤ ᾱ2

(
‖y‖2

A

)
, (3.35a)

ᾱ3
(
‖y‖2

A

)
≤ψ2,A

(
‖y‖2

A

)
≤ WQβ

(y) . (3.35b)

If this were the case, then the result would follow by defining η(r) = ᾱ2(ᾱ−1
3 (r)).

For convenience, we use the shorthand notation x̃xx := xxx− xxx∗, z̃zz := zzz− zzz∗, and

∆F̃ε(x̃xx) := F̃ε(xxx)− F̃ε(xxx∗). Also, we define the matrices

Q̂ := diag
(
L+L>,L+L>, I

)
, P̂ := diag

(
I,L+L>,0

)
.

Regarding (3.35b), note that Q̂ and Qβ are positive semidefinite with N (Q̂) =

N (Qβ) by Proposition 3.11(ii), and hence c1w̃> Q̂ w̃≤ w̃> Qβ w̃ for all w̃ ∈ Dxxx∗ , with
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c1 := λ(3N−2)d(Qβ)/λmax(Q̂). For each s > 0, we then have

ψ2,A(s) = inf
{‖x̃xx‖2

2+q(z̃zz)+‖∆F̃ε(x̃xx)‖2
2≥s}

WQβ
(x̃xx, z̃zz,∆F̃ε(x̃xx))

≥ inf
{‖x̃xx‖2

2+q(z̃zz)+‖∆F̃ε(x̃xx)‖2
2≥s}

c1
(
q(x̃xx)+ q(z̃zz)+‖∆F̃ε(x̃xx)‖2

2
)

≥ inf
{q(z̃zz)+(1+K2

2 )‖x̃xx‖2
2≥s}

c1
(
q(x̃xx)+ q(z̃zz)+K1‖x̃xx‖2

2
)

≥ inf
{q(z̃zz)+(1+K2

2 )‖x̃xx‖2
2≥s}

min{c1ĉs , c1s} = c1 min{ĉ,1}s,

where ĉ :=K1/(1+K2
2 ), in the second inequality we have used that for each s > 0,

{
‖x̃xx‖2

2 + q(z̃zz)+‖∆F̃ε(x̃xx)‖2
2 ≥ s

}
⊆
{
q(z̃zz)+(1+K2

2)‖x̃xx‖2
2 ≥ s

}
,

(which follows from (3.26)), and in the last inequality we have used

q(x̃xx)+ q(z̃zz)+K1‖x̃xx‖2
2 ≥ min{ĉ,1}

(
q(z̃zz)+(1+K2

2)‖x̃xx‖2
2
)
.

Thus, the linear gain in (3.35b) is ᾱ3(r) := c1 min{ĉ,1}r. Regarding (3.35a), we

proceed similarly: P̂ and P̃β are positive semidefinite with N (P̂) = N (P̃β) by

Proposition 3.11(i), and hence w̃>P̃βw̃ ≤ c̄2w̃>P̂w̃ for all w̃ ∈ Dxxx∗ , with c̄2 :=

λmax(P̃β)/λ(2N−1)d(P̂). We then have

φ2,A(s) = sup
{‖x̃xx‖2

2+q(z̃zz)+‖∆F̃ε(x̃xx)‖2
2≤s}

VP̃β
(x̃xx, z̃zz,∆F̃ε(x̃xx))

≤ sup
{‖x̃xx‖2

2+q(z̃zz)+‖∆F̃ε(x̃xx)‖2
2≤s}

c̄2
(
‖x̃xx‖2

2 + q(z̃zz)
)

≤ sup
{‖x̃xx‖2

2+q(z̃zz)+‖∆F̃ε(x̃xx)‖2
2≤s}

c̄2
(
‖x̃xx‖2

2 + q(z̃zz)+‖∆F̃ε(x̃xx)‖2
2
)

= c̄2s.

Thus, the linear gain in (3.35a) is ᾱ2(r) := c̄2r. Tracking now the composition of
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functions η(r) = ᾱ2(ᾱ−1
3 (r)) := Cη r, we have

Cη = λmax(Q̂) λmax(P̃β)
min{1, K1

(1+K2
2 )}λ(3N−2)d(Qβ)λ(2N−1)d(P̂)

,

which yields the expression in the statement.

3.3.5 Completing the proof of the main result

The combination of the above developments leads us here to the proof

of Theorem 2.5.

Proof of Theorem 2.5. By Proposition 3.11, the function V also satisfies (3.29)

and (3.30). Additionally, from Proposition 3.12, for all v ∈ R2Nd we have

V(v) = VP̃β
(v−v∗, F̃ε(xxx)− F̃ε(xxx∗)) ≤ η(WQβ

(v−v∗, F̃ε(xxx)− F̃ε(xxx∗))) = η(W(v)).

Therefore, as defined in the hypotheses of Theorem 6.2, V is a second moment

NSS-Lyapunov function for the dynamics (3.5) with respect to the affine subspace

[1> ⊗x>
min, zzz

∗>]> +N (̂I) = [1> ⊗x>
min, zzz

∗>]> + span
{[

0 (1⊗ b)>
]>

: b ∈ Rd
}
.

Applying Theorem 6.2, we conclude that the dynamics (3.5) is second moment NSS

stable with respect to the same affine subspace with

µ(r,s) := α−1
1
(
2µ̃(α2(rp), s)

)
= 2λmax(Pβ)r2

λ(2N−1)d(Pβ)
exp

(
− 1

2Cη
s
)
,

θ(r) := α−1
1
(
2η(2σ(r))

)
= 4Cη trace(Pβ)κ2

2
λ(2N−1)d(Pβ)

r2,

where κ2 is such that (3.11) holds, and Cη is defined in Proposition 3.12. Substi-
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tuting the value of Cη, the function θ(r) can be written as Cθr2 for the expression

of Cθ in Remark 2.7.

3.4 Discussion

We have considered a multi-agent network communicating over a weight-

balanced, strongly connected digraph that seeks to collectively solve a convex

optimization problem defined by a sum of local functions, one per agent, in the pres-

ence of noise both in the communication channels and in the agent computations.

We have studied the robustness properties against additive persistent noise of a

family of distributed continuous-time algorithms that have each agent update its

estimate by following the gradient of its local cost function while, at the same time,

seeking to agree with its neighbors’ estimates via proportional-integral feedback

on their disagreement. Specifically, we have established that the proposed class of

algorithms is noise-to-state exponentially stable in second moment. Our strategy to

establish this result has relied on constructing a function whose nullset is the solu-

tion to the optimization problem plus a direction of variance accumulation in some

auxiliary variables, and then showing that in fact this is a NSS-Lyapunov function

using the co-coercivity properties of the vector fields that define the dynamics.
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Chapter 4

Distributed online convex

optimization over jointly

connected digraphs

In this chapter we consider networked online convex optimization scenarios

from a regret analysis perspective. At each round, each agent in the network

commits to a decision and incurs in a local cost given by functions that are revealed

over time and whose evolution might be adversarially adaptive to the agent’s

behavior. The goal of each agent is to incur a cumulative cost over time with

respect to the sum of local functions across the network that is competitive with the

best single centralized decision in hindsight. To achieve this, agents cooperate with

each other using local averaging over time-varying weight-balanced digraphs as well

as subgradient descent on the local cost functions revealed in the previous round.

We propose a class of coordination algorithms that generalize distributed online

subgradient descent and saddle-point dynamics, allowing proportional-integral (and

higher-order) feedback on the disagreement among neighboring agents. We show

76
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that our algorithm design achieves logarithmic agent regret (when local objectives

are strongly convex), or square-root agent regret (when local objectives are convex)

in scenarios where the communication graphs are jointly connected. We illustrate

the application of our results for medical diagnosis

4.1 Problem statement

We begin by describing the online convex optimization problem for one player

and then present the networked version, which is the focus of the paper. In online

convex optimization, given a time horizon T ∈ Z≥1, in each round t ∈ {1, . . . ,T}

a player chooses a point xt ∈ Rd. After committing to this choice, a convex cost

function ft : Rd → R is revealed. Consequently, the ‘cost’ incurred by the player

is ft(xt). Given the temporal sequence of objectives {ft}Tt=1, the regret of the

player using {xt}Tt=1 with respect to a single choice u ∈ Rd in hindsight over a time

horizon T is defined by

R(u,{ft}Tt=1) :=
T∑
t=1

ft(xt)−
T∑
t=1

ft(u), (4.1)

i.e., the difference between the total cost incurred by the online estimates {xt}Tt=1

and the cost of a single hindsight decision u. A logical choice, if it exists, is the best

decision over a time horizon T had all the information been available a priori, i.e.,

u= x̂T ∈ argmin
x∈Rd

T∑
t=1

ft(x).

In the case when no information is available about the evolution of the functions

{ft}Tt=1, one is interested in designing algorithms whose worst-case regret is upper

bounded sublinearly in the time horizon T with respect to any decision in hindsight.
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This ensures that, on average, the algorithm performs nearly as well as the best

single decision in hindsight.

We now explain the distributed version of the online convex optimization

problem where the online player is replaced by a network of N agents, each with

access to partial information. In the round t ∈ {1, . . . ,T}, agent i ∈ {1, . . . ,N}

chooses a point xit corresponding to what it thinks the network as a whole should

have chosen. After committing to this choice, the agent has access to a convex cost

function f it : Rd → R and the network cost is then given by the evaluation of

ft(x) :=
N∑
i=1

f it (x). (4.2)

Note that this function is not known to any of the agents and is not available at any

single location. In this scenario, the regret of agent j ∈ {1, . . . ,N} using {xjt}Tt=1

with respect to a single choice u in hindsight over a time horizon T is

Rj(u,{ft}Tt=1) :=
T∑
t=1

N∑
i=1

f it (x
j
t )−

T∑
t=1

N∑
i=1

f it (u).

The goal then is to design coordination algorithms among the agents that guarantee

that the worst-case agent regret is upper bounded sublinearly in the time horizon T

with respect to any decision in hindsight. This would guarantee that each agent

incurs an average cost over time with respect to the sum of local cost functions across

the network that is nearly as low as the cost of the best single choice had all the

information been centrally available a priori. Since information is now distributed

across the network, agents must collaborate with each other to determine their

decisions for the next round. We assume that the network communication topology is

time-dependent and described by a sequence of weight-balanced digraphs {Gt}Tt=1 =

{({1, . . . ,N},Et,At)}Tt=1. At each round, agents can use historical observations of
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locally revealed cost functions and become aware through local communication of

the choices made by their neighbors in the previous round.

4.2 Dynamics for distributed online optimization

In this section we propose a distributed coordination algorithm to solve the

networked online convex optimization problem described in Section 4.1. In each

round t ∈ {1, . . . ,T}, agent i ∈ {1, . . . ,N} performs

xit+1 = xit+σ
(
a
N∑
j=1

aij,t(xjt −xit)+
N∑
j=1

aij,t(zjt − zit)
)

−ηtgxi
t
,

zit+1 = zit −σ
N∑
j=1

aij,t(xjt −xit), (4.3)

where gxi
t
∈ ∂f it (xit), the scalars σ, a∈R>0 are design parameters, and ηt ∈R>0 is the

learning rate at time t. Agent i is responsible for the variables xi, zi, and shares their

values with its neighbors according to the time-dependent digraph Gt. Note that (4.3)

is both consistent with the notion of incremental access to information by individual

agents and is distributed over Gt: each agent updates its estimate by following a

subgradient of the cost function revealed to it in the previous round while, at the

same time, seeking to agree with its neighbors’ estimates. The latter is implemented

through a second-order process that employs proportional-integral feedback on the

disagreement. Our design is inspired by and extends the distributed algorithms for

distributed optimization of a sum of convex functions studied in [WE11, GC14].

We use the term online subgradient descent algorithm with proportional-integral

disagreement feedback to refer to (4.3).

We next rewrite the dynamics in compact form. To do so, we introduce

the notation xxx := (x1, . . . ,xN ) ∈ (Rd)N and zzz := (z1, . . . , zN ) ∈ (Rd)N to denote the
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aggregate of the agents’ online decisions and the aggregate of the agents’ auxiliary

variables, respectively. For t ∈ {1, . . . ,T}, we also define the convex function

f̃t : (Rd)N → R by

f̃t(xxx) :=
N∑
i=1

f it (xi). (4.4)

When all agents agree on the same choice, one recovers the value of the network cost

function (4.2), f̃t(1N ⊗x) = ft(x). With this notation in place, the algorithm (4.3)

takes the form

xxxt+1

zzzt+1

=

xxxt
zzzt

−σ

aLt Lt

−Lt 0


xxxt
zzzt

−ηt

g̃xxxt

0

 , (4.5)

where Lt := Lt⊗ Id and g̃xxxt = (gx1
t
, . . . ,gxN

t
) ∈ ∂f̃t(xxxt).

This compact-form representation suggests a more general class of distributed

dynamics that includes (4.3) as a particular case. For K ∈ Z≥1, let E ∈ RK×K be

diagonalizable with real positive eigenvalues, and define Lt :=E⊗Lt. Consider the

dynamics on ((Rd)N )K defined by

vvvt+1 = (IKNd−σLt)vvvt−ηtgt, (4.6)

where gt ∈ ((Rd)N )K takes the form

gt :=(g̃xxxt ,0, . . . ,0), (4.7)

and we use the decomposition vvv = (xxx,vvv2, . . . ,vvvK). Throughout the paper, our

convergence results are formulated for this dynamics because of its generality, which

we discuss in the following remark.
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Remark 2.13. (Online subgradient descent algorithms with proportional and

proportional-integral disagreement feedback). The online subgradient descent al-

gorithm with proportional-integral disagreement feedback (4.3) corresponds to the

dynamics (4.6) with the choices K = 2 and

E =

 a 1

−1 0

 .

For a ∈ (2,∞), E has positive eigenvalues λmin(E) = a
2 −

√
(a2)2 −1 and λmax(E) =

a
2 +

√
(a2)2 −1. Interestingly, the online subgradient descent algorithm with pro-

portional disagreement feedback proposed in [YSVQ13] (without the projection

component onto a bounded convex set) also corresponds to the dynamics (4.6) with

the choices K = 1 and E = [1]. •

Our forthcoming exposition presents the technical approach to establish the

properties of the distributed dynamics (4.6) with respect to the agent regret defined

in Section 4.1. An informal description of our main results is as follows. Under mild

conditions on the connectivity of the communication network, a suitable choice of

σ, and the assumption that the time-dependent local cost functions have bounded

subgradient sets and uniformly bounded optimizers, the following bounds hold:

Logarithmic agent regret: if each local cost function is locally p-strongly convex

and ηt = 1
p t , then any sequence generated by the dynamics (4.6) satisfies, for

each j ∈ {1, . . . ,N},

Rj
(
u,{ft}Tt=1

)
∈ O(‖u‖2

2 +logT ).

Square-root agent regret: if each local cost function is convex (plus a mild
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geometric assumption) and, for m= 0,1,2, . . . ,dlog2T e, we take ηt = 1√
2m in

each period of 2m rounds t= 2m, . . . ,2m+1 −1, then any sequence generated

by the dynamics (4.6) satisfies, for each j ∈ {1, . . . ,N},

Rj
(
u,{ft}Tt=1

)
∈ O(‖u‖2

2
√
T ).

In our technical approach to establish these sublinear agent regret bounds,

we find it useful to consider the notion of network regret [DGBSX12, TR12] with

respect to a single hindsight choice u ∈ Rd over the time horizon T ,

RN (u,{f̃t}Tt=1) :=
T∑
t=1

f̃t(xxxt)−
T∑
t=1

f̃t(1N ⊗u),

to capture the performance of the sequence of collective estimates {xxxt}Tt=1 ⊆ (Rd)N .

Our proof strategy builds on this concept and relies on bounding the following

terms:

(i) both the network regret and the difference between the agent and network

regrets;

(ii) the cumulative disagreement of the collective estimates;

(iii) the sequence of collective estimates uniformly in the time horizon.

Section 4.3 presents the formal discussion for these results. The combination of

these steps allows us in Section 4.4 to formally establish the sublinear agent regret

bounds outlined above.
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4.3 Regret analysis

This section presents the results outlined above on bounding the agent and

network regrets, the cumulative disagreement of the collective estimates, and the

sequence of collective estimates for executions of the distributed dynamics (4.6).

These results are instrumental later in the derivation of the sublinear agent regret

bounds, but are also of independent interest.

4.3.1 Bounds on network and agent regret

Our first result relates the agent and network regrets for any sequence of

collective estimates (regardless of the algorithm that generates them) in terms of

their cumulative disagreement.

Lemma 3.14. (Bound on the difference between agent and network regret). For

T ∈ Z≥1, let {f1
t , . . . ,f

N
t }Tt=1 be convex functions on Rd with H-bounded subgradient

sets. Then, any sequence {xxxt}Tt=1 ⊂ (Rd)N satisfies, for any j ∈ {1, . . . ,N} and

u ∈ Rd,

Rj(u,{ft}Tt=1) ≤ RN (u,{f̃t}Tt=1)+NH
T∑
t=1

‖LKxxxt‖2,

where LK := LK ⊗ Id.

Proof. Since f̃t(1N ⊗x) = ft(x) for all x ∈ Rd, we have

Rj(u,{ft}Tt=1)−RN (u,{f̃t}Tt=1) =
T∑
t=1

(
f̃t(1N ⊗xjt )− f̃t(xxxt)

)
. (4.8)
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The convexity of f̃t implies that, for any ξ ∈ ∂f̃t(1N ⊗xjt ),

f̃t(1N ⊗xjt )− f̃t(xxxt) ≤ξ>(1N ⊗xjt −xxxt)

≤‖ξ‖2‖1N ⊗xjt −xxxt‖2 ≤
√
NH‖1N ⊗xjt −xxxt‖2, (4.9)

where we have used the Cauchy-Schwarz inequality and the fact that the subgradient

sets are H-bounded. In addition,

‖1N ⊗xjt −xxxt‖2
2 =

N∑
i=1

‖xjt −xit‖2
2 (4.10)

≤ 1
2

N∑
j=1

N∑
i=1

‖xjt −xit‖2
2 =Nxxx>

t LKxxxt.

The fact that L2
K = LK = L>

K allows us to write xxx>
t LKxxxt = ‖LKxxxt‖2

2. The result

now follows using (4.9) and (4.10) in conjunction with (4.8).

Next, we bound the network regret for executions of the coordination

algorithm (4.6) in terms of the learning rates and the cumulative disagreement.

The bound holds regardless of the connectivity of the communication network as

long as the digraph remains weight-balanced.

Lemma 3.15. (Bound on network regret). For T ∈ Z≥1, let {f1
t , . . . ,f

N
t }Tt=1

be convex functions on Rd with H-bounded subgradient sets. Let the sequence

{xxxt}Tt=1 be generated by the coordination algorithm (4.6) over a sequence of arbitrary

weight-balanced digraphs {Gt}Tt=1. Then, for any u ∈ Rd, and any sequence of
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learning rates {ηt}Tt=1 ⊂ R>0,

2RN
(
u,{f̃t}Tt=1

)
≤

T∑
t=2

‖Mxxxt−uuu‖2
2
(

1
ηt

− 1
ηt−1

−pt(uuu,xxxt)
)

+2
√
NH

T∑
t=1

‖LKxxxt‖2 +NH2
T∑
t=1

ηt+ 1
η1

‖Mxxx1 −uuu‖2
2,

where M := M⊗ Id, uuu := 1N ⊗u and pt : (Rd)N × (Rd)N → R≥0 is the modulus of

strong convexity of f̃t.

Proof. Left-multiplying the dynamics (4.6) by the block-diagonal matrix diag(1,0, . . . ,0)⊗

M ∈R(Nd)K×(Nd)K , and using MLt = 0, we obtain the following projected dynamics

Mxxxt+1 = Mxxxt−ηtMg̃xxxt . (4.11)

Note that this dynamics is decoupled from the dynamics of vvv2
t , . . .vvv

K
t . Subtracting uuu

and taking the norm on both sides, we get ‖Mxxxt+1 −uuu‖2
2 = ‖Mxxxt−uuu−ηtMg̃xxxt‖2

2,

so that

‖Mxxxt+1 −uuu‖2
2 =‖Mxxxt−uuu‖2

2 +η2
t ‖Mg̃xxxt‖2

2 −2ηt(Mg̃xxxt)>(Mxxxt−uuu) (4.12)

=‖Mxxxt−uuu‖2
2 +η2

t ‖Mg̃xxxt‖2
2 −2ηtg̃>

xxxt
(Mxxxt−uuu),

where we have used M2 = M and Muuu= uuu. Regarding the last term, note that

−g̃>
xxxt

(Mxxxt−uuu) = − g̃>
xxxt

(Mxxxt−xxxt)− g̃>
xxxt

(xxxt−uuu)

≤ g̃>
xxxt

LKxxxt+ f̃t(uuu)− f̃t(xxxt)− pt(uuu,xxxt)
2 ‖uuu−xxxt‖2

2,
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where we have used LK = INd−M. Substituting into (4.12), we obtain

‖Mxxxt+1 −uuu‖2
2 ≤‖Mxxxt−uuu‖2

2 +η2
t ‖Mg̃xxxt‖2

2

+2ηt
(
g̃>
xxxt

LKxxxt+ f̃t(uuu)− f̃t(xxxt)− pt(uuu,xxxt)
2 ‖uuu−xxxt‖2

2

)
,

so that, reordering terms,

2(f̃t(xxxt)− f̃t(uuu)) ≤ 1
ηt

(
‖Mxxxt−uuu‖2

2 −‖Mxxxt+1 −uuu‖2
2
)

(4.13)

−pt(uuu,xxxt)‖xxxt−uuu‖2
2 +2g̃>

xxxt
LKxxxt+ηt‖Mg̃xxxt‖2

2. (4.14)

Next, we bound each of the terms appearing in the last line of (4.13). For the term

pt(uuu,xxxt)‖xxxt−uuu‖2
2, note that

‖xxxt−uuu‖2
2 =‖(M+LK)(xxxt−uuu)‖2

2 = ‖M(xxxt−uuu)‖2
2

+‖LK(xxxt−uuu)‖2
2 +2(xxxt−uuu)>MLK(xxxt−uuu)

=‖Mxxxt−uuu‖2
2 +‖LKxxxt‖2

2, (4.15)

where we have used MLK = 0 and Muuu= uuu. Regarding the term 2g̃>
xxxt

LKxxxt, note

that ‖g̃xxxt‖2
2 =∑N

i=1 ‖gxi
t
‖2

2 ≤NH2 because the subgradient sets are bounded by H.

Hence, using the Cauchy-Schwarz inequality,

g̃>
xxxt

LKxxxt ≤ ‖g̃xxxt‖2‖LKxxxt‖2 ≤
√
NH‖LKxxxt‖2. (4.16)
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Finally, regarding the term ηt‖Mg̃xxxt‖2
2 in (4.13), note that

‖Mg̃xxxt‖2
2 = ‖1N ⊗ 1

N

N∑
i=1

gxi
t
‖2

2 =N
∥∥∥∥ 1
N

N∑
i=1

gxi
t

∥∥∥∥2

2

= 1
N

d∑
l=1

( N∑
i=1

gxi
t

)2

l
≤ 1

N

d∑
l=1

(
N

N∑
i=1

(
gxi

t

)2
l

)

=
N∑
i=1

d∑
l=1

(
gxi

t

)2
l

=
N∑
i=1

‖gxi
t
‖2

2 ≤NH2, (4.17)

where in the first inequality we have used the inequality of quadratic and arithmetic

means [Bul03]. The result now follows from summing the expression in (4.13) over

the time horizon T , discarding the negative terms, and using the upper bounds

in (4.15)-(4.17).

The combination of Lemmas 3.14 and 3.15 provides a bound on the agent

regret in terms of the learning rates and the cumulative disagreement of the collective

estimates. This motivates our next section.

4.3.2 Bound on cumulative disagreement

In this section we study the evolution of the disagreement among the agents’

estimates under (4.6). Our analysis builds on the input-to-state stability (ISS)

properties of the linear part of the dynamics with respect to the agreement subspace,

where we treat the subgradient term as a perturbation. Consequently, here we

study the dynamics

vvvt+1 = (IKNd−σLt)vvvt+dddt, (4.18)

where {dddt}t≥1 ⊂ ((Rd)N )K is an arbitrary sequence of disturbances. Our first result

shows that, for the purpose of studying the ISS properties of (4.18), the dynamics
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can be decoupled into K first-order linear consensus dynamics.

Lemma 3.16. (Decoupling into a collection of first-order consensus dynamics).

Given a diagonalizable matrix E ∈ RK×K with real eigenvalues, let SE be the matrix

of eigenvectors in the decomposition E =SEDES
−1
E , with DE = diag(λ1(E), . . . ,λK(E)).

Then, under the change of variables

wwwt := (S−1
E ⊗ INd)vvvt, (4.19)

the dynamics (4.18) is equivalently represented by the collection of first-order dy-

namics on (Rd)N defined by

wwwlt+1 = (INd−σλl(E)Lt)wwwlt+ eeelt, (4.20)

where l ∈ {1, . . . ,K}, wwwt = (www1
t , . . . ,www

K
t ) ∈ ((Rd)N )K and

eeelt :=
(
(S−1
E ⊗ INd)dddt

)l
∈ (Rd)N . (4.21)

Moreover, for each t ∈ Z≥1,

‖L̂Kvvvt‖2 ≤ ‖SE‖2
√
K max

1≤l≤K
‖LKwww

l
t‖2, (4.22)

where L̂K := IK ⊗LK.

Proof. We start by noting that

Lt = SEDE S
−1
E ⊗ INdLt INd

= (SE ⊗ INd)(DE ⊗Lt)(SE ⊗ INd)−1,
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and therefore we obtain the factorization

IKNd−σLt = (SE ⊗ INd)(IKNd−σDE ⊗Lt)(SE ⊗ INd)−1.

Now, under the change of variables (4.19), the dynamics (4.18) takes the form

wwwt+1 = (IKNd−σDE ⊗Lt)wwwt+(S−1
E ⊗ INd)dddt, (4.23)

which corresponds to the set of dynamics (4.20). Moreover,

L̂Kvvvt = (IK ⊗LK)(SE ⊗ INd)wwwt

= (SE ⊗ INd)(IK ⊗LK)wwwt = (SE ⊗ INd)L̂Kwwwt.

Hence, the sub-multiplicativity of the norm together with [Ber05, Fact 9.12.22] for

the norms of Kronecker products, yields

‖L̂Kvvvt‖2 ≤‖SE ⊗ INd‖2‖L̂Kwwwt‖2 = ‖SE‖2‖L̂Kwwwt‖2

=‖SE‖2
( K∑
l=1

‖LKwww
l
t‖2

2
)1/2

≤ ‖SE‖2
√
K max

1≤l≤K
‖LKwww

l
t‖2,

as claimed.

In the next result, we use Lemma 3.16 to bound the cumulative disagreement

of the collective estimates over time.

Proposition 3.17. (Input-to-state stability and cumulative disagreement of (4.18)

over jointly connected weight-balanced digraphs). Let E ∈RK×K be a diagonalizable

matrix with real positive eigenvalues and {Gs}s≥1 a sequence of B-jointly connected,
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δ-nondegenerate, weight-balanced digraphs. For δ̃′ ∈ (0,1), let

δ̃ := min
{
δ̃′, (1− δ̃′) λmin(E)δ

λmax(E)dmax

}
, (4.24)

where

dmax := max
{
dout,t(k) : k ∈ I, 1 ≤ t≤ T

}
. (4.25)

Then, for any choice

σ ∈
[

δ̃

λmin(E)δ ,
1− δ̃

λmax(E)dmax

]
, (4.26)

the dynamics (4.18) over {Gs}s≥1 is input-to-state stable with respect to the nullspace

of the matrix L̂K. Specifically, for any t ∈ Z≥1 and any {ddds}t−1
s=1 ⊂ ((Rd)N )K ,

‖L̂Kvvvt‖2 ≤ CI‖vvv1‖2

(
1− δ̃

4N2

)d t−1
B e

+CU max
1≤s≤t−1

‖ddds‖2, (4.27)

where

CI := κ(SE)
√
K (4

3)2, CU := CI

1−
(
1− δ̃

4N2

)1/B . (4.28)

And the cumulative disagreement satisfies, for T ∈ Z≥1,

T∑
t=1

‖L̂Kvvvt‖2 ≤ CU

(
‖vvv1‖2 +

T−1∑
t=1

‖dddt‖2

)
. (4.29)

Proof. The strategy of the proof is the following. We use Lemma 3.16 to decou-

ple (4.18) into K copies (for each eigenvalue of E) of the same first-order linear

consensus dynamics. We then analyze the convergence properties of the latter
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using [NO10b, Th. 1.2]. Finally, we bound the disagreement in the original network

variables using again Lemma 3.16.

We start by noting that the selection of δ̃ makes the set in (5.18) nonempty

and consequently the selection of σ feasible. We write the dynamics (4.20), omitting

the dependence on l ∈ {1, . . . ,K} for the sake of clarity, as

yyyt+1 = (INd− σ̂Lt)yyyt+ et, (4.30)

where σ̂ := σλl(E)> 0 and et := eeelt. From (4.21), we have

‖et‖2 ≤ ‖(S−1
E ⊗ INd)dddt‖2 ≤ ‖S−1

E ‖2‖dddt‖2, (4.31)

for each t ∈ Z≥1. Next, let

Pt := IN − σ̂Lt = σ̂At+IN − σ̂Doutt, (4.32)

and define ΦΦΦ(k,s) :=
(
PkPk−1 · · ·Ps+1Ps

)
⊗ Id, for each k ≥ s≥ 1. The trajectory

of (4.30) can then be expressed as

yyyt+1 =ΦΦΦ(t,1)yyy1 +
t−1∑
s=1

ΦΦΦ(t,s+1)es+ et,

for t≥ 2. If we now multiply this equation by LK, take norms on each side, and
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use the triangular inequality, we obtain

‖LKyyyt+1‖2 ≤‖LKΦΦΦ(t,1)yyy1‖2 (4.33)

+
t−1∑
s=1

‖LKΦΦΦ(t,s+1)es‖2 +‖LKet‖2

=
√
V (ΦΦΦ(t,1)yyy1)+

t−1∑
s=1

√
V (ΦΦΦ(t,s+1)es)+

√
V (et),

where V : (Rd)N → R is defined by

V (yyy) := ‖LKyyy‖2
2 =

N∑
i=1

‖yyyi− (Myyy)i‖2
2.

Our next step is to verify the hypotheses of [NO10b, Th. 1.2] to conclude

from [NO10b, (1.23)] that, for every yyy ∈ (Rd)N and every k ≥ s≥ 1, the following

holds,

V (ΦΦΦ(k,s)yyy) ≤
(
1− δ̃

2N2

)dk−s+1
B e−2

V (yyy). (4.34)

Consider the matrices {Pt}t≥1 defined in (4.32). Since the digraphs are weight-

balanced, i.e., 1>
NLt = 0, we have 1>

NPt = 1>
N , and since Lt1N = 0, it follows that

Pt1N = 1N . Moreover, according to (4.25) and (5.18), for each t ∈ Z≥1,

(Pt)ii ≥1− σ̂ dout,t(i) = 1−σλl(E)dout,t(i)

≥1−σλmax(E)dmax ≥ δ̃,

for every i ∈ I. On the other hand, for i 6= j, (Pt)ij = σ̂aij,t ≥ 0 and therefore, if

aij,t > 0, then the nondegeneracy of the adjacency matrices together with (5.18)
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implies that

(Pt)ij = σλl(E)aij,t ≥ σλmin(E)δ ≥ δ̃.

Summarizing, the matrices in the sequence {Pt}t≥1 are doubly stochastic with

entries uniformly bounded away from 0 by δ̃ whenever positive. These are the

sufficient conditions in [NO10b, Th. 1.2], along with B-joint connectivity, to

guarantee that (4.34) holds. Plugging (4.34) into (4.33), and noting that

ρδ̃ := 1− δ̃

4N2 ≥
√

1− δ̃
2N2 ,

because (1−x/2)2 ≥ 1−x for any x ∈ [0,1], we get

‖LKyyyt+1‖2 ≤ ρ
d tB e−2
δ̃

‖yyy1‖2 +
t∑

s=1
ρ

d t−sB e−2
δ̃

‖es‖2. (4.35)

Here we have used that
√
V (yyy) ≤ ‖LK‖2‖yyy‖2 ≤ ‖yyy‖2 because ‖LK‖2 = 1 (as L̂K is

symmetric and all its nonzero eigenvalues are equal to 1). We now proceed to bound

‖L̂Kvvvt‖2 in terms of vvv1 and the inputs {dddt}t≥1 of the original dynamics (4.18). To

do this, we rely on Lemma 3.16. In fact, from (4.22), and using (4.35) for each of

the K first-order consensus algorithms, we obtain

‖L̂Kvvvt‖2 ≤ ‖SE‖2
√
K max

1≤l≤K

{
ρ

d t−1
B e−2

δ̃
‖wwwl1‖2 +

t−1∑
s=1

ρ
d t−1−s

B e−2
δ̃

‖es‖2

}
.

Recalling now (4.19), so that ‖wwwl1‖2 ≤ ‖www1‖2 ≤ ‖S−1
E ‖2‖vvv1‖2 for each l ∈ {1, . . . ,K},
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and using also (4.31), we obtain

‖L̂Kvvvt‖2 ≤‖SE‖2
√
Kρ−2

δ̃

(
ρ

d t−1
B e

δ̃
‖S−1

E ‖2‖vvv1‖2

+
t−1∑
s=1

ρ
d t−1−s

B e
δ̃

‖S−1
E ‖2‖ddds‖2

)
, (4.36)

for all t≥ 2 (and for t= 1 the inequality holds trivially). Equation (4.27) follows

from (4.36) noting two facts. First, ∑∞
k=0 r

k = 1
1−r for any r ∈ (0,1) and in particular

for r = ρ
1/B
δ̃

. Second, since δ̃ ∈ (0,1), we have

ρ−1
δ̃

= 1
1−δ̃/(4N2) ≤ 1

1−1/(4N2) = 4N2

4N2−1 ≤ 4
3 .

To obtain (4.29), we sum (4.36) over the time horizon T to get

T∑
t=1

‖L̂Kvvvt‖2 ≤ κ(SE)
√
Kρ−2

δ̃

( 1
1−ρ

1/B
δ̃

‖vvv1‖2 +
T∑
t=2

t−1∑
s=1

ρ
d t−1−s

B e
δ̃

‖ddds‖2

)
,

and using r = ρ
1/B
δ̃

for brevity, the last sum is bounded as

T∑
t=2

t−1∑
s=1

rt−1−s‖ddds‖2 =
T−1∑
s=1

T∑
t=s+1

rt−1−s‖ddds‖2

=
T−1∑
s=1

‖ddds‖2
T∑

t=s+1
rt−1−s ≤ 1

1− r

T−1∑
s=1

‖ddds‖2.

This yields (4.29) and the proof is complete.

The combination of the bound on the cumulative disagreement stated in

Proposition 3.17 with the bound on agent regret that follows from Lemmas 3.14

and 3.15 leads us to the next result.

Corollary 3.18. (Bound on agent regret under the dynamics (4.6) for arbitrary

learning rates). For T ∈ Z≥1, let {f1
t , . . . ,f

N
t }Tt=1 be convex functions on Rd with
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H-bounded subgradient sets. Let E ∈ RK×K be a diagonalizable matrix with real

positive eigenvalues and {Gt}t≥1 a sequence of B-jointly connected, δ-nondegenerate,

weight-balanced digraphs. If σ is chosen according to (5.18), then the agent re-

gret associated to a sequence {xxxt = (x1
t , . . . ,x

N
t )}Tt=1 generated by the coordination

algorithm (4.6) satisfies, for any j ∈ {1, . . . ,N}, u ∈ Rd, and {ηt}Tt=1 ⊂ R>0, the

bound

2Rj(u,{ft}Tt=1) ≤N
T∑
t=2

‖ 1
N

N∑
i=1

xit−u‖2
2

(
1
ηt

− 1
ηt−1

−pt(uuu,xxxt)
)

+4NHCU‖vvv1‖2 +NH2(4
√
NCU +1)

T∑
t=1

ηt

+ N

η1
‖ 1
N

N∑
i=1

xi1 −u‖2
2, (4.37)

where CU is given in (4.28) and pt : (Rd)N × (Rd)N → R≥0 is the modulus of strong

convexity of f̃t.

Proof. From Lemmas 3.14 and 3.15, we can write

2Rj(u,{ft}Tt=1) ≤
T∑
t=2

‖Mxxxt−uuu‖2
2

(
1
ηt

− 1
ηt−1

−pt(uuu,xxxt)
)

+
(
2
√
NH+2NH

) T∑
t=1

‖LKxxxt‖2 +NH2
T∑
t=1

ηt

+ 1
η1

‖Mxxx1 −uuu‖2
2. (4.38)

On the one hand, note that

‖Mxxxt−uuu‖2
2 =N‖ 1

N

N∑
i=1

xit−u‖2
2. (4.39)

On the other hand, taking ddds = −ηs(g̃xxxs ,0, . . . ,0) ∈ ((Rd)N )K in (4.29) of Proposi-
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tion 3.17 and noting that ‖ddds‖2 = ηs‖g̃xxxs‖2 ≤ ηs
√
NH, we get

T∑
t=1

‖LKxxxt‖2 ≤
T∑
t=1

‖L̂Kvvvt‖2 ≤ CU

(
‖vvv1‖2 +

T−1∑
t=1

ηt
√
NH

)
.

We obtain the result by substituting this and (4.39) into (4.38), and using the

bound 2
√
NH+2NH ≤ 4NH.

To establish the desired logarithmic and square-root regret bounds we need

a suitable selection of learning rates in the bound obtained in Corollary 3.18. This

step is enabled by the final ingredient in our analysis: bounding the evolution of

the online estimates and all the auxiliary states uniformly in the time horizon T .

We tackle this next.

4.3.3 Uniform bound on the trajectories

Here we show that the trajectories of (4.6) are bounded uniformly in the

time horizon. For this, we first bound the mean of the online estimates and then

use the ISS property of the disagreement evolution studied in the previous section.

Our first result establishes a useful bound on how far from the origin one

should be so that a certain important inclusion among convex cones is satisfied.

This plays a key role in the technical developments of this section.

Lemma 3.19. (Convex cone inclusion). Given β ∈ (0,1], ε∈ (0,β), and any scalars

CX ,CIU ∈ R>0, let

r̂β := CX +CIU

β
√

1− ε2 − ε
√

1−β2
. (4.40)



97

Then, r̂β ∈ (CX +CIU ,∞) and, for any x ∈ Rd \B(0, r̂β),

⋃
w∈B̄(−x,CX +CIU )

Fβ(w) ⊆ Fε(−x), (4.41)

where the set on the left is convex.

Proof. Throughout the proof, we consider the functions arccos and arcsin in the

domain [0,1]. Since ε ∈ (0,β) and β ∈ (0,1], it follows that arccos(ε)−arccos(β) ∈

(0,π/2). Now, using the angle-difference formula and noting that sin(arccos(α)) =
√

1−α2 for any α ∈ [0,1], we have

sin
(

arccos(ε)−arccos(β)
)

= (
√

1− ε2 )β− ε
√

1−β2,

which belongs to the set (0,1) by the observation above. Therefore, r̂β ∈ (CX +

CIU ,∞). Let x ∈ Rd \ B(0, r̂β). Since ‖x‖2 ≥ r̂β > CX +CIU , then B̄(−x,CX +

CIU ) ⊆ Rd \ {0}, and the intersection of ⋃w∈B̄(−x,CX +CIU ) Fβ(w) with any plane

passing through the origin and −x forms a two-dimensional cone (cf. Figure 4.1)

with angle

2arcsin
(
CX +CIU

‖x‖2

)
+2arccos(β). (4.42)

In the case of the intersection of Fε(−x) with any plane passing through the origin

and −x, the angle is 2arccos(ε) (which is less than π because ε < β ≤ 1). Now,

given the axial symmetry of both cones with respect to the line passing through

the origin and −x, (4.41) is satisfied if and only if

arcsin
(
CX +CIU

‖x‖2

)
+arccos(β) ≤ arccos(ε), (4.43)
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Fε(−x̄t)π
2

rβ

CX
2arcsin(ε)

0
x̄t+1

CIU x̄t

xi2t

xi1t

arcsin(ε)

arccos(ε)

arccos(β)

−ηt
N

∑N
i=1 gxi

t

x̄t+
⋃
w∈B̄(−x̄t,CX +CIU ) Fβ(w)

Figure 4.1: Visual aid in two dimensions for the proof of Lemmas 3.19 and 3.20
(where the shaded cones are actually infinite).

as implied by ‖x‖2 ≥ r̂β because sin is increasing in (0,π/2). On the other hand,

the inclusion (4.41) also guarantees that ⋃w∈B̄(−x,CX +CIU ) Fβ(w) is a convex cone

because each Fβ(w) is convex, the union is taken over elements in a convex set,

and (4.43) implies that the angle in (4.42) is less than π.

The following result bounds the mean of the online estimates for arbitrary

learning rates uniformly in the time horizon.

Lemma 3.20. (Uniform bound on the mean of the online estimates). For T ∈

Z≥1, let {f1
t , . . . ,f

N
t }Tt=1 be convex functions on Rd with H-bounded subgradient

sets and nonempty sets of minimizers. Let ∪Tt=1 ∪Ni=1 argmin(f it ) ⊆ B̄(0,CX ) for

some CX ∈ R>0 independent of T , and assume {f1
t , . . . ,f

N
t }Tt=1 are β-central on

Rd\B̄(0,CX ) for some β ∈ (0,1]. Let E ∈RK×K be a diagonalizable matrix with real
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positive eigenvalues and {Gs}s≥1 a sequence of B-jointly connected, δ-nondegenerate,

weight-balanced digraphs. Let σ be chosen according to (5.18) and denote by {xxxt =

(x1
t , . . . ,x

N
t )}Tt=1 the sequence generated by the coordination algorithm (4.6). For

t ∈ {1, . . . ,T}, let x̄t := 1
N

∑N
i=1x

i
t denote the mean of the online estimates. Then,

for any sequence of learning rates {ηt}Tt=1 ⊂ R>0,

‖x̄t‖2 ≤ rβ +Hmax
s≥1

ηs, (4.44)

where, for some ε ∈ (0,β),

rβ := max
{ CX +CIU

β
√

1− ε2 − ε
√

1−β2
,
H

2εmax
s≥1

ηs
}

(4.45)

(which is well defined as shown in Lemma 3.19), and

CIU := CI‖vvv1‖2 +CU
√
NHmax

s≥1
ηs, (4.46)

where CU and CI are given in (4.28).

Proof. To guide the reasoning, Figure 4.1 depicts some of the elements of the proof

and intends to be a visual aid. The dynamics of the mean of the agents’ estimates

is described by (4.11), which in fact corresponds to N copies of

x̄t+1 = x̄t−ηt
1
N

N∑
i=1

gxi
t
, (4.47)

where gxi
t

∈ ∂f it (xit). Our proof strategy is based on showing that, for any t ∈

{1, . . . ,T}, if x̄t belongs to the set

Rd \B(0, rβ), (4.48)
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then ‖x̄t+1‖2 ≤ ‖x̄t‖2. To establish this fact, we study both the direction and the

magnitude of the increment −ηt
N

∑N
i=1 gxi

t
in (4.47). Since the subgradients in the

latter expression are not evaluated at the mean, but at the agents’ estimates, we

first show that the agents’ estimates are sufficiently close to the mean. According

to the input-to-state stability property (4.27) from Proposition 3.17 with the choice

ddds = −ηs(g̃xxxs ,0, . . . ,0) ∈ ((Rd)N )K , so that ‖ddds‖2 = ηs‖g̃xxxs‖2 ≤ ηs
√
NH, we get

‖LKxxxt‖2 ≤ ‖L̂Kvvvt‖2 ≤CI‖vvv1‖2

(
1− δ̃

4N2

)d t−1
B e

+CU
√
NH max

1≤s≤t−1
ηs ≤ CIU , (4.49)

where CIU is defined in (4.46). Hence,

max
i

‖xit− x̄t‖2 ≤
( n∑
i=1

‖xit− x̄t‖2
2

)1/2

= ‖LKxxxt‖2 ≤ CIU . (4.50)

This allows to exploit the starting assumption that x̄t belongs to the set (4.48)

when we study the increment −ηt
N

∑N
i=1 gxi

t
.

Regarding the direction of the increment −ηt
N

∑N
i=1 gxi

t
, the β-centrality of

the function f it for each i ∈ {1, . . . ,N} and t ∈ {1, . . . ,T} on Rd \ B̄(0,CX ) implies

that, for any z ∈ Rd \ B̄(0,CX ), we have

−∂f it (z) ⊆
⋃

y∈argmin(f i
t )
Fβ(y− z) ⊆

⋃
y∈B̄(0,CX )

Fβ(y− z), (4.51)

where the last inclusion follows from the hypothesis that ∪Tt=1 ∪Ni=1 argmin(f it ) ⊆
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B̄(0,CX ). Now, using the change of variables w := y− z, we have

⋃
y∈B̄(0,CX )
z∈B̄(x,CIU )

Fβ(y− z) =
⋃

w∈B̄(−x,CX +CIU )
Fβ(w). (4.52)

The representation on the right shows that the set is convex whenever x belongs

to the set in (4.48) thanks to Lemma 3.19 (essentially because Fβ(w) is convex,

the union is taken over elements in a convex set, and the intersection with any

plane passing through −x and the origin is a two-dimensional cone with angle less

than π). Hence, taking the union when z ∈ B̄(x,CIU ) on both sides of (4.51) and

using (4.52), we obtain

conv
( ⋃
z∈B̄(x,CIU )

−∂f it (z)
)

⊆
⋃

w∈B̄(−x,CX +CIU )
Fβ(w)

⊆ Fε(−x),

where the last inclusion holds for any x in the set (4.48) by Lemma 3.19 (noting

from (4.40) that rβ ≥ r̂β). Taking now x = x̄t and noting that xit ∈ B̄(x̄t,CIU )

by (4.50), we deduce

− 1
N

N∑
i=1

gxi
t
∈ conv

( ⋃
z∈B̄(x̄t,CIU )

−∂f it (z)
)

⊆ Fε(−x̄t).

This guarantees that x̄t+1 = x̄t − ηt
N

∑N
i=1 gxi

t
is contained in a convex cone with

vertex at x̄t and strictly contained in the semi-space tangent to the ball B̄(0,‖x̄t‖2)

at x̄t (with a tolerance-angle between them of arcsin(ε)).

Regarding the magnitude ‖− ηt
N

∑N
i=1 gxi

t
‖2 ≤Hηt, we need to show, based

on the starting assumption that x̄t belongs to the set (4.48), that Hmaxs≥1 ηs is

no larger than the chords of angle arccos(ε) with respect to the radii of B̄(0, rβ).
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Now, any such chord defines an isosceles triangle in the plane containing the chord

and the segment joining the origin and x̄t. Since the angle subtended by the chord

at the origin is 2arcsin(ε), then the length of the chord is 2rβε. Therefore, since

rβ ≥ H
2ε maxs≥1 ηs by the hypothesis (4.45), we conclude that the length of the chord

is larger or equal than Hmaxs≥1 ηs. This guarantees that x̄t+1 = x̄t− ηt
N

∑N
i=1 gxi

t
is

in the ball B̄(0,‖x̄t‖2).

The above argument guarantees that, if the starting assumption that x̄t

belongs to the set (4.48) holds, then ‖x̄t+1‖2 ≤ ‖x̄t‖2. However, if the starting

assumption is not true, then the previous inequality might not hold. Since the mag-

nitude of the increment in an arbitrary direction is upper bounded by Hmaxs≥1 ηs,

adding this value to the threshold rβ in the definition of (4.48) yields the desired

bound (4.44) for {x̄t}Tt=1, uniformly in T .

The next result bounds the online estimates for arbitrary learning rates in

terms of the initial conditions and the uniform bound on the sets of local minimizers.

The fact that the bound includes the auxiliary states follows from the ISS property

and the invariance of the mean of the auxiliary states.

Proposition 3.21. (Boundedness of the online estimates and the auxiliary states).

Under the hypotheses of Lemma 3.20, the trajectories of the coordination algo-

rithm (4.6) are uniformly bounded in the time horizon T , for any {ηt}Tt=1 ⊂ R>0,

as

‖vvvt‖2 ≤ C(β),

for t ∈ {1, . . . ,T}, where

C(β) :=
√
N
(
rβ +Hmax

s≥1
ηs
)

+
√
K‖vvv1‖2 +CIU , (4.53)



103

and where rβ is given in (4.45) and CIU in (4.46).

Proof. We start by noting the useful decomposition vvvt = (IK ⊗M)vvvt+ L̂Kvvvt. Using

the triangular inequality, we obtain

‖vvvt‖2 ≤ ‖(IK ⊗M)vvvt‖2 +‖L̂Kvvvt‖2

≤ ‖Mxxxt‖2 +
K∑
l=2

‖Mvvvlt‖2 +‖L̂Kvvvt‖2.

The first term can be upper bounded by noting that ‖Mxxxt‖2 =
√
N‖ 1

N

∑n
i=1x

i
t‖2

and invoking (4.44) in Lemma 3.20. The second term does not actually depend

on t. To see this, we use the fact that (IK ⊗ M)(IKNd −σLt) = IK ⊗ M in the

dynamics (4.6) with the choice (4.7) to obtain the following invariance property of

the mean of the auxiliary states,

Mvvvlt+1 = Mvvvlt = Mvvvl1

for l ∈ {2, . . . ,K}. Then, using the sub-multiplicativity of the norm and [Ber05, Fact

9.12.22] for the norms of Kronecker products in ‖M‖2 = ‖M⊗ Id‖2 = ‖M‖2‖Id‖2 = 1,

we get

K∑
l=2

‖Mvvvl1‖2 ≤ ‖M‖2
K∑
l=2

‖vvvl1‖2 ≤
√
K‖vvv1‖2,

where the last inequality follows from the inequality of arithmetic and quadratic

means [Bul03]. Finally, the third term is upper bounded in (4.49), and the result

follows.

The previous statements about uniform boundedness of the trajectories can

also be concluded when the objectives are strongly convex. The following result
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says that local strong convexity and bounded subgradient sets imply β-centrality.

Lemma 3.22. (Local strong convexity and bounded subgradients implies centrality

away from the minimizer). Let h : Rd → R be a convex function on Rd that is also

γ-strongly convex on B̄(y,ζ), for some γ, ζ ∈ R>0 and y ∈ Rd. Then, for any

x ∈ Rd \ B̄(y,ζ) and gx ∈ ∂h(x), gy ∈ ∂h(y),

(
gx−gy

)>
(x−y) ≥ γζ ‖x−y‖2. (4.54)

If in addition h has H-bounded subgradient sets and 0 ∈ ∂h(y), then h is γζ
H -central

in Rd \ B̄(y,ζ). (Note that if 0 ∈ ∂h(y), then argminx∈Rd h(x) = {y} is a singleton

by strong convexity in the ball B̄(y,ζ).)

Proof. Given any y ∈ Rd and x ∈ Rd \ B̄(y,ζ), let x̃ ∈ B̄(y,ζ) be any point in the

line segment between x and y. Consequently, for some ν ∈ (0,1), we can write

x̃−y = ν(x−y) = ν

1−ν
(x− x̃). (4.55)

Then, for any gx ∈ ∂h(x), gy ∈ ∂h(y), and gx̃ ∈ ∂h(x̃),

(
gx−gy

)>
(x−y) =

(
gx−gx̃+gx̃−gy

)>
(x−y)

= 1
1−ν

(gx−gx̃)>(x− x̃)+ 1
ν

(gx̃−gy)>(x̃−y)

≥0+ γ

ν
‖x̃−y‖2

2 = γ‖x̃−y‖2‖x−y‖2,

where in the inequality we have used convexity for the first term and strong

convexity for the second term. To derive (4.54) we choose x̃ satisfying ‖x̃−y‖2 = ζ,

while the second part follows taking gy = 0 in (4.54) and multiplying the right-hand

side by ‖gx‖2
H because the latter quantity is less than 1.
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4.4 Logarithmic and square-root agent regret

In this section, we build on our technical results of the previous section:

the general agent regret bound for arbitrary learning rates (cf. Corollary 3.18),

and the uniform boundedness of the trajectories of the general dynamics (4.6) (cf.

Proposition 3.21). Equipped with these results, we are ready to select the learning

rates to deduce the agent regret bounds outlined in Section 4.2.

Our first main result establishes the logarithmic agent regret for the general

dynamics (4.6) under harmonic learning rates.

Theorem 4.23. (Logarithmic agent regret for the dynamics (4.6)). For T ∈ Z≥1,

let {f1
t , . . . ,f

N
t }Tt=1 be convex functions on Rd with H-bounded subgradient sets and

nonempty sets of minimizers. Let ∪Tt=1 ∪Ni=1 argmin(f it ) ⊆ B̄(0,CX /2) for some

CX ∈ R>0 independent of T , and assume {f1
t , . . . ,f

N
t }Tt=1 are p-strongly convex on

B̄(0,C(pCX
2H )), for some p ∈ R>0, where C(·) is defined in (4.53). Let E ∈ RK×K

be a diagonalizable matrix with real positive eigenvalues and {Gt}t≥1 a sequence of

B-jointly connected, δ-nondegenerate, weight-balanced digraphs. Let σ be chosen

according to (5.18) and denote by {xxxt = (x1
t , . . . ,x

N
t )}Tt=1 the sequence generated

by the coordination algorithm (4.6). Then, taking ηt = 1
p̃ t , for any p̃ ∈ (0,p ], the

following regret bound holds for any j ∈ {1, . . . ,N} and u ∈ Rd :

2Rj(u,{ft}Tt=1) ≤
NH2

(
4
√
NCU +1

)
p̃

(1+ logT )

+4NHCU‖vvv1‖2 +Np̃‖ 1
N

N∑
i=1

xi1 −u‖2
2, (4.56)

where CU is given by (4.28).

Proof. First we note that CX < C(pCX
2H ) because rβ in (4.45) is a lower bound

for the function C(·) in (4.53) and CX < rβ as a consequence of Lemma 3.19.
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Thus, the fact that each f it is p-strongly convex on B̄(0,C(pCX
2H )) implies that

it is also p-strongly convex on B̄(0,CX ). Let x∗i
t denote the unique minimizer

of f it . Then, argmin(f it ) ⊆ B̄(0,CX /2) implies that B̄(x∗i
t ,CX /2) ⊆ B̄(0,CX ). The

application of Lemma 3.22 with γ = p, ζ = CX /2 and y = x∗i
t implies then that

each f it is β′-central on Rd \ B̄(0,CX ) for any β′ ≤ pCX /2
H . Hence, the hypotheses

of Proposition 3.21 are satisfied with β = pCX
2H and therefore the estimates satisfy

the bound ‖xxxt‖2 ≤ ‖vvvt‖2 ≤ C(pCX
2H ) for t≥ 1, independent of T , which means they

are confined to the region where the modulus of strong convexity of each f it is p.

Now, the modulus of strong convexity of f̃t is the same as for the functions {f it}Ni=1.

That is, for each ξ̃yyy = (ξy1 , . . . , ξyN ) ∈ ∂f̃t(yyy) and ξ̃xxx = (ξx1 , . . . , ξxN ) ∈ ∂f̃t(xxx), for

all yyy,xxx ∈ B̄(0,C(pCX
2H )) ⊂ (Rd)N , one has

(ξ̃yyy − ξ̃xxx)>(yyy−xxx) =
N∑
i=1

(ξyi − ξxi)>(yi−xi)

≥ p
N∑
i=1

‖yi−xi‖2
2 = p‖yyy−xxx‖2

2.

Thus, for all yyy, xxx ∈ B̄(0,C(pCX
2H )), we can take pt(yyy,xxx) = p in (4.37) and hence

Corollary 3.18 implies the result by noting

1
ηt

− 1
ηt−1

−pt(uuu,xxxt) = p̃t− p̃(t−1)−p= p̃−p≤ 0,

so the first sum in (4.37) can be bounded by 0. Finally, ∑T
t=1 ηt = 1

p̃

∑T
t=1

1
t <

1
p̃ (1+ logT ).

Our second main result establishes the square-root agent regret for the

general dynamics (4.6). Its proof follows from Corollary 3.18, this time by using

a bounding technique called the Doubling Trick [SS12, Sec. 2.3.1] in the learning

rates selection.
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Theorem 4.24. (Square-root agent regret). For T ∈ Z≥1, let {f1
t , . . . ,f

N
t }Tt=1 be

convex functions on Rd with H-bounded subgradient sets and nonempty sets of

minimizers. Let ∪Tt=1 ∪Ni=1 argmin(f it ) ⊆ B̄(0,CX ) for some CX ∈ R>0 independent

of T , and assume {f1
t , . . . ,f

N
t }Tt=1 are also β-central on Rd \ B̄(0,CX ) for some

β ∈ (0,1]. Let E ∈ RK×K be a diagonalizable matrix with real positive eigenvalues

and {Gt}t≥1 a sequence of B-jointly connected, δ-nondegenerate, weight-balanced

digraphs. Let σ be chosen according to (5.18) and denote by {xxxt = (x1
t , . . . ,x

N
t )}Tt=1

the sequence generated by the coordination algorithm (4.6). Consider the following

choice of learning rates called Doubling Trick scheme: for m= 0,1,2, . . . ,dlog2T e,

we take ηt = 1√
2m in each period of 2m rounds t = 2m, . . . ,2m+1 − 1. Then, the

following regret bound holds for any j ∈ {1, . . . ,N} and u ∈ Rd:

2Rj(u,{ft}Tt=1) ≤
√

2√
2−1

α
√
T , (4.57)

where

α :=N3/2H2CUC(β)
( 4√

NH
+ 4
C(β) + 1√

NCUC(β)

)
+N

(
rβ +H+‖u‖2

)2
,

where CU is given in (4.28) and C(·) is defined in (4.53).

Proof. We divide the proof in two steps. In step (i), we use the general agent regret

bound of Corollary 3.18 making a choice of constant learning rates over a fixed

known time horizon T ′. In step (ii), we use multiple times this bound together

with the Doubling Trick [SS12, Sec. 2.3.1] to produce an implementation procedure

in which no knowledge of the time horizon is required. Regarding (i), the choice
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ηt = η′ for all t ∈ {1, . . . ,T ′} in (4.37) yields

2Rj(u,{ft}T
′

t=1) ≤4NHCU‖vvv1‖2

+NH2
(
4
√
NCU +1

)
T ′η′ + N

η′ ‖ 1
N

N∑
i=1

xi1 −u‖2
2, (4.58)

where the first sum in (4.37) is upper-bounded by 0 because 1
η′ − 1

η′ −pt(uuu,xxxt) ≤ 0.

Taking now η′ = 1/
√
T ′ in (4.58), factoring out

√
T ′ and using 1 ≤

√
T ′, we obtain

2Rj(u,{ft}T
′

t=1) ≤
(

4NHCU‖vvv1‖2

+NH2
(
4
√
NCU +1

)
+N‖ 1

N

N∑
i=1

xi1 −u‖2
2

)√
T ′. (4.59)

This bound is of the type 2Rj(u,{ft}T
′

t=1) ≤ α′√T ′, where α′ depends on the initial

conditions. This leads to step (ii). According to the Doubling Trick [SS12, Sec.

2.3.1], for m= 0,1, . . .dlog2T e, the dynamics is executed in each period of T ′ = 2m

rounds t = 2m, . . . ,2m+1 − 1, where at the beginning of each period the initial

conditions are the final values in the previous period. The regret bound for each

period is α′√T ′ = αm
√

2m, where αm is the multiplicative constant in (4.59) that

depends on the initial conditions in the corresponding period. To eliminate the

dependence on the latter, by Proposition 3.21, we have that ‖vvvt‖2 ≤ C(β), for C(·)

in (4.53) with maxs≥1 ηs = 1. Also, using (4.44), we have

‖ 1
N

N∑
i=1

xit−u‖2 ≤ ‖x̄t‖2 +‖u‖2 ≤ rβ +H+‖u‖2.

Since C(β) only depends on the initial conditions at the beginning of the implemen-

tation procedure, the regret on each period is now bounded as αm
√

2m ≤ α
√

2m,
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for α in the statement. Consequently, the total regret can be bounded by

dlog2 T e∑
m=0

α
√

2m = α1−
√

2dlog2 T e+1

1−
√

2 ≤ α1−
√

2T
1−

√
2 ≤

√
2√

2−1α
√
T ,

which yields the desired bound.

Remark 4.25. (Asymptotic dependence of logarithmic agent regret bound on

network properties). Here we analyze the asymptotic dependence of the logarithmic

regret bound in Theorem 4.23 on the number of agents. It is not difficult to see

that, when N → ∞, then

CU
CI

= 1
1− (1− δ̃

4N2 )1/B
∼ 4N2B

δ̃
.

Hence, for any B that guarantees B-joint connectivity, the asymptotic behavior as

N → ∞ of the bound (4.56) scales as

N3+1/2B

δ̃
o(T ), (4.60)

where limT→∞
o(T )
T = 0. In contrast to (4.60), the asymptotic dependence on the

number of agents in [YSVQ13, HCM13], which assume strong connectivity every

time step and a doubly stochastic adjacency matrix A, is

N1+1/2

1−σ2(A)o(T ), (4.61)

where σ2(A) is the second smallest singular value of A. (Here we are taking into

account the fact that [HCM13] divides the regret by the number of agents.) The

bounds (4.60) and (4.61) are comparable in the case of sparse connected graphs that

fail to be good expanders (i.e., for sparse graphs with low algebraic connectivity given
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by the second smallest eigenvalue of the Laplacian). This is the most reasonable

comparison given our joint-connectivity assumption. For simplicity, we examine

the case of undirected graphs because then 1 −σ2(A) = 1 −λ2(A) = λ2(L), where

L = diag(A1N ) − A = I − A is the Laplacian corresponding to A. The sparsity

of the graph implies that δ, dmax ≈ 1, so that one can compute the maximum

feasible δ̃ from (5.17) to be δ̃∗ := (1+ λmax(E)dmax
λmin(E)δ )−1 ≈ (1+λmax(E)/λmin(E))−1.

The algebraic connectivity λ2(L) can vary even for sparse graphs. Paths and cycles

are two examples of graphs that fail to be expander graphs and their algebraic

connectivity [Fie73] is 2(1 − cos(π/N)) and 2(1 − cos(2π/N)), respectively (for

edge-weights equal to 1), and thus proportional to 1−cos(1/N) ∼ 1
N2 when N → ∞.

With these values of δ̃∗ and λ2(L) (up to a constant independent of N), (4.60)

and (4.61) become

N3+1/2Bo(T ) and N3+1/2o(T ),

respectively. Expression (4.60) highlights the trade-offs between the degree of paral-

lelization and the regret behavior for a given time horizon. Such trade-offs must

be considered in the light of factors like the serial processor speed and the rate of

data-collection as well as the cost and bandwidth limitations of transmitting spatially

distributed data. •

4.5 Simulation: application to medical diagnosis

In this section we illustrate the performance of the coordination algo-

rithm (4.6) in a binary classification problem from medical diagnosis. We specifically

consider the online gradient descent with proportional and with proportional-integral

disagreement feedback. Inspired by [SWV+01], we consider a clinical decision prob-
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lem involving the use of Computerized Tomography (CT) for patients with minor

head injury. We consider a network of hospitals that works cooperatively to develop

a set of rules to determine whether a patient requires immediately a CT for possible

neurological intervention, or if an alternative follow-up protocol should be applied

to further inform the decision. The hospitals estimate local prediction models using

the data collected from their patients while coordinating their efforts according

to (4.6) to benefit from the model parameters updated by other hospitals.

We start by describing the data collected by the hospitals. Suppose that at

round t, hospital i collects a vector wit ∈ Rc encoding a set of features corresponding

to patient data. In our case, c= 10 and the components of wit correspond to factors

or symptoms like “age”, “amnesia before impact”, “open skull fracture”, “loss of

consciousness”, “vomiting”, etc. The ultimate goal of each hospital is to decide

if any acute brain finding would be revealed by the CT, and the true answer is

denoted by yit ∈ {−1,1}, where −1 = “no" and 1 = “yes" are the two possible classes.

The true assessment is only found once the CT or the follow-up protocol have

been used.

To cast this scenario in the networked online optimization framework de-

scribed in Section 4.1, it is enough to specify the cost function f it : Rd → R for

each hospital i ∈ {1, . . . ,N} and each round t ∈ {1, . . . ,T}. In this scenario, the cost

function measures the fitness of the model parameters estimated by the hospital

with respect to the data collected from its patients, as we explain next. Each

hospital i seeks to estimate a vector of model parameters xit ∈ Rd, d= c+1, that

weigh the correspondence between the symptoms and the actual brain damage

(up to an additional affine term). More precisely, hospital i employs a model h to

assign the quantity h(xit,wit), called decision or prediction, to the data point wit

using the estimated model parameters xit. For instance, a linear predictor is based
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on the model h(xit,w) = xit
>(wit,1), with the corresponding class predictor being

sign(h(xit,wit)). The loss incurred by hospital i is then f it (xit) = l(xit,wit,yit), where

the loss function l is decreasing in the so-called margin yit h(xit,wit). This is because

correct predictions (when the margin is positive) should be penalized less than

incorrect predictions (when the margin is negative). Common loss functions are the

logistic (smooth) function, l(x,w,y) = log
(
1+e−2y h(x,w)

)
or the hinge (nonsmooth)

function, l(x,w,y) = max{0,1−yh(x,w)}.

In the scenario just described, each hospital i ∈ {1, . . . ,N} updates to xit+1

its estimated model parameters xit according to the dynamics (4.6) as the data

(wit,yit) becomes available. We simulate here two cases, the online gradient descent

with proportional disagreement feedback, corresponding to K = 1 and E = [1],

and the online gradient descent with proportional-integral disagreement feedback,

corresponding to

K = 2 and E =

 a 1

−1 0

 ;

cf. Remark 2.13. Both the online and distributed aspects of our approach are

relevant for this kind of large-scale supervised learning. On one hand, data streams

can be analyzed rapidly and with low storage to produce a real-time service using

first-order information of the corresponding cost functions (for single data points

or for mini-batches). On the other hand, hospitals can benefit from the prediction

models updated by other hospitals. Under (4.6), each hospital i only shares the

provisional vector of model parameters xit with neighboring hospitals and maintains

its patient data (wit,yit) private. In addition, the joint connectivity assumption is a

flexible condition on how frequently hospitals communicate with each other. With

regards to communication latency, note that the potential delays in communication
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among hospitals are small compared to the rate at which data is collected from

patients. Also, the fitness of provisional local models can always be computed

with respect to mini-batches of variable size when one hospital collects a different

amount of data than others in the given time scales of coordination.

In our simulation, a network of 5 hospitals uses the time-varying commu-

nication topology shown in Figure 4.2. This results in the executions displayed

in Figures 4.3 and 4.4, where provisional local models are shown to asymptoti-

cally agree and achieve sublinear regret with respect to the best model obtained

in hindsight with all the data centrally available. For completeness, the plots

also compare their performance against a centralized online gradient descent algo-

rithm [Zin03, HAK07].

Gt′ Gt′+1 Gt′+2

Figure 4.2: The communication topology in our simulation example corresponds
to the periodic repetition of the displayed sequence of weight-balanced digraphs
(where all nonzero edge weights are 1). The resulting sequence is 3-jointly
connected, 1-nondegenerate, and the maximum out-degree is 1, i.e., B = 3, δ = 1,
and dmax = 1.

4.6 Discussion

We have studied a networked online convex optimization scenario where

each agent has access to partial information that is increasingly revealed over time

in the form of a local cost function. The goal of the agents is to generate a sequence

of decisions that achieves sublinear regret with respect to the best single decision in

hindsight had all the information been centrally available. We have proposed a class
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of distributed coordination algorithms that allow agents to fuse their local decision

parameters and incorporate the information of the local objectives as it becomes

available. Our algorithm design uses first-order local information about the cost

functions revealed in the previous round, in the form of subgradients, and only

requires local communication of decision parameters among neighboring agents over

a sequence of weight-balanced, jointly connected digraphs. We have shown that our

distributed strategies achieve the same logarithmic and square-root agent regret

bounds that centralized implementations enjoy. We have also characterized the

dependence of the agent regret bounds on the network parameters. Our technical

approach has built on an innovative combination of network and agent regret bounds,

the cumulative disagreement of the collective estimates, and the boundedness of

the sequence of collective estimates uniformly in the time horizon.
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Figure 4.3: Simulated temporal average regret of the online gradient descent
algorithms with proportional and proportional-integral disagreement feedback
(the latter with a = 4) versus the centralized online gradient descent algorithm.
The dynamics involves N = 5 agents communicating over the periodic sequence
of digraphs displayed in Figure 4.2. Each local objective f i

t : Rd → R, with d = 11,
is given by f i

t (x) = l(x,wi
t,y

i
t) with loss function l(x,w,y) = log

(
1+e−2yx>(w,1)),

for the data set from http://www.stats4stem.org/r-headinjury-data.html. Since
w ∈ {0,1}d−1 and y ∈ {−1,1}, we have ‖∂xl(x,w,y)‖ ≤ ‖ − 2y(w,1)‖ ≤ 2d, so
the local cost functions are globally Lipschitz with H = 2d. The learning rates
are ηt = 1/

√
t (with the same asymptotic behavior as for the Doubling Trick

scheme employed in Theorem 4.24). With δ̃′ = 0.01 in (5.17), so that δ̃ = δ̃′,
equation (5.18) yields σ ∈ (0.01/λmin(E), 0.99/λmax(E)), so we take σ = 0.1
for both dynamics. The initial condition xxx1 is randomly generated and, in
the second-order case, we take zzz1 = 15 ⊗111. The scale is logarithmic and the
evolutions are bounded by a line of negative slope, as should correspond to a
regret bound proportional to log(

√
T/T ) = −1

2 logT . The centralized estimate is
computed by the centralized online gradient descent ct+1 = ct −ηt

1
N

∑N
i=1 ∇f i

t (ct)
with the same learning rates. The global optimal solution in hindsight, x̂T , for
each time horizon T , is computed offline using centralized gradient descent. (As
a side note, the agent regret of an algorithm can be sublinear regardless of the
design of the cost functions, which ultimately determines the pertinence of the
centralized model in hindsight and hence the pertinence of the online distributed
performance.)
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Agents’ estimates using proportional-integral disagreement feedback

Figure 4.4: Agents’ estimates for our online gradient descent algorithm with
proportional-integral disagreement feedback, where a = 4, versus the centralized
online gradient descent algorithm. The problem data and algorithm parameters
have been chosen as for Figure 4.3. The plot on the top shows the evolution of
the 7th coordinate of each agent’s estimate, which is the gain associated to the
feature “assessed by clinician as high risk for neurological intervention,” versus
the evolution of the centralized estimate. The centralized estimate is computed
by the centralized online gradient descent ct+1 = ct −ηt

1
N

∑N
i=1 ∇f i

t (ct) with the
same learning rates. The plot on the bottom shows a similar comparison for the
gain associated to the feature “loss of consciousness.”



Chapter 5

Distributed saddle-point

subgradient algorithms with

Laplacian averaging

In this chapter we present distributed subgradient methods for min-max

problems with agreement constraints on a subset of the arguments of both the

convex and concave parts. Applications include constrained minimization problems

where each constraint is a sum of convex functions in the local variables of the agents.

In the latter case, the proposed algorithm reduces to primal-dual updates using local

subgradients and Laplacian averaging on local copies of the multipliers associated to

the global constraints. For the case of general convex-concave saddle-point problems,

our analysis establishes the convergence of the running time-averages of the local

estimates to a saddle point under periodic connectivity of the communication

digraphs. Specifically, choosing the gradient step-sizes in a suitable way, we show

that the evaluation error is proportional to 1/
√
t, where t is the iteration step.

We illustrate our results in simulation for an optimization scenario with nonlinear

117
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constraints coupling the decisions of agents that cannot communicate directly.

5.1 Distributed algorithms for saddle-point prob-

lems under agreement constraints

This section describes the problem of interest. Consider closed convex sets

WWW ⊆Rdwww , D ⊆RdDDD , MMM ⊆Rdµµµ , Z ⊆Rdzzz and a function φφφ :WWW ×DN ×MMM×ZN →R

which is jointly convex on the first two arguments and jointly concave on the last

two arguments. We seek to solve the constrained saddle-point problem:

min
www∈WWW,DDD∈DN

D
i=D

j ,∀i,j

max
µµµ∈MMM,zzz∈ZN

zi=zj ,∀i,j

φφφ(www,DDD,µµµ,zzz), (5.1)

where DDD := (D1, . . . ,DN ) and zzz := (z1, . . . , zN ). The motivation for distributed

algorithms and the consideration of explicit agreement constraints in (5.1) comes

from decentralized or parallel computation approaches in network optimization

and machine learning. In such scenarios, global decision variables, which need to

be determined from the aggregation of local data, can be duplicated into distinct

ones so that each agent has its own local version to operate with. Agreement

constraints are then imposed across the network to ensure the equivalence to the

original optimization problem. We explain this procedure next, specifically through

the dual decomposition of optimization problems where objectives and constraints

are a sum of convex functions.
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5.1.1 Optimization problems with separable constraints

We illustrate here how optimization problems with constraints given by

a sum of convex functions can be reformulated in the form (5.1) to make them

amenable to distributed algorithmic solutions. Our focus are constraints coupling

the local decision vectors of agents that cannot communicate directly.

Consider a group of agents {1, . . . ,N}, and let f i : Rni ×RdDDD → R and

the components of gi : Rni ×RdDDD → Rm be convex functions associated to agent

i ∈ {1, . . . ,N}. These functions depend on both a local decision vector wi ∈ Wi,

with Wi ⊆ Rni convex, and on a global decision vector D ∈ D, with D ⊆ RdDDD convex.

The optimization problem reads as

min
wi∈Wi,∀i

D∈D

N∑
i=1

f i(wi,D)

s.t.g1(w1,D)+ · · ·+gN (wN ,D) ≤ 0. (5.2)

This problem can be reformulated as a constrained saddle-point problem as follows.

We first construct the corresponding Lagrangian function (2.6) and introduce copies

{zi}Ni=1 of the Lagrange multiplier z associated to the global constraint in (5.2),

then associate each zi to gi, and impose the agreement constraint zi = zj for all

i, j. Similarly, we also introduce copies {Di}Ni=1 of the global decision vector D

subject to agreement, Di = Dj for all i, j. The existence of a saddle point implies

that strong duality is attained and there exists a solution of the optimization (5.2).
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Formally,

min
wi∈Wi
D∈D

max
z∈Rm

≥0

N∑
i=1

f i(wi,D)+ z>
N∑
i=1

gi(wi,D) (5.3a)

= min
wi∈Wi
D∈D

max
zi∈Rm

≥0
zi=zj ,∀i,j

N∑
i=1

(
f i(wi,D)+ zi

>
gi(wi,D)

)
(5.3b)

= min
wi∈Wi

D
i∈D

D
i=D

j ,∀i,j

max
zi∈Rm

≥0
zi=zj ,∀i,j

N∑
i=1

(
f i(wi,Di)+ zi

>
gi(wi,Di)

)
. (5.3c)

This formulation has its roots in the classical dual decompositions surveyed

in [BPC+11, Ch. 2], see also [NO10b, Sec. 1.2.3] and [PB13, Sec. 5.4] for

the particular case of resource allocation. While [BPC+11, NO10b] suggest to

broadcast a centralized update of the multiplier, and the method in [PB13] has

an implicit projection onto the probability simplex, the formulation (5.3) has the

multiplier associated to the global constraint estimated in a decentralized way. The

recent works [BNA14, CNS14, SJR16] implicitly rest on the above formulation of

agreement on the multipliers Section 5.3 particularizes our general saddle-point

strategy to these distributed scenarios.

Remark 1.26. (Distributed formulations via Fenchel conjugates). To illustrate the

generality of the min-max problem (5.3c), we show here how only the particular case

of linear constraints can be reduced to a maximization problem under agreement.

Consider the particular case of minwi∈Rni

∑N
i=1 f

i(wi), subject to a linear constraint

N∑
i=1

Aiwi− b≤ 0,

with Ai ∈Rm×ni and b∈Rm. The above formulation suggests a distributed strategy

that eliminates the primal variables using Fenchel conjugates (2.7). Taking {bi}Ni=1



121

such that ∑N
i=1 b

i = b, this problem can be transformed, if a saddle-point exists (so

that strong duality is attained), into

max
z∈Z

min
wi∈Rni ,∀i

N∑
i=1

f i(wi)+
N∑
i=1

(z>Aiwi− z>bi) (5.4a)

= max
z∈Z

N∑
i=1

(
−f i

?(−Ai>z)− z>bi
)

(5.4b)

= max
zi∈Z,∀i
zi=zj ,∀i,j

N∑
i=1

(
−f i

?(−Ai>zi)− zi
>
bi
)
, (5.4c)

where Z is either Rm or Rm≥0 depending on whether we have equality or inequality

(≤) constraints in (5.2). By [RW98, Prop. 11.3], the optimal primal values can be

recovered locally as

wi
∗ := ∂f i

?(−Ai>zi∗), i ∈ {1, . . . ,N} (5.5)

without extra communication. Thus, our strategy generalizes the class of convex

optimization problems with linear constraints studied in [MARS10], which distin-

guishes between the constraint graph (where edges arise from participation in a

constraint) and the network graph, and defines distributed with respect to the latter.

•

5.1.2 Saddle-point dynamics with Laplacian averaging

We propose a projected subgradient method to solve constrained saddle-point

problems of the form (5.1). The agreement constraints are addressed via Laplacian

averaging, allowing the design of distributed algorithms when the convex-concave

functions are separable as in Sections 5.1.1. The generality of this dynamics is

inherited by the general structure of the convex-concave min-max problem (5.1).
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We have chosen this structure both for convenience of analysis, from the perspective

of the saddle-point evaluation error, and, more importantly, because it allows to

model problems beyond constrained optimization; see, e.g., [SPFP10] regarding the

variational inequality framework, which is equivalent to the saddle-point framework.

Formally, the dynamics is

ŵwwt+1 = wwwt−ηtgwwwt (5.6a)

D̂DDt+1 = DDDt−σLtDDDt−ηtgDDDt (5.6b)

µ̂µµt+1 = µµµt+ηtgµµµt
(5.6c)

ẑzzt+1 = zzzt−σLtzzzt+ηtgzzzt (5.6d)

(wwwt+1,DDDt+1,µµµt+1, zzzt+1) = PSSS
(
ŵwwt+1, D̂DDt+1, µ̂µµt+1, ẑzzt+1

)
,

where Lt = Lt⊗ IdDDD
or Lt = Lt⊗ Idzzz , depending on the context, with Lt the Laplacian

matrix of Gt; σ ∈ R>0 is the consensus stepsize, {ηt}t≥1 ⊂ R>0 are the learning

rates;

gwwwt ∈∂wwwφφφ(wwwt,DDDt,µµµt, zzzt),

gDDDt ∈∂DDDφφφ(wwwt,DDDt,µµµt, zzzt),

gµµµt
∈∂µµµφφφ(wwwt,DDDt,µµµt, zzzt),

gzzzt ∈∂zzzφφφ(wwwt,DDDt,µµµt, zzzt),

and PSSS represents the orthogonal projection onto the closed convex set SSS :=

WWW × DN ×MMM × ZN as defined in (2.1). This family of algorithms particularize

to a novel class of primal-dual consensus-based subgradient methods when the

convex-concave function takes the Lagrangian form discussed in Section 5.1.1. In

general, the dynamics (5.6) goes beyond any specific multi-agent model. However,
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when interpreted in this context, the Laplacian component corresponds to the

model for the interaction among the agents.

In the upcoming analysis, we make network considerations that affect the

evolution of LtDDDt and Ltzzzt, which measure the disagreement among the correspond-

ing components of DDDt and zzzt via the Laplacian of the time-dependent adjacency

matrices. These quantities are amenable for distributed computation, i.e., the

computation of the ith block requires the blocks Djt and zjt of the network variables

corresponding to indexes j with aij,t := (At)ij > 0. On the other hand, whether

the subgradients in (5.6) can be computed with local information depends on the

structure of the function φφφ in (5.1) in the context of a given networked problem.

Since this issue is anecdotal for our analysis, for the sake of generality we consider

a general convex-concave function φφφ.

5.2 Convergence analysis

Here we present our technical analysis on the convergence properties of

the dynamics (5.6). Our starting point is the assumption that a solution to (5.1)

exists, namely, a saddle point (www∗,DDD∗,µµµ∗, zzz∗) of φφφ on SSS := WWW × DN ×MMM × ZN

under the agreement condition on DN and ZN . That is, with DDD∗ = D∗ ⊗1N and

zzz∗ = z∗ ⊗1N for some (D∗, z∗) ∈ D×Z. (We cannot actually conclude the feasibility

property of the original problem from the evolution of the estimates.) We then

study the evolution of the running time-averages (sometimes called ergodic sums;
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see, e.g., [SJR16])

wwwav
t+1 = 1

t

t∑
s=1

wwws, DDD
av
t+1 = 1

t

t∑
s=1

DDDs,

µµµav
t+1 = 1

t

t∑
s=1

µµµs, zzzav
t+1 = 1

t

t∑
s=1

zzzs.

We summarize next our overall strategy to provide the reader with a roadmap

of the forthcoming analysis. In Section 5.2.1, we bound the saddle-point evaluation

error

tφφφ(wwwav
t+1,DDD

av
t+1,µµµ

av
t+1, zzz

av
t+1)− tφφφ(www∗,DDD∗,µµµ∗, zzz∗). (5.7)

in terms of the following quantities: the initial conditions, the size of the states

of the dynamics, the size of the subgradients, and the cumulative disagreement

of the running time-averages. Then, in Section 5.2.2 we bound the cumulative

disagreement in terms of the size of the subgradients and the learning rates. Finally,

in Section 5.2.3 we establish the saddle-point evaluation convergence result using

the assumption that the estimates generated by the dynamics (5.6), as well as

the subgradient sets, are uniformly bounded. (This assumption can be met in

applications by designing projections that preserve the saddle points, particularly

in the case of distributed constrained optimization that we discuss later.) In our

analysis, we conveniently choose the learning rates {ηt}t≥1 using the Doubling Trick

scheme [SS12, Sec. 2.3.1] to find lower and upper bounds on (5.7) proportional

to
√
t. Dividing by t finally allows us to conclude that the saddle-point evaluation

error of the running time-averages is bounded by 1/
√
t.
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5.2.1 Saddle-point evaluation error in terms of the dis-

agreement

Here, we establish the saddle-point evaluation error of the running time-

averages in terms of the disagreement. Our first result, whose proof is presented in

the Appendix, establishes a pair of inequalities regarding the evaluation error of

the states of the dynamics with respect to a generic point in the variables of the

convex and concave parts, respectively.

Lemma 2.27. (Evaluation error of the states in terms of the disagreement). Let the

sequence {(wwwt,DDDt,µµµt, zzzt)}t≥1 be generated by the coordination algorithm (5.6) over a

sequence of arbitrary weight-balanced digraphs {Gt}t≥1 such that supt≥1σmax(Lt) ≤ Λ,

and with

σ ≤
(

max
{
dout,t(k) : k ∈ I, t ∈ Z≥1

})−1
. (5.8)

Then, for any sequence of learning rates {ηt}t≥1 ⊂R>0 and any (wwwp,DDDp) ∈WWW ×DN ,

the following holds:

2(φφφ(wwwt,DDDt,µµµt, zzzt)−φφφ(wwwp,DDDp,µµµt, zzzt)) (5.9)

≤ 1
ηt

(
‖wwwt−wwwp‖2

2 −‖wwwt+1 −wwwp‖2
2
)

+ 1
ηt

(
‖MDDDt−DDDp‖2

2 −‖MDDDt+1 −DDDp‖2
2
)

+6ηt‖gwwwt‖2
2 +6ηt‖gDDDt‖2

2

+2‖gDDDt‖2(2+σΛ)‖LKDDDt‖2 +2‖gDDDt‖2‖LKDDDp‖2.
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Also, for any (µµµp, zzzp) ∈MMM ×ZN , the analogous holds,

2(φφφ(wwwt,DDDt,µµµt, zzzt)−φφφ(wwwt,DDDt,µµµp, zzzp)) (5.10)

≥ − 1
ηt

(
‖µµµt−µµµp‖2

2 −‖µµµt+1 −µµµp‖2
2
)

− 1
ηt

(
‖Mzzzt− zzzp‖2

2 −‖Mzzzt+1 − zzzp‖2
2
)

−6ηt‖gµµµt
‖2

2 −6ηt‖gzzzt‖2
2

−2‖gzzzt‖2(2+σΛ)‖LKzzzt‖2 −2‖gzzzt‖2‖LKzzzp‖2.

Building on Lemma 2.27, we next obtain bounds for the sum over time of

the evaluation errors with respect to a generic point and the running time-averages.

Lemma 2.28. (Cumulative evaluation error of the states with respect to run-

ning time-averages in terms of disagreement). Under the same assumptions of

Lemma 2.27, for any (wwwp,DDDp,µµµp, zzzp) ∈WWW ×DN ×MMM ×ZN , the difference

t∑
s=1

φφφ(wwws,DDDs,µµµs, zzzs)− tφφφ(wwwp,DDDp,µµµav
t+1, zzz

av
t+1)

is upper-bounded by u(t,wwwp,DDDp)
2 , while the difference

t∑
s=1

φφφ(wwws,DDDs,µµµs, zzzs)− tφφφ(wwwav
t+1,DDD

av
t+1,µµµp, zzzp)
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is lower-bounded by −u(t,µµµp,zzzp)
2 , where

u(t,wwwp,DDDp) ≡ u
(
t,wwwp,DDDp,{wwws}ts=1,{DDDs}ts=1

)
(5.11)

=
t∑

s=2

(
‖wwws−wwwp‖2

2 +‖MDDDs−DDDp‖2
2
)(

1
ηs

− 1
ηs−1

)
+ 2
η1

(
‖www1‖2

2 +‖wwwp‖2
2 +‖DDD1‖2

2 +‖DDDp‖2
2
)

+6
t∑

s=1
ηs(‖gwwws‖2

2 +‖gDDDs‖2
2)

+2(2+σΛ)
t∑

s=1
‖gDDDs‖2‖LKDDDs‖2 +2‖LKDDDp‖2

t∑
s=1

‖gDDDs‖2, (5.12)

and u(t,µµµp, zzzp) ≡ u
(
t,µµµp, zzzp,{µµµs}ts=1,{zzzs}ts=1

)
.

Proof. By adding (5.9) over s= 1, . . . , t, we obtain

2
t∑

s=1
(φφφ(wwws,DDDs,µµµs, zzzs)−φφφ(wwwp,DDDp,µµµs, zzzs))

≤
t∑

s=2

(
‖wwws−wwwp‖2

2 +‖MDDDs−DDDp‖2
2
)(

1
ηs

− 1
ηs−1

)
+ 1
η1

(
‖www1 −wwwp‖2

2 +‖MDDD1 −DDDp‖2
2
)

+6
t∑

s=1
ηs(‖gwwws‖2

2 +‖gDDDs‖2
2)

+2(2+σΛ)
t∑

s=1
‖gDDDs‖2‖LKDDDs‖2 +2‖LKDDDp‖2

t∑
s=1

‖gDDDs‖2.

This is bounded from above by u(t,wwwp,DDDp) because ‖MDDD1 −DDDp‖2
2 ≤ 2‖DDD1‖2

2 +

2‖DDDp‖2
2, which follows from the triangular inequality, Young’s inequality, the sub-

multiplicativity of the norm, and the identity ‖M‖2 = 1. Finally, by the concavity

of φφφ in the last two arguments,

φφφ(wwwp,DDDp,µµµav
t+1, zzz

av
t+1) ≥ 1

t

t∑
s=1

φφφ(wwwp,DDDp,µµµs, zzzs),
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so the upper bound in the statement follows. Similarly, we obtain the lower bound

by adding (5.10) over s= 1, . . . , t and using that φφφ is jointly convex in the first two

arguments,

φφφ(wwwav
t+1,DDD

av
t+1,µµµs, zzzs) ≤ 1

t

t∑
s=1

φφφ(wwws,DDDs,µµµs, zzzs),

which completes the proof.

The combination of the pair of inequalities in Lemma 2.28 allows us to

derive the saddle-point evaluation error of the running time-averages in the next

result.

Proposition 2.29. (Saddle-point evaluation error of running time-averages). Un-

der the same hypotheses of Lemma 2.27, for any saddle point (www∗,DDD∗,µµµ∗, zzz∗) of φφφ on

WWW ×DN ×MMM×ZN with DDD∗ =D∗ ⊗1N and zzz∗ = z∗ ⊗1N for some (D∗, z∗) ∈ D×Z,

the following holds:

−u(t,µµµ∗, zzz∗)−u(t,wwwav
t+1,DDD

av
t+1)

≤2tφφφ(wwwav
t+1,DDD

av
t+1,µµµ

av
t+1, zzz

av
t+1)−2tφφφ(www∗,DDD∗,µµµ∗, zzz∗)

≤u(t,www∗,DDD∗)+u(t,µµµav
t+1, zzz

av
t+1) . (5.13)

Proof. We show the result in two steps, by evaluating the bounds from Lemma 2.28

in two sets of points and combining them. First, choosing (wwwp,DDDp,µµµp, zzzp) =

(www∗,DDD∗,µµµ∗, zzz∗) in the bounds of Lemma 2.28; invoking the saddle-point relations

φφφ(www∗,DDD∗,µµµav
t+1, zzz

av
t+1) ≤ φφφ(www∗,DDD∗,µµµ∗, zzz∗) ≤ φφφ(wwwav

t+1,DDD
av
t+1,µµµ

∗, zzz∗)

where (wwwav
t ,DDD

av
t ,µµµ

av
t , zzz

av
t ) ∈WWW ×DN ×MMM ×ZN , for each t≥ 1, by convexity; and
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combining the resulting inequalities, we obtain

−u(t,µµµ∗, zzz∗)
2 ≤

t∑
s=1

φφφ(wwws,DDDs,µµµs, zzzs)− tφφφ(www∗,DDD∗,µµµ∗, zzz∗) ≤ u(t,www∗,DDD∗)
2 . (5.14)

Choosing (wwwp,DDDp,µµµp, zzzp) = (wwwav
t+1,DDD

av
t+1,µµµ

av
t+1, zzz

av
t+1) in the bounds of Lemma 2.28,

multiplying each by −1 and combining them, we get

− u(t,wwwav
t+1,DDD

av
t+1)

2 ≤
(
tφφφ(wwwav

t+1,DDD
av
t+1,µµµ

av
t+1, zzz

av
t+1)

−
t∑

s=1
φφφ(wwws,DDDs,µµµs, zzzs)

)
≤ u(t,µµµav

t+1, zzz
av
t+1)

2 . (5.15)

The result now follows by summing (5.14) and (5.15).

5.2.2 Bounding the cumulative disagreement

Given the dependence of the saddle-point evaluation error obtained in

Proposition 2.29 on the cumulative disagreement of the estimates DDDt and zzzt,

here we bound their disagreement over time. We treat the subgradient terms

as perturbations in the dynamics (5.6) and study the input-to-state stability

properties of the latter. This approach is well suited for scenarios where the size of

the subgradients can be uniformly bounded. Since the coupling in (5.6) with wwwt

and µµµt, as well as among the estimates DDDt and zzzt themselves, takes place only

through the subgradients, we focus on the following pair of decoupled dynamics,

D̂DDt+1 = DDDt−σLtDDDt+uuu1
t (5.16a)

ẑzzt+1 = zzzt−σLtzzzt+uuu2
t (5.16b)

(DDDt+1, zzzt+1) = PDN ×ZN

(
D̂DDt+1, ẑzzt+1

)
,
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where {uuu1
t}t≥1 ⊂ (RdDDD)N , {uuu2

t}t≥1 ⊂ (Rdzzz)N are arbitrary sequences of disturbances,

and PDN ×ZN is the orthogonal projection onto DN ×ZN as defined in (2.1).

The next result characterizes the input-to-state stability properties of (5.16)

with respect to the agreement space. The analysis builds on the proof strategy

in our previous work [MNC14a, Prop. V.4]. The main trick here is to bound the

projection residuals in terms of the disturbance. The proof is presented in the

Appendix.

Proposition 2.30. (Cumulative disagreement on (5.16) over jointly-connected

weight-balanced digraphs). Let {Gs}s≥1 be a sequence of B-jointly connected,

δ-nondegenerate, weight-balanced digraphs. For δ̃′ ∈ (0,1), let

δ̃ := min
{
δ̃′, (1− δ̃′) δ

dmax

}
, (5.17)

where

dmax := max
{
dout,t(k) : k ∈ I, t ∈ Z≥1

}
.

Then, for any choice of consensus stepsize such that

σ ∈
[
δ̃

δ
,

1− δ̃

dmax

]
, (5.18)

the dynamics (5.16a) over {Gt}t≥1 is input-to-state stable with respect to the

nullspace of the matrix L̂K. Specifically, for any t∈Z≥1 and any {uuu1
s}t−1
s=1 ⊂ (RdDDD)N ,

‖LKDDDt‖2 ≤ 24‖DDD1‖2
32

(
1− δ̃

4N2

)d t−1
B e

+Cu max
1≤s≤t−1

‖uuu1
s‖2 , (5.19)
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where

Cu := 25/32

1−
(
1− δ̃

4N2

)1/B (5.20)

and the cumulative disagreement satisfies

t′∑
t=1

‖LKDDDt‖2 ≤ Cu

(
‖DDD1‖2

2 +
t′−1∑
t=1

‖uuu1
t‖2

)
. (5.21)

Analogous bounds hold interchanging DDDt with zzzt.

5.2.3 Convergence of saddle-point subgradient dynamics

with Laplacian averaging

Here we characterize the convergence properties of the dynamics (5.6) using

the developments above. In informal terms, our main result states that, under a

mild connectivity assumption on the communication digraphs, a suitable choice of

decreasing stepsizes, and assuming that the agents’ estimates and the subgradient

sets are uniformly bounded, the saddle-point evaluation error under (5.6) decreases

proportionally to 1√
t
. We select the learning rates according to the following scheme.

Assumption 2.31. (Doubling Trick scheme for the learning rates). The agents

define a sequence of epochs numbered by m= 0,1,2, . . . , and then use the constant

value ηs = 1√
2m in each epoch m, which has 2m time steps s = 2m, . . . ,2m+1 − 1.

Namely,

η1 = 1 , η2 = η3 = 1/
√

2 ,

η4 = · · · = η7 = 1/2, η8 = · · · = η15 = 1/
√

8 ,
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and so on. In general,

η2m = · · · = η2m+1−1 = 1/
√

2m. •

Note that the agents can compute the values in Assumption 2.31 without

communicating with each other. Figure 5.1 provides an illustration of this learning

rate selection and compares it against constant and other sequences of stepsizes.

Note that, unlike other choices commonly used in optimization [BT97, BNO03], the

Doubling Trick gives rise to a sequence of stepsizes that is not square summable.

Iteration, t
100 102 104 106

10−6

10−5

10−4

10−3

10−2

10−1

100

Doubling Trick

Constant .05
Constant .2

1/
√

t
1/t

Figure 5.1: Comparison of sequences of learning rates. We compare the
sequence of learning rates resulting from the Doubling Trick in Assumption 2.31
against a constant stepsize, the sequence {1/

√
t}t≥1, and the square-summable

harmonic sequence {1/t}t≥1.

Theorem 2.32. (Convergence of the saddle-point dynamics with Laplacian av-

eraging (5.6)). Let {(wwwt,DDDt,µµµt, zzzt)}t≥1 be generated by (5.6) over a sequence

{Gt}t≥1 of B-jointly connected, δ-nondegenerate, weight-balanced digraphs satisfying
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supt≥1σmax(Lt) ≤ Λ with σ selected as in (5.18). Assume

‖wwwt‖2 ≤Bwww, ‖DDDt‖2 ≤BDDD, ‖µµµt‖2 ≤Bµµµ, ‖zzzt‖2 ≤Bzzz,

for all t ∈ Z≥1 whenever the sequence of learning rates {ηt}t≥1 ⊂ R>0 is uniformly

bounded. Similarly, assume

‖gwwwt‖2 ≤Hwww, ‖gDDDt‖2 ≤HDDD, ‖gµµµt
‖2 ≤Hµµµ, ‖gzzzt‖2 ≤Hzzz

for all t ∈ Z≥1. Let the learning rates be chosen according to the Doubling Trick in

Assumption 2.31. Then, for any saddle point (www∗,DDD∗,µµµ∗, zzz∗) of φφφ on WWW × DN ×

MMM ×ZN with DDD∗ = D∗ ⊗1N and zzz∗ = z∗ ⊗1N for some (D∗, z∗) ∈ D ×Z, which is

assumed to exist, the following holds for the running time-averages:

−αµµµ,zzz +αwww,DDD
2
√
t−1

≤φφφ(wwwav
t ,DDD

av
t , zzz

av
t ,µµµ

av
t )−φφφ(www∗,DDD∗, zzz∗,µµµ∗)

≤ αwww,DDD +αµµµ,zzz
2
√
t−1

, (5.22)

where αwww,DDD :=
√

2√
2−1 α̂www,DDD with

α̂www,DDD :=4(B2
www +B2

DDD)+6(H2
www +H2

DDD)

+HDDD(3+σΛ)Cu
(
BDDD +2HDDD

)
, (5.23)

and αzzz,µµµ is analogously defined.

Proof. We divide the proof in two steps. In step (i), we use the general bound

of Proposition 2.29 making a choice of constant learning rates over a fixed time

horizon t′. In step (ii), we use multiple times this bound together with the Doubling

Trick to produce the implementation procedure in the statement. In (i), to further
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bound (5.13), we choose ηt = η′ for all s ∈ {1, . . . , t′} in both u(t′,www∗,DDD∗) and

u(t′,wwwav
t′+1,DDD

av
t′+1). By doing this, we make zero the first two lines in (5.11), and

then we upper-bound the remaining terms using the bounds on the estimates and

the subgradients. The resulting inequality also holds replacing (wwwav
t′+1,DDD

av
t′+1) by

(www∗,DDD∗),

u(t′,wwwav
t′+1,DDD

av
t′+1) ≤ 2

η′

(
‖www1‖2

2 +B2
www +‖DDD1‖2

2 +B2
DDD

)
+6(H2

www +H2
DDD)η′t′

+2(2+σΛ)HDDD

t′∑
s=1

‖LKDDDs‖2 +2‖LKDDD
av
t′+1‖2HDDDt

′ . (5.24)

Regarding the bound for u(t′,www∗,DDD∗), we just note that ‖LKDDD
∗‖2 = 0, whereas for

u(t′,wwwav
t′+1,DDD

av
t′+1), we note that, by the triangular inequality, we have

‖LKDDD
av
t′+1‖2 = 1

t′
‖LK

( t′∑
s=1

DDDs

)
‖2 ≤ 1

t′

t′∑
s=1

‖LKDDDs‖2.

That is, we get

u(t′,www∗,DDD∗) ≤ u(t′,wwwav
t′+1,DDD

av
t′+1)

≤ 2
η′

(
‖www1‖2

2 +B2
www +‖DDD1‖2

2 +B2
DDD

)
+6(H2

www +H2
DDD)η′t′

+2HDDD(3+σΛ)
t′∑
s=1

‖LKDDDs‖2. (5.25)

We now further bound ∑t′
s=1 ‖LKDDDs‖2 in (5.21) noting that ‖uuu1

t‖2 = ‖ηtgDDDt‖2 ≤
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ηtHDDD = η′HDDD, to obtain

t′∑
s=1

‖LKDDDs‖2 ≤Cu

(
‖DDD1‖2

2 +
t′−1∑
s=1

η′HDDD

)

≤Cu
(‖DDD1‖2

2 + t′η′HDDD

)
.

Substituting this bound in (5.25), taking η′ = 1√
t′

and noting that 1 ≤
√
t′, we get

u(t′,wwwav
t′+1,DDD

av
t′+1) ≤ α′√t′, (5.26)

where

α′ :=2(‖www1‖2
2 +‖DDD1‖2

2 +B2
www +B2

DDD)+6(H2
www +H2

DDD)

+2HDDD(3+σΛ)Cu
(‖DDD1‖2

2 +HDDD

)
.

This bound is of the type u(t′,wwwav
t′+1,DDD

av
t′+1) ≤ α′√t′, where α′ depends on the

initial conditions. This leads to step (ii). According to the Doubling Trick, for

m= 0,1, . . .dlog2 te, the dynamics is executed in each epoch of t′ = 2m time steps

t = 2m, . . . ,2m+1 − 1, where at the beginning of each epoch the initial conditions

are the final values in the previous epoch. The bound for u(t′,wwwav
t′+1,DDD

av
t′+1) in each

epoch is α′√t′ = αm
√

2m, where αm is the multiplicative constant in (5.26) that

depends on the initial conditions in the corresponding epoch. Using the assumption

that the estimates are bounded, i.e., αm ≤ α̂www,DDD, we deduce that the bound in each

epoch is α̂www,DDD
√

2m. By the Doubling Trick,

dlog2 te∑
m=0

√
2m = 1−

√
2dlog2 te+1

1−
√

2 ≤ 1−
√

2t
1−

√
2 ≤

√
2√

2−1

√
t,
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we conclude that

u(t,www∗,DDD∗) ≤ u(t,wwwav
t+1,DDD

av
t+1) ≤

√
2√

2−1 α̂www,DDD
√
t.

Similarly,

−u(t,µµµ∗, zzz∗) ≥ −u(t,µµµav
t+1, zzz

av
t+1) ≥ −

√
2√

2−1 α̂µµµ,zzz
√
t.

The desired pair of inequalities follows substituting these bounds in (5.13) and

dividing by 2t.

In the statement of Theorem 2.32, the constant Cu appearing in (5.23)

encodes the dependence on the network properties. The running time-averages can

be updated sequentially as wwwav
t+1 := t−1

t www
av
t + 1

twwwt without extra memory. Note also

that we assume feasibility of the problem because this property does not follow

from the behavior of the algorithm.

Remark 2.33. (Boundedness of estimates). The statement of Theorem 2.32

requires the subgradients and the estimates produced by the dynamics to be

bounded. In the literature of distributed (sub-) gradient methods, it is fairly common

to assume the boundedness of the subgradient sets relying on their continuous

dependence on the arguments, which in turn are assumed to belong to a compact

domain. Our assumption on the boundedness of the estimates, however, concerns a

saddle-point subgradient dynamics for general convex-concave functions, and its

consequences vary depending on the application. We come back to this point and

discuss the treatment of dual variables for distributed constrained optimization in

Section 5.3.1. •
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5.3 Applications to distributed constrained con-

vex optimization

In this section we particularize our convergence result in Theorem 2.32 to

the case of convex-concave functions arising from the Lagrangian of the constrained

optimization (5.2) discussed in Section 5.1.1. The Lagrangian formulation with

explicit agreement constraints (5.3c) matches the general saddle-point problem (5.1)

for the convex-concave function φφφ : (W1 ×·· ·×WN )×DN × (Rm≥0)N → R defined

by

φφφ(www,DDD,zzz) =
N∑
i=1

(
f i(wi,Di)+ zi

>
gi(wi,Di)

)
. (5.27)

Here the arguments of the convex part are, on the one hand, the local primal

variables across the network, www = (w1, . . . ,wN ) (not subject to agreement), and,

on the other hand, the copies across the network of the global decision vector,

DDD = (D1, . . . ,DN ) (subject to agreement). The arguments of the concave part are

the network estimates of the Lagrange multiplier, zzz = (z1, . . . , zN ) (subject to

agreement). Note that this convex-concave function is the associated Lagrangian

for (5.2) only under the agreement on the global decision vector and on the Lagrange

multiplier associated to the global constraint, i.e.,

L(www,D,z) = φφφ(www,D⊗1N , z⊗1N ). (5.28)
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In this case, the saddle-point dynamics with Laplacian averaging (5.6) takes the

following form: the updates of each agent i ∈ {1, . . . ,N} are as follows,

ŵit+1 =wit−ηt(df i,wi
t
+d>

gi,wi
t
zi), (5.29a)

D̂
i
t+1 =D

i
t+σ

N∑
j=1

aij,t(Djt −D
i
t)

−ηt(df i,Di
t
+d>

gi,Di
t
zi), (5.29b)

ẑit+1 =zit +σ
N∑
j=1

aij,t(zjt − zit)+ηtg
i(wit), (5.29c)


wit+1

Dit+1

zit+1

=


PWi

(
ŵit+1

)
PD

(
D̂
i
t+1
)

PRm
≥0∩B̄(0,r)

(
ẑit+1

)

 , (5.29d)

where the vectors df i,wi
t

∈ Rni and df i,Di
t
∈ RdDDD are subgradients of f i with respect

to the first and second arguments, respectively, at the point (wit,Dit), i.e.,

df i,wi
t

∈ ∂wif i(wit,Dit), df i,Di
t
∈ ∂Df

i(wit,Dit), (5.30)

and the matrices dgi,wi ∈Rm×ni and dgi,D ∈Rm×dDDD contain in the lth row an element

of the subgradient sets ∂wigil(wit,Dit) and ∂Dg
i
l(wit,Dit), respectively. (Note that

these matrices correspond, in the differentiable case, to the Jacobian block-matrices

of the vector function gi : Rni ×RdDDD → Rm.) We refer to this strategy as the

Consensus-based Saddle-Point (Sub-) Gradient (C-SP-SG) algorithm and present it

in pseudo-code format in Algorithm 1.

Note that the orthogonal projection of the estimates of the multipliers

in (5.29d) is unique. The radius r employed in its definition is a design parameter

that is either set a priori or determined by the agents. We discuss this point in
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detail below in Section 5.3.1.

Algorithm 1: C-SP-SG algorithm

Data: Agents’ data for Problem (5.2): {f i,gi,Wi}Ni=1, D
Agents’ adjacency values {At}t≥1
Consensus stepsize σ as in (5.18)
Learning rates {ηt}t≥1 as in Assumption 2.31
Radius r s.t. B̄(0, r) contains optimal dual set for (5.2)
Number of iterations T , indep. of rest of parameters

Result: Agent i outputs (wiT )av
,(DiT )av

,(ziT )av

Initialization: Agent i sets wi1 ∈ Rni , Di1 ∈ RdDDD , zi1 ∈ Rm≥0,
(wi1)av = wi1, (Di1)av = Di1, (zi1)av = zi1

for t ∈ {2, . . . ,T −1} do
for i ∈ {1, . . . ,N} do

Agent i selects (sub-) gradients as in (5.30)
Agent i updates (wit,Dit, zit) as in (5.29)
Agent i updates (wit+1)av = t−1

t (wit)
av + 1

tw
i
t,

(Dit+1)av = t−1
t (Dit)

av + 1
tD

i
t ,

(zit+1)av = t−1
t (zit)

av + 1
t z
i
t

end
end

The characterization of the saddle-point evaluation error under (5.29) is a

direct consequence of Theorem 2.32.

Corollary 3.34. (Convergence of the C-SP-SG algorithm). For each i∈ {1, . . . ,N},

let the sequence {(wit,Dit, zit)}t≥1 be generated by the coordination algorithm (5.29),

over a sequence of graphs {Gt}t≥1 satisfying the same hypotheses as Theorem 2.32.

Assume that the sets D and Wi are compact (besides being convex), and the radius r

is such that B̄(0, r) contains the optimal dual set of the constrained optimization (5.2).

Assume also that the subgradient sets are bounded, in Wi×D, as follows,

∂wif i ⊆ B̄(0,Hf,w) , ∂Df i ⊆ B̄(0,Hf,D),

∂wigil ⊆ B̄(0,Hg,w) , ∂Dgil ⊆ B̄(0,Hg,D),
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for all l ∈ {1, . . . ,m}. Let (www∗,D∗, z∗) be any saddle point of the Lagrangian L

defined in (5.28) on the set (W1 × ·· · × WN ) × D ×Rm. (The existence of such

saddle-point implies that strong duality is attained.) Then, under Assumption 2.31

for the learning rates, the saddle-point evaluation error (5.22) holds for the running

time-averages:

−αµµµ,zzz +αwww,DDD
2
√
t−1

≤φφφ(wwwav
t ,DDD

av
t , zzz

av
t )−L(www∗,D∗, z∗)

≤ αwww,DDD +αµµµ,zzz
2
√
t−1

, (5.31)

for αwww,DDD and αµµµ,zzz as in (5.23), with

Bµµµ =Hµµµ = 0, Bzzz =
√
Nr,

Bwww =(
N∑
i=1

diam(Wi)2)1/2, BDDD =
√
N diam(D),

H2
www =N(Hf,w + r

√
mHg,w)2, H2

zzz =
N∑
i=1

( sup
wi∈Wi

gi(wi))2,

H2
DDD =N(Hf,D + r

√
mHg,D)2,

where diam(·) refers to the diameter of the sets.

The proof of this result follows by noting that the hypotheses of Theorem 2.32

are automatically satisfied. The only point to observe is that all the saddle points of

the Lagrangian L defined in (5.28) on the set (W1 ×·· ·×WN )×D ×Rm≥0, are also

contained in (W1 × ·· · × WN ) × D × B̄(0, r). Note also that we assume feasibility

of the problem because this property does not follow from the behavior of the

algorithm.

Remark 3.35. (Time, memory, computation, and communication complexity of

the C-SP-SG algorithm). We discuss here the complexities associated with the
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execution of the C-SP-SG algorithm:

• Time complexity: According to Corollary 3.34, the saddle-point evaluation

error is smaller than ε if αwww,DDD+αµµµ,zzz

2
√
t

≤ ε. This provides a lower bound

t≥
(αwww,DDD +αµµµ,zzz

2ε
)2
,

on the number of required iterations.

• Memory complexity: Each agent imaintains the current updates (wit,Dit, zit) ∈

Rni ×RdDDD ×Rm, and the corresponding current running time-averages ((wit)
av,

(Dit)
av, (zit)

av) with the same dimensions.

• Computation complexity: Each agent i makes a choice/evaluation of

subgradients, at each iteration, from the subdifferentials ∂wif i ⊆ Rni , ∂Df i ⊆

RdDDD , ∂wigil ⊆ Rni , ∂Dgil ⊆ RdDDD , the latter for l ∈ {1, . . . ,m}. Each agent also

projects its estimates on the set Wi×D ×Rm≥0 ∩B̄(0, r). The complexity of

this computation depends on the sets Wi and D.

• Communication complexity: Each agent i shares with its neighbors at

each iteration a vector in RdDDD ×Rm. With the information received, the

agent updates the global decision variable Dit in (5.29b) and the Lagrange

multiplier zit in (5.29c). (Note that the variable Dit needs to be maintained and

communicated only if the optimization problem (5.2) has a global decision

variable.) •

5.3.1 Distributed strategy to bound the optimal dual set

The motivation for the design choice of truncating the projection of the

dual variables onto a bounded set in (5.29d) is the following. The subgradients
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of φφφ with respect to the primal variables are linear in the dual variables. To

guarantee the boundedness of the subgradients of φφφ and of the dual variables,

required by the application of Theorem 2.32, one can introduce a projection step

onto a compact set that preserves the optimal dual set, a technique that has been

used in [NO09b, NO10a, CNS14]. These works select the bound for the projection

a priori, whereas [ZM12] proposes a distributed algorithm to compute a bound

preserving the optimal dual set, for the case of a global inequality constraint known

to all the agents. Here, we deal with a complementary case, where the constraint

is a sum of functions, each known to the corresponding agents, that couple the

local decision vectors across the network. For this case, we next describe how the

agents can compute, in a distributed way, a radius r ∈ R>0 such that the ball B̄(0, r)

contains the optimal dual set for the constrained optimization (5.2). A radius with

such property is not unique, and estimates with varying degree of conservativeness

are possible.

In our model, each agent i has only access to the set Wi and the functions f i

and gi. In turn, we make the important assumption that there are no variables

subject to agreement, i.e., f i(wi,D) = f i(wi) and gi(wi,D) = gi(wi) for all i ∈

{1, . . . ,N}, and we leave for future work the generalization to the case where

agreement variables are present. Consider then the following problem,

min
wi∈Wi,∀i

N∑
i=1

f i(wi)

s.t.g1(w1)+ · · ·+gN (wN ) ≤ 0 (5.32)

where each Wi is compact as in Corollary 3.34. We first propose a bound on the

optimal dual set and then describe a distributed strategy that allows the agents

to compute it. Let (w̃1, . . . , w̃N ) ∈ W1 ×·· ·×WN be a vector satisfying the Strong
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Slater condition [HUL93, Sec. 7.2.3], called Slater vector, and define

γ := min
l∈{1,...,m}

−
N∑
i=1

gil(w̃i), (5.33)

which is positive by construction. According to [NO10a, Lemma 1] (which we

amend imposing that the Slater vector belongs to the abstract constraint set (W1 ×

·· ·×WN )), we get that the optimal dual set Z∗ ⊆ Rm≥0 associated to the constraint

g1(w1)+ · · ·+gN (wN ) ≤ 0 is bounded as follows,

max
z∗∈Z∗

‖z∗‖2 ≤ 1
γ

( N∑
i=1

f i(w̃i)− q(z̄)
)
, (5.34)

for any z̄ ∈ Rm≥0, where q : Rm≥0 → R is the dual function associated to the optimiza-

tion (5.32),

q(z) = inf
wi∈Wi,∀i

L(www,z)

= inf
wi∈Wi,∀i

N∑
i=1

(
f i(wi)+ z>gi(wi)

)
=:

N∑
i=1

qi(z). (5.35)

Note that the right hand side in (5.34) is nonnegative by weak duality, and that

q(z̄) does not coincide with −∞ for any z̄ ∈ Rm≥0 because each set Wi is compact.

With this notation,

N∑
i=1

f i(w̃i)− q(z̄) ≤N
(

max
j∈{1,...,N}

f j(w̃j)− min
j∈{1,...,N}

qj(z̄)
)
.

Using this bound in (5.34), we conclude that Z∗ ⊆ Zc, with

Zc :=Rm≥0 ∩B̄
(

0, N
γ

(
max

j∈{1,...,N}
f j(w̃j)− min

j∈{1,...,N}
qj(z̄)

))
. (5.36)
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Now we briefly describe the distributed strategy that the agents can use to bound

the set Zc. The algorithm can be divided in three stages:

(i.a) Each agent finds the corresponding component w̃i of a Slater vector.

For instance, if Wi is compact (as is the case in Corollary 3.34), agent i can compute

w̃i ∈ argmin
wi∈Wi

gil(wi).

The resulting vector (w̃1, . . . , w̃N ) is a Slater vector, i.e., it belongs to the set

{(w1, . . . ,wN ) ∈W1 ×·· ·×WN :

g1(w1)+ · · ·+gN (wN )< 0},

which is nonempty by the Strong Slater condition.

(i.b) Similarly, the agents compute the corresponding component qi(z̄) defined

in (5.35). The common value z̄ ∈ Rm≥0 does not depend on the problem data

and can be 0 or any other value agreed upon by the agents beforehand.

(ii) The agents find a lower bound for γ in (5.33) in two stages: first they use

a distributed consensus algorithm and at the same time they estimate the

fraction of agents that have a positive estimate. Second, when each agent is

convinced that every other agent has a positive approximation, given by a

precise termination condition that is satisfied in finite time, they broadcast

their estimates to their neighbors to agree on the minimum value across the

network.

Formally, each agent sets yi(0) := gi(w̃i) ∈Rm and si(0) := sign(yi(0)), and executes
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the following iterations

yi(k+1) =yi(k)+σ
N∑
j=1

aij,t(yj(k)−yi(k)), (5.37a)

si(k+1) =si(k)+σ
N∑
j=1

aij,t
(

sign(yj(k))− sign(yi(k))
)
, (5.37b)

until an iteration k∗
i such that Nsi(k∗

i ) ≤ −(N −1); see Lemma 3.36 below for the

justification of this termination condition. Then, agent i re-initializes yi(0) = yi(k∗)

and iterates

yi(k+1) = min{yj(k) : j ∈ N out(i)∪{i}} (5.38)

(where agent i does not need to know if a neighbor has re-initialized). The

agents reach agreement about mini∈{1,...,n} y
i(0) = mini∈{1,...,n} y

i(k∗) in a number

of iterations no greater than (N −1)B counted after k∗∗ := maxj∈{1,...,N}k
∗
j (which

can be computed if each agent broadcasts once k∗
i ). Therefore, the agents obtain

the same lower bounds

ŷ :=Nyi(k∗∗) ≤
N∑
i=1

gi(w̃i),

γ := min
l∈{1,...,m}

−ŷl ≤ γ,

where the first lower bound is coordinate-wise.

(iii) The agents exactly agree on maxj∈{1,...,N} f
j(w̃j) and minj∈{1,...,N} q

j(z̄)

using the finite-time algorithm analogous to (5.38).
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In summary, the agents obtain the same upper bound

r := N

γ

(
max

j∈{1,...,N}
f j(w̃j)− min

j∈{1,...,N}
qj(z̄)

)
,

which, according to (5.36), bounds the optimal dual set for the constrained opti-

mization (5.32),

Z∗ ⊆ Zc ⊆ B̄(0, r).

To conclude, we justify the termination condition of step (ii).

Lemma 3.36. (Termination condition of step (ii)). If each agent knows the size

of the network N , then under the same assumptions on the communication graphs

and the parameter σ as in Theorem 2.32, the termination time k∗
i is finite.

Proof. Note that yi(0) is not guaranteed to be negative but, by construction of

each {gi(w̃i)}Ni=1 in step (i), it holds that the convergence point for (5.37a) is

1
N

N∑
i=1

yi(0) = 1
N

N∑
i=1

gi(w̃i)< 0. (5.39)

This, together with the fact that Laplacian averaging preserves the convex hull

of the initial conditions, it follows (inductively) that si decreases monotonically

to −1. Thanks to the exponential convergence of (5.37a) to the point (5.39), it

follows that there exists a finite time k∗
i ∈ Z≥1 such that Nsi(k∗

i ) ≤ −(N −1). This

termination time is determined by the constant B of joint connectivity and the

constant δ of nondegeneracy of the adjacency matrices.

The complexity of the entire procedure corresponds to

• each agent computing the minimum of two convex functions;
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• executing Laplacian average consensus until the agents’ estimates fall within

a centered interval around the average of the initial conditions; and

• running two agreement protocols on the minimum of quantities computed by

the agents.

5.4 Simulation example

Here we simulate1 the performance of the Consensus-based Saddle-Point

(Sub-) Gradient algorithm (cf. Algorithm 1) in a network of N = 50 agents whose

communication topology is given by a fixed connected small world graph [WS98]

with maximum degree dmax = 4. Under this coordination strategy, the 50 agents

solve collaboratively the following instance of problem (5.2) with nonlinear convex

constraints:

min
wi∈[0,1]

50∑
i=1

ciwi

s.t.
50∑
i=1

−di log(1+wi) ≤ −b. (5.40)

Problems with constraints of this form arise, for instance, in wireless networks

to ensure quality-of-service. For each i ∈ {1, . . . ,50}, the constants ci, di are

taken randomly from a uniform distribution in [0,1], and b= 5. We compute the

solution to this problem, to use it as a benchmark, with the Optimization Toolbox

using the solver fmincon with an interior point algorithm. Since the graph is

connected, it follows that B = 1 in the definition of joint connectivity. Also, the

constant of nondegeneracy is δ = 0.25 and σmax(L) ≈ 1.34. With these values, we
1The Matlab code is available at https://github.com/DavidMateosNunez/

Consensus-based-Saddle-Point-Subgradient-Algorithm.git.
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derive from (5.18) the theoretically feasible consensus stepsize σ = 0.2475. For the

projection step in (5.29d) of the C-SP-SG algorithm, the bound on the optimal

dual set (5.36), using the Slater vector w̃ = 1N and z̄ = 0, is

r =
Nmaxj∈{1,...,N} cj

log(2)∑N
i=1 di−N/10

= 3.313.

For comparison, we have also simulated the Consensus-Based Dual Decomposition

(CoBa-DD) algorithm proposed in [SJR16] using (and adapting to this problem)

the code made available online by the authors2. (The bound for the optimal dual

set used in the projection of the estimates of the multipliers is the same as above.)

We should note that the analysis in [SJR16] only considers constant learning rates,

which necessarily results in steady-state error in the algorithm convergence.

We have simulated the C-SP-SG and the CoBa-DD algorithms in two

scenarios: under the Doubling Trick scheme of Assumption 2.31 (solid blue and

magenta dash-dot lines, respectively), and under constant learning rates equal

to 0.05 (darker grey) and 0.2 (lighter grey). Fig. 5.2 shows the saddle-point

evaluation error for both algorithms. The saddle-point evaluation error of our

algorithm is well within the theoretical bound established in Corollary 3.34, which

for this optimization problem is approx. 1.18×109/
√
t. (This theoretical bound

is overly conservative for connected digraphs because the ultimate bound for

the disagreement Cu in (5.20), here Cu ≈ 3.6 × 106, is tailored for sequences of

digraphs that are B-jointly connected instead of relying on the second smallest

eigenvalue of the Laplacian of connected graphs.) Fig. 5.3 compares the network

cost-error and the constraint satisfaction. We can observe that the C-SP-SG and

the CoBa-DD [SJR16] algorithms have some characteristics in common:
2The Matlab code is available at http://ens.ewi.tudelft.nl/~asimonetto/

NumericalExample.zip.
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• They both benefit from using the Doubling Trick scheme.

• They approximate the solution, in all metrics of Fig. 5.2 and Fig. 5.3 at

a similar rate. Although the factor in logarithmic scale of the C-SP-SG

algorithm is larger, we note that this algorithm does not require the agents

to solve a local optimization problem at each iteration for the updates of

the primal variables, while both algorithms share the same communication

complexity.

• The empirical convergence rate for the saddle-point evaluation error under

the Doubling Trick scheme is of order 1/
√
t (logarithmic slope −1/2), while

the empirical convergence rate for the cost error under constant learning rates

is of order 1/t (logarithmic slope −1). This is consistent with the theoretical

results here and in [SJR16] (wherein the theoretical bound concerns the

practical convergence of the cost error using constant learning rates).

5.5 Discussion

We have proposed provably correct projected subgradient methods for

saddle-point problems under explicit agreement constraints. We have shown that

separable constrained optimization problems can be written in this form, where

agreement plays a role in making the objectives (via agreement on a subset of the

primal variables) as well as the constraints (via agreement on the dual variables)

distributed. This approach enables the use of existing consensus-based ideas to

tackle the algorithmic solution to these problems in a distributed fashion. We

have illustrated how the general saddle-point formulation adopted in this paper

encompasses optimization problems with separable and semidefinite constraints.
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Iteration, t
100 102 104 106

10−3

10−2

10−1

100
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Figure 5.2: Saddle-point evaluation error |φφφ(wwwav
t ,zzzav

t )−L(www∗,z∗)|. The lines
in grey represent the same algorithms simulated with constant learning rates
equal to 0.2 (lighter grey) and 0.05 (darker grey), respectively.
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Figure 5.3: Cost error and constraint satisfaction. For the same instan-
tiations as in Fig. 5.2, (a) represents the evolution of the network cost er-
ror |

∑N
i=1 ci(wi

t)
av −

∑N
i=1 ciw

∗
i |, and (b) the evolution of the network constraint

satisfaction −
∑N

i=1 di log(1+(wi
t)

av)+ b.



Chapter 6

Distributed optimization for

multi-task learning via

nuclear-norm approximation

In this chapter we finish our incursions in distributed optimization. Here we

exploiting a variational characterization of the nuclear norm to extend the framework

of distributed convex optimization to machine learning problems that focus on

the sparsity of the aggregate solution. We propose two distributed dynamics

that can be used for multi-task feature learning and recommender systems in

scenarios with more tasks or users than features. Our first dynamics tackles a

convex minimization on local decision variables subject to agreement on a set of

local auxiliary matrices. Our second dynamics employs a saddle-point reformulation

through Fenchel conjugation of quadratic forms, avoiding the computation of the

inverse of the local matrices. We establish the correctness of both coordination

algorithms using the general analytical framework of the previous chapter. Finally,

we illustrate these results in a simulation example of low-rank matrix completion.

152
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6.1 Optimization with nuclear norm regulariza-

tion

We are interested in developing distributed coordination algorithms to solve

the optimization problem

min
wi∈W,

i∈{1,...,N}

N∑
i=1

fi(wi)+γΩ(W ), (6.1)

where W ⊆ Rd is a closed convex set; the matrix W ∈ Rd×N aggregates the vectors

{wi}Ni=1 as columns, i.e., W := [w1| . . . |wN ]; each function fi : Rd → R is convex;

γ ∈ R>0 is a design parameter; and Ω : Rd×N → is a joint regularizer to promote

solutions with low rank or other sparsity patterns. We next motivate the distributed

optimization problem with nuclear-norm regularization in two scenarios.

6.1.1 Multi-task feature learning

In data-driven optimization problems each function fi often codifies the

loss incurred by the vector of weighting parameters wi with respect to a set of

ni data points {pj ,yj}ni
j=1. As such, this loss can be called residual or margin,

depending on whether we are considering regression or classification problems. The

work [AEP08] exploits the relation (2.10) as follows. For a given W ∈ Rd×N , the

following regularizer is used,

Ω(W ) = min
U∈Od,A∈Rd×N

W=UA

‖A>‖2,1

= min
U∈Od

‖W>U‖2,1 = ‖W‖∗.
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This minimization promotes a dictionary matrix U of orthonormal columns such

that the columns of W are sparse linear combinations of them. The latter is

achieved through ‖A>‖2,1, which ‘favors’ rows of small size because the one-norm

is the convex surrogate of the zero-norm, or number of nonzero elements. This

offers an interesting perspective on minimization problems that are convex on

the product UA, with U ∈ Od, and have a penalty term ‖A>‖2,1. As pointed

in [AEP08], the above characterization enables a convex reformulation on the

matrix variable W = UA.

6.1.2 Matrix completion for recommender systems

The estimation of a low-rank matrix from a set of entries, or matrix com-

pletion, see, e.g., [MHT10], also fits naturally in the framework of (6.1) with

nuclear-norm regularization. This is because the nuclear norm is the convex surro-

gate of the rank function [Faz02]. Let Z ∈ Rd×N be a low-rank matrix of unknown

rank for which only a few entries per column are known. The goal is then to

determine a matrix W that minimizes the Frobenius norm across the revealed

entries while keeping small the nuclear norm,

min
wi∈W,

i∈{1,...,N}

N∑
i=1

∑
j∈Υi

(Wji−Zji)2 +γ‖W‖∗ (6.2)

where, for each i ∈ {1, . . . ,N},

Υi := {j ∈ {1, . . . ,d} : Zji is a revealed entry of Z}.
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6.1.3 A case for distributed optimization

The optimization problem (6.1) can be formulated as a convex and separable

minimization when the joint regularizer is ‖ · ‖∗ or ‖ · ‖2
∗ using the characteriza-

tions (2.8a) or (2.8b). Assuming that a minimum exists, we can write

min
W∈Rd×N

N∑
i=1

fi(wi)+γ‖W‖2
∗

= min
W∈Rd×N

D∈Sd
�0, trace(D)≤1
wi∈C(D),∀i

N∑
i=1

fi(wi)+γ
N∑
i=1

w>
i D

†wi .

= min
wi∈W,∀i

Di∈Sd
�0, trace(Di)≤1, ∀i
wi∈C(Di), ∀i
Di=Dj , ∀i,j

N∑
i=1

fi(wi)+γ
N∑
i=1

w>
i D

†
iwi , (6.3)

and similarly for Ω(W ) = 2‖W‖∗ replacing the constraint trace(D) ≤ 1 by the

penalty functions γ∑N
i=1

1
N trace(Di). When d � N , it is reasonable to design

distributed strategies that use local gradient descent and consensus to solve this

problem because the objective can be split across a network of agents, and the only

coupling constraint is the agreement on the matrix arguments, Di =Dj for each

i, j, whose dimensions do not grow with the network size. The condition d�N

in multi-task feature learning implies that there are far less features than tasks or

users (for instance, there are less diseases or symptoms than people). The same

observation applies to matrix completion in collaborative filtering where the rows

represent features and the columns represent users.

However, the design of distributed strategies to solve (6.3) raises the following

challenges,

(i) The constraint set {w ∈ Rd,D ∈ Sd�0 : w ∈ C(D)} is convex but not closed,

which is a difficulty when designing a projection among the local variables.
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Note that for any fixed matrix Di, one could project wi onto C(Di) by

computing DiD
†
iw, but this projection is state-dependent.

(ii) The computation of D†
i is a concern because Di might be rank deficient and

the pseudoinverse might be discontinuous when the rank of Di changes.

We avoid these difficulties by enforcing the solution to be within a margin of

the boundary of the positive semidefinite cone. This is achieved by considering an

approximate regularization that we introduce in Section 6.2.1. Our first dynamics

solves the nuclear-norm regularization as a separable minimization with agreement

constraint. Even with (ii) addressed, an additional challenge involves the efficient

computation of the inverse:

• Iterative algorithms involving the computation of D−1 are computationally

expensive and potentially lead to numerical instabilities.

We eliminate the necessity of computing D−1 altogether in Section 6.2.2 by trans-

forming the convex minimization into a saddle-point problem. This transformation

is general and does not require the approximate treatment of the nuclear norm

regularization in Section 6.2.1. Our second dynamics solves the nuclear-norm

regularization as a separable min-max problem with agreement constraint.

6.2 Distributed coordination algorithms

Here we address the three challenges outlined in Section 6.1 to solve the

optimization problem (6.3). In the forthcoming discussion, we present two refor-

mulations of this problem and two distributed coordination algorithms to solve

them.
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6.2.1 Nuclear norm approximate regularization

In relation to the first two challenges outlined above, note that the optimal

values D∗
1 and D∗

2 in (2.9) for the variational characterizations of ‖ · ‖∗ and ‖ · ‖2
∗

are in general positive semidefinite. To enforce these optimal values to be in

the interior of the positive semidefinite cone, following the technique in [AEP08,

Sec. 4], we consider an approximate problem by introducing in (6.3) the barrier

function εtrace(D†) for some ε ∈ R>0. We next justify how the optimizer of the

approximate problem, which depends on ε, is farther than some margin from the

boundary of Sd�0 (in turn, this fact allows to insert in our optimization problem a

dummy constraint of the form D � cI, where c is what we refer to as the margin).

For Ωε(W ) = 2‖[W |
√
εId]‖∗, this is easy to see because, in view of (2.9),

D∗
1,ε :=

√
WW> + εId �

√
εId.

For Ωε(W ) = ‖[W |
√
εId]‖2

∗, we need more care and we offer next a result using the

notation for the reduced spectraplex defined in Section 2.4.

Lemma 2.37. (Dummy constraint for ε-approximate regularization under Ω(W ) =

‖W‖2
∗). Let W ∈ Rd×N be any matrix whose columns have two-norm bounded by rw.

Then, the optimizer of

min
D∈Sd

�0, trace(D)≤1,
C(W )⊆C(D)

trace
(
D†(WW> + ε I)

)
, (6.4)

(whose optimal value is ‖[W |
√
ε Id ]‖2

∗), also minimizes

min
D∈∆(cε)

trace
(
D†(WW> + ε I)

)
,
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where the margin cε of the reduced spectraplex ∆(cε) is

cε :=
√
ε

√
d
√
Nr2

w + εd
. (6.5)

Furthermore, cε in (6.5) satisfies cε ≤ 1/d for any ε,rw ∈ R>0. Hence, ∆(cε) is

nonempty for any ε,rw ∈ R>0.

Proof. In view of (2.8b) and (2.9), the optimizer of (6.4) is

D∗
2,ε :=

√
WW> + εId

trace(
√
WW> + εId)

. (6.6)

Using the inequality for the nuclear and the Frobenius norm (2.3), we have

D∗
2,ε =

√
WW> + εId

‖[W |
√
ε Id ]‖∗

≥
√
ε√

d‖[W |
√
ε Id ]‖F

Id

=
√
ε

√
d
√

‖W‖2
F +‖

√
ε Id‖2

F

Id ≥
√
ε

√
d
√
Nr2

w + εd
Id ,

where in the last two equations we have used the fact that the square Frobenius norm

is the sum of square two-norms of the columns. The second fact is trivial.

As a result, when we add the barrier terms ∑N
i=1

ε
N trace(D†

i ) to the optimiza-

tion in (6.3), the constraints Di ∈ Sd�0 and wi ∈ C(Di) can be replaced by Di � cεId.

Hence, the variational characterization of ‖[W |
√
ε Id ]‖2

∗ can be written over the

compact domain ∆(cε). Alternatively, in the case of 2‖[W |
√
ε Id ]‖∗, we saw above

that we can use the constraint Di �
√
εId to achieve the same effect. However,

because the trace constraint is now absent, we construct a compact domain contain-

ing the optimal value D∗
1,ε by introducing one more dummy constraint ‖Di‖F ≤ rε,
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with

rε :=
√
Nrw +

√
εd. (6.7)

This, together with the constraint Di �
√
εId, yields the compact domain given

by the reduced ice-cream D(
√
ε,rε). The derivation is similar to the proof of

Lemma 2.37; here we compute an upper bound as opposed to a lower bound. In both

cases, we use the fact that the columns of W are contained in the ball B̄(0, rw) ⊆ Rd.

The following results summarizes our discussion above.

Corollary 2.38. (Separable minimization with agreement constraint). Let W ∈

B̄(0, rw) and define cε as in (6.5). Then

min
W∈Rd×N

N∑
i=1

fi(wi)+γΩε(W ), (6.8)

with Ωε(W ) = ‖[W |
√
ε Id ]‖2

∗ is equal to

min
wi∈W,∀i,

Di∈∆(cε), ∀i,
Di=Dj , ∀i,j

N∑
i=1

fi(wi)+γ
N∑
i=1

(
w>
i D

−1
i wi+ ε

N trace(D−1
i )

)
. (6.9)

The analogous result is valid for Ωε(W ) = 2‖[W |
√
ε Id ]‖∗ replacing ∆(cε) by D(

√
ε,rε)

and including the penalty functions γ∑N
i=1

1
N trace(Di).

In both cases of Corollary 2.38, Weierstrass’ Theorem guarantees that the

minimum is reached since we are minimizing a continuous function over a compact

set. This leads to our first candidate dynamics.
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Distributed subgradient dynamics for nuclear optimization.

Our first coordination algorithm for the distributed optimization with nu-

clear norm (6.8) is a subgradient algorithm with proportional feedback on the

disagreement on the matrix variables:

ŵi(k+1) =wi(k)−ηk
(
gi(k)+2γDi(k)−1wi(k)

)
,

D̂i(k+1) =Di(k)−ηkγ
(

−D−1
i (k)wi(k)wi(k)>D−1

i (k)

+ α
N Id− ε

ND
−2
i (k)

)
+σ

N∑
j=1

aij,t(Dj(k)−Di(k)),

wi(k+1) =PW(ŵi(k+1)),

Di(k+1) =PD(D̂i(k+1)), (6.10)

where gi(k) ∈ ∂fi(wi(k)), for each i ∈ {1, . . . ,N}, and PW(·) and PD(·) denote the

projections onto the compact convex sets W and D. This notation allows us to

consider both approximate regularizers: for the case 2‖[W |
√
ε Id ]‖∗, the trace acts

as a penalty, i.e., α= 1, and the domain is D =D(
√
ε,rε); for the case ‖[W |

√
ε Id ]‖2

∗,

the trace acts as a constraint, i.e., α = 0, and D =∆(cε).

Remark 2.39. (Implementation of the orthogonal projections). The fact that

projections need to be orthogonal raises additional conceptual challenges. We make

here the following observations:

• If we represent the set D(c,r) as the intersection {D ∈ Sd : D � cId}∩{D ∈

Rd×d : ‖D‖F ≤ r}, then a candidate projection onto D(
√
ε,rε) can be per-

formed by the composition of a matrix square root,

P{D∈Sd :D�cId}(D) =
√

(D− cId)2 + cId,
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and, if ‖D‖F ≥ rε, the normalization step

PB̄F (0,rε)(D) := r

‖D‖F
D.

(The matrix square root can be computed efficiently using Newton method [Hig86].)

Each of these functions is an orthogonal projection onto the corresponding

set. However, each of them is guaranteed to preserve the set of the other only

if c= 0. This implies that, in general, they need to be applied iteratively.

• Similar considerations apply to the projection onto ∆(c), but in contrast

with D(c,r), the orthogonal projections onto {D ∈ Sd : D � cId}, and {D ∈

Rd×d : trace(D) ≤ 1} do not preserve each other’s corresponding sets even

when c= 0. •

6.2.2 Separable saddle-point formulation

In the previous section we have written the optimization (6.8) with approx-

imate nuclear norm regularization as a separable convex optimization with an

agreement constraint on auxiliary local matrices. Here we derive an equivalent

min-max problem that is also separable and has the advantage of enabling iterative

distributed strategies that avoid the computation of the inverse of the local ma-

trices. To achieve this aim, the next result expresses the quadratic forms w>D†w

and trace(D†) =∑d
j=1 e

>
jD

†ej as the maximum of concave functions in additional

auxiliary variables. We write these expressions using Fenchel conjugacy of quadratic

forms, and in doing this, we avoid the need to compute the pseudoinverse of D.

Proposition 2.40. (Min-max formulation via Fenchel conjugacy). For i∈ {1, . . . ,N}
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and α ∈ R≥0, let Fi : W ×Rd×d×Rd×Rd×d → R be defined by

Fi (w,D,x,Y ) := fi(w)+γ trace
(
D(−xx> − ε

N Y Y
>)
)

−2γw>x−2γ ε
N

trace(Y )+ α

N
trace(D). (6.11)

Then, the following two optimizations are equivalent

min
D∈Sd

�0,
w∈W∩C(D)

{
fi(w)+γ

(
w>D†w+ ε

N trace(D†)+ α
N trace(D)

)}

= min
w∈W,D∈Rd×d

sup
x∈Rd,Y ∈Rd×d

Fi(w,D,x,Y ). (6.12)

Moreover, the minimization on the right does not change with the addition of

the constraints D ∈ Sd�0 and w ∈ C(D) (which allows to replace the operator sup

by max).

Proof. For any w ∈ W and D ∈ Rd×d, it holds that

sup
x∈Rd

−(x>Dx+2w>x) =


w>D†w if D ∈ Sd�0 ,w ∈ C(D),

∞ otherwise.

This transformation is the same as Fenchel conjugacy up to a factor, see, e.g., [BV09,

P. 649]. When D ∈ Sd�0 and w ∈ C(D), the maximizer is x∗ = −D†w. Since

w>D†w+ ε

N
trace(D†) = w>D†w+ ε

N

d∑
j=1

e>
jD

†ej ,



163

this term can be substituted in the minimization (6.12) by

sup
x∈Rd

−(x>Dx+2w>x)+ ε

N

d∑
j=1

sup
yj∈Rd

−(yj>
Dyj +2e>

jy
j)

= sup
x∈Rd,Y ∈Rd×d

(
−x>Dx−2w>x

− ε

N
trace(DY Y >)− 2ε

N
trace(Y )

)
,

where Y = [y1| · · · |yd ] ∈ Rd×d, completing the proof.

The function w>D†w is jointly convex in the convex domain {w ∈ W , D ∈

Sd�0 : w ∈ C(D)} because it is a point-wise maximum of linear functions indexed by

x. (The function is also proper but not closed because the domain is not closed).

The same considerations apply adding the constraint trace(D) ≤ 1. We are now

ready to establish the main equivalence between optimization problems.

Corollary 2.41. (Separable min-max problem with agreement constraint).. The

optimization (6.8) with Ωε(W ) = ‖[W |
√
ε Id ]‖2

∗ is equivalent to

min
wi∈W,Di∈Rd×d,
trace(Di)≤1, ∀i,
Di=Dj ∀i,j

sup
xi∈Rd,∀i
Yi∈Rd×d,∀i

N∑
i=1

Fi(wi,Di,xi,Yi) , (6.13)

without the penalty on the trace in Fi (i.e., α= 0) for each i∈ {1, . . . ,N}. As long as

cε is given by (6.5) and W ⊆ B̄(0, rw), the constraints Di ∈∆(cε) are not necessary,

but including them allows to replace the operator sup by max. An analogous result

holds for Ωε(W ) = 2‖[W |
√
ε Id ]‖∗ when, instead of the trace constraints, one has

the penalty terms ∑N
i=1

1
N trace(Di) (i.e., α= 1). In this case, as long as rε is given

by (6.7) and W ⊆ B̄(0, rw), the constraints Di ∈ D(
√
ε,rε) are not necessary.

Proof. The proof for both cases is analogous so, for brevity, we only present it
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for Ωε(W ) = ‖[W |
√
ε Id ]‖2

∗. Introducing the constraint trace(D) ≤ 1 on both sides

of (6.12), and adding over i= 1, . . . ,N under the agreement constraint Di =Dj for

each 1 ≤ i, j ≤N , we get

min
wi∈W,∀i,

Di∈Sd
�0, trace(Di)≤1, ∀i,
wi∈C(Di), ∀i,
Di=Dj , ∀i,j

( N∑
i=1

fi(wi)

+γ
N∑
i=1

(
w>
i D

†
iwi+ ε

N trace(D†
i )
))

= min
wi∈W, ∀i,

Di∈Rd×d, trace(Di)≤1, ∀i,
Di=Dj ∀i,j

max
xi∈Rd,∀i
Yi∈Rd×d,∀i

N∑
i=1

Fi(wi,Di,xi,Yi).

On the right hand side the solution does not change if we introduce the constraints

Di ∈ Sd�0, wi ∈ C(Di) thanks to Proposition 2.40. Moreover, the solution remains

also the same by substituting both constraints on either side by D ∈∆(cε) thanks

to Lemma 2.37 as long as cε is given by (6.5) and W ∈ B̄(0, rw).

The next result establishes the existence of a saddle-point for the convex-

concave formulation of the ε-approximate minimization. For convenience, de-

fine F : WN ×∆(cε)× (Rd)N × (Rd×d)N → R as

F (www,D,xxx,YYY ) :=
N∑
i=1

Fi(wi,D,xi,Yi), (6.14)

where www := (w1, . . .wN ), xxx := (x1, . . .xN ), YYY := (Y1, . . .YN ).

Proposition 2.42. (Existence of saddle points). For W ⊆ B̄(0, rw) and D equal

to either ∆(cε) or D(
√
ε,rε), the set of saddle points of F on WN ×D × (Rd)N ×
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(Rd×d)N is nonempty and compact, and, as a consequence,

max
xi∈Rd, Yi∈Rd×d,∀i

min
wi∈W,∀i,D∈∆(cε)

N∑
i=1

Fi(wi,D,xi,Yi)

= min
wi∈W,∀i,D∈∆(cε)

max
xi∈Rd, Yi∈Rd×d,∀i

N∑
i=1

Fi(wi,D,xi,Yi).

(The agreement constraints Di = Dj for all i, j ∈ {1, . . . ,N} are written implic-

itly because the existence of saddle-points is established within those agreement

constraints.)

Proof. We use the Saddle-Point Theorem [BNO03, Thm. 2.6.9, p. 150]. First

we need to verify the hypotheses of [BNO03, Assumption 2.6.1, p. 144]. For

each (xxx,Y ) ∈ (Rd)N ×(Rd×d)N , we introduce the function txxx,YYY : WN ×D →R∪{∞}

defined by

txxx,YYY (www,D) :=


F (www,D,xxx,YYY ) if (www,D) ∈ WN ×D,

∞ if (www,D) /∈ WN ×D,

and for each (www,D) ∈ WN ×D, we introduce the function rwww,D : (Rd)N ×(Rd×d)N →

R∪∞ given by

rwww,D(xxx,YYY ) := −F (www,D,xxx,YYY ).

We observe that for each (xxx,YYY ) ∈ (Rd)N × (Rd×d)N , the function txxx,YYY is closed and

convex, and similarly, for each (www,D) ∈ WN ×D, the function rwww,D is also closed

and convex. Hence the aforementioned assumption holds. Going back to [BNO03,

Thm. 2.6.9, p. 150], we verify that the set WN ×D is compact, and the last step is
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to show that there exists (w̄ww,D̄) ∈ WN ×D and α ∈ R such that the level set

{(xxx,YYY ) ∈ (Rd)N × (Rd×d)N : F (w̄ww,D̄,xxx,YYY ) ≥ α} (6.15)

is nonempty and compact. We first prove that is closed, then that is bounded,

and finally that is nonempty for some α ∈ R. The level set is closed because

F is continuous. To show that is bounded, we will prove that it is contained

in a ball. For this, we use [Ber05, Prop 8.4.13] on the trace of a product of a

symmetric matrix and a positive semidefinite matrix, which can be bounded as

trace(D̄Y Y >) ≤ λmax(D̄)trace(Y Y >) ≤ trace(Y Y >) = ‖Y ‖2
F because trace(D̄) ≤ 1

and D̄ � 0, and similarly we bound x>D̄x≤ ‖x‖2
2. Therefore,

F (w̄ww,D̄,xxx,YYY )−
N∑
i=1

fi(w̄i)

=γ
N∑
i=1

(
trace

(
D̄(−xix>

i − ε
N YiY

>
i + α

N )
)

−2w̄>
i xi−2 ε

N trace(Yi)
)

≥ −γ
N∑
i=1

(
‖xi‖2

2 + ε
N ‖Yi‖2

F + αd
N +2w̄>

i xi+2 ε
N trace(Yi)

)

≥ −γ
N∑
i=1

(
2‖xi‖2

2 + r2
w +2 ε

N ‖Yi‖2
F +(α+ ε) dN

)
,

where in the last inequality we have used that 2trace(Y ) ≤ d+trace(Y Y >), which

follows because

0 ≤‖Id−Y ‖2
F = trace(I−Y )(I−Y >)

= trace(Id+Y Y > −Y −Y >) = d+‖Y ‖2
F −2trace(Y ),

and, similarly, 2w̄>
i x≤ ‖w̄i‖2

2 +‖x‖2
2 ≤ r2

w +‖x‖2
2. Therefore, the level set in (6.15)
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is contained in the set

{
(xxx,YYY ) ∈ (Rd)N × (Rd×d)N :

c∗ −γ
N∑
i=1

(
2‖xi‖2

2 + r2
w +2 ε

N ‖Yi‖2
F + ε

N d
)

≥ α
}
, (6.16)

where c∗ := minwww∈WN
∑N
i=1 fi(wi). Note that c∗ is well defined thanks to Weierstrass’

Theorem. The boundedness of the set (6.15) then follows because the super set (6.16)

is bounded for any α ∈ R (although it may be empty). Finally, we need to find some

α for which the level set in (6.15) is nonempty. For this, note that the point (xxx,YYY ) =

(0Nd,0d×Nd) belongs to the level set (6.15) for α≤∑N
i=1 fi(w̄i) = F (w̄ww,D̄,0,0). (We

could have shown that in fact for any (x̄xx, ȲYY ) ∈ (Rd)N × (Rd×d)N there exists ᾱ such

that (x̄xx, ȲYY ) is in the level set of level ᾱ, but this is not required.)

The above discussion leads us to introduce our second candidate dynamics.

Distributed saddle-point dynamics for nuclear optimization.

Our second coordination algorithm for the distributed optimization with nu-

clear norm (6.8) is a saddle-point subgradient dynamics with proportional feedback

on the disagreement of a subset of the variables:

wi(k+1) =PW
(
wi(k)−ηk

(
gi(k)−2γxi(k)

))
,

Di(k+1) =PD

(
Di(k)−ηkγ

(
−xix

>
i − ε

N YiY
>
i + α

N Id
)

+σ
N∑
j=1

aij,t(Dj(k)−Di(k))
)
,

xi(k+1) =xi(k)+ηkγ
(

−2Dixi(k)−2wi(k)
)
,

Yi(k+1) =Yi(k)+ηkγ
(

− 2ε
N
Di(k)Yi(k)− 2ε

N
Id
)
, (6.17)
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where gi(k) ∈ ∂fi(wi(k)), for each i ∈ {1, . . . ,N}, and PW(·) and PD(·) denote

the projections onto the compact convex sets W and D. For the case of the

regularizer 2‖[W |
√
ε Id ]‖∗ we set α = 1 and D = D(

√
ε,rε), and for the regularizer

‖[W |
√
ε Id ]‖2

∗, we set α = 0 and D =∆(cε).

6.3 Convergence analysis

The convergence result of the distributed strategies (6.10) and (6.17) follows

from Theorem 2.32, as we outline next.

Theorem 3.43. (Convergence of the coordination algorithms (6.10) and (6.17)).

Let the convex compact set W ⊆ Rd be contained in B̄(0, rw) and let the bounds cε

and rε be defined as in (6.5) and (6.7). Assume that each dynamics evolves over a

sequence {Gt}t≥1 of B-jointly connected, δ-nondegenerate, weight-balanced digraphs

with uniformly bounded Laplacian eigenvalues. Let σ be as follows: for any δ̃′ ∈ (0,1),

let δ̃ := min
{
δ̃′, (1− δ̃′) δ

dmax

}
, where dmax := max

{
dout,t(j) : j ∈ I, t ∈ Z≥1

}
, and

choose

σ ∈
[
δ̃

δ
,

1− δ̃

dmax

]
.

Assume also that the learning rates be chosen according to the Doubling Trick

in Assumption 2.31. Then both the dynamics (6.10) and (6.17) converge to an

optimizer of (6.8). The evaluation error with respect to any minimum of (6.9), or

with respect to any saddle point of the convex-concave function (6.13), is proportional

to 1/
√
t.

Proof. The convergence result for both dynamics follows from the results in The-

orem 2.32. Regarding the dynamics (6.17), the hypotheses of Theorem 2.32 are
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satisfied as we summarize next: the existence of a saddle point is proved in Propo-

sition 2.42; the evolution of the estimates {wi(k)}Ni=1 and {Di(k)}Ni=1 in (6.17) is

uniformly bounded thanks to the projections onto the compact sets W and ∆(cε).

On the other hand, the auxiliary states {xi(k)}Ni=1 and {Yi(k)}Ni=1 are uniformly

bounded by virtue of Proposition 3.44 below. As a consequence of the bounded

evolution of the dynamics (6.17), one can also construct bounds for the subgra-

dients of each convex-concave function Fi. The other assumptions regarding the

communication graphs and the choice of the design parameters σ and the learning

rates {ηt}t≥1 complete the hypotheses in Theorem 2.32. The convergence follows

similarly from this result for the dynamics (6.10), which is also a particular case of

the general dynamics (5.6).

The proof of correctness above requires the evolution of the estimates of

the dynamics to be bounded. In particular, the current analysis establishes the

boundedness of the auxiliary states {xi(k)}Ni=1 and {Yi(k)}Ni=1 in the dynamics (6.17)

by heavily relying on the fact that wi(k) ∈ B̄(0, rw) and Di(k) � cId for all k ≥ 1.

Precisely, we use the latter to show the input-to-state stability (ISS) property

(see [JSW99]) of the system

xk+1 =xk +ηkγ
(

−2Dkxk −2wk
)
, (6.18a)

Yk+1 =Yk +ηkγ
(

− 2ε
N
DkYk − 2ε

N
Fk
)
, (6.18b)

for arbitrary sequences of disturbances {wk}k≥1 ⊂ Rd and {Fk}k≥1 ⊂ Rd×d, where

Dk � cId.

Proposition 3.44. (ISS Lyapunov function for the auxiliary states in (6.17)).

Assume Dk � cId and ‖Dk‖2 ≤ r for some c ∈ R>0 and r ∈ [1,∞), respectively, and
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let {ηk} ⊂ R>0 be any sequence of learning rates such that

ηk ≤ min
{
c−κ

4γr2 ,
N(c−κ)

4γεr2

}
, (6.19)

for some κ ∈ (0, c) for all k ≥ 1. Then, the function ‖ · ‖2
2 is an ISS-Lyapunov

function for the evolution of xk in (6.18a) when {wk}k≥1 ⊂ Rd is considered as a

sequence of disturbances,

‖xk+1‖2
2 ≤

(
1−ηkγκ

)
‖xk‖2

2 +
(
8η2
kγ

2 + ηkγ

κ

)
‖wk‖2

2 ,

for all k ≥ 1. Similarly, the function ‖ · ‖2
F is an ISS Lyapunov function for the

evolution of Yk in (6.18b) under the sequence of disturbances {Fk}k≥1 ⊂ Rd×d,

‖Yk+1‖2
F ≤

(
1− ηkγκε

N

)
‖Yk‖2

F +
(8η2

kγ
2ε2

N2 + ηkγε

κN

)
‖Fk‖2

F ,

for all k ≥ 1.

Proof. Taking the square norm on both sides of the dynamics (6.18a), we get

‖xk+1‖2
2 =‖xk +ηkγ

(
−2Dkxk −2wk

)
‖2

2

=‖xk‖2
2 +4η2

kγ
2‖Dkxk +wk‖2

2 −2ηkγx>
k (Dkxk +wk).

Next we use Young’s inequality, 2x>w ≤ κ‖x‖2
2 + 1

κ‖w‖2
2, for any κ ∈ R>0 and all

x,w ∈ Rd,

‖xk+1‖2
2 −‖xk‖2

2 ≤η2
kγ

2‖Dkxk +wk‖2
2 −2ηkγx>

kDkxk

+ηkγκ‖xk‖2
2 + ηkγ

κ
‖wk‖2

2

≤ −ηkγ
(
2c−κ−8ηkγr2

)
‖xk‖2

2 +
(
8η2
kγ

2 + ηkγ

κ

)
‖wk‖2

2 , (6.20)
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where in the last inequality we have used that Dk � cId and also

‖Dkxk +wk‖2
2 ≤2‖Dkxk‖2

2 +2‖wk‖2
2

≤2‖Dk‖2
2‖xk‖2

2 +2‖wk‖2
2 ≤ 2max{1, r2}‖xk‖2

2 +2‖wk‖2
2 ,

which follows by Young’s inequality. The first term in the minimum of (6.19) comes

then from imposing the condition 2c−κ−8ηkγr2 ≥ κ in (6.20).

We derive the analogous result for the dynamics (6.18a) using the Frobe-

nius norm ‖ · ‖F in place of the Euclidean norm ‖ · ‖2 and using the inequality

trace(D>W ) ≤ κ‖D‖2
F + 1

κ‖W‖2
2. (This inequality is the same as for vectors be-

cause the Frobenius norm of a matrix is the Euclidean norm of the vectorization of

the matrix and the trace of the product of two matrices is the same as the scalar

product of the vectorization of the matrices.)

‖Yk+1‖2
F =‖Yk‖2

F + 4η2
kγ

2ε2

N2 ‖DkYk +Fk‖2
F

− 2ηkγε
N

trace
(
Y >
k (DkYk +Fk)

)

so, using that −trace(Y >
k DkYk) ≤ −c‖Yk‖F ,

‖Yk+1‖2
F −‖Yk‖2

F ≤ 4η2
kγ

2ε2

N2 ‖DkYk +Fk‖2
F

− 2ηkγε
N

trace
(
Y >
k DkYk

)
+ ηkγκε

N
‖Yk‖2

F + ηkγε

κN
‖Fk‖2

F

≤ − ηkγε

N

(
2c−κ−8ηkγεr

2

N

)
‖Yk‖2

F +
(8η2

kγ
2ε2

N2 + ηkγε

κN

)
‖Fk‖2

F ,

(6.21)
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where in the last inequality we have used again that Dk � cId and also

‖DkYk +Fk‖2
F ≤2‖DkYk‖2

F +2‖Fk‖2
F

≤2‖Dk‖2
F‖Yk‖2

F +2‖Fk‖2
2 ≤ 2max{1, r2}‖Yk‖2

F +2‖Fk‖2
F ,

which follows by Young’s inequality as above. The second term in the minimum

of (6.19) comes from imposing 2c−κ−8ηkγεr
2

N ≥ κ in (6.21).

As a consequence of the above result, the dynamics of xk and Yk in (6.18)

are ISS [JSW99, Lemma 3.5 and Remark 3.6]. The ISS property in turn implies

the uniform boundedness of the auxiliary states because in the dynamics (6.17),

we have wk ∈ B̄(0, rw) and Fk = Id for all k ≥ 1.

6.4 Simulation example

Here we illustrate the performance of the distributed saddle-point algo-

rithm (6.17) on a matrix completion problem, cf. Section 6.1.2. The matrix

Z ∈ R8×20 has rank 2 and each agent is assigned a column. From each column,

only 5 entries have been revealed, and with this partial information, and with-

out knowledge about the rank of Z, the agents execute the coordination algo-

rithm (6.17) to solve the optimization (6.2). In this application each local function

fi(wi) = ∑
j∈Υi

(Wji−Zji)2 is not strongly convex, but just convex, in line with

the hypotheses of Theorem 3.43. Figure 6.1 illustrates the matrix fitting error, the

evolution of the network cost function, and the disagreement of the local auxiliary

matrices.
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6.5 Discussion

We have considered a class of optimization problems that involve the joint

minimization over a set of local variables of a sum of convex functions together

with a regularizing term that favors sparsity patterns in the resulting aggregate

solution. Particular instances of these optimization problems include multi-task

feature learning and matrix completion. We have exploited the separability prop-

erty of a variational characterization of the nuclear norm to design two types

of provably-correct distributed coordination algorithms. Our analysis relies on

the body of work on distributed convex optimization and saddle-point dynamics.

To the best of our knowledge, the proposed coordination algorithms are the first

distributed dynamics for convex optimization with nuclear-norm regularization.
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Figure 6.1: Simulation example of nuclear norm regularization for distributed
low-rank matrix completion. Here we represent the evolution of algorithm (6.17)
(magenta solid line). In the top we represent the matrix fitting error; in the center,
the evolution of network cost function, and, in the bottom, the disagreement of the
local matrices. The comparison is made with respect to a standard subgradient
descent algorithm (blue dashed line) with constant gradient stepsize equal to
0.1. (The subgradient of the nuclear norm employed therein takes the form
UrV >

r ∈ ∂‖W (k)‖∗, where UrΣrV >
r is the reduced singular value decomposition

of W (k).) The optimization parameter weighting the nuclear norm is γ = 2, and
the parameter of the approximate regularization is ε = 10−3. We use as constraint
set W = B̄(0, rw) with rw = 800. In the distributed algorithm, the constraint set
for the auxiliary matrices is D = D(

√
ε,rε), the consensus stepsize is σ = 0.5, and

the communication topology is a ring connecting the 20 agents. Our algorithm
is slower because it halves the learning rates (subgradient stepsizes) according to
the doubling trick. This is necessary for asymptotic convergence in Theorem 3.43,
in sharp contrast with standard (centralized) gradient descent that uses constant
subgradient stepsize. The third plot shows the disagreement among the auxiliary
matrices for our distributed algorithm. For decreasing learning rates, which is
our case, the disagreement is guaranteed to converge to zero.



Chapter 7

pth moment noise-to-state

stability of stochastic differential

equations with persistent noise

We devote our last chapter to the stability properties of stochastic differential

equations subject to persistent noise (including the case of additive noise), which is

noise that is present even at the equilibria of the underlying differential equation

and does not decay with time. A condensed version of the main result of this

chapter was presented earlier in Section 2.6 because of its application to our

continuous-time distributed algorithm with noisy communication channels. The

class of systems we consider exhibit disturbance attenuation outside a closed,

not necessarily bounded, set. We identify conditions, based on the existence of

Lyapunov functions, to establish the noise-to-state stability in probability and in

pth moment of the system with respect to a closed set. As part of our analysis,

we study the concept of two functions being proper with respect to each other

formalized via pair of inequalities with comparison functions. We show that such

175
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inequalities define several equivalence relations for increasingly strong refinements

on the comparison functions. We also provide a complete characterization of the

properties that a pair of functions must satisfy to belong to the same equivalence

class. This characterization allows us to provide checkable conditions to determine

whether a function satisfies the requirements to be a strong NSS-Lyapunov function

in probability or a pth moment NSS-Lyapunov function.

7.1 Basic notions

We start with the basic definitions following [Mao11] with slightly more

detail than in Chapter 2.

7.1.1 Brownian motion

Throughout the chapter, we assume that (Ω,F ,{Ft}t≥0,P) is a complete

probability space, where P is a probability measure defined on the σ-algebra F ,

which contains all the subsets of Ω of probability 0. The filtration {Ft}t≥0 is a

family of sub-σ-algebras of F satisfying Ft ⊆ Fs ⊆ F for any 0 ≤ t < s < ∞; we

assume it is right continuous, i.e., Ft = ∩s>tFs for any t≥ 0, and F0 contains all

the subsets of Ω of probability 0. The Borel σ-algebra in Rn, denoted by Bn, or

in [t0,∞), denoted by B([t0,∞)), are the smallest σ-algebras that contain all the

open sets in Rn or [t0,∞), respectively. A function X : Ω → Rn is F -measurable if

the set {ω ∈ Ω :X(ω) ∈ A} belongs to F for any A ∈ Bn. We call such function a

(F -measurable) Rn-valued random variable. If X is a real-valued random variable

that is integrable with respect to P, its expectation is E[X] =
∫
ΩX(ω)dP(ω). A

function f : Ω× [t0,∞) → Rn is F ×B-measurable (or just measurable) if the set

{(ω,t) ∈ Ω× [t0,∞) : f(ω,t) ∈A} belongs to F ×B([t0,∞)) for any A∈ Bn. We call
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such function an {Ft}-adapted process if f(., t) : Ω → Rn is Ft-measurable for every

t≥ t0. At times, we omit the dependence on “ω”, in the sense that we refer to the

indexed family of random variables, and refer to the random process f = {f(t)}t≥t0 .

We define L1([t0,∞);Rn) as the set of all Rn-valued measurable {Ft}-adapted

processes f such that P({ω ∈ Ω :
∫ T
t0 ‖f(ω,s)‖2 ds < ∞}) = 1 for every T > t0.

Similarly, L2([t0,∞);Rn×m) denotes the set of all Rn×m-matrix-valued measurable

{Ft}-adapted processes G such that P({ω ∈ Ω :
∫ T
t0 ‖G(ω,s)‖2

F ds < ∞}) = 1 for

every T > t0.

A one-dimensional Brownian motion B : Ω × [t0,∞) → R defined in the

probability space (Ω,F ,{Ft}t≥0,P) is an {Ft}-adapted process such that

• P({ω ∈ Ω : B(ω,t0) = 0}) = 1;

• the mapping B(ω, .) : [t0,∞) → R, called sample path, is continuous also with

probability 1;

• the increment B(., t)−B(., s) : Ω → R is independent of Fs for t0 ≤ s < t <∞

(i.e., if Sb , {ω ∈ Ω : B(ω,t)−B(ω,s) ∈ (−∞, b)}, for b ∈ R, then P(A∩Sb) =

P(A)P(Sb) for all A∈ Fs and all b∈R). In addition, this increment is normally

distributed with zero mean and variance t− s.

An m-dimensional Brownian motion B : Ω × [t0,∞) → Rm is given by

B(ω,t) = [B1(ω,t), . . . ,Bm(ω,t)]>, where each Bi is a one-dimensional Brownian

motion and, for each t≥ t0, the random variables B1(t), ...,Bm(t) are independent.

7.1.2 Stochastic differential equations

Here we review some basic notions on stochastic differential equations (SDEs)

following [Mao11]; other useful references are [Kha12, Ö10, Mov11]. Consider the
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n-dimensional SDE

dx(ω,t) = f
(
x(ω,t), t

)
dt+G

(
x(ω,t), t

)
Σ(t)dB(ω,t), (7.1)

where x(ω,t) ∈ Rn is a realization at time t of the random variable x(., t) : Ω → Rn,

for t ∈ [t0,∞). The initial condition is given by x(ω,t0) = x0 with probability 1

for some x0 ∈ Rn. The functions f : Rn× [t0,∞) → Rn, G : Rn× [t0,∞) → Rn×q,

and Σ : [t0,∞) → Rq×m are measurable. The functions f and G are regarded as a

model for the architecture of the system and, instead, Σ is part of the model for

the stochastic disturbance; at any given time Σ determines a linear transformation

of the m-dimensional Brownian motion {B(t)}t≥t0 , so that at time t≥ t0 the input

to the system is the process {Σ(t)B(t)}t≥t0 , with covariance
∫ t
t0 Σ(t)Σ(t)>ds. The

distinction between the roles of G and Σ is irrelevant for the SDE; both together

determine the effect of the Brownian motion. The integral form of (7.1) is given by

x(ω,t) = x0 +
∫ t

t0
f
(
x(ω,s), s

)
ds+

∫ t

t0
G
(
x(ω,s), s

)
Σ(s)dB(ω,s),

where the second integral is an stochastic integral [Mao11, p. 18]. A Rn-valued

random process {x(t)}t≥t0 is a solution of (7.1) with initial value x0 if

(i) is continuous with probability 1, {Ft}-adapted, and satisfies x(ω,t0) = x0

with probability 1,

(ii) the processes {f(x(t), t)}t≥t0 and {G(x(t), t)}t≥t0 belong to L1([t0,∞);Rn)

and L2([t0,∞);Rn×m) respectively, and

(iii) equation (7.1) holds for every t≥ t0 with probability 1.

A solution {x(t)}t≥t0 of (7.1) is unique if any other solution {x̄(t)}t≥t0 with x̄(t0) =

x0 differs from it only in a set of probability 0, that is, P(
{
x(t) = x̄(t) ∀ t≥ t0

}
) = 1.
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We make the following assumptions on the objects defining (7.1) to guarantee

existence and uniqueness of solutions.

Assumption 1.45. We assume Σ is essentially locally bounded. Furthermore, for

any T > t0 and n≥ 1, we assume there exists KT,n > 0 such that, for almost every

t ∈ [t0,T ] and all x,y ∈ Rn with max
{
‖x‖2,‖y‖2

}
≤ n,

max
{

‖f(x,t)−f(y, t)‖2
2 , ‖G(x,t)−G(y, t)‖2

F

}
≤KT,n‖x−y‖2

2.

Finally, we assume that for any T > t0, there exists KT > 0 such that, for almost

every t ∈ [t0,T ] and all x ∈ Rn, x>f(x,t)+ 1
2‖G(x,t)‖2

F ≤KT (1+‖x‖2
2).

According to [Mao11, Th. 3.6, p. 58], Assumption 1.45 is sufficient to

guarantee global existence and uniqueness of solutions of (7.1) for each initial

condition x0 ∈ Rn.

We conclude this section by presenting a useful operator in the stability

analysis of SDEs. Given a function V ∈ C2(Rn;R≥ 0), we define the generator of (7.1)

acting on the function V as the mapping L[V] : Rn× [t0,∞) → R given by

L[V](x,t) , ∇V(x)>f(x,t)+ 1
2 trace

(
Σ(t)>G(x,t)>∇2V(x)G(x,t)Σ(t)

)
. (7.2)

It can be shown that L[V](x,t) gives the expected rate of change of V along a

solution of (7.1) that passes through the point x at time t, so it is a generalization

of the Lie derivative. According to [Mao11, Th. 6.4, p. 36], if we evaluate V along

the solution {x(t)}t≥t0 of (7.1), then the process {V(x(t))}t≥t0 satisfies the new

SDE

V(x(t)) = V(x0)+
∫ t

t0
L[V](x(s), s)ds+

∫ t

t0
∇V(x(s))>G(x(s), s)Σ(s)dB(s). (7.3)
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Equation (7.3) is known as Itô’s formula and corresponds to the stochastic version

of the chain rule.

7.2 Noise-to-state stability via noise-dissipative

Lyapunov functions

In this section, we study the stability of stochastic differential equations

subject to persistent noise. Our first step is the introduction of a novel notion of

stability. This captures the behavior of the pth moment of the distance (of the

state) to a given closed set, as a function of two objects: the initial condition and

the maximum size of the covariance. After this, our next step is to derive several

Lyapunov-type stability results that help determine whether a stochastic differential

equation enjoys these stability properties. The following definition generalizes the

concept of noise-to-state stability given in [DK00].

Definition 2.46. (Noise-to-state stability with respect to a set). The system (7.1)

is noise-to-state stable (NSS) in probability with respect to the set U ⊆ Rn if for

any ε > 0 there exist µ ∈ KL and θ ∈ K (that might depend on ε), such that

P
{

|x(t)|pU > µ
(
|x0|U , t− t0

)
+ θ

(
esssup
t0≤s≤t

‖Σ(s)‖F

)}
≤ ε, (7.4)

for all t≥ t0 and any x0 ∈ Rn. And the system (7.1) is pth moment noise-to-state

stable (pthNSS) with respect to U if there exist µ ∈ KL and θ ∈ K, such that

E
[
|x(t)|pU

]
≤ µ

(
|x0|U , t− t0

)
+ θ

(
esssup
t0≤s≤t

‖Σ(s)‖F

)
, (7.5)

for all t≥ t0 and any x0 ∈ Rn. The gain functions µ and θ are the overshoot gain
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and the noise gain, respectively.

The quantity ‖Σ(t)‖F =
√

trace
(
Σ(t)Σ(t)>

)
is a measure of the size of the

noise because it is related to the infinitesimal covariance Σ(t)Σ(t)>. The choice of

the pth power is irrelevant in the statement in probability since one could take any

K∞ function evaluated at |x(t)|U . However, this would make a difference in the

statement in expectation. (Also, we use the same power for convenience.) When

the set U is a subspace, we can substitute |.|U by ‖.‖A, for some matrix A ∈ Rm×n

with N (A) = U . In such a case, the definition above does not depend on the choice

of the matrix A.

Remark 2.47. (NSS is not a particular case of ISS). The concept of NSS is not a

particular case of input-to-state stability (ISS) [Son08] for systems that are affine

in the input, namely,

ẏ = f(y, t)+G(y, t)u(t) ⇔ y(t) = y(t0)+
∫ t

t0
f(y(s), s)ds+

∫ t

t0
G(y(s), s)u(s)ds,

where u : [t0,∞) → Rq is measurable and essentially locally bounded [Son98, Sec.

C.2]. The reason is the following: the components of the vector-valued function∫ t
t0G(y(s), s)u(s)ds are differentiable almost everywhere by the Lebesgue fundamen-

tal theorem of calculus [MW99, p. 289], and thus absolutely continuous [MW99,

p. 292] and with bounded variation [MW99, Prop. 8.5]. On the other hand, at

any time previous to tk(t) , min{t, inf {s≥ t0 : ‖x(s)‖2 ≥ k}}, the driving distur-

bance of (7.1) is the vector-valued function
∫ tk(t)
t0 G(x(s), s)Σ(s)dB(s), whose ith

component has quadratic variation [Mao11, Th. 5.14, p. 25] equal to

∫ tk(t)

t0

m∑
j=1

|
q∑
l=1

G(x(s), s)ilΣ(s)lj |2ds > 0.
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Since a continuous process that has positive quadratic variation must have infinite

variation [Kle05, Th. 1.10], we conclude that the driving disturbance in this case is

not allowed in the ISS framework. •

Our first goal now is to provide tools to establish whether a stochastic differ-

ential equation enjoys the noise-to-state stability properties given in Definition 2.46.

To achieve this, we look at the dissipativity properties of a special kind of energy

functions along the solutions of (7.1).

Definition 2.48. (Noise-dissipative Lyapunov function). A function V ∈ C2(Rn;R≥ 0)

is a noise-dissipative Lyapunov function for (7.1) if there exist W ∈ C(Rn;R≥ 0),

σ ∈ K, and concave η ∈ K∞ such that

V(x) ≤ η(W(x)), (7.6)

for all x ∈ Rn, and the following dissipation inequality holds:

L[V](x,t) ≤ −W(x)+σ
(
‖Σ(t)‖F

)
, (7.7)

for all (x,t) ∈ Rn× [t0,∞).

Remark 2.49. (Itô formula and exponential dissipativity). Interestingly, the

conditions (7.6) and (7.7) are equivalent to

L[V](x,t) ≤ −η−1(V(x))+σ
(
‖Σ(t)‖F

)
, (7.8)

for all x ∈ Rn, where η−1 ∈ K∞ is convex. Note that, since L[V] is not the Lie

derivative of V (as it contains the Hessian of V), one cannot directly deduce
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from (7.8) the existence of a continuously twice differentiable function Ṽ such that

L[Ṽ](x,t) ≤ −cṼ(x)+ σ̃
(
‖Σ(t)‖F

)
, (7.9)

as instead can be done in the context of ISS, see e.g. [PW96]. •

Example 2.50. (A noise-dissipative Lyapunov function). Assume that h : Rn → R

is continuously differentiable and verifies

γ(‖x−x′‖2
2) ≤ (x−x′)>(∇h(x)−∇h(x′)) (7.10)

for some convex function γ ∈ K∞ for all x,x′ ∈ Rn. In particular, this implies that h

is strictly convex. (Incidentally, any strongly convex function verifies (7.10) for

some choice of γ linear and strictly increasing.) Consider now the dynamics

dx(ω,t) = −
(
δLx(ω,t)+∇h(x(ω,t))

)
dt+Σ(t)dB(ω,t), (7.11)

for all t ∈ [t0,∞), where x(ω,t0) = x0 with probability 1 for some x0 ∈ Rn, and

δ > 0. Here, the matrix L ∈ Rn×n is symmetric and positive semidefinite, and

the matrix-valued function Σ : [t0,∞) → Rn×m is continuous. This dynamics

corresponds to the SDE (7.1) with f(x,t) , −δLx−∇h(x) and G(x,t) , In for all

(x,t) ∈ Rn× [t0,∞).

Let x∗ ∈Rn be the unique solution of the Karush-Kuhn-Tucker [BV09] condi-

tion δLx∗ = −∇h(x∗), corresponding to the unconstrained minimization of F (x) ,
δ
2x

>Lx+h(x). Consider then the candidate Lyapunov function V ∈ C2(Rn;R≥ 0)
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given by V(x) , 1
2(x−x∗)>(x−x∗). Using (7.2), we obtain that, for all x ∈ Rn,

L[V](x,t) = −(x−x∗)>
(
δLx+∇h(x)

)
+ 1

2 trace
(

Σ(t)>Σ(t)
)

= −δ(x−x∗)>L(x−x∗)− (x−x∗)>
(

∇h(x)−∇h(x∗)
)

+ 1
2‖Σ(t)‖2

F

≤ −γ(‖x−x∗‖2
2)+ 1

2‖Σ(t)‖2
F .

We note that W ∈ C(Rn;R≥ 0) defined by W(x) , γ(‖x−x∗‖2
2) verifies

V(x) = 1
2γ

−1
(
W(x)

)
∀x ∈ Rn,

where γ−1 is concave and belongs to the class K∞ as explained in Section 2.2.1.

Therefore, V is a noise-dissipative Lyapunov function for (7.11), with concave

η ∈ K∞ given by η(r) = 1/2γ−1(r) and σ ∈ K given by σ(r) , 1/2r2. •

The next result generalizes [DKW01, Th. 4.1] to positive semidefinite

Lyapunov functions that satisfy weaker dissipativity properties (cf. (7.8)) than the

typical exponential-like inequality (7.9), and characterizes the overshoot gain.

Theorem 2.51. (Noise-dissipative Lyapunov functions have an NSS dynamics).

Under Assumption 1.45, and further assuming that Σ is continuous, suppose that V

is a noise-dissipative Lyapunov function for (7.1). Then,

E
[
V(x(t))

]
≤ µ̃

(
V(x0), t− t0

)
+η

(
2σ
(

max
t0≤s≤t

‖Σ(s)‖F

))
, (7.12)

for all t ≥ t0, where the class KL function (r,s) 7→ µ̃(r,s) is well defined as the

solution y(s) to the initial value problem

ẏ(s) = −1
2η

−1(y(s)), y(0) = r. (7.13)
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Proof. Recall that Assumption 1.45 guarantees the global existence and uniqueness

of solutions of (7.1). Given the process {V(x(t))}t≥t0 , the proof strategy is to

obtain a differential inequality for E
[
V(x(t))

]
using Itô formula (7.3), and then use

a comparison principle to translate the problem into one of standard input-to-state

stability for an appropriate choice of the input.

To carry out this strategy, we consider Itô formula (7.3) with respect to an

arbitrary reference time instant t′ ≥ t0,

V(x(t)) = V(x(t′))+
∫ t

t′
L[V](x(s), s)ds+

∫ t

t′
∇V(x(s))>G(x(s), s)Σ(s)dB(s),

(7.14)

and we first ensure that the expectation of the integral against Brownian motion

is 0. Let Sk = {x ∈ Rn : ‖x‖2 ≤ k} be the ball of radius k centered at the origin.

Fix x0 ∈ Rn and denote by τk the first exit time of x(t) from Sk for integer values of

k greater than ‖x(t0)‖2, namely, τk , inf {s≥ t0 : ‖x(s)‖2 ≥ k}, for k > d‖x(t0)‖2e.

Since the event {ω ∈ Ω : τk ≤ t} belongs to Ft for each t≥ t0, it follows that τk is an

{Ft}-stopping time for each t≥ t0. Now, for each k fixed, if we consider the random

variable tk(t) , min{t, τk} and define I(t′, t) as the stochastic integral in (7.14) for

any fixed t′ ∈ [t0, tk(t)], then the process I(t′, tk(t)) has zero expectation as we

show next. The function X : Sk × [t′, t] → R given by X(x,s) , ∇V(x)>G(x,s)Σ(s)

is essentially bounded (in its domain), and thus E
[∫ t
t′ 1[t′,tk(t)](s)X(x(s), t)2 ds

]
<

∞, where 1[t′,tk(t)](s) is the indicator function of the set [t′, tk(t)]. Therefore,

E
[
I(t′, tk(t))

]
= 0 by [Mao11, Th. 5.16, p. 26]. Define now V̄(t) , E

[
V(x(t))

]
and W̄(t) , E

[
W(x(t))

]
in Γ(t0) , {t ≥ t0 : V̄(t) < ∞}. By the above, taking
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expectations in (7.14) and using (7.7), we obtain that

V̄(tk(t)) = V̄(t′)+E
[ ∫ tk(t)

t′
L[V](x(s), s)ds

]
≤ V̄(t′)−E

[ ∫ tk(t)

t′
W(x(s))ds

]
+E

[∫ tk(t)

t′
σ(‖Σ(s)‖F)ds

]
(7.15)

for all t ∈ Γ(t0) and any t′ ∈ [t0, tk(t)]. Next we use the fact that V is continuous

and {x(t)}t≥t0 is also continuous with probability 1. In addition, according to

Fatou’s lemma [MW99, p. 123] for convergence in the probability measure, we get

that

V̄(t) =E
[
V(x(liminf

k→∞
tk(t)))

]
= E

[
liminf
k→∞

V(x(tk(t)))
]

(7.16)

≤ liminf
k→∞

E
[
V(x(tk(t)))

]
= liminf

k→∞
V̄(tk(t))

for all t ∈ Γ(t0). Moreover, using the monotone convergence [MW99, p. 176] when

k→ ∞ in both Lebesgue integrals in (7.15) (because both integrands are nonnegative

and 1[t′,tk(t)] converges monotonically to 1[t′,t] as k → ∞ for any t′ ∈ [t0, tk(t)]), we

obtain from (7.16) that

V̄(t) ≤ V̄(t′)−E
[ ∫ t

t′
W(x(s))ds

]
+
∫ t

t′
σ(‖Σ(s)‖F)ds (7.17)

for all t ∈ Γ(t0) and any t′ ∈ [t0, t]. Before resuming the argument we make two

observations. First, applying Tonelli’s theorem [MW99, p. 212] to the nonnegative

process {W(x(s))}s≥t′ , it follows that

E
[ ∫ t

t′
W(x(s))ds

]
=
∫ t

t′
W̄(x(s))ds. (7.18)
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Second, using (7.6) and Jensen’s inequality [Bor95, Ch. 3], we get that

V̄(t) = E
[
V(x(t))

]
≤ E

[
η(W(x(t)))

]
≤ η

(
E
[
W(x(t))

])
= η

(
W̄(t)

)
, (7.19)

because η is concave, so W̄(t) ≥ η−1(V̄(t)). Hence, (7.17) and (7.18) yield

V̄(t) ≤ V̄(t′)−
∫ t

t′
W̄(s)ds+

∫ t

t′
σ(‖Σ(s)‖F)ds

≤ V̄(t′)+
∫ t

t′

(
−η−1(V̄(s))+σ(‖Σ(s)‖F)

)
ds (7.20)

for all t ∈ Γ(t0) and any t′ ∈ [t0, t], which in particular shows that Γ(t0) can be

taken equal to [t0,∞).

Now the strategy is to compare V̄ with the unique solution of an ordinary

differential equation that represents an input-to-state stable (ISS) system. First we

leverage the integral inequality (7.20) to show that V̄ is continuous in [t0,∞), which

allows us then to rewrite (7.20) as a differential inequality at t′. To to show that V̄

is continuous, we use the dominated convergence theorem [Mao11, Thm. 2.3, P.

6] applied to Vk(t̂) , V(x(t̂)) − V(x(t̂+ 1/k)), for t̂ ∈ [t0, t], and similarly taking

t̂− 1/k (excluding, respectively, the cases when t̂= t or t̂= t0). The hypotheses

are satisfied because Vk can be majorized using (7.20) as

|Vk(t̂)| ≤ V(x(t̂))+V(x(t̂+1/k)) ≤ 2
(
V(x0)+

∫ t

t0
σ(‖Σ(s)‖F)ds

)
, (7.21)

where the term on the right is not a random variable and thus coincides with its

expectation. Therefore, for every t̂ ∈ [t0, t],

lim
s→t̂

E
[
V(x(s))

]
= E

[
lim
s→t̂

V(x(s))
]

= E
[
V(x(t̂))

]
,



188

so V̄ is continuous on [t0, t], for any t ≥ t0. Now, using again (7.20) and the

continuity of the integrand, we can bound the upper right-hand derivative [Kha02,

Appendix C.2] (also called upper Dini derivative), as

D+V̄(t′) , limsup
t→t′, t>t′

V̄(t)− V̄(t′)
t− t′

≤ limsup
t→t′, t>t′

1
t− t′

∫ t

t′

(
−η−1(V̄(s))+σ(‖Σ(s)‖F)

)
ds = h(V̄(t′), b(t′)),

for any t′ ∈ [t0,∞), where the function h : R≥0 ×R≥0 → R is given by

h(y,b) , −η−1(y)+ b,

and b(t) , σ(‖Σ(t)‖F), which is continuous in [t0,∞). Therefore, according to the

comparison principle [Kha02, Lemma 3.4, P. 102], using that V̄ is continuous in

[t0,∞) and D+V̄(t′) ≤ h(V̄(t′), b(t′)), for any t′ ∈ [t0,∞), the solutions [Son98, Sec.

C.2] of the initial value problem

U̇(t) = h(U(t), b(t)), U0 , U(t0) = V̄(t0) (7.22)

(where h is locally Lipschitz in the first argument as we show next), satisfy that

U(t) ≥ V̄(t)(≥ 0) in the common interval of existence. We argue the global existence

and uniqueness of solutions of (7.22) as follows. Since α , η−1 is convex and

class K∞ (see Section 2.2.1), it holds that

α(s′) ≤ α(s) ≤ α(s′)+ α(s′′)−α(s′)
s′′−s′ (s− s′)

for all s ∈ [s′, s′′], for any s′′ > s′ ≥ 0. Thus, |α(s)−α(s′)| = α(s)−α(s′) ≤ L(s−s′),

for any s′′ ≥ s ≥ s′ ≥ 0, where L , (α(s′′) − α(s′))/(s′′ − s′), so η−1 is locally



189

Lipschitz. Hence, h is locally Lipschitz in R≥0 ×R≥0. Therefore, given the input

function b and any U0 ≥ 0, there is a unique maximal solution of (7.22), denoted by

U(U0, t0; t), defined in a maximal interval [t0, tmax(U0, t0)). (As a by-product, the

initial value problem (7.13), which can be written as ẏ(s) = 1
2h(y(s),0), y(0) = r,

has a unique and strictly decreasing solution in [0,∞), so µ̃ in the statement is well

defined and in class KL.) To show that (7.22) is ISS we follow a similar argument

as in the proof of [Son08, Th. 5] (and note that, as a consequence, we obtain that

tmax(U0, t0) = ∞). Firstly, if η−1(U) ≥ 2b, then U̇(t) = −1
2η

−1(U(t)), which implies

that U is nonincreasing outside the set S , {t ≥ t0 : U(t) ≤ η(2b(t))}. Thus, if

some t∗ ≥ t0 belongs to S, then so does every t ∈ [t∗, tmax(U0, t0)) implying that U

is locally bounded because b is locally bounded (in fact, continuous). (Note that

U(t) ≥ 0 because U̇(t) ≥ 0 whenever U(t) = 0.) Therefore, for all t≥ t0, and for µ̃

as in the statement (which we have shown is well defined), we have that

V̄(t) ≤ U(t) ≤ max
{
µ̃
(
V̄(t0), t− t0

)
, η
(

2 max
t0≤s≤t

b(s)
)}
.

Since the maximum of two quantities is upper bounded by the sum, and using the

definition of b together with the monotonicity of σ, it follows that

V̄(t) ≤ U(t) ≤ µ̃
(
V(x0), t− t0

)
+η

(
2σ
(

max
t0≤s≤t

‖Σ(s)‖F

))
, (7.23)

for all t≥ t0, where we also used that V̄(t0) = V(x0), and the proof is complete.

Of particular interest to us is the case when the function V is lower and

upper bounded by class K∞ functions of the distance to a closed, not necessarily

bounded, set.

Definition 2.52. (NSS-Lyapunov functions). A function V ∈ C2(Rn;R≥ 0) is a
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strong NSS-Lyapunov function in probability with respect to U ⊆ Rn for (7.1) if

V is a noise-dissipative Lyapunov function and, in addition, there exist p > 0 and

class K∞ functions α1 and α2 such that

α1(|x|pU) ≤ V(x) ≤ α2(|x|pU), ∀x ∈ Rn. (7.24)

If, moreover, α1 is convex, then V is a pth moment NSS-Lyapunov function with

respect to U .

Note that a strong NSS-Lyapunov function in probability with respect to a

set satisfies an inequality of the type (7.24) for any p > 0, whereas the choice of p is

relevant when α1 is required to be convex. The reason for the ‘strong’ terminology

is that we require (7.8) to be satisfied with convex η−1 ∈ K∞. Instead, a standard

NSS-Lyapunov function in probability satisfies the same inequality with a class K∞

function which is not necessarily convex. We also note that (7.24) implies that

U = {x ∈ Rn : V(x) = 0}, which is closed because V is continuous.

Example 2.53. (Example 2.50–revisited: an NSS-Lyapunov function). Consider

the function V introduced in Example 2.50. For each p ∈ (0,2], note that

α1p(‖x−x∗‖p2) ≤ V(x) ≤ α2p(‖x−x∗‖p2) ∀x ∈ Rn,

for the convex functions α1p(r) = α2p(r) , r2/p, which are in the class K∞. (Recall

that α2 in Definition 2.52 is only required to be K∞.) Thus, the function V is a

pth moment NSS-Lyapunov function for (7.11) with respect to x∗ for p ∈ (0,2]. •

The notion of NSS-Lyapunov function plays a key role in establishing our

main result on the stability of SDEs with persistent noise.

Corollary 2.54. (The existence of an NSS-Lyapunov function implies the corre-
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sponding NSS property). Under Assumption 1.45, and further assuming that Σ is

continuous, given a closed set U ⊂ Rn,

(i) if V ∈ C2(Rn;R≥ 0) is a strong NSS-Lyapunov function in probability with

respect to U for (7.1), then the system is NSS in probability with respect to U

with gain functions

µ(r,s) , α−1
1
(

2
ε µ̃(α2(rp), s)

)
, θ(r) , α−1

1
(

2
εη(2σ(r))

)
; (7.25)

(ii) if V ∈ C2(Rn;R≥ 0) is a pthNSS-Lyapunov function with respect to U for (7.1),

then the system is pth moment NSS with respect to U with gain functions µ

and θ as in (7.25) setting ε= 1.

Proof. To show (i), note that, since α1(|x|pU) ≤ V(x) for all x ∈ Rn, with α1 ∈ K∞,

it follows that for any ρ̂ > 0 and t≥ t0,

P
{

|x(t)|pU > ρ̂
}

= P
{
α1(|x(t)|pU)> α1(ρ̂)

}
≤ P

{
V(x(t))> α1(ρ̂)

}
≤

E
[
V(x(t))

]
α1(ρ̂)

≤ 1
α1(ρ̂)

(
µ̃
(
α2(|x0|pU), t− t0

)
+η

(
2σ
(

max
t0≤s≤t

‖Σ(s)‖F

)))
, (7.26)

where we have used the strict monotonicity of α1 in the first equation, Chebyshev’s

inequality [Bor95, Ch. 3] in the second inequality, and the upper bound for

E
[
V(x(t))

]
obtained in Theorem 2.51, cf. (7.12), in the last inequality (leveraging

the monotonicity of µ̃ in the first argument and the fact that V(x) ≤ α2(|x|pU) for

all x ∈ Rn). Also, for any function α ∈ K, we have that α(2r) +α(2s) ≥ α(r+ s)
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for all r,s≥ 0. Thus,

ρ(ε,x0, t) , µ
(
|x0|U , t− t0

)
+ θ

(
max
t0≤s≤t

‖Σ(s)‖F

)
(7.27)

≥ α−1
1

1
ε
µ̃
(
α2(|x0|pU), t− t0

)
+ 1
ε
η
(

2σ
(

max
t0≤s≤t

‖Σ(s)‖F

)), ρ̂(ε).

Substituting now ρ̂, ρ̂(ε) in (7.26), and using that ρ(ε,x0, t) ≥ ρ̂(ε), we get that

P
{
|x(t)|pU > ρ(ε,x0, t)

}
≤ P

{
|x(t)|pU > ρ̂(ε)

}
≤ ε.

To show (ii), since α−1
1 is concave, applying Jensen’s inequality [Bor95, Ch.

3], we get

E
[
|x(t)|pU

]
≤ E

[
α−1

1
(
V(x(t))

)]
≤ α−1

1

(
E
[
V(x(t))

])
≤ ρ̂(1) ≤ ρ(1,x0, t),

where in the last two inequalities we have used the bound for E
[
V(x(t))

]
in (7.26)

and the definition of ρ̂(ε) in (7.27).

Example 2.55. (Example 2.50–revisited: illustration of Corollary 2.54). Consider

again Example 2.50. Since V is a pth moment NSS-Lyapunov function for (7.11)

with respect to the point x∗ for p ∈ (0,2], as shown in Example 2.53, Corollary 2.54

implies that

E
[
‖x−x∗‖p2

]
≤ µ

(
‖x0 −x∗‖2, t− t0

)
+ θ

(
max
t0≤s≤t

‖Σ(s)‖F

)
, (7.28)

for all t≥ t0, x0 ∈ Rn, and p ∈ (0,2], where

µ(r,s) =
(
2µ̃(r2, s)

)p/2
, θ(r) =

(
γ−1(r2)

)p/2
,

and the class KL function µ̃ is defined as the solution to the initial value prob-
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Figure 7.1: Simulation example of the notion of noise to state stability in second
moment. Evolution of the dynamics (7.11) with L = 0, h(x1,x2) = log

(
e(x1−2) +

e(x2+1))+ 0.5(x1 + x2 − 1)2 + (x1 − x2)2, and initial condition [x1(0),x2(0)] =
(1,−0.5). Since h is a sum of convex functions, and the Hessian of the quadratic
part of h has eigenvalues {2,4}, we can take γ given by γ(r) = 2r, for r ≥ 0.
Plot (a) shows the evolution of the first and second coordinates with Σ = 0.1I2.
Plot (b) illustrates the noise-to-state stability property in second moment with
respect to x∗ = (0.36,0.14), where the matrix Σ(t) is a constant multiple of the
identity. (The expectation is computed averaging over 500 realizations of the
noise.)

lem (7.13) with η(r) = 1
2γ

−1(r). Figure 7.1 illustrates this noise-to-state stability

property. We note that if the function h is strongly convex, i.e., if γ(r) = cγ r for

some constant cγ > 0, then µ̃ : R≥0 ×R≥0 → R≥0 becomes µ̃(r,s) = re−cγs, and

µ(r,s) = 2p/2 rpe−cγp/2 s, so the bound for E
[
‖x−x∗‖p2

]
in (7.28) decays exponen-

tially with time to θ
(

maxt0≤s≤t ‖Σ(s)‖F

)
. •

7.3 Refinements of the notion of proper func-

tions

In this section, we analyze in detail the inequalities between functions

that appear in the definition of noise-dissipative Lyapunov function, strong NSS-

Lyapunov function in probability, and pth moment NSS-Lyapunov function. In
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Section 7.3.1, we establish that these inequalities can be regarded as equivalence

relations. In Section 7.3.2, we make a complete characterization of the properties

of two functions related by these equivalence relations. Finally, in Section 7.3.3,

these results lead us to obtain an alternative formulation of Corollary 2.54.

7.3.1 Proper functions and equivalence relations

Here, we provide a refinement of the notion of proper functions with respect

to each other. Proper functions play an important role in stability analysis, see

e.g., [Kha02, Son08].

Definition 3.56. (Refinements of the notion of proper functions with respect to

each other). Let D ⊆ Rn and the functions V,W : D → R≥0 be such that

α1(W(x)) ≤ V(x) ≤ α2(W(x)), ∀x ∈ D,

for some functions α1, α2 : R≥0 → R≥0. Then,

(i) if α1,α2 ∈ K, we say that V is K - dominated by W in D, and write

V CK W in D;

(ii) if α1,α2 ∈ K∞, we say that V and W are K∞ - proper with respect to each

other in D, and write V ∼K∞ W in D;

(iii) if α1,α2 ∈ K∞ are convex and concave, respectively, we say that V and W

are Kcc
∞ - (convex-concave) proper with respect to each other in D, and write

V ∼Kcc
∞ W in D;

(iv) if α1(r) , cα1r and α2(r) , cα2r, for some constants cα1 , cα2 > 0, we say that

V and W are equivalent in D, and write V ∼ W in D.
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Note that the relations in Definition 3.56 are nested, i.e., given V,W : D →

R≥0, the following chain of implications hold in D :

V ∼ W ⇒ V ∼Kcc
∞ W ⇒ V ∼K∞ W ⇒ V CK W. (7.29)

Also, note that if W(x) = ‖x‖2, D is a neighborhood of 0, and α1,α2 are class K,

then we recover the notion of V being a proper function [Kha02]. If D = Rn, and V

and W are seminorms, then the relation ∼ corresponds to the concept of equivalent

seminorms.

The relation ∼K∞ is relevant for ISS and NSS in probability, whereas the

relation ∼Kcc
∞ is important for pth moment NSS. The latter is because the inequalities

in ∼Kcc
∞ are still valid, thanks to Jensen inequality, if we substitute V and W by their

expectations along a stochastic process. Another fact about the relation ∼Kcc
∞ is

that α1,α2 ∈ K∞, convex and concave, respectively, must be asymptotically linear

if V(D) ⊇ [s0,∞), for some s0 ≥ 0, so that α1(s) ≤ α2(s) for all s≥ s0. This follows

from Lemma 0.66.

Remark 3.57. (Quadratic forms in a constrained domain). It is sometimes

convenient to view the functions V,W : D → R≥0 as defined in a domain where

their functional expression becomes simpler. To make this idea precise, assume

there exist i : D ⊂ Rn → Rm, with m ≥ n, and V̂,Ŵ : D̂ → R≥0, where D̂ = i(D),

such that V = V̂ ◦ i and W = Ŵ ◦ i. If this is the case, then the existence of

α1, α2 : R≥0 → R≥0 such that α1
(
Ŵ(x̂)

)
≤ V̂(x̂) ≤ α2

(
Ŵ(x̂)

)
, for all x̂∈ D̂, implies

that α1
(
W(x)

)
≤ V(x) ≤ α2

(
W(x)

)
, for all x∈ D. The reason is that for any x∈ D

there exists x̂ ∈ D̂, given by x̂= i(x), such that V(x) = V̂(x̂) and W(x) = Ŵ(x̂), so

α1
(
W(x)

)
= α1

(
Ŵ(x̂)

)
≤ V(x) = V̂(x̂) ≤ α2

(
Ŵ(x̂)

)
= α2

(
W(x)

)
.
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Consequently, if any of the relations given in Definition 3.56 is satisfied by V̂, Ŵ in

D̂, then the corresponding relation is satisfied by V, W in D. For instance, in some

scenarios this procedure can allow us to rewrite the original functions V, W as

quadratic forms V̂, Ŵ in a constrained set of an extended Euclidean space, where

it is easier to establish the appropriate relation between the functions. We make

use of this observation in Section 7.3.3 below. •

Lemma 3.58. (Powers of seminorms with the same nullspace). Let A and B in

Rm×n be nonzero matrices with the same nullspace, N (A) = N (B). Then, for any

p,q > 0, the inequalities α1
(
‖x‖pA

)
≤ ‖x‖qB ≤ α2

(
‖x‖pA

)
are verified with

α1(r) ,
(
λn−k(B>B)
λmax(A>A)

) q
2
rq/p; α2(r) ,

(
λmax(B>B)
λn−k(A>A)

) q
2
rq/p,

where k , dim(N (A)). In particular, ‖.‖pA ∼ ‖.‖pB and ‖.‖pA ∼K∞ ‖.‖qB in Rn for

any real numbers p,q > 0.

Proof. For U , N (A), write any x ∈ Rn as x= xU +xU⊥, where xU ∈ U and xU⊥ ∈

{x ∈ Rn : x>u = 0 ,∀u ∈ U}, so that Ax = A(xU +xU⊥) = AxU⊥ and Bx = BxU⊥

because N (A) = N (B) = U . Using the formulas for the eigenvalues in [HJ85, p.

178], we see that the next chain of inequalities hold:

α1
(
‖x‖pA

)
= α1

((
x>

U⊥A>AxU⊥

)p
2
)

≤ α1

((
λmax(A>A)x>

U⊥xU⊥

)p
2
)

≤
(
λn−k(B>B)x>

U⊥xU⊥

) q
2 ≤

(
x>

U⊥B>BxU⊥

) q
2 ≤

(
λmax(B>B)x>

U⊥xU⊥

) q
2

≤ α2

((
λn−k(A>A)x>

U⊥xU⊥

)p
2
)

≤ α2

((
x>

U⊥A>AxU⊥

)p
2
)

= α2
(
‖x‖pA

)
,

where ‖x‖qB =
(
x>

U⊥B>BxU⊥

) q
2 . From this we conclude that ‖.‖pA ∼K∞ ‖.‖qB in Rn.

Finally, when p= q, the class K∞ functions α1, α2 in the statement are linear, so

we obtain that ‖.‖pA ∼ ‖.‖pB in Rn.
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Next we show that ∼K∞ and ∼Kcc
∞ are reflexive, symmetric, and transitive,

and hence define equivalence relations.

Lemma 3.59. (The K∞- and Kcc
∞-proper relations are equivalence relations). The

relations ∼K∞ and ∼Kcc
∞ in any set D ⊆ Rn are both equivalence relations.

Proof. For convenience, we represent both relations by ∼∗. Both are reflexive, i.e.,

V ∼∗ V, because one can take α1(r) = α2(r) = r noting that a linear function is

both convex and concave. Both are symmetric, i.e., V ∼∗ W if and only if W ∼∗ V,

because if α1 ◦ W ≤ V ≤ α2 ◦ W in D, then α−1
2 ◦ V ≤ W ≤ α−1

1 ◦ V in D. In the

case of ∼K∞, the inverse of a class K∞ function is class K∞. Additionally, in

the case of ∼Kcc
∞, if α ∈ K∞ is convex (respectively, concave), then α−1 ∈ K∞ is

concave (respectively, convex). Finally, both are transitive, i.e., U∼∗ V and V ∼∗ W

imply U ∼∗ W, because if α1 ◦V ≤ U ≤ α2 ◦V and α̃1 ◦W ≤ V ≤ α̃2 ◦W in D, then

α1 ◦ α̃1 ◦W ≤ U ≤ α2 ◦ α̃2 ◦W in D. In the case of ∼K∞, the composition of two class

K∞ functions is class K∞. Additionally, in the case of ∼Kcc
∞, if α1,α2 ∈ K∞ are both

convex (respectively, concave), then the compositions α1 ◦α2 and α2 ◦α1 belong

to K∞ and are convex (respectively, concave), as explained in Section 2.2.1.

Remark 3.60. (The relation CK is not an equivalence relation). The proof above

also shows that the relation CK is reflexive and transitive. However, it is not

symmetric: consider V,W ∈ C(Rn;R≥ 0) given by V(x) = 1−e−‖x‖2 and W(x) = ‖x‖2.

Clearly, V CK W in Rn by taking α1 = α2 = α ∈ K, with α(s) = 1 − e−s. On the

other hand, if there exist α̃1, α̃2 ∈ K such that α̃1(V(x)) ≤ W(x) ≤ α̃2(V(x)) for all

x∈Rn, then we reach the contradiction, by continuity of α̃2, that lim‖x‖2→∞ ‖x‖2 ≤

α̃2
(

lim‖x‖2→∞
(
1− e−‖x‖2

))
= α̃2(1)<∞. •
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7.3.2 Characterization of proper functions with respect to

each other

In this section, we provide a complete characterization of the properties

that two functions must satisfy to be related by the equivalence relations defined in

Section 7.3.1. For D ⊆ Rn, consider V1,V2 : D → R≥0. Given a real number p > 0,

define

φp(s) , sup
{y∈D : V2(y) ≤ p√s}

V1(y),

ψp(s) , inf
{y∈D : V2(y) ≥ p√s}

V1(y),

for s≥ 0. The value φp(s) gives the supremum of the function V1 in the p
√
s - sublevel

set of V2, and ψp(s) is the infimum of V1 in the p
√
s - superlevel set of V2. Thus,

the functions φp and ψp satisfy

ψp
(
V2(x)p

)
= inf

{y∈D :
V2(y) ≥ V2(x)}

V1(y) ≤ V1(x) ≤ sup
{y∈D :

V2(y) ≤ V2(x)}

V1(y) = φp
(
V2(x)p

)
,

(7.30)

for all x ∈ D, which suggests φp and ψp as pre-comparison functions to construct α1

and α2 in Definition 3.56. To this end, we find it useful to formulate the following

properties of the function V1 with respect to V2:

P0: The set {x ∈ D : V2(x) = s} is nonempty for all s≥ 0.

P1: The nullsets of V1 and V2 are the same, i.e., {x ∈ D : V1(x) = 0} =

{x ∈ D : V2(x) = 0}.

P2: The function φ1 is locally bounded in R≥0 and right continuous at 0,

and ψ1 is positive definite.
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P3: The next limit holds: lims→∞ψ1(s) = ∞.

P4 (as a function of p > 0): The asymptotic behavior of φp and ψp is such

that φp(s) and s2/ψp(s) are both in O(s) as s→ ∞.

The next result shows that these properties completely characterize whether

the functions V1 and V2 are related through the equivalence relations defined in

Section 7.3.1. This result generalizes [Kha02, Lemma 4.3] in several ways: the

notions of proper functions considered here are more general and are not necessarily

restricted to a relationship between an arbitrary function and the distance to a

compact set.

Theorem 3.61. (Characterizations of proper functions with respect to each other).

Let V1,V2 : D → R≥0, and assume V2 satisfies P0. Then

(i) V1 satisfies {Pi}2
i=1 with respect to V2 ⇔ V1 CK V2 in D ;

(ii) V1 satisfies {Pi}3
i=1 with respect to V2 ⇔ V1 ∼K∞ V2 in D ;

(iii) V1 satisfies {Pi}4
i=1 with respect to V2 for p > 0 ⇔ V1 ∼Kcc

∞ Vp
2 in D.

Proof. We begin by establishing a few basic facts about the pre-comparison functions

ψp and φp. By definition and by P0, it follows that 0 ≤ ψ1(s) ≤ φ1(s) for all s≥ 0.

Since φ1 is locally bounded by P2, then so is ψ1. In particular, φ1 and ψ1 are well

defined in R≥0. Moreover, both φ1 and ψ1 are nondecreasing because if s2 ≥ s1, then

the supremum is taken in a larger set, {x ∈ D : V2(x) ≤ s2} ⊇ {x ∈ D : V2(x) ≤ s1},

and the infimum is taken in a smaller set, {x ∈ D : V2(x) ≥ s2} ⊆ {x ∈ D : V2(x) ≥

s1}. Furthermore, for any q > 0, the functions φq and ψq are also monotonic and

positive definite because φq(s) = φ1( q
√
s) and ψq(s) = ψ1( q

√
s) for all s ≥ 0. We

now use these properties of the pre-comparison functions to construct α1, α2 in

Definition 3.56 required by the implications from left to right in each statement.
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Proof of (i) (⇒). To show the existence of α2 ∈ K such that α2(s) ≥ φ1(s) for

all s ∈ R≥0, we proceed as follows. Since φ1 is locally bounded and nondecreasing,

given a strictly increasing sequence {bk}k≥1 ⊆ R≥0 with limk→∞ bk = ∞, we choose

the sequence {Mk}k≥1 ⊆ R≥0, setting M0 = 0, in the following way:

Mk , max
{

sup
s∈[0,bk]

φ1(s) , Mk−1 +1/k2
}

= max
{
φ1(bk) , Mk−1 +1/k2

}
. (7.31)

This choice guarantees that {Mk}k≥1 is strictly increasing and, for each k ≥ 1,

0 ≤Mk −φ1(bk) ≤
k∑
i=1

1
i2

≤ π2/6. (7.32)

Also, since φ1 is right continuous at 0, we can choose b1 > 0 such that there exists

α2 : [0, b1] →R≥0 continuous, positive definite and strictly increasing, satisfying that

α2(s) ≥ φ1(s) for all s ∈ [0, b1] and with α2(b1) =M2. (This is possible because the

only function that cannot be upper bounded by an arbitrary continuous function

in some arbitrarily small interval [0, b1] is the function that has a jump at 0.) The

rest of the construction is explicit. We define α2 as a piecewise linear function in

(b1,∞) in the following way: for each k ≥ 2, we define

α2(s) , α2(bk−1)+ Mk+1 −α2(bk−1)
bk − bk−1

(s− bk−1), ∀s ∈ (bk−1, bk].

The resulting α2 is continuous by construction. Also, α2(b1) =M2, so that, induc-

tively, α2(bk−1) = Mk for k ≥ 2. Two facts now follow: first, Mk+1 −α2(bk−1) =

Mk+1 −Mk ≥ 1/(k+1)2 for k≥ 2, so α2 has positive slope in each interval (bk−1, bk]

and thus is strictly increasing in (b1,∞); second, α2(s)>α2(bk−1) =Mk ≥ φ1(bk) ≥

φ1(s) for all s ∈ (bk−1, bk], for each k ≥ 2, so α2(s) ≥ φ1(s) for all s ∈ (b1,∞).

We have left to show the existence of α1 ∈ K such that α1(s) ≤ ψ1(s) for all



201

s ∈ R≥0. First, since 0 ≤ ψ1(s) ≤ φ1(s) for all s≥ 0 by definition and by P0, using

the sandwich theorem [LL88, p. 107], we derive that ψ1 is right continuous at 0

the same as φ1. In addition, since ψ1 is nondecreasing, it can only have a countable

number of jump discontinuities (none of them at 0). Therefore, we can pick c1 > 0

such that a continuous and nondecreasing function ψ̂1 can be constructed in [0, c1)

by removing the jumps of ψ1, so that ψ̂1(s) ≤ ψ1(s). Moreover, since ψ1 is positive

definite and right continuous at 0, then ψ̂1 is also positive definite. Thus, there

exists α1 in [0, c1) continuous, positive definite, and strictly increasing, such that,

for some r < 1,

α1(s) ≤ rψ̂1(s) ≤ rψ1(s) (7.33)

for all s ∈ [0, c1). To extend α1 to a function in class K in R≥0, we follow a

similar strategy as for α2. Given a strictly increasing sequence {ck}k≥2 ⊆ R≥0 with

limk→∞ ck = ∞, we define a sequence {mk}k≥1 ⊆ R≥0 in the following way:

mk , inf
s∈[ck,ck+1)

ψ1(s)− ψ1(c1)−α1(c1)
1+k2 = ψ1(ck)− ψ1(c1)−α1(c1)

1+k2 . (7.34)

Next we define α1 in [c1,∞) as the piecewise linear function

α1(s) , α1(ck)+ mk −α1(ck)
ck+1 − ck

(s− ck), ∀s ∈ [ck, ck+1),

for all k ≥ 1, so α1 is continuous by construction. It is also strictly increasing

because α1(c2) = m1 = (ψ1(c1) +α1(c1))/2 > α1(c1) by (7.33), and also, for each

k ≥ 2, the slopes are positive because mk−α1(ck) =mk−mk−1 > 0 (due to the fact

that {mk}k≥1 in (7.34) is strictly increasing because ψ1 is nondecreasing). Finally,

α1(s)< α1(ck+1) =mk <ψ1(ck) ≤ ψ1(s) for all s ∈ [ck, ck+1), for all k ≥ 1 by (7.34).
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Equipped with α1, α2 as defined above, and as a consequence of (7.30), we

have that

α1(V2(x)) ≤ ψ1(V2(x)) ≤ V1(x) ≤ φ1(V2(x)) ≤ α2(V2(x)), ∀x ∈ D. (7.35)

This concludes the proof of (i) (⇒).

As a preparation for (ii)-(iii) (⇒), and assuming P3, we derive two facts

regarding the functions α1 and α2 constructed above. First, we establish that

α2(s) ∈ O(φ1(s)) as s→ ∞. (7.36)

To show this, we argue that

lim
k→∞

sup
s∈(bk−1,bk]

(
α2(s)−φ1(s)

)
≤ lim
k→∞

(
φ1(bk+1)−φ1(bk−1)

)
+π2/6, (7.37)

so that there exist C,s1 > 0 such that α2(s) ≤ 3φ1(s) +C, for all s ≥ s1. Thus,

noting that lims→∞φ1(s) = ∞ as a consequence of P3, the expression (7.36) follows.

To establish (7.37), we use the monotonicity of α2 and φ1, (7.31) and (7.32). For

k ≥ 2,

sup
s∈(bk−1,bk]

(
α2(s)−φ1(s)

)
≤ α2(bk)−φ1(bk−1) =Mk+1 −φ1(bk−1)

= max
{
φ1(bk+1)−φ1(bk−1) , Mk +1/(k+1)2 −φ1(bk−1)

}
≤ max

{
φ1(bk+1)−φ1(bk−1) , φ1(bk)+π2/6+1/(k+1)2 −φ1(bk−1)

}
.

Second, the construction of α1 guarantees that

ψ1(s) ∈ O(α1(s)) as s→ ∞, (7.38)
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because, as we show next,

lim
k→∞

sup
s∈[ck,ck+1)

(
ψ1(s)−α1(s)

)
≤ lim
k→∞

(
α1(ck+2)−α1(ck)

)
, (7.39)

so there exists s2 > 0 such that ψ1(s) ≤ 3α1(s) for all s≥ s2. To obtain (7.39), we

leverage the monotonicity of ψ1 and α1, and (7.34); namely, for k ≥ 2,

sup
s∈[ck,ck+1)

(
ψ1(s)−α1(s)

)
≤ ψ1(ck+1)−α1(ck)

=mk+1 + ψ1(c1)−α1(c1)
1+(k+1)2 −α1(ck) = α1(ck+2)+ ψ1(c1)−α1(c1)

1+(k+1)2 −α1(ck).

Equipped with (7.36) and (7.38), we prove next (ii)-(iii) (⇒).

Proof of (ii) (⇒): If, in addition, P3 holds, then lims→∞φ1(s) ≥ lims→∞ψ1(s) =

∞. This guarantees that α2 ∈ K∞. Also, according to (7.38), P3 implies that α1 is

unbounded, and thus in K∞ as well. The result now follows by (7.35).

Proof of (iii) (⇒): Finally, assume that P4 also holds for some p > 0. We

show next the existence of the required convex and concave functions involved in

the relation ∼Kcc
∞. Let α1,p(s) , α1( p

√
s) and α2,p(s) , α2( p

√
s) for s≥ 0, so that

α1,p(s) = α1( p
√
s) ≤ ψ1( p

√
s) = ψp(s) and φp(s) = φ1( p

√
s) ≤ α2( p

√
s) = α2,p(s).

From (7.36) and P4, it follows that there exist s′, c1, c2 > 0 such that α2(s) ≤ c1φ1(s)

and φp(s) ≤ c2s for all s≥ s′. Thus,

α2,p(s) = α2( p
√
s) ≤ c1φ1( p

√
s) = c1φp(s) ≤ c1c2s,

for all s≥ s′, so α2,p(s) is in O(s) as s→ ∞. Similarly, according to (7.38) and P4,

there are constants s′′, c3, c4 > 0 such that ψ1(s) ≤ c3α1(s) and s2 ≤ c4sψp(s) for
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all s≥ s′′. Thus,

sα1,p(s) = sα1( p
√
s) ≥ s 1

c3
ψ1( p

√
s) = s 1

c3
ψp(s) ≥ 1

c3c4
s2,

for all s≥ s′′, so s2/α1,p(s) is in O(s) as s→ ∞. Summarizing, the construction of

α1, α2 guarantees, under P4, that α1,p, α2,p satisfy that s2/α1,p(s) and α2,p(s) are

in O(s) as s→ ∞ (and, as a consequence, so are s2/α2,p(s) and α1,p(s)). Therefore,

according to Lemma 0.66, we can leverage (7.35) by taking α̃1, α̃2 ∈ K∞, convex

and concave, respectively, such that, for all x ∈ D,

α̃1
(
V2(x)p

)
≤α1,p(V2(x)p) = α1(V2(x)) ≤ ψ1

(
V2(x)

)
≤ V1(x)

≤φ1

(
V2(x)

)
≤ α2(V2(x)) = α2,p(V2(x)p) ≤ α̃2

(
V2(x)p

)
.

Proof of (i) (⇐): If there exist class K functions α1, α2 such that α1(V2(x)) ≤

V1(x) ≤ α2(V2(x)) for all x∈ D, then the nullsets of V1 and V2 are the same, which

is the property P1. In addition, 0 ≤ φ1(s) ≤ α2(s) for all s ≥ 0, so φ1 is locally

bounded and, moreover, the sandwich theorem guarantees that φ1 is right continuous

at 0. Also, since α1(s) ≤ ψ1(s), for all s ≥ 0, and ψ1(0) = 0, it follows that ψ1 is

positive definite. Therefore, P2 also holds.

Proof of (ii) (⇐): Since ψ1(s) ≥ α1(s) for all s≥ 0, the property P3 follows

because

lim
s→∞ψ1(s) ≥ lim

s→∞α1(s) = ∞.

Proof of (iii) (⇐): If V1 ∼Kcc
∞ Vp

2, then V1 ∼K∞ Vp
2 by (7.29). Also, we have

trivially that Vp
2 ∼K∞ V2. Since ∼K∞ is an equivalence relation by Lemma 3.59, it

follows that V1 ∼K∞ V2, so the properties {Pi}3
i=1 hold as in (ii) (⇐). We have
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left to derive P4. If V1 ∼Kcc
∞ Vp

2, then there exist α1,α2 ∈ K∞ convex and concave,

respectively, such that α1
(
V2(x)p

)
≤ V1(x) ≤ α2

(
V2(x)p

)
for all x ∈ D. Hence, by

the definition of ψp and φp, and P0, and by the monotonicity of α1 and α2, we have

that, for all s≥ 0,

α1(s) ≤ inf
{x∈D : V2(x)p≥s}

α1
(
V2(x)p

)
≤ inf

{x∈D : V2(x)p≥s}
V1(x) = ψp(s)

≤ φp(s) = sup
{x∈D : V2(x)p≤s}

V1(x) ≤ sup
{x∈D : V2(x)p≤s}

α2
(
V2(x)p

)
≤ α2(s).

(7.40)

Now, since α1,α2 ∈ K∞ are convex and concave, respectively, it follows by Lemma 0.66

that s2/α1(s) and α2(s) are in O(s) as s → ∞. Knowing from (7.40) that

α1(s) ≤ ψp(s) ≤ φp(s) ≤ α2(s) for all s≥ 0, we conclude that the functions s2/ψp(s)

and φp(s) are also in O(s) as s→ ∞, which is the property P4.

The following example shows ways in which the conditions of Theorem 3.61

might fail.

Example 3.62. (Illustration of Theorem 3.61). Let V2 : R2 → R≥0 be the distance

to the set {(x1,x2) ∈ R2 : x1 = 0}, i.e., V2(x1,x2) = |x1|. Consider the following

cases:

P2 fails (ψ1 is not positive definite): Let V1(x1,x2) = |x1|e−|x2| for (x1,x2) ∈

R2. Note that V1 is not K - dominated by V2 because, given any α1 ∈ K, for every

x1 ∈R with |x1|> 0 there exists x2 ∈R such that the inequality α1(|x1|) ≤ |x1|e−|x2|

does not hold (just choose x2 satisfying |x2| > log
( |x1|
α1(|x1|)

)
). Thus, there must

be some of the hypotheses on Theorem 3.61 that fail to be true. In this case, we



206

observe that

ψ1(s) = inf
{(x1,x2)∈R2 : |x1| ≥s}

|x1|e−|x2|

is identically 0 for all s≥ 0, so it is not positive definite as required in P2.

P2 fails (φ1 is not locally bounded): Let V1(x1,x2) = |x1|e|x2| for (x1,x2) ∈R2.

As above, one can show that α2 does not exist in the required class; in this case,

the hypothesis P2 is not satisfied because φ1 is not locally bounded in (0,∞):

φ1(s) = sup
{(x1,x2)∈R2 : |x1| ≤s}

|x1|e|x2| = ∞, ∀ s > 0.

P2 fails (φ1 is not right continuous): Let V1(x1,x2) = |x1|4 + |sin(x1x2)| for

(x1,x2) ∈ R2. For every p > 0, we have that

φp(s) = sup
{(x1,x2)∈R2 : |x1|p ≤s}

|x1|4 + |sin(x1x2)| ≤ s4/p+1,

so φp is locally bounded in R≥0, and, again for every p > 0,

ψp(s) = inf
{(x1,x2)∈R2 : |x1|p ≥s}

|x1|4 + |sin(x1x2)| ≥ s4/p,

so ψp is positive definite. However, φp is not right continuous at 0 because

sin(x1x2) = 0 when x1 = 0, but sup{(x1,x2)∈R2 : |x1|p ≤s0} sin(x1x2) = 1 for any s0 > 0,

so by Theorem 3.61 (i), it follows that V1 is not K - dominated by V2.

P4 fails (non-compliant asymptotic behavior): Let V1(x1,x2) = |x1|4 for

(x1,x2) ∈ R2. Then P2 is satisfied and P3 also holds because lims→∞ψ1(s) =

lims→∞ s4 = ∞, so Theorem 3.61 (ii) implies that V1 and V2 are K∞-proper with

respect to each other. However, in this case φp(s) = ψp(s) = s4/p, which implies that
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φp is not in O(s) as s→ ∞ when p ∈ (0,4), and s2/ψp(s) is not in O(s) as s→ ∞

when p > 4. Thus P4 is satisfied only for p= 4, so Theorem 3.61 (iii) implies that

only in this case V1 and Vp
2 are Kcc

∞- proper with respect to each other. Namely, for

p > 4, one cannot choose a convex α1 ∈ K∞ such that α1(|x1|p) ≤ |x1|4 for all x1 ∈R

and, if p < 4, one cannot choose a concave α2 ∈ K∞ such that |x1|4 ≤ α2(|x1|p) for

all x1 ∈ R. •

7.3.3 Application to noise-to-state stability

In this section we use the results of Sections 7.3.1 and 7.3.2 to study

the noise-to-state stability properties of stochastic differential equations of the

form (7.1). Our first result provides a way to check whether a candidate function

that satisfies a dissipation inequality of the type (7.6) is in fact a noise-dissipative

Lyapunov function, a strong NSS-Lyapunov function in probability, or a pth moment

NSS-Lyapunov function.

Corollary 3.63. (Establishing proper relations between pairs of functions through

seminorms). Consider V1,V2 : D → R≥0 such that their nullset is a subspace U .

Let A,Ã ∈ Rm×n be such that N (A) = U = N (Ã). Assume that V1 and V2 satisfy

{Pi}3
i=0 with respect to ‖.‖A and ‖.‖Ã, respectively. Then, for any q > 0,

V1 ∼K∞ V2, V1 ∼K∞ ‖.‖qA, V2 ∼K∞ ‖.‖q
Ã

in D.

If, in addition, V1 and V2 satisfy P4 with respect to ‖.‖A and ‖.‖Ã, respec-

tively, for some p > 0, then

V1 ∼Kcc
∞ V2, V1 ∼Kcc

∞ ‖.‖pA, V2 ∼Kcc
∞ ‖.‖p

Ã
in D.
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Proof. The statements follow from the characterizations in Theorem 3.61 (ii) and (iii),

and from the fact that the relations ∼K∞ and ∼Kcc
∞ are equivalence relations as

shown in Lemma 3.59. That is, under the hypothesis P0,

V1 satisfies{Pi}3
i=1 w/ respect to ‖.‖A (⇔ V1 ∼K∞ ‖.‖A in D)

V2 satisfies{Pi}3
i=1 w/ respect to ‖.‖Ã (⇔ V2 ∼K∞ ‖.‖Ã in D)

⇒ V1 ∼K∞ V2 in D,

V1 satisfies{Pi}4
i=1 w/ respect to ‖.‖A (⇔ V1 ∼Kcc

∞ ‖.‖pA in D)

V2 satisfies{Pi}4
i=1 w/ respect to ‖.‖Ã (⇔ V2 ∼Kcc

∞ ‖.‖p
Ã

in D)

⇒ V1 ∼Kcc
∞ V2 in D.

Note that, by Lemma 3.58 and (7.29), the equivalences

‖.‖A ∼K∞ ‖.‖q
Ã

in D, ‖.‖pA ∼Kcc
∞ ‖.‖p

Ã
in D

hold for any p,q > 0 and any matrices A, Ã ∈ Rm×n with N (A) = N (Ã).

We next build on this result to provide an alternative formulation of Corol-

lary 2.54. To do so, we employ the observation made in Remark 3.57 about the

possibility of interpreting the candidate functions as defined on a constrained

domain of an extended Euclidean space.

Corollary 3.64. (The existence of a pthNSS-Lyapunov function implies pth mo-

ment NSS –revisited). Under Assumption 1.45, let V ∈ C2(Rn;R≥ 0), W ∈ C(Rn;R≥ 0)

and σ ∈ K be such that the dissipation inequality (7.7) holds. Let R : Rn → R(m−n),

with m≥ n, D ⊂ Rm, V̂ ∈ C2(D ;R≥ 0) and Ŵ ∈ C(D ;R≥ 0) be such that, for i(x) =

[x>,R(x)>]>, one has

D = i(Rn), V = V̂ ◦ i, and W = Ŵ ◦ i.

Let A= diag(A1,A2) and Ã= diag(Ã1, Ã2) be block-diagonal matrices, with A1, Ã1 ∈
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Rn×n and A2, Ã2 ∈ R(m−n)×(m−n), such that N (A) = N (Ã) and

‖R(x)‖2
A2 ≤ κ‖x‖2

A1 (7.41)

for some κ > 0, for all x∈ Rn. Assume that V̂ and Ŵ satisfy the properties {Pi}4
i=0

with respect to ‖.‖A and ‖.‖Ã, respectively, for some p > 0. Then the system (7.1)

is NSS in probability and in pth moment with respect to N (A1).

Proof. By Corollary 3.63, we have that

V̂ ∼Kcc
∞ Ŵ, and V̂ ∼Kcc

∞ ‖.‖pdiag(A1,A2) in D. (7.42)

As explained in Remark 3.57, the first relation implies that V ∼Kcc
∞ W in Rn. This,

together with the fact that (7.7) holds, implies that V is a noise-dissipative Lyapunov

function for (7.1). Also, setting x̂= i(x) and using (7.41), we obtain that

‖x‖2
A1 ≤ ‖x̂‖2

diag(A1,A2) = ‖x‖2
A1 +‖R(x)‖2

A2 ≤ (1+κ)‖x‖2
A1 ,

so, in particular, ‖[ .,R(.)]‖pdiag(A1,A2) ∼ ‖.‖pA1
in Rn. Now, from the second relation

in (7.42), by Remark 3.57, it follows that V̂◦ i∼Kcc
∞ ‖[ .,R(.)]‖pdiag(A1,A2) in Rn. Thus,

using (7.29) and Lemma 3.59, we conclude that V ∼Kcc
∞ ‖.‖pA1

in Rn. In addition,

the Euclidean distance to the set N (A1) is equivalent to ‖.‖A1 , i.e., |.|N (A1) ∼ ‖.‖A1 .

This can be justified as follows: choose B ∈ Rn×k, with k = dim(N (A1)), such that

the columns of B form an orthonormal basis of N (A1). Then,

|x|N (A1) = ‖(I−BB>)x‖2 = ‖x‖I −BB> ∼ ‖.‖A1 , (7.43)

where the last relation follows from Lemma 3.58 because N (I −BB>) = N (A1).
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Summarizing, V ∼Kcc
∞ ‖.‖pA1

and ‖.‖pA1
∼ |x|pN (A1) in Rn (because the pth power is

irrelevant for the relation ∼). As a consequence,

V ∼Kcc
∞ |.|pN (A1) in Rn, (7.44)

which implies condition (7.24) with convex α1 ∈ K∞, concave α2 ∈ K∞, and U =

N (A1). Therefore, V is a pth moment NSS-Lyapunov function with respect to the

set N (A1), and the result follows from Corollary 2.54.

7.4 Discussion

We have studied the stability properties of SDEs subject to persistent

noise (including the case of additive noise). We have generalized the concept

of noise-dissipative Lyapunov function and introduced the concepts of strong

NSS-Lyapunov function in probability and pth moment NSS-Lyapunov function,

both with respect to a closed set. We have shown that noise-dissipative Lyapunov

functions have NSS dynamics and established that the existence of an NSS-Lyapunov

function, of either type, with respect to a closed set, implies the corresponding

NSS property of the system with respect to the set. In particular, pth moment

NSS with respect to a set provides a bound, at each time, for the pth power of

the distance from the state to the set, and this bound is the sum of an increasing

function of the size of the noise covariance and a decaying effect of the initial

conditions. This bound can be achieved regardless of the possibility that inside the

set some combination of the states accumulates the variance of the noise. This is a

meaningful stability property for the aforementioned class of systems because the

presence of persistent noise makes it impossible to establish in general a stochastic

notion of asymptotic stability for the set of equilibria of the underlying differential
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equation. We have also studied in depth the inequalities between pairs of functions

that appear in the various notions of Lyapunov functions mentioned above. We

have shown that these inequalities define equivalence relations and have developed

a complete characterization of the properties that two functions must satisfy to be

related by them. Finally, building on this characterization, we have provided an

alternative statement of our stochastic stability results.
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Chapter 8

Conclusions

We have developed distributed multi-agent strategies to solve several families

of convex optimization problems. The network objective is a sum of convex functions

under a variety of scenarios: time varying objectives, nuclear norm regularization,

and constraints that are also a sum of convex functions. We have placed mild

assumptions on the communication network, just requiring local, time varying, and

asynchronous communication over weight-balanced digraphs whose consecutive

unions are strongly connected over bounded time horizons. In the case of our

continuous-time algorithm, we strengthen this hypothesis to time-invariant strongly

connected digraphs, but we develop a novel Lyapunov technique for stochastic

differential equations to establish the noise-to-state stability in second moment,

letting us model persistent white noise in communications and computations. All of

our strategies require the agents to use only local information about their objective

functions and their component constraints in the form of subgradients. In the

scenario with time-varying objective functions, only historic information about

previously revealed functions is used. In this case, the agent regret compares

each agent’s sequence of decisions with the centralized solution in hindsight. Our
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extension of the classical sublinear regret bounds to the distributed case means

that trends that can be captured in hindsight by a single decision computed with

all the information centrally available, can also be approximated “on the fly” by

the agents with historic local information.

From the perspective of the applications, the optimization models considered

can be specified and tuned by machine learning experts for scenarios such as

regression, classification, multi-task and online learning, all of which can benefit

from our distributed strategies as we explained in the introduction. Our proofs show

that our distributed coordination algorithms have analogous correctness guarantees

as the centralized counterparts. The capacity to add constraints given by a sum of

convex functions offers additional modeling flexibility for problems such as formation

control or network resource allocation, where the constraints are motivated by

physical objectives, such as relative positions and angles, or limitations, such as

budgets. The key insight here is the agreement on the Lagrange multipliers that

allow agents’ decisions to be constrained even when the agents involved cannot

communicate with each other directly.
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8.1 Future directions

The following are suggestions for future research on the various aspects of

distributed optimization studied in this thesis.

8.1.0.1 Noisy communication channels

One avenue of research is the study of models merging continuous-time gra-

dient updates and discrete-time communications under noise, using the framework

of hybrid stochastic systems. Other aspects of general interest are the relaxations of

the weight-balanced property for directed communication graphs as well as the joint

connectivity assumption in the context of continuous-time stochastic evolution, as

well as the effect of delays and bandwidth limitations.

8.1.0.2 Online optimization

Directions of interest are the refinement of the regret bounds when partial

knowledge about the evolution of the cost functions is available, the study of the

impact of practical implementation considerations such as disturbances, noise, com-

munication delays, and asynchronism in the algorithm performance, and the specific

application to large-scale learning scenarios involving the distributed interaction of

many users and devices.

8.1.0.3 Nuclear norm regularization

The characterizations that we have proposed admit a modification using

Fenchel duality in place of Fenchel conjugacy. Other directions include the construc-

tion of convex domains that favor the implementation of orthogonal projections,

the treatment of other barrier functions like the logarithm of the determinant, and

the extension to applications where chordal sparsity plays a role.
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8.1.0.4 Saddle-point problems and constrained optimization

Future extensions in this topic include, first, more general distributed algo-

rithms for computing bounds on Lagrange multiplier vectors and matrices, which

are required in the design of projections preserving the optimal dual sets. An

alternative route would explore the characterization of the intrinsic boundedness

properties of the distributed saddle-point dynamics studied in Chapter 5. Second, a

refined analysis of the convergence bound for constrained optimization in terms of

the cost error as opposed to the saddle-point evaluation error. Third, we envision

applications to semidefinite programming where chordal sparsity allows to tackle

problems where the dimension of the matrices grows with the size of the network.

8.1.0.5 Noise to state stability

In the context of stochastic stability notions like noise-to-state stability in

probability or in pth moment for SDEs, future work can consider the effect of delays

and impulsive right-hand sides in the class of SDEs employed in this thesis.



Chapter 9

Epilogue

Tierra,

en los hogares alumbrados de noches asombradas,

nace otro pulso, con otro ritmo,

y tus carnes tiemblan electrificadas,

y la luz obedece al algoritmo.

En las terminales nerviosas de tus nuevos ríos,

que suben y bajan con binarios suspiros,

las memorias, sin nombre todavía,

reflejan compulsiones sin guía.

Mientras tu cuerpo quema las grasas prehistóricas,

llegar hasta el Sol quiere con hazañas metafóricas,

resoplando al legado de los imperios verdes

erigiendo templos que recuerden.

Grande es el esfuerzo de tu piel,

fina, fresca y vaporosa,

216
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herida tu orilla ansiosa

de La Pupila el iris miel.

Quiera la música de tu ser antiguo,

acompañar al hormigueo de tus nuevos hijos.

Quiera la fertilidad de tu sueño ambiguo,

que florezcan sus palabras y sus ritos.

Pues ellos siembran y construyen

historias de amor y de valor,

y en lo más hondo te aman,

mudos a veces de estupor.

Ellos te han dado nombre de diosa,

y estudian asombrados tus ciclos

y cuentan las estrellas de tus noches,

y pueblan tu aliento de mitos.

May 5, 2014



Appendix A

Auxiliary results

Appendix of Chapter 3

The following result concerning the function h defined by (3.7) is employed

in the proof of Proposition 3.11.

Lemma 0.65. For δ > 0, let h(., δ) : (0,∞) → R be defined by (3.7) and L be the

Laplacian matrix of a strongly connected and weight-balanced digraph. Then, there

exists β̂ ≡ β̂(δ)> 0 such that h(β,δ)< 0 for all β ∈ (0, β̂).

Proof. Since the function h(., δ) is continuous in the first argument, it is enough to

show that the next two limits hold,

lim
β→+∞

h(β,δ) = ∞, and lim
β→0+

h(β,δ) = 0−,

to deduce the result from the by Bolzano Intermediate Value Theorem. Note that

−r+
√
r2 −1 = (−r+

√
r2 −1)(−r−

√
r2 −1)

−r−
√
r2 −1

= |r2 −1|− r2

r+
√
r2 −1

,
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which behaves asymptotically as − 1
2r when r → ∞. Since r := β4+3β2+2

2β goes

to ∞ for both cases in which β → ∞ or β → 0, it follows that −β4+3β2+2
2β +√(

β4+3β2+2
2β

)2
−1 behaves as − β

β4+3β2+2 in both cases. Therefore,

lim
β→+∞

h(β,δ) = lim
β→+∞

(
− β

β4+3β2+2λ2(L+L>)+ β2

2δ

)
= lim
β→+∞

(
− 1

β3λ2(L+L>)+ β2

2δ

)
= ∞,

and

lim
β→0+

h(β,δ) = lim
β→0+

(
− β

β4+3β2+2λ2(L+L>)+ β2

2δ

)

= lim
β→0+

(
− β

2λ2(L+L>)+ β2

2δ

)
= lim
β→0+

β
(

− λ2(L+L>)
2 +β

)
= 0−,

and the result follows.

Appendix of Chapter 7

The next result is used in the proof of Theorem 3.61.

Lemma 0.66. (Existence of bounding convex and concave functions in K∞). Let

α be a class K∞ function. Then the following are equivalent:

(i) There exist s0 ≥ 0 and α1,α2 ∈ K∞, convex and concave, respectively, such

that α1(s) ≤ α(s) ≤ α2(s) for all s≥ s0, and

(ii) α(s), s2/α(s) are in O(s) as s→ ∞.

Proof. The implication (i) ⇒ (ii) follows because, for any s≥ s0 > 0,

α1(s0)
s0

s≤ α1(s) ≤ α(s) ≤ α2(s) ≤ α2(s0)
s0

s,
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by convexity and concavity, respectively, where α1(s0),α2(s0)> 0.

To show (ii) ⇒ (i), we proceed to construct α1,α2 as in the statement using

the correspondence between functions, graphs and epigraphs (or hypographs). Let

α1 : R≥0 → R be the function whose epigraph is the convex hull of the epigraph of α,

i.e., epiα1 , conv(epiα). Thus, α1 is convex, nondecreasing, and 0 ≤ α1(s) ≤ α(s)

for all s ≥ 0 because R≥0 ×R≥0 ⊇ epiα1 = conv(epiα) ⊇ epiα. Moreover, α1 is

continuous in (0,∞) by convexity [Roc70, Th. 10.4], and is also continuous

at 0 by the sandwich theorem [LL88, p. 107] because α ∈ K∞. To show that

α1 ∈ K∞, we have to check that it is unbounded, positive definite in R≥0, and

strictly increasing. First, since s2/α(s) ∈ O(s) as s → ∞, there exist constants

c1, s0 > 0 such that α(s) ≥ c1s for all s > s0. Now, define g1(s) , α(s) if s ≤ s0

and g1(s) , c1s if s > s0, and g2(s) , −c1s0 + c1s for all s≥ 0, so that g2 ≤ g1 ≤ α.

Then, epiα1 = conv(epiα) ⊆ conv(epig1) ⊆ epig2, because epig2 is convex, and thus

α1 is unbounded. Also, since conv(epig1) ∩ R≥0 ×{0} = {(0,0)}, it follows that α1

is positive definite. To show that α1 is strictly increasing, we use two facts: since

α1 is convex, we know that the set in which α1 is allowed to be constant must be

of the form [0, b] for some b > 0; on the other hand, since α1 is positive definite, it

is nonconstant in any neighborhood of 0. As a result, α1 is nonconstant in any

subset of its domain, so it is strictly increasing.

Next, let α2 : R≥0 → R be the function whose hypograph is the convex hull

of the hypograph of α, i.e., hypα2 , conv(hypα). The function α2 is well-defined

because α(s) ∈ O(s) as s → ∞, i.e., there exist constants c2, s0 > 0 such that

α(s) ≤ c2s for all s > s0, so if we define g(s) , c2s0 + c2s for all s ≥ 0, then

hypα2 = conv(hypα) ⊆ hypg, because hypg is convex, and thus α2(s) ≤ g(s). Also,

by construction, α2 is concave, nondecreasing, and α2 ≥ α because hypα2 ⊇ hypα,

which also implies that α2 is unbounded. Moreover, α2 is continuous in (0,∞) by
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concavity [Roc70, Th. 10.4], and is also continuous at 0 because the possibility

of an infinite jump is excluded by the fact that α2 ≤ g. To show that α2 ∈ K∞,

we have to check that it is positive definite in R≥0 and strictly increasing. Note

that α2 is positive definite because α2(0) = 0 and α2 ≥ α. To show that α2 is

strictly increasing, we reason by contradiction. Assume that α2 is constant in some

closed interval of the form [s1, s2], for some s2 > s1 ≥ 0. Then, as α2 is concave,

we conclude that it is nonincreasing in (s2,∞). Now, since α2 is continuous, we

reach the contradiction that lims→∞α(s) ≤ lims→∞α2(s) ≤ α2(s1) < ∞. Hence,

α2 is strictly increasing.
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