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ABSTRACT OF THE DISSERTATION

Robust Distributed Control of Networked Systems with Linear
Programming Objectives

by

Dean Richert

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2014

Professor Jorge Cortés, Chair

The pervasiveness of network systems in modern engineering problems has

stimulated the recent research activity in distributed control. Under this paradigm,

individual agents, having access to partial information and subject to real-world

disturbances, locally interact to achieve a common goal. Here, we consider net-

work objectives formulated by a linear program where the individual agents’ states

correspond to components of the decision vector in the optimization problem. To

this end, the first contribution we make is the development of a robust distributed

continuous-time dynamics to solve linear programs. We systematically argue that

the robustness properties we establish for this dynamics are as strong as can be

expected for linear programming algorithms. The next contribution we make is the

xiv



design of a distributed event-triggered communication protocol for the aforemen-

tioned algorithm. We establish various state-based rules for agents to determine

when they should broadcast their state, allowing us to relax the need for continuous

information flow between agents.

Turning our attention to a specific network control problem for which our

algorithm can be applied, we consider distributed bargaining in exchange networks.

In this scenario, agents autonomously form coalitions of size two (called a match)

and agree on how to split a payoff between them. We emphasize fair and stable bar-

gaining outcomes, whereby matched agents benefit equally from the collaboration

and cannot improve their allocation by unilaterally deviating from the outcome.

We synthesize distributed algorithms that converge to such outcomes. Finally, we

focus on cooperation-inducing mechanisms to ensure that agents in a bargaining

outcome effectively realize the payoff they were promised. As an illustrative ex-

ample, we study how to allocate the leader role in unmanned aerial vehicle (UAV)

formation pairs. We show how agents can strategically decide when to switch from

leading to following in the formation to ensure that the other UAV cooperates.

Throughout the thesis, we emphasize the development of provably correct

algorithms, making use of tools from the controls systems community such as Lya-

punov analysis and the Invariance Principle. Simulations in distributed optimal

control, multi-agent task assignment, channel access control in wireless communi-

cation networks, and UAV formations illustrate our results.

xv



Chapter 1

Introduction

Network systems, characterized by the interconnection of multiple compo-

nents,1 manifest themselves in many modern engineering applications as well as

model various social, economic, and biological processes. To highlight the im-

portance and prevalence of such systems let us outline some factors which evoke a

network structure, beginning with the presence of a physical infrastructure. For ex-

ample, the sparse distribution of physical generators, transmission lines, and loads

in the electrical power grid constrain the supply, transmission, and use of power,

inducing a network structure. Likewise, the roads that make up the transportation

system admit limited paths between sources and destinations, dictating the flow

of cars. Interestingly, a physical infrastructure need not be man-made, the human

brain being an example where interactions between neurons occur via synapses.

The availability of resources, or lack thereof, is another cause of a network struc-

ture. This is the case in wireless communication networks where power-limited

devices cannot communicate with far away devices. Information, on the other

hand, may be a scarce resource in a sensor network where the sensing ranges of

each device are limited to local spatial neighborhoods. Of particular interest in

the modern era is user privacy which may regulate the exchange of information to

between trusting parties.

From a research perspective, the study of network systems can be (for the

1In this thesis, we use the term component, subsystem, agent, player, and node
interchangeably.

1
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sake of this discussion) divided into modeling, design, and control. Scientists in

sociology, biology, and economics are especially interested in the modeling aspect

of a network system as it allows them to predict future behaviors and better under-

stand the underlying mechanisms that affect a network. For instance, in economic

scenarios, game theory uses various behavioral models of players to predict the

outcomes in strategic interactions. With regards to design, any network defined

by a physical infrastructure provides an illustrative example. Building upon our

previous example of electrical power systems, engineers must decide which com-

ponents must be installed to meet consumer demand and maximize profit. Where

to place sensors and actuators is another network design problem. Finally, the

control of a network system refers to the implementation of algorithms to drive

the system to a desired state or behavior.

In this thesis, our focus is predominantly on the control of, and thus prov-

able correct algorithm design for, network systems. Broadly speaking, a network

control algorithm can be understood as a policy that uses the available information

in the network to dictate the behavior of subsystems. Technically speaking, it is

a mapping from the available information to the network state evolution. To this

end, two main architectures exist for the control of network systems. On one hand,

a centralized approach identifies a single entity to generate and transmit the control

signal for all other components in the system. Consequently, the implementation

of a centralized controller requires that all the information in the network be made

accessible to the controller and there must exist direct communication between the

controller and each subsystem. The advantage of a centralized control lies in the

relative simplicity of designing provably correct algorithms. Essentially, the control

design may ignore the inherent network structure of the system and simply views

it as a high-dimensional dynamical system (to the extent, at least, that any phys-

ical constraints remain satisfied). For some applications, this is a perfectly valid

approach, but for others it may be inefficient, infeasible, or simply undesirable.

On the other hand, a distributed approach, as we consider in this thesis, allows

each subsystem to compute and implement its own control signal based on locally

available information. Distributed control algorithms enjoy the property of being
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naturally scalable with respect to the network size. That is, the complexity from

the perspective of any given subsystem does not increase even when the dimension

of the network state does. On a related note, networks controlled by distributed

algorithms are naturally adaptable to changes in the network structure; the desired

global behavior of the network being preserved when nodes are added or deleted.

This phenomena is seen in robotic deployment applications where agents naturally

adapt to achieve optimal deployment when some robots fail or new robots join the

network. Finally, a distributed approach allows for a more efficient (and in many

cases, a feasible) use of resources. Of course, the main challenge faced by a controls

engineer in developing a distributed algorithm is precisely that the control signal

for each subsystem may only be generated using locally available information. In-

terestingly, there is rarely a straightforward or intuitive mapping between the local

behavior of a single component and the emergent global behavior of the network.

This make the design and analysis of distributed control algorithms a particularly

rich area of research, promising to be relevant for years to come.

The remainder of this introduction outlines the specific problems we con-

sider in this thesis, places these problems in the context of the current literature,

and summarizes the contributions made.

1.1 Specific problems considered

The overarching problem we explore in this thesis is how to systematically

generate robust, distributed, and implementable control algorithms to achieve a

desired network objective. We then ask to what extent the approach we develop

can be applied in network bargaining scenarios. Our investigation into this second

problem brings up some independently interesting questions that we also address.

The design of a network control algorithm must begin with a well-posed

description of the network objective. That is, given a criteria and a current state,

it should be possible to decisively conclude whether or not the network objective

has been met. For this purpose, a particularly powerful and widespread framework

is mathematical optimization. An optimization problem effectively captures the
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network objective in terms of a performance measure while enforcing the physical

system constraints. It can be argued that most, if not all, well-posed network

control problems can be formulated as an optimization problem. Within the field

of optimization, linear programming considers linear objectives minimized over

a convex polyhedron of feasible states. The use of linear programming to solve

many real-life problems has been exhaustively demonstrated in the past century.

Moreover, linear programming is a fundamental tool in mathematical optimization

that demands specific attention. Thus, our starting point in this thesis is a net-

work objective formulated as a linear program. The first problem we consider is,

under certain assumptions on the network structure, how to design a distributed

continuous-time dynamics to drive the network state to a solution of general linear

programs. In this context, we consider the state of each subsystem as a subset of

the decision vector in the linear program. As a follow-up to this first problem, we

consider the case when various disturbances affect the network and explore under

what conditions we can guarantee that the network objective is still achieved.

Motivated by implementation considerations for our continuous-time algo-

rithm, we then turn our attention to developing a realistic communication protocol

that agents may use to broadcast their state information to their neighbors. Our

goal is to relax the need for continuous information flow between agents in the net-

work. Simply deriving the Euler discretization of the continuous-time algorithm

is not satisfactory to us for two reasons. One, the selection of the stepsizes to

guarantee convergence has to take into account worst-case situations, leading to

an inefficient use of the network resources. Second, the synchronization of broad-

casts between agents is not realistic. Rather, we seek to design opportunistic

event-triggered and asynchronous communication among agents.

The second half of this thesis considers more specific network control prob-

lems to which the developments in the first half are directly applicable. Our

motivation is resource-constrained networks where collaboration between subsys-

tems gives rise to a more efficient use of these resources. To this end, we view

each subsystem as a player in a type of coalitional game where neighboring players

are interested in forming coalitions of size two, called a match. To each potential
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matching between agents there is an associated transferable utility which can be

divided between them. The problem we consider is how agents can decide with

whom to collaborate with and how to allocate the utility. We call an algorithmic

solution to this problem bargaining between agents. The type of outcomes we are

interested in are called Nash bargaining outcomes, which combine the notion of

both stability and fairness. In this context, a stable outcome means that none

of the agents benefit by unilaterally deviating from their match. However, even

within the set of stable outcomes, there may be some outcomes that benefit certain

agents more than others. Thus, a fair outcome is one where every two matched

agents benefit equally from the match.

Our study of network bargaining brings up the question of how agents may

realistically realize the portion of the utility that they were promised. In particular,

we look for mechanisms that can incentive matched agents to honor their promises.

As an illustrative example, we consider pairwise formations between unmanned

aerial vehicles (UAVs), where an agent gains a fuel benefit by flying in the wake of

another (i.e., a reduction in aerodynamic drag). When agents are noncooperative,

the potential benefits of flying in formation bring up the issue of how to distribute

the leader task. The goal then is to develop cooperation-inducing leader allocations

so that UAVs are able to realize the potential benefits of collaboration.

1.2 Literature review

Here we review the current state of the art in the area of network control,

making specific emphasis on the literature that pertains to the problems we have

outlined above. Accordingly, the topics covered in this review include distributed

optimization algorithms, robustness notions, event-triggered implementations, and

bargaining in networks.

1.2.1 Distributed optimization algorithms

Mathematical optimization plays an important role in a wide variety of

network systems applications, see e.g., [14, 34, 55, 59, 95] and references therein.
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Linear programs, in particular, can describe many network objectives including

perimeter patrolling [2], task assignment [51, 64], operator placement [27], process

control [56], routing in communication networks [100], and portfolio optimiza-

tion [96].

This relevance has historically driven the design of efficient methods to solve

general convex optimization problems [15, 23] and linear programs in particular [20,

35]. More specifically related to this work, the design of distributed optimization

algorithms has seen significant interest in recent decades [18, 22, 68, 116]. Dual-

decomposition [92, 113] is a popular method that exploits the natural separability

of the dual problem to allow for a distributed implementation. In order for each

iteration to be well-defined, strict convexity of the objective function is required

for this method. Conversely, the alternating direction method of multipliers [58,

109] is applicable to non-strictly convex problem. However, each iteration in this

approach requires a projection of the decision variable onto the feasible set and

thus only amenable to a distributed implementation in some special cases. Auction

algorithms [11, 16] are capable of computing in a distributed way approximate

solutions of optimization problems. Subgradient projection algorithms [52, 67, 117]

build on consensus-based dynamics [24, 63, 73, 76] whereby individual agents agree

on the global solution to the optimization problem. This is a major difference with

respect to our work here, in which each individual agent computes only its own

component of the solution vector by communicating with its neighbors. In our

work the messages transmitted over the network are independent of the size of

the solution vector, and hence scalable, a property which would not be shared

by a consensus-based distributed optimization method. Finally, the saddle-point

approach, as we consider in this thesis, was applied in [39, 41, 106].

For the reasons discussed above, many of the aforementioned distributed

optimization algorithms are, interestingly, not applicable to general linear pro-

grams. Moreover, centralized methods to solve linear programs, such as the simplex

method [35], are not easily distributed. The works [25, 72, 112] propose algorithms

specifically designed for distributed linear programming. As in consensus-based

approaches, in these works the goal is for agents to agree on the global solution.



7

Closer to our approach, although without considering equality constraints, the

works [8, 39] build on the saddle-point dynamics of a smooth Lagrangian function

to propose an algorithm for linear programming. The resulting dynamics is dis-

continuous in both the primal and dual variables because of the projections taken

to keep the evolution within the feasible set. Both works establish convergence in

the primal variables under the assumption that the solution of the linear program

is unique [8] or that Slater’s condition is satisfied [39], but do not characterize the

properties of the final convergence point in the dual variables, which might indeed

not be a solution of the dual problem. To our knowledge, the rigorous investigation

into algorithmic robustness for distributed linear programming does not exist in

the literature.

1.2.2 Robustness notions

Another point of connection of the present treatment with the literature

is the body of work on robustness of dynamical systems against disturbances. In

general, disturbances may affect both a system’s state or its dynamics and, in our

context, may model (among others) communication noise, modeling errors, link

failures, or actuator limitations. For linear systems, the systematic design of ro-

bust controllers is well documented (see e.g., [115]). We explore the properties

of our proposed dynamics with respect to notions appropriate for nonlinear sys-

tems, such as robust asymptotic stability [26], input-to-state stability (ISS) [97],

and integral input-to-state stability (iISS) [6]. Considering robustness notions rel-

evant to network systems, [101] studies the convergence of discrete-time gradient

algorithms under asynchronous communication and link failures. The work [74]

established various robustness results for consensus dynamics in networks with

switching topologies, including the deletion and addition of agents, and time delays.

Regarding distributed optimization, [66] developed algorithms for time-varying di-

rected graphs. We note that the term ‘robust optimization’ often employed in the

literature, see e.g. [19], refers instead to worst-case optimization problems where

uncertainty in the data is explicitly included in the problem formulation. Thus,

‘robust’ in that setting refers to the problem formulation and not to the actual
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algorithm employed to solve the optimization which is our interest in this thesis.

1.2.3 Event-triggered implementations

All of the algorithms mentioned previously are implemented in either contin-

uous or discrete time, the latter with time-dependent stepsizes that are independent

of the network state. Instead, event-triggered control seeks to opportunistically

adapt the execution to the network state by trading computation and decision-

making for less communication, sensing, or actuation effort while guaranteeing a

desired level of performance, see e.g., [46, 62, 108]. Self-triggered control [7, 107] is

a related approach where, rather than continuously measuring the state to detect

an event, the next control update is pre-determined based on the most recent state

measurement. In both cases, a key design objective, besides asymptotic conver-

gence, is to ensure the lack of an infinite number of updates in any finite time

interval of the resulting strategy. The design of event-triggered control algorithms

for network systems requires that triggers are locally detectable. Some works in

this area of distributed event-triggered control include [37, 62]. One challenge

faced in these works is that the agent broadcasts become asynchronous. A few

works [53, 104] have explored the design of distributed event-triggered optimization

algorithms for multi-agent systems. A major difference between event-triggered

stabilization and optimization is that in the former the equilibrium is known a pri-

ori, whereas in the latter the determination of the equilibrium point is the objective

itself. Adding to the complexity, the algorithm that we seek to design an event-

triggered implementation for is a state-dependent switched dynamical systems. To

our knowledge, this thesis is the first to consider such problems.

1.2.4 Bargaining in networks

In a coalitional game, two fundamental questions are (i) which coalitions will

form and (ii) how will a payoff associated to each coalition be distributed amongst

its members. We call a process whereby agents seek to autonomously answer these

questions bargaining, and in a network the set of feasible coalitions is defined by the
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network structure. In engineering, examples of where network bargaining problems

arise are plentiful for communication networks [3, 4, 5, 61, 70, 71, 91, 99, 114] and

also exist for mobile robot coordination [75, 103], formations of UAVs [82], and

large-scale data processing [87]. Several sociology [28] and economic applications,

such as matching in labor markets [88], also exist. Bargaining problems of the

type we consider are posed on dyadic-exchange networks, so called because agents

can match with at most one other agent [30]. Bipartite matching and assignment

problems [14] are special cases of the dyadic-exchange network. Nash bargaining

outcomes, as we consider in this thesis, are an extension to network games of the

classical two-player Nash bargaining solution [65]. Centralized methods for finding

such outcomes were developed in [12, 54]. In terms of discrete-time distributed

implementations, the work [10] provides dynamics that, given a matching, con-

verge to fair (balanced) allocations. On the other hand, [13] provides discrete-time

dynamics that converge to Nash outcomes. Our work here looks independently at

continuous-time dynamics for each of stable, balanced, and Nash outcomes.

An element of the Nash bargaining problem that is often ignored is the

mechanism by which agents use to transfer, or realize, the share of the payoff that

they were promised. An illustrative example of when this question is relevant

is in UAV formation flying where the payoff of a formation is the fuel savings.

The energy savings of flying in formation are apparent in flocks of birds [50, 110].

In theory, the same benefits exist for formations among UAVs [21, 42]. Moreover,

recent improvements in technology make it possible to realize these fuel savings [94,

102]. Here, we take inspiration from [77], who study formation creation in groups of

UAVs, and we examine how collaboration can be enforced among (not necessarily

cooperative) agents through appropriately designed protocols. In our model for

UAV behavior, agents are incentivized to remain in formation, analogously to

marginal cost pricing schemes in game theory [69].
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1.3 Contributions made

This section summarizes the contributions made by this thesis to the body

of research on the control of network systems. In keeping with the theme of this in-

troduction, we categorize our contributions into those related to robust distributed

linear programming, event-triggered optimization, network bargaining, and coop-

eration inducing mechanisms.

1.3.1 Robust distributed linear programming

Regarding robust distributed linear programming, our first contribution is

the design of a continuous-time saddle-point dynamics (that is, gradient descent

in one variable, gradient ascent in the other) associated with a novel nonsmooth

modified Lagrangian. It should be noted that, in general, saddle points are only

guaranteed to be stable (and not necessarily asymptotically stable) for the corre-

sponding saddle-point dynamics. Nevertheless, in our case, we are able to establish

the global asymptotic stability of the (possibly unbounded) set of primal-dual so-

lutions of general linear programs and, moreover, the pointwise convergence of the

trajectories. Our proof of convergence reveals that knowledge of a global parameter

is necessary to guarantee the convergence of the saddle-point dynamics. To cir-

cumvent this need, we propose an alternative discontinuous saddle-point dynamics

that does not require such knowledge and is fully distributed over a network. We

show that the discontinuous dynamics share the same convergence properties of

the regular saddle-point dynamics by establishing that, for sufficiently large values

of the global parameter, the trajectories of the former are also trajectories of the

latter. The two central advantages to our methodology is that (i) we are able

prove asymptotic stability of the discontinuous dynamics without establishing any

regularity conditions on the switching behavior of the system and (ii) it allows

for the characterization of novel and relevant robustness properties. This latter

point bring us to our next contribution, which pertains to the characterization of

the robustness properties of the discontinuous saddle-point dynamics against dis-

turbances and link failures. We establish that no continuous-time algorithm that
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solves general linear programs can be input-to-state stable (ISS). As our technical

approach shows, this fact is due to the intrinsic properties of the primal-dual so-

lution sets of linear programs. Nevertheless, when the set of primal-dual solutions

is compact, we show that our discontinuous saddle-point dynamics possesses an

ISS-like property against small constant disturbances and, more importantly, is in-

tegral input-to-state stable (iISS) – and thus robust to finite energy disturbances.

We conclude that one cannot expect better disturbance rejection properties from a

linear programming algorithm than those we establish for our discontinuous saddle-

point dynamics. These results allow us to establish the robustness of our dynamics

against disturbances of finite variation as well as communication failures between

agents modeled by recurrently connected graphs.

1.3.2 Distributed event-triggered optimization

Here we summarize the contributions made towards distributed event-

triggered optimization. We assume that agents implement the continuous-time

dynamics that we previously developed, but instead of continuous information flow

between agents they use a sample-and-hold value of their neighbors’ state. Thus,

our main contribution is the synthesis of suitable criteria used by agents to oppor-

tunistically determine when they should update their state information to ensure

convergence. Because of the technical complexity involved in solving this challenge,

we first design a centralized criteria and then extend them to distributed ones. The

characterization of the convergence properties of the centralized implementation is

challenging because the original continuous-time dynamics is discontinuous in the

agents’ state and its final convergence value (being the solution of the optimization

problem) is not known a priori, which further complicates the identification of a

common smooth Lyapunov function.

In our distributed event-triggered communication law, agents use local in-

formation to determine when to broadcast their individual state. Our strategy

to accomplish this is to investigate to what extent the centralized triggers can be

implemented in a distributed way and modify them when necessary. In doing so,

we face the additional difficulty posed by the fact that the mode switches asso-



12

ciated to the discontinuity of the original dynamics are not locally detectable by

individual agents. Moreover, the distributed character of the agent triggers leads

to asynchronous state broadcasts, which poses an additional challenge for both

design and analysis. The main result we prove establishes the asymptotic con-

vergence of the distributed implementation and identifies sufficient conditions for

executions to be persistently flowing (that is, state broadcasts that are separated

by a uniform time infinitely often). As a byproduct of using a hybrid systems

modeling framework in our technical approach, we are also able to guarantee that

the global asymptotic stability of the proposed distributed algorithm is robust to

small enough perturbations.

1.3.3 Network bargaining

Next, we contribute a provably correct distributed continuous-time dynam-

ics to find Nash bargaining solutions and show its application to a wireless commu-

nication scenario. In our design process we develop dynamics to find each of stable,

balanced, and ultimately Nash outcomes. The problem formulation we provide re-

veals that finding a stable outcome is combinatorial in the number of edges in the

network. Nevertheless, we prove a correspondence between the existence of stable

outcomes and the solutions of a linear program, making the problem tractable.

We show how the application of the distributed linear programming algorithm

discussed in Section 1.3.1 can be used by agents to find stable outcomes using

only local information. Turning our attention to balanced outcomes, we show how

finding them requires agents to solve a system of coupled nonlinear equations. We

define local (with respect to 2-hop information) error functions that measure how

far matched agents’ allocations are from being balanced. Our proposed algorithm

has agents adjust their allocations based on the negative of their balancing errors.

We combine the two aforementioned dynamics in such a way that their aggregate

finds Nash outcomes. Since the dynamics we propose satisfy certain regularity

conditions, its robustness to perturbations is guaranteed. Also, our presentation

of the material is done from a control and dynamical systems perspective. Thus,

we provide a new understanding of the problem and contribute a robust framework



13

for extensions to this work.

1.3.4 Cooperation inducing mechanisms

Turning our attention then to mechanisms that induce cooperation between

matched agents, we consider a specific UAV application. Our contributions to

this end pertain to the modeling, analysis, and design of UAV formation pairs

for optimal point-to-point reconfiguration. Regarding modeling, we introduce the

notion of a UAV formation pair as a collection of distances (or leader allocations) in

a line along which each one must lead. We also define a cost-to-target function that

measures the total fuel consumed along the trajectory. We model the compliance

of a UAV to a leader allocation via a parameter, ε ≥ 0, which quantifies the cost

gain that the UAV will forgo before breaking a formation. With these elements,

we formulate the problem of finding an optimal leader allocation among those that

induce cooperation. This problem is nonconvex in one variable (finding the optimal

leader allocation given a fixed number of switches) and combinatorial in the other

(finding the optimal number of leader switches).

The remaining contributions concern the analysis of this optimization prob-

lem and the design of algorithms that converge to a solution. When switching the

lead has no cost, we design the cost realization algorithm to determine an

optimal cooperation-inducing leader allocation. When switching the lead is costly,

we restrict the feasible set of leader allocations to mimic those of the solution

provided by the cost realization algorithm. Remarkably, we show that the

restriction convexifies the feasible set of the original nonconvex problem (for finding

the optimal leader allocation given a fixed number of switches) while maintaining

its optimal value. Turning our attention then to the problem of finding the opti-

mal number of leader switches, we establish a quasiconvexity-like property of the

optimal value of the problem as a function of the number of leader switches. This

property allows us to design the binary search algorithm, which finds the

optimal number in logarithmic time.

Throughout the thesis, various simulations demonstrate our algorithms and

verify our results. We specifically look at a distributed optimal control example, a
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distributed task assignment example, and a wireless communication example.

1.4 Organization

In Chapter 2, we introduce some notation and basic notions required to

understand the technical analysis in this thesis. In Chapter 3, we introduce the

problem of solving a linear program in a network system. The development of

a robust and distributed linear programming dynamics happens in this chapter.

Next, Chapter 4 develops an event-triggered implementation of the previously

proposed linear programming dynamics. As an application of the distributed linear

programming dynamics, in Chapter 5 we consider the network bargaining problem.

Here, dynamics to find stable, balanced, and Nash outcomes are derived. To

conclude the technical portion of this thesis, Chapter 6 considers the problem of

UAVs executing a formation while inducing cooperation. Chapter 7 summarizes

our contributions and highlights some interesting areas of future work.



Chapter 2

Preliminaries

This chapter contains introductory material on notation and basic notions

on mathematical analysis, set-valued and nonsmooth analysis, set-valued dynami-

cal systems, hybrid systems, optimization, and graph theory.

2.1 Notation and basic notions on mathematical

analysis

The sets of real, natural, even, and odd numbers are given by R,N,E,O,

respectively. We let 1p ∈ R
p denote the vector of ones. For x ∈ R

p, x ≥ 0 (resp.

x > 0) means that all components of x are nonnegative (resp. positive) and we

define max{0, x} = (max{0, x1}, . . . ,max{0, xp}) ∈ R
p. We use ‖x‖ and ‖x‖∞

to denote the 2- and ∞-norms in R
p. Given x, y ∈ R

p, the Euclidean distance

between them is denoted d(x, y) := ‖x− y‖. The Euclidean distance from a point

x ∈ R
p to a set S ⊆ R

p is defined as

‖x‖S = min
y∈S

‖x− y‖.

The following is a useful inequality for bounding bilinear forms.

Lemma 2.1.1. (Young’s inequality [45]). Let x ∈ R
p1, A ∈ R

p1×p2, y ∈ R
p2.

Then, for any ε > 0,

xTAy ≤ ε

2
xTATAx+

1

2ε
yTy.

15
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For n ∈ R and set S ⊂ R
p, the shorthand notation S≥n (resp. S>n) is

used to denote the set {s ∈ S : s ≥ n} (resp. {s ∈ S : s ≥ n}). For a set

S ⊆ R
p, its intersection with the nonnegative orthant is denoted S+ := S ∩ R

p
≥0.

This notation is applied analogously to vectors and scalars. The boundary of S

is denoted bd(S) ⊆ R
p and int(S) ⊆ R

p is its interior. We use S̄ to denote the

closure of S. The set S is convex if it fully contains the segment connecting any

two points in S. The convex hull of S is the smallest convex set that fully contains

S and is denoted co(S). If S is a finite set, the number of elements in S is given

by |S|. Given sets S1, S2 ⊆ R
p, we use S1 \ S2 to denote the points in S1 that are

not in S2. The set B(x, δ) ⊆ R
p is the open ball centered at x ∈ R

p with radius

δ > 0.

Given a matrix A ∈ R
p1×p2 , for i ∈ {1, . . . , p2} its ith row is denoted Ai ∈ R

p1

and for j ∈ {1, . . . , p1} its (i, j)-element is denoted ai,j ∈ R. When A ∈ R
p×p is

square, its spectral radius is

ρ(A) := max
i∈{1,...,p}

|λi|,

where λ1, . . . , λp are the eigenvalues of A. We call A = AT ∈ R
p×p positive semi-

definite (resp. positive definite) if xTAx ≥ 0 (resp. xTAx > 0) for all x ∈ R
p \ {0}

and we write A � 0 (resp. A ≻ 0). If A � 0, then xTAx ≤ ρ(A)xTx. Moreover,

for any matrix A ∈ R
p1×p2 , ρ(ATA) = ρ(AAT ). The following is a useful result

characterizing the eigenvalues of a matrix when some of its rows and columns are

zeroed out.

Theorem 2.1.2. (Cauchy Interlacing Theorem [48, Theorem 4.3.15]). For

a matrix 0 � A ∈ R
p×p, let 0 ≤ λ1 ≤ · · · ≤ λp denote its eigenvalues. For

d ∈ {1, . . . , p}, let Ad be the matrix obtained by zeroing out the dth row and column

of A, and let 0 = µ1 ≤ · · · ≤ µp denote its eigenvalues. Then µ1 ≤ λ1 ≤ µ2 ≤
λ2 ≤ · · · ≤ µp ≤ λp.

The domain of a function f : X → Y is denoted dom(f) := X. A function

f : Rp → R is positive definite with respect to a set S ⊂ R
p if f(x) = 0 for all

x ∈ S and f(x) > 0 for all x /∈ S. If S = {0}, we refer to f as positive definite. f is

radially unbounded with respect to S if f(x) → ∞ when ‖x‖S → ∞. If S = {0},
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we refer to f as radially unbounded. We call f proper with respect to S if it is

both positive definite and radially unbounded with respect to S. For c ∈ R, we

denote by f−1(≤ c) = {x ∈ dom(f) | f(x) ≤ c} the c-sublevel set of f . If f is

radially unbounded then f−1(≤ c) is compact. The function f : X → R is convex

if X ⊆ R
p is convex and f(µx + (1− µ)y) ≤ µf(x) + (1− µ)f(y) for all x, y ∈ X

and µ ∈ [0, 1]. f is concave if −f is convex. The function L : X × Y → R defined

on the convex set X × Y ⊆ R
p1 × R

p2 is convex-concave if x 7→ L(x, y) is convex

and y 7→ L(x, y) is concave. A point (x̄, ȳ) ∈ X × Y is a saddle point of L if

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all (x, y) ∈ X × Y . The class of K functions is

composed by functions of the form [0,∞) → [0,∞) that are continuous, zero at

zero, and strictly increasing. The subset of class K functions that are unbounded

are called class K∞. A class KL function [0,∞) × [0,∞) → [0,∞) is class K in

its first argument and continuous, decreasing, and converging to zero in its second

argument.

2.2 Set-valued and nonsmooth analysis

An understanding of set-valued and nonsmooth functions will prove to be

instrumental in both the derivation and analysis of various algorithms we introduce

in this paper. In particular, certain extensions of the derivative will allow us to

design gradient algorithms based on functions that are otherwise not differentiable

(that is, nonsmooth). Incidentally, the resulting dynamics is set-valued which

highlights a connection between these two notions.

We begin by introducing some notions on set-valued analysis, following

closely the exposition of [9]. A set-valued map F : Rp
⇒ R

p maps elements in

R
p to subsets of Rp. F is locally bounded if for every x ∈ R

p there exists an

ε > 0 such that F (B(x, ε)) is bounded. The set-valued map F : X ⊂ R
p
⇒ R

p

is upper semi-continuous if for all x ∈ X and ε > 0 there exists δx ≥ 0 such that

F (y) ⊆ F (x)+B(0, ε) for all y ∈ B(x, δx). Upper semi-continuity, as we will see in

the following section, endows certain regularity on dynamics defined by set-valued

maps. Conversely, F is lower semi-continuous if for all x ∈ X, ε ≥ 0, and any
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open set S intersecting F (x) there exists a δ ≥ 0 such that F (y) intersects S for

all y ∈ B(x, δ). If F is both upper and lower semi-continuous then it is continuous.

Let us now review some basic notions in nonsmooth analysis. Our presenta-

tion follows [29]. A function f : Rp → R is locally Lipschitz at x ∈ R
p if there exist

δx > 0 and Lx ≥ 0 such that |f(y1) − f(y2)| ≤ Lx‖y1 − y2‖ for y1, y2 ∈ B(x, δx).

If f is locally Lipschitz at all x ∈ R
p, we refer to f as locally Lipschitz. If f is

convex, then it is locally Lipschitz. A locally Lipschitz function is differentiable

almost everywhere. Let Ωf ⊆ R
p be then the set of points where f is not differen-

tiable. A natural extension of the derivative of f at x ∈ Ωf , called the generalized

gradient, is the convex combination of the set of limit points of the gradient of f

at neighboring points where f is differentiable. Formally speaking, the generalized

gradient of f at x ∈ R
p is

∂f(x) = co
{
lim
i→∞

∇f(xi) : xi → x, xi /∈ S ∪ Ωf

}
,

where S ⊂ R
p is any set with zero Lebesgue measure. The definition of the

generalized gradient is independent of the choice of set S, and this set is typically

chosen to simplify computation. The following result states some useful properties

of the generalized gradient.

Lemma 2.2.1. (Properties of the generalized gradient). If f : Rp → R

is locally Lipschitz at x ∈ R
p, then ∂f(x) is nonempty, convex, and compact.

Moreover, x 7→ ∂f(x) is locally bounded and upper semi-continuous.

The above result will allow us, in subsequent sections, to ensure the exis-

tence of solutions for gradient algorithms based on locally Lipschitz functions. A

critical point x ∈ R
p of f satisfies 0 ∈ ∂f(x). For a convex function f , the first-

order condition of convexity states that f(y) ≥ f(x) + (y − x)T g for all g ∈ ∂f(x)

and x, y ∈ R
p. For f : Rp × R

p → R and (x̄, ȳ) ∈ R
p × R

p, we use ∂xf(x̄, ȳ) and

∂yf(x̄, ȳ) to denote the generalized gradients of the maps x 7→ V (x, x̄) at x̄ and

y 7→ V (x̄, y) at ȳ, respectively.
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2.3 Set-valued dynamical systems

Some of the dynamics we propose in this thesis are defined by set-valued

flow fields, so we introduce some basic concepts for these types of systems. The

tutorial [32] provides an in depth look at this field.

A time-invariant set-valued dynamical system is represented by the differ-

ential inclusion

ẋ ∈ F (x), (2.1)

where F : Rp
⇒ R

p is a set valued map. If F is locally bounded, upper semi-

continuous and takes nonempty, convex, and compact values, then from any initial

condition in R
p, there exists an absolutely continuous curve x : R≥0 → R

p satis-

fying (2.1) almost everywhere. In this case, we call t 7→ x(t) either a solution or

a trajectory of (2.1). The solution is maximal if it cannot be extended forward

in time. The set of equilibria of F is defined as {x ∈ R
p | 0 ∈ F (x)}. A set M

is strongly (resp. weakly) invariant with respect to (2.1) if, for each x0 ∈ M, M
contains all (resp. at least one) maximal solution(s) of (2.1) with initial condition

x0. The Lie derivative is a powerful mathematical tool that captures the evolution

of a real-valued function along the trajectories of a set-valued dynamical system.

Consider first the simple case when the dynamics is given by a differential equation,

ẋ = f(x), with f : Rp → R
p. The evolution of a differentiable function V : Rp → R

along the trajectories of this dynamics is the Lie derivative of V along f ,

LfV (x) = ∇V (x)Tf(x).

In this case, it is easy to see that the Lie derivative is equivalent to the directional

derivative of V along f . We are interested in the extension of this concept when

V : Rp → R is locally Lipschitz and the dynamics are set-valued, as in (2.1). In

this case, the Lie derivative of V along the trajectories of (2.1) is defined as

LFV (x) = {a ∈ R : ∃v ∈ F (x) s.t. vT ζ = a ∀ζ ∈ ∂V (x)}.

Again, if V is differentiable, then the above definition simplifies to

LFV (x) = {∇V (x)Tv : v ∈ F (x)}.
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If LFV (x) ⊂ (−∞, 0] for all x ∈ R
p, then t 7→ F (x(t)) is monotonically non-

increasing where t 7→ x(t) is any trajectory of (2.1). When LFV (x) ⊂ (−∞, 0]

for all x ∈ R
p the set V −1(x(0)) is strongly invariant with respect to (2.1). The

following result helps establish the asymptotic set-convergence of (2.1) by way of

the Lie derivative and the invariance, with respect to (2.1), of certain sets.

Theorem 2.3.1. (Set-valued LaSalle Invariance Principle). Let X ⊂ R
p

be compact and strongly invariant with respect to (2.1). Assume V : Rp → R is

differentiable and F is locally bounded, upper semi-continuous and takes nonempty,

convex, and compact values. If LFV (x) ⊂ (−∞, 0] for all x ∈ X, then any solution

of (2.1) starting in X converges to the largest weakly invariant set M contained

in {x ∈ X : 0 ∈ LFV (x)}.

Differential inclusions are especially useful to handle differential equations

with discontinuities. For example, let f : X ⊂ R
p → R

p be a piecewise continuous

vector field and consider

ẋ = f(x). (2.2)

The classical notion of solution is not applicable to (2.2) because of the discon-

tinuities. Instead, consider the Filippov set-valued map associated to f , defined

by

F [f ](x) := co
{
lim
i→∞

f(xi) : xi → x, xi /∈ Ωf

}
, (2.3)

where Ωf are the points where f is discontinuous. One can show that the set-

valued map F [f ] is locally bounded, upper semi-continuous and takes nonempty,

convex, and compact values, and hence solutions exist to

ẋ ∈ F [f ](x), (2.4)

starting from any initial condition. The solutions of (2.2) in the sense of Filippov

are, by definition, the solutions of the differential inclusion (2.4).
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2.4 Hybrid systems

These basic notions on hybrid systems follow closely the exposition found

in [44]. A hybrid (or cyber-physical) system is a dynamical system whose state may

evolve according to (i) a differential equation ẋ = f(x) when its state is in some

subset, C, of the state-space and (ii) a difference equation x+ = g(x) when its state

is in some other subset, D, of the state-space. Thus, we may represent a hybrid

system by the tuple H = (f, g, C,D) where f : Rp → R
p (resp. g : Rp → R

p) is

called the flow map (resp. jump map) and C ⊆ R
p (resp. D ⊆ R

p) is called the

flow set (resp. jump set). Formally speaking, the evolution of the states of H are

governed by the following equations

ẋ = f(x), x ∈ C, (2.5a)

x+ = g(x), x ∈ D. (2.5b)

A compact hybrid time domain is a subset of R≥0 × N of the form

E = ∪J−1
j=0 ([tj, tj+1], j),

for some finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ . It is a hybrid time domain

if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, . . . , J}) is a compact hybrid time domain. A

function ψ is a solution to the hybrid system (2.5) if

(i) for all j ∈ N such that Ij := {t : (t, j) ∈ dom(ψ)} has non-empty interior

ψ(t, j) ∈ C, ∀t ∈ int(Ij),

ψ̇(t, j) = f(ψ(t, j)), for almost all t ∈ Ij.

(ii) for all (t, j) ∈ dom(ψ) such that (t, j + 1) ∈ dom(ψ)

ψ(t, j) ∈ D,

ψ(t, j + 1) = g(ψ(t, j)).

In (i) above, we say that ψ is flowing and in (ii) we say that ψ is jumping. We call

ψ persistently flowing if it is eventually continuous or if there exists a uniform time

constant τP whereby ψ flows for τP seconds infinitely often. Formally speaking, ψ

is persistently flowing if
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(PFi) ([tJ ,∞), J) ⊂ dom(ψ) for some J ∈ N, or

(PFii) there exists τP > 0 and an increasing sequence {jk}∞k=0 ⊂ N such that

([tjk , tjk + τP ], jk) ⊂ dom(ψ) for each k ∈ N.

2.5 Optimization

Here we introduce some basic definitions and results regarding mathemat-

ical optimization. A detailed exposition on these topics can be found in [23]. In

general, a mathematical optimization problem of the form

min
x∈X

f(x), (2.6)

where f : Rp → R ∪ {−∞,+∞} is called the objective function and X ⊆ R
p is

called the feasibility set. The minimum value of f on X is called the optimal value

of (2.6). A point x∗ ∈ X for which f(x) attains its minimum value on X is called

a solution of (2.6). By definition, a solution x∗ of (2.6) satisfies f(x∗) ≤ f(x) for

all x ∈ X. If X 6= ∅ then we say that (2.6) is feasible. Otherwise, it is infeasible

and its optimal value is +∞. A quadratic optimization problem, as we consider in

this thesis, can be denoted by

min cTx+
1

2
xTEx (2.7a)

s.t. Ax = b, x ≥ 0, (2.7b)

where for p1, p2 ∈ N, c, x ∈ R
p1 , 0 � E = ET ∈ R

p1×p1 , b ∈ R
p2 , and A ∈ R

p2×p1 .

We call (2.7) the primal problem and its associated dual is defined as

max
z
q(z),

where q : Rp2 → R is given by

q(z) := min
x

{
− 1

2
xTEx− bT z : c+ Ex+ AT z ≥ 0

}
.

The solutions to the primal and the dual can be related through the so-called

Karush-Kuhn-Tucker (KKT) conditions which we define next.
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Definition 2.5.1. (KKT conditions). A point (x∗, z∗) ∈ R
p1 ×R

p2 satisfies the

KKT conditions for (2.7) if

c+ Ex∗ + AT z∗ ≥ 0, Ax∗ = b, x∗ ≥ 0,

(c+ Ex∗ + AT z∗)
Tx∗ = 0. •

The equality (c+Ex∗+AT z∗)Tx∗ = 0 is called the complementary slackness

condition. When the primal is feasible, we have the following equivalence.

Theorem 2.5.2. (Optimality conditions). Suppose that (2.7) is feasible. Then,

the optimal value of the primal is the optimal value of the dual. Moreover, a point

(x∗, z∗) satisfies the KKT conditions for (2.7) if and only if x∗ (resp. z∗) is a

solution to the primal (resp. the dual).

The property that the optimal value of the primal and dual coincide, that

is cTx∗ = −bT z∗, is called strong duality. One remarkable consequence of Theo-

rem 2.5.2 is that the points that satisfy the KKT conditions must define a convex

set since, by equivalence, the primal-dual solution set is convex. This fact is not

obvious since the complementary slackness condition is not affine in the variables

x and z. This observation will allow us to use a simplified version of Danskin’s

Theorem, stated next, in the proof of a key result of Chapter 3.

Theorem 2.5.3. (Danskin’s Theorem [15, Proposition B.25]). Let Y ⊂ R
p1

be compact and convex. Given g : Rp2 × Y → R, suppose that x 7→ g(x, y) is

differentiable for every y ∈ Y , ∂xg is continuous on R
n × Y , and y 7→ g(x, y) is

strictly convex and continuous for every x ∈ R
p2. Define f : Rp2 → R by f(x) =

miny∈Y g(x, y). Then, ∇f(x) = ∂xg(x, y)|y=y∗(x), where y∗(x) = argminy∈Y g(x, y).

A special instance of the problem (2.7) is a linear program, which corre-

sponds to the case when E = 0,

min cTx (2.8a)

s.t. Ax = b, x ≥ 0. (2.8b)
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The above linear program is in standard form. Applying the definition of the dual

yields,

max − bT z (2.9a)

s.t. AT z ≥ c. (2.9b)

Linear programming (that is, the design of algorithms to solve linear programs) is

one of the most fundamental fields in mathematical optimization and thus demands

particular attention.

2.6 Graph Theory

Graphs, as we use them in this thesis, are a concise way to model the

interactions and information flow between certain subsystems in a network. We do

not require any advanced knowledge of graph theory beyond the basic modeling

framework. To this end, an undirected graph is a tuple G = (V , E ,W ), where

V = {1, . . . , n} is a set of vertices, E ⊆ V × V is a set of edges, and W ∈ R
|E|

is a vector of weights, indexed by edges in G. For any given vertex i ∈ V , the
neighbor set of i is denoted Ni := {j ∈ V : (i, j) ∈ E}. Given a matrix A ∈ R

p×n,

we call a graph connected with respect to A if for each ℓ ∈ {1, . . . , p} such that

aℓ,i 6= 0 6= aℓ,j, it holds that (i, j) ∈ E .



Chapter 3

Robust distributed linear

programming

In this chapter, we are interested in both the synthesis of distributed algo-

rithms that can solve standard form linear programs and the characterization of

their robustness properties. Our interest is motivated by network control scenarios

that give rise to linear programs with an intrinsic distributed nature. Here, we

consider scenarios where individual agents interact with their neighbors and are

only responsible for computing their own component of the solution vector of the

linear program.

The algorithm we design builds on the characterization of the solutions of

the linear program as saddle points of a modified nonsmooth Lagrangian function.

We show that the resulting continuous-time saddle-point algorithm is provably

correct by relying on the set-valued LaSalle Invariance Principle and, in particular,

a careful use of the properties of weakly and strongly invariant sets of the saddle-

point dynamics. However, in general, this dynamics is not distributed because of a

global parameter associated with the nonsmooth exact penalty function employed

to encode the inequality constraints of the linear program. This motivates the

design of a discontinuous saddle-point dynamics that, while enjoying the same

convergence guarantees, is fully distributed and scalable with the dimension of the

solution vector.

We then turn our attention to the characterization of the algorithm’s ro-

25
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bustness against disturbances and link failures. Specifically, we are able to show

that it is integral-input-to-state stable but not input-to-state stable. Our proof

method of the former is based on identifying a suitable iISS Lyapunov function,

which we build by combining the Lyapunov function used in our LaSalle argu-

ment and results from converse Lyapunov theory. The fact that the dynamics

is not input-to-state stable is a consequence of a more general result, that we

also establish, which states that no algorithmic solution for linear programming is

input-to-state stable when uncertainty in the problem data affects the dynamics as

a disturbance. These robustness characterizations further allow us to establish the

resilience of the proposed distributed dynamics to disturbances of finite variation

and recurrently disconnected communication among the agents.

Simulations in an optimal control application conclude this chapter.

3.1 Problem statement

In this chapter, we consider feasible standard form linear programs (2.8),

repeated here for convenience,

min cTx

s.t. Ax = b, x ≥ 0.

We denote the set of solutions to (2.8) by X ⊂ R
n and the set of solutions to its

dual (2.9) by Z ⊂ R
m. Although the formulation of a linear program is concise and

descriptive, it gives little insight into how one might go about finding solutions to

the problem. Towards a more functional description, one can relate the solutions

of a linear program to the saddle points of a modified Lagrangian function. The

next result establishes this connection.

Proposition 3.1.1. (Solutions of linear program as saddle points). For

K ≥ 0, let LK : Rn × R
m → R be defined by

LK(x, z) = cTx+
1

2
(Ax− b)T (Ax− b) + zT (Ax− b) +K1Tn max{0,−x}. (3.1)

Then, LK is convex in x and concave (in fact, linear) in z. Moreover,



27

(i) if x∗ ∈ R
n is a solution of (2.8) and z∗ ∈ R

m is a solution of (2.9), then the

point (x∗, z∗) is a saddle point of LK for any K ≥ ‖AT z∗ + c‖∞,

(ii) if (x̄, z̄) ∈ R
n ×R

m is a saddle point of LK with K > ‖AT z∗ + c‖∞ for some

z∗ ∈ R
m solution of (2.9), then x̄ ∈ R

n is a solution of (2.8).

Proof. One can readily see from (3.1) that LK is a convex-concave function. Let

x∗ be a solution of (2.8) and let z∗ be a solution of (2.9). To show (i), using

the characterization of X × Z described in Theorem 2.5.2 and the fact that K ≥
‖AT z∗ + c‖∞, we can write for any x ∈ R

n,

LK(x, z∗) = cTx+ (Ax− b)T (Ax− b) + zT∗ (Ax− b) +K1Tn max{0,−x},
≥ cTx+ zT∗ (Ax− b) + (AT z∗ + c)T max{0,−x},
≥ cTx+ zT∗ (Ax− b)− (AT z∗ + c)Tx,

= cTx+ zT∗ A(x− x∗)− (AT z∗ + c)T (x− x∗),

= cTx− cT (x− x∗) = cTx∗ = LK(x∗, z∗).

The fact that LK(x∗, z) = LK(x∗, z∗) for any z ∈ R
m is immediate. These two

facts together imply that (x∗, z∗) is a saddle point of LK .

We prove (ii) by contradiction. Let (x̄, z̄) be a saddle point of LK with

K > ‖AT z∗ + c‖∞ for some z∗ ∈ Z, but suppose x̄ is not a solution of (2.8). Let

x∗ ∈ X . Since for fixed x, z 7→ LK(x, z) is concave and differentiable, a necessary

condition for (x̄, z̄) to be a saddle point of LK is that Ax̄− b = 0. Using this fact,

LK(x∗, z̄) ≥ LK(x̄, z̄) can be expressed as

cTx∗ ≥ cT x̄+K1Tn max{0,−x̄}. (3.2)

Now, if x̄ ≥ 0, then cTx∗ ≥ cT x̄, and thus x̄ would be a solution of (2.8). If,

instead, x̄ 6≥ 0,

cT x̄ = cTx∗ + cT (x̄− x∗),

= cTx∗ − zT∗ A(x̄− x∗) + (AT z∗ + c)T (x̄− x∗),

= cTx∗ − zT∗ (Ax̄− b) + (AT z∗ + c)T x̄,

> cTx∗ −K1Tn max{0,−x̄},

which contradicts (3.2), concluding the proof.
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The relevance of Proposition 3.1.1 is two-fold. On the one hand, it justifies

searching for the saddle points of LK instead of directly solving the constrained

optimization problem (2.8). On the other hand, given that LK is convex-concave,

a natural approach to find the saddle points is via the associated saddle-point

dynamics. However, for an arbitrary function, such dynamics is known to ren-

der saddle points only stable, not asymptotically stable. Indeed, it is well known

(see e.g., [38, 39]) that the saddle-point dynamics derived using the standard La-

grangian for a linear program does not converge to a solution of the linear program.

Interestingly, using penalty functions associated with the constraints to augment

the cost function has been observed to improve the convergence of the saddle-

point dynamics [8]. In our case, we augment the linear cost function cTx with a

quadratic penalty for the equality constraints and a nonsmooth penalty function

for the inequality constraints. This results in the nonlinear optimization problem,

min
Ax=b

cTx+ ||Ax− b||2 +K1Tn max{0,−x},

whose standard Lagrangian is equivalent to LK . The nonsmooth penalty function

is required (among other reasons that we expand on elsewhere) to ensure that there

is an exact equivalence between saddle points of LK and the solutions of (2.8). On

the other hand, the use of any smooth penalty function, such as the logarithmic

barrier function used in [106], will not enjoy this property. It is worth noticing

that the lower bounds on K in Proposition 3.1.1 are characterized by certain dual

solutions, which are unknown a priori. Nevertheless, our discussion later shows

that this problem can be circumvented and that knowledge of such bounds is

not necessary for the design of robust, distributed algorithms that solve linear

programs.

In the next section, we show that indeed the saddle-point dynamics of LK

asymptotically converges to saddle points.
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3.2 Saddle-point dynamics for distributed linear

programming

In this section, we design a continuous-time algorithm to find the solu-

tions of (2.8) and discuss its distributed implementation in a multi-agent system.

Building on the result in Proposition 3.1.1, we consider the saddle-point dynamics

(gradient descent in one argument, gradient ascent in the other) of the modified

Lagrangian LK . The nonsmooth character of LK means that its saddle-point dy-

namics takes the form of the following differential inclusion,

ẋ+ c+ AT (z + Ax− b) ∈ −K∂max{0,−x}, (3.3a)

ż = Ax− b. (3.3b)

For notational convenience, we use FK
sdl : R

n × R
m

⇒ R
n × R

m to refer to (3.3).

The following result characterizes the asymptotic convergence of (3.3) to the set

of solutions to (2.8)-(2.9).

Theorem 3.2.1. (Asymptotic convergence to the primal-dual solution

set). Let (x∗, z∗) ∈ X × Z and define V : Rn × R
m → R≥0 as

V (x, z) =
1

2
(x− x∗)

T (x− x∗) +
1

2
(z − z∗)

T (z − z∗).

For ∞ > K ≥ ‖AT z∗ + c‖∞, it holds that LFK
sdl

V (x, z) ⊂ (−∞, 0] for all (x, z) ∈
R

n × R
m and any trajectory t 7→ (x(t), z(t)) of (3.3) converges asymptotically to

the set X × Z.

Proof. Our proof strategy is based on verifying the hypotheses of the LaSalle

Invariance Principle, cf. Theorem 2.3.1, and identifying the set of primal-dual

solutions as the corresponding largest weakly invariant set. First, note that

Lemma 2.2.1 implies that FK
sdl is locally bounded, upper semi-continuous and

takes nonempty, convex, and compact values. By Proposition 3.1.1(i), (x∗, z∗)

is a saddle point of LK when K ≥ ‖AT z∗ + c‖∞. Consider the quadratic func-

tion V defined in the theorem statement, which is continuously differentiable

and radially unbounded. Let a ∈ LFK
sdl
V (x, z). By definition, there exists
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v = (−c − AT (z + Ax − b) − gx, Ax − b) ∈ FK
sdl(x, z), with gx ∈ K∂max{0,−x},

such that

a = vT∇V (x, z) = (x−x∗)T (−c−AT (z+Ax−b)−gx)+(z − z∗)(Ax− b). (3.4)

Since LK is convex in its first argument, and c+AT (z+Ax− b)+gx ∈ ∂xL
K(x, z),

using the first-order condition of convexity, we have

LK(x, z) ≤ LK(x∗, z)+(x−x∗)T
(
c+AT (z+Ax−b)+gx

)
.

Since LK is linear in z, we have LK(x, z) = LK(x, z∗) + (z − z∗)T (Ax− b). Using

these facts in (3.4), we get

a ≤ LK(x∗, z)− LK(x, z∗) = LK(x∗, z)− LK(x∗, z∗) + LK(x∗, z∗)− LK(x, z∗) ≤ 0,

since (x∗, z∗) is a saddle point of LK . Since a is arbitrary, we deduce that

LFK
sdl
V (x, z) ⊂ (−∞, 0]. For any given ρ ≥ 0, this implies that the set V −1(≤ ρ) is

strongly invariant with respect to (3.3). Since V is radially unbounded, V −1(≤ ρ) is

also compact. The conditions of Theorem 2.3.1 are then satisfied with X = V −1(≤
ρ), and therefore any trajectory of (3.3) starting in V −1(≤ ρ) converges to the

largest weakly invariant set M in {(x, z) ∈ V −1(≤ ρ) : 0 ∈ LFK
sdl
V (x, z)} (note that

for any initial condition (x0, z0) one can choose a ρ such that (x0, z0) ∈ V −1(≤ ρ)).

This set is closed, which can be justified as follows. Since FK
sdl is upper semi-

continuous and V is continuously differentiable, the map (x, z) 7→ LFK
sdl
V (x, z) is

also upper semi-continuous. Closedness then follows from [9, Convergence The-

orem]. We now show that M ⊆ X × Z. To start, take (x′, z′) ∈ M. Then

LK(x∗, z∗)− LK(x′, z∗) = 0, which implies

L̃K(x′, z∗)− (Ax′ − b)T (Ax′ − b) = 0, (3.5)

where L̃K(x′, z∗) = cTx∗ − cTx′ − zT∗ (Ax
′ − b) − K1Tn max{0,−x′}. Using strong

duality, the expression of L̃K can be simplified to L̃K(x′, z∗) = −(AT z∗ + c)Tx′ −
K1Tn max{0,−x′}. In addition, AT z∗ + c ≥ 0 by dual feasibility. Thus, when

K ≥ ‖AT z∗ + c‖∞, we have L̃K(x, z∗) ≤ 0 for all (x, z) ∈ V −1(≤ ρ). This implies

that (Ax′ − b)T (Ax′ − b) = 0 for (3.5) to be true, which further implies that
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Ax′ − b = 0. Moreover, from the definition of L̃K and the bound on K, one can

see that if x′ 6≥ 0, then L̃K(x′, z∗) < 0. Therefore, for (3.5) to be true, it must

be that x′ ≥ 0. Finally, from (3.5), we get that L̃K(x′, z∗) = cTx∗ − cTx′ = 0. In

summary, if (x′, z′) ∈ M then cTx∗ = cTx′, Ax′ − b = 0, and x′ ≥ 0. Therefore, x′

is a solution of (2.8).

Now, we show that z′ is a solution of (2.9). Because M is weakly invariant,

there exists a trajectory starting from (x′, z′) that remains in M. The fact that

Ax′ = b implies that ż = 0, and hence z(t) = z′ is constant. For any given

i ∈ {1, . . . , n}, we consider the cases (i) x′i > 0 and (ii) x′i = 0. In case (i), the

dynamics of the ith component of x is ẋi = −(c + AT z′)i where (c + AT z′)i is

constant. It cannot be that −(c + AT z′)i > 0 because this would contradict the

fact that t 7→ xi(t) is bounded. Therefore, (c+A
T z′)i ≥ 0. If ẋi = −(c+AT z′)i < 0,

then xi(t) will eventually become zero, which we consider in case (ii). In fact, since

the solution remains in M, without loss of generality, we can assume that (x′, z′)

is such that either x′i > 0 and (c + AT z′)i = 0 or x′i = 0 for each i ∈ {1, . . . , n}.
Consider now case (ii). Since xi(t) must remain non-negative in M, it must be

that ẋi(t) ≥ 0 when xi(t) = 0. That is, in M, we have ẋi(t) ≥ 0 when xi(t) = 0

and ẋi(t) ≤ 0 when xi(t) > 0. Therefore, for any trajectory t 7→ xi(t) in M
starting at x′i = 0, the unique Filippov solution is that xi(t) = 0 for all t ≥ 0. As

a consequence, (c + AT z′)i ∈ [0, K] if x′i = 0. To summarize cases (i) and (ii), we

have

• Ax′ = b and x′ ≥ 0 (primal feasibility),

• AT z′ + c ≥ 0 (dual feasibility),

• (AT z′ + c)i = 0 if x′i > 0 and x′i = 0 if (AT z′ + c)i > 0 (complementary

slackness),

which is sufficient to show that z ∈ Z (cf. Theorem 2.5.2). Hence M ⊆ X × Z.

Since the trajectories of (3.3) converge to M, this completes the proof.

Using a slightly more complicated lower bound on the parameter K, we are

able to show point-wise convergence of the saddle-point dynamics. We state this

result next.
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Corollary 3.2.2. (Point-wise convergence of saddle-point dynamics). Let

ρ > 0. Then, with the notation of Theorem 3.2.1, for

∞ > K ≥ max
(x,z)∈(X×Z)∩V −1(≤ρ)

‖AT z + c‖∞, (3.6)

it holds that any trajectory t 7→ (x(t), z(t)) of (3.3) starting in V −1(≤ ρ) converges

asymptotically to a point in X × Z.

Proof. If K satisfies (3.6), then in particular K ≥ ‖AT z∗+c‖∞. Thus, V −1(≤ ρ) is

strongly invariant under (3.3) since LFK
sdl
V (x, z) ⊂ (−∞, 0] for all (x, z) ∈ V −1(≤

ρ) (cf. Theorem 3.2.1). Also, V −1(≤ ρ) is bounded because V is quadratic.

Therefore, by the Bolzano-Weierstrass theorem [89, Theorem 3.6], there exists a

subsequence (x(tk), z(tk)) ∈ V −1(≤ρ) that converges to a point (x̃, z̃) ∈ (X ×Z)∩
V −1(≤ρ). Given ε > 0, let k∗ be such that ‖(x(tk∗), z(tk∗))− (x̃, z̃)‖ ≤ ε. Consider

the function Ṽ (x, z) = 1
2
(x− x̃)T (x− x̃)+ 1

2
(z− z̃)T (z− z̃). When K satisfies (3.6),

again it holds thatK ≥ ‖AT z̃+c‖∞. Applying Theorem 3.2.1 once again, Ṽ −1(≤ ρ)

is strongly invariant under (3.3). Consequently, for t ≥ tk∗ , we have (x(t), z(t)) ∈
Ṽ −1(≤ Ṽ (x(tk∗), z(tk∗))) = B

(
(x̃, z̃), ‖(x(tk∗), z(tk∗))−(x̃, z̃)‖

)
⊂ B((x̃, z̃), ε). Since

ε can be taken arbitrarily small, this implies that (x(t), z(t)) converges to the point

(x̃, z̃) ∈ X × Z.

Remark 3.2.3. (Choice of parameter K). The bound (3.6) for the parameter

K depends on (i) the primal-dual solution set X × Z as well as (ii) the initial

condition, since the result is only valid when the dynamics start in V −1(≤ ρ).

However, if the set X×Z is compact, the parameterK can be chosen independently

of the initial condition since the maximization in (3.6) would be well defined when

taken over the whole set X × Z. We should point out that, in Section 3.2.1 we

introduce a discontinuous version of the saddle-point dynamics which does not

involve K. •

3.2.1 Discontinuous saddle-point dynamics

Here, we propose an alternative dynamics to (3.3) that does not rely on

knowledge of the parameter K and also converges to the solutions of (2.8)-(2.9).
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We begin by defining the nominal flow function f : Rn
≥0 × R

m → R
n by

f(x, z) := −c− AT (z + Ax− b). (3.7)

This definition is motivated by the fact that, for (x, z) ∈ R
n
>0 × R

m, the set

∂xL
K(x, z) is the singleton {−f(x, z)}. The discontinuous saddle-point dynamics

is, for i ∈ {1, . . . , n},

ẋi =




fi(x, z), if xi > 0,

max{0, fi(x, z)}, if xi = 0,
(3.8a)

ż = Ax− b. (3.8b)

When convenient, we use the notation fdis : R
n
≥0 × R

m → R
n × R

m to refer to the

discontinuous dynamics (3.8). Note that the discontinuous function that defines

the dynamics (3.8a) is simply the positive projection operator. That is, when

xi = 0, its flow is given by the projection of fi(x, z) onto R≥0. We understand

the solutions of (3.8) in the Filippov sense. We begin our analysis by establishing

a relationship between the Filippov set-valued map of fdis and the saddle-point

dynamics FK
sdl which allows us to relate the trajectories of (3.8) and (3.3).

Proposition 3.2.4. (Trajectories of the discontinuous saddle-point dy-

namics are trajectories of the saddle-point dynamics). Let ρ > 0 and

(x∗, z∗) ∈ X × Z be given and the function V be defined as in Theorem 3.2.1.

Then, for any

∞ > K ≥ K1 := max
(x,z)∈V −1(≤ρ)

‖f(x, z)‖∞,

the inclusion F [fdis](x, z) ⊆ FK
sdl
(x, z) holds for every (x, z) ∈ V −1(≤ ρ). Thus,

the trajectories of (3.8) starting in V −1(≤ ρ) are also trajectories of (3.3).

Proof. The projection onto the ith component of the Filippov set-valued map

F [fdis] is

proji(F [fdis](x, z)) =





{fi(x, z)}, if i ∈ {1, . . . , n} and xi > 0,

[fi(x, z),max{0, fi(x, z)}], if i ∈ {1, . . . , n} and xi = 0,

{(Ax− b)i}, if i ∈ {n+ 1, . . . , n+m}.
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As a consequence, for any i ∈ {n+ 1, . . . , n+m}, we have

proji(F
K
sdl(x, z)) = (Ax− b)i = proji(F [fdis](x, z)),

and, for any i ∈ {1, . . . , n} such that xi > 0, we have

proji(F
K
sdl(x, z)) = (−c− AT (Ax− b+ z))i = {fi(x, z)} = proji(F [fdis](x, z)).

Thus, let us consider the case when xi = 0 for some i ∈ {1, . . . , n}. In this case,

note that

proji(F [fdis](x, z)) = [fi(x, z),max{0, fi(x, z)}] ⊆ [fi(x, z), fi(x, z) + |fi(x, z)|],
proji(F

K
sdl(x, z)) = [fi(x, z), fi(x, z) +K].

The choice K ≥ |fi(x, z)| for each i ∈ {1, . . . , n} makes F [fdis](x, z) ⊆ FK
sdl(x, z).

More generally, since V −1(ρ) is compact and f is continuous, the choice

∞ > K ≥ max
(x,z)∈V −1(ρ)

‖f(x, z)‖∞,

guarantees F [fdis](x, z) ⊆ FK
sdl(x, z) for all (x, z) ∈ V −1(ρ). By Theorem 3.2.1,

we know that V is non-increasing along (3.3), implying that V −1(≤ ρ) is strongly

invariant with respect to (3.3), and hence (3.8) too. Therefore, any trajectory

of (3.8) starting in V −1(≤ ρ) is a trajectory of (3.3).

To shed some light on the intuitive relationship between the trajectories

of (3.3) and (3.8), Figure 3.1 illustrates the effect that increasing K has on the

trajectories of (3.3). From a given initial condition, at some point the value of K

is large enough, cf. Proposition 3.2.4, to make the trajectory of (3.8) (which never

leave Rn
≥0×R

m) also a trajectory of (3.3). Building on Proposition 3.2.4, the next

result characterizes the asymptotic convergence of (3.8).

Corollary 3.2.5. (Asymptotic convergence of the discontinuous saddle-

point dynamics). The trajectories of (3.8) starting in R
n
≥0×R

m converge asymp-

totically to a point in X × Z.

Proof. Let V be defined as in Theorem 3.2.1. Given any initial condition (x0, z0) ∈
R

n × R
m, let t 7→ (x(t), z(t)) be a trajectory of (3.8) starting from (x0, z0) and
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0
x

i

Time, t

increasing K →

Figure 3.1: [Illustration of the effect that increasing K has on the trajectories
of (3.3). For a given initial condition, the trajectories of (3.3) have increasingly
smaller “incursions” into the region where xi < 0 as K increases, until a finite
value is reached where the corresponding trajectory of (3.8) is also a trajectory
of (3.3).

let ρ = V (x0, z0). Note that t 7→ (x(t), z(t)) does not depend on K because (3.8)

does not depend on K. Proposition 3.2.4 establishes that t 7→ (x(t), z(t)) is also a

trajectory of (3.3) for K ≥ K1. Imposing the additional condition that

∞ > K ≥ max

{
K1, max

(x∗,z∗)∈(X×Z)∩V −1(≤ρ)
‖AT z∗ + c‖∞

}
,

Corollary 3.2.2 implies that the trajectories of (3.3) (and thus t 7→ (x(t), z(t))

converge asymptotically to a point in X × Z.

Establishing the above convergence of (3.8) directly (i.e., without a com-

parison to the trajectories of (3.3)) would require that certain regularity conditions

hold for the switching behavior of the system. On the other hand, our proof of

convergence for the set-valued saddle-point dynamics (3.3) made use of powerful

stability tools for set-valued dynamics which did not rely on any such regular-

ity. Therefore, arriving at Corollary 3.2.5 by means of comparing the trajectories

of (3.8) and (3.3) proved to be an elegant way of accounting for the complexity of

the dynamics (3.8). Moreover, the interpretation of the trajectories of (3.8) in the

Filippov sense is instrumental for our analysis in Section 3.3 where we study the
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robustness against disturbances using powerful Lyapunov-like tools for differential

inclusions.

Remark 3.2.6. (Comparison to existing dynamics for linear program-

ming). Though a central motivation for the development of our linear program-

ming algorithm is the establishment of various robustness properties which we

study next, the dynamics (3.8) and associated convergence results of this section

are both novel and have distinct contributions. The work [39] also builds on the

saddle-point dynamics of a smooth Lagrangian function to introduce an algorithm

for linear programs in inequality form. Instead of exact penalty functions, this

approach uses projections to keep the evolution within the feasible set, resulting in

a discontinuous dynamics in both the primal and dual variables. Convergence in

the dual variables is to some unknown point which is not shown to be a solution to

the dual problem. This is to be contrasted with the convergence properties of the

dynamics (3.8) stated in Corollary 3.2.5. Also, we do not require Slater’s condition

to be satisfied. •

3.2.2 Distributed implementation

An important advantage of the dynamics (3.8) over other linear program-

ming methods is that it is well-suited for distributed implementation. To make this

statement precise, consider a scenario where each component of x ∈ R
n corresponds

to the state of an independent decision maker or agent and the interconnection be-

tween the agents is modeled by an undirected graph G = (V , E). To see under what
conditions the dynamics (3.8) can be implemented by this multi-agent system, let

us express it component-wise. First, the nominal flow function in (3.8a) for agent

i ∈ {1, . . . , n} is,

fi(x, z) = −ci −
m∑

ℓ=1

aℓ,i

[
zℓ +

n∑

k=1

aℓ,kxk − bℓ

]
= −ci −

∑

{ℓ : aℓ,i 6=0}
aℓ,i

[
zℓ +

∑

{k : aℓ,k 6=0}
aℓ,kxk − bℓ

]
,

and the dynamics (3.8b) for each ℓ ∈ {1, . . . ,m} is

żℓ =
∑

{i : aℓ,i 6=0}
aℓ,ixi − bℓ. (3.9)
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According to these expressions, in order for agent i ∈ {1, . . . , n} to be able to

implement its corresponding dynamics in (3.8a), it also needs access to certain

components of z (specifically, those components zℓ for which aℓ,i 6= 0), and there-

fore needs to implement their corresponding dynamics (3.9). We say that the

dynamics (3.8) is distributed over G when the following holds

(D1) for each i ∈ V , agent i knows

(a) ci ∈ R,

(b) every bℓ ∈ R for which aℓ,i 6= 0,

(c) the non-zero elements of every row of A for which the ith component,

aℓ,i, is non-zero,

(D2) agent i ∈ V has control over the variable xi ∈ R,

(D3) G is connected with respect to A, and

(D4) agents have access to the variables controlled by neighboring agents.

Note that (D3) guarantees that the agents that implement (3.9) for a particular

ℓ ∈ {1, . . . ,m} are neighbors in G. At times, it will be useful to view the dynamics

of component of z as being implemented by virtual agents.

Remark 3.2.7. (Scalability of the nominal saddle-point dynamics). A

different approach to solve (2.8) is the following: reformulate the optimization

problem as the constrained minimization of a sum of convex functions all of the

form 1
n
cTx and use the algorithms developed in, for instance, [25, 68, 72, 106, 116],

for distributed convex optimization. However, this approach would lead to agents

storing and communicating with neighbors estimates of the entire solution vector

in R
n, and hence would not scale well with the number of agents of the network.

In contrast, to execute the discontinuous saddle-point dynamics, agents only need

to store the component of the solution vector that they control and communicate

it with neighbors. Therefore, the dynamics scales well with respect to the number

of agents in the network. •
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3.3 Robustness against disturbances

Here we explore the robustness properties of the discontinuous saddle-point

dynamics (3.8) against disturbances. Such disturbances may correspond to noise,

unmodeled dynamics, or incorrect agent knowledge of the data defining the linear

program. Note that the global asymptotic stability of X × Z under (3.8) charac-

terized in Section 3.2 naturally provides a robustness guarantee on this dynamics:

when X ×Z is compact, sufficiently small perturbations do not destroy the global

asymptotic stability of the equilibria, cf. [26]. Our objective here is to go beyond

this qualitative statement to obtain a more precise, quantitative description of

robustness. To this end, we consider the notions of input-to-state stability (ISS)

and integral-input-to-state stability (iISS). In Section 3.3.1 we show that, when

the disturbances correspond to uncertainty in the problem data, no dynamics for

linear programming can be ISS. This motivates us to explore the weaker notion of

iISS. In Section 3.3.2 we show that (3.8) with additive disturbances is iISS.

Remark 3.3.1. (Robust dynamics versus robust optimization). We make a

note of the distinction between the notion of algorithm robustness, which is what

we study here, and the term robust (or worst-case) optimization, see e.g., [19].

The latter refers to a type of problem formulation in which some notion of vari-

ability (which models uncertainty) is explicitly included in the problem statement.

Mathematically,

min cTx

s.t. f(x, ω) ≤ 0, ∀ω ∈ Ω,

where ω is an uncertain parameter. Building on the observation that one only has

to consider the worst-case values of ω, one can equivalently cast the optimization

problem with constraints that only depend on x, albeit at the cost of a loss of

structure in the formulation. •

Without explicitly stating it from here on, we make the following assump-

tion throughout the section:

(A) The solution sets to (2.8) and (2.9) are compact (i.e., X × Z is compact).
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The justification for this assumption is twofold. On the technical side, our study

of the iISS properties of (3.10) in Section 3.3.2 builds on a Converse Lyapunov

Theorem [26] which requires the equilibrium set to be compact (the question of

whether the Converse Lyapunov Theorem holds when the equilibrium set is not

compact and the dynamics is discontinuous is an open problem). On the practical

side, one can add box-type constraints to (2.8), ensuring that (A) holds.

We now formalize the disturbance model considered in this section. Let

w = (wx, wz) : R≥0 → R
n × R

m be locally essentially bounded and enter the

dynamics as follows,

ẋi =




fi(x, z) + (wx)i, if xi > 0,

max{0, fi(x, z) + (wx)i}, if xi = 0,
∀i ∈ {1, . . . , n}, (3.10a)

ż = Ax− b+ wz. (3.10b)

For notational purposes, we use fw
dis : R

2(n+m) → R
n+m to denote (3.10). As men-

tioned above, the additive disturbance w captures unmodeled dynamics, and both

measurement and computation noise. In addition, any error in an agent’s knowl-

edge of the problem data (A, b and c) can be interpreted as a specific manifestation

of w. For example, if agent i ∈ {1, . . . , n} uses an estimate ĉi of ci when comput-

ing its dynamics, this can be modeled in (3.10) by considering (wx(t))i = ci − ĉi.

To make precise the correspondence between the disturbance w and uncertain-

ties in the problem data, we provide the following convergence result when the

disturbance is constant.

Corollary 3.3.2. (Convergence under constant disturbances). For constant

w = (wx, wz) ∈ R
n × R

m, consider the perturbed linear program,

min (c− wx − ATwz)
Tx (3.11a)

s.t. Ax = b− wz, x ≥ 0, (3.11b)

and, with a slight abuse in notation, let X (w)×Z(w) be its primal-dual solution set.

Suppose that X (w)×Z(w) is nonempty. Then each trajectory of (3.10) starting in

R
n
≥0×R

m with constant disturbance w(t) = w = (wx, wz) converges asymptotically

to a point in X (w)×Z(w).
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Proof. Note that (3.10) with disturbance w corresponds to the undisturbed dynam-

ics (3.8) for the perturbed problem (3.11). Since X (w)×Z(w) 6= ∅, Corollary 3.2.5

implies the result.

3.3.1 No dynamics for linear programming is input-to-

state stable

The notion of input-to-state stability (ISS) is a natural starting point to

study the robustness of dynamical systems against disturbances. Informally, if a

dynamics is ISS, then bounded disturbances give rise to bounded deviations from

the equilibrium set. Here we show that any dynamics that (i) solve any feasible

linear program and (ii) where uncertainties in the problem data (A, b, and c)

enter as disturbances is not input-to-state stable (ISS). Our analysis relies on the

properties of the solution set of a linear program. To make our discussion precise,

we begin by recalling the definition of input-to-state stability.

Definition 3.3.3. (Input-to-state stability [97]). The dynamics (3.10) is ISS

with respect to X ×Z if there exist β ∈ KL and γ ∈ K such that, for any trajectory

t 7→ (x(t), z(t)) of (3.10), one has

‖(x(t), z(t))‖X×Z ≤ β(‖(x(0), z(0)‖X×Z , t) + γ(‖w‖∞),

for all t ≥ 0. Here, ‖w‖∞ := esssups≥0 ‖w(s)‖ is the essential supremum of w(t).

Our method to show that no dynamics is ISS is constructive. We find a

constant disturbance such that the primal-dual solution set to some perturbed

linear program is unbounded. Since any point in this unbounded solution set is

a stable equilibrium by assumption, this precludes the possibility of the dynamics

from being ISS. This argument is made precise next.

Theorem 3.3.4. (No dynamics for linear programming is ISS). Consider

the generic dynamics

(ẋ, ż) = Φ(x, z, v), (3.12)
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with disturbance t 7→ v(t). Assume uncertainties in the problem data are modeled

by v. That is, there exists a surjective function g = (g1, g2) : R
n+m → R

n×R
m with

g(0) = (0, 0) such that, for v̄ ∈ R
n+m, the primal-dual solution set X (v̄)×Z(v̄) of

the linear program

min (c+ g1(v̄))
Tx (3.13a)

s.t. Ax = b+ g2(v̄), x ≥ 0, (3.13b)

is the stable equilibrium set of (ẋ, ż) = Φ(x, z, v̄) whenever X (v̄)×Z(v̄) 6= ∅. Then,
the dynamics (3.12) is not ISS with respect to X × Z.

The proof of the above result requires the following technical Lemma.

Lemma 3.3.5. (Property of feasible set). If {Ax = b, x ≥ 0} is non-empty

and bounded then {AT z ≥ 0} is unbounded.

Proof. We start by proving that there exists an ν ∈ R
m such that {Ax = b+ν, x ≥

0} is empty. Define the vector s ∈ R
n component-wise as si = max{Ax=b,x≥0} xi.

Since {Ax = b, x ≥ 0} is compact and non-empty, s is finite. Next, fix ε > 0 and

let ν = −A(s+ε1n). Note that Ax = b+ν corresponds to A(x+s+ε1n) = b, which

is a shift by s+ ε1n in each component of x. By construction, {Ax = b+ ν, x ≥ 0}
is empty. Then, the application of Farkas’ Lemma [23, pp. 263] yields that there

exists ẑ ∈ R
m such that AT ẑ ≥ 0 and (b + ν)T ẑ < 0 (in particular, (b + ν)T ẑ < 0

implies that ẑ 6= 0). For any λ ∈ R≥0, it holds that AT (λẑ) ≥ 0, and thus

λẑ ∈ {AT z ≥ 0}, which implies the result.

We are now ready to prove Theorem 3.3.4.

Proof of Theorem 3.3.4. We divide the proof in two cases depending on whether

{Ax = b, x ≥ 0} is (i) unbounded or (ii) bounded. In both cases, we design a

constant disturbance v(t) = v̄ such that the equilibria of (3.12) contains points

arbitrarily far away from X ×Z. This would imply that the dynamics is not ISS.

Consider case (i). Since {Ax = b, x ≥ 0} is unbounded, convex, and polyhedral,

there exists a point x̂ ∈ R
n and direction νx ∈ R

n \ {0} such that x̂ + λνx ∈
bd({Ax = b, x ≥ 0}) for all λ ≥ 0. Here bd(·) refers to the boundary of the set.
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Let η ∈ R
n be such that ηTνx = 0 and x̂ + εη /∈ {Ax = b, x ≥ 0} for any ε > 0

(geometrically, η is normal to and points out of {Ax = b, x ≥ 0} at x̂). Now that

these quantities have been defined, consider the following linear program,

min ηTx (3.14)

s.t. Ax = b, x ≥ 0.

Because g is surjective, there exists v̄ such that g(v̄) = (−c + η, 0). In this case,

the program (3.14) is exactly the program (3.13), with primal-dual solution set

X (v̄) × Z(v̄). We show next that x̂ is a solution to (3.14) and thus in X (v̄).

Clearly, x̂ satisfies the constraints of (3.14). Since ηTνx = 0 and points outward

of {Ax = b, x ≥ 0}, it must be that ηT (x̂ − x) ≤ 0 for any x ∈ {Ax = b, x ≥ 0},
which implies that ηT x̂ ≤ ηTx. Thus, x̂ is a solution to (3.14). Moreover, x̂+ λνx

is also a solution to (3.14) for any λ ≥ 0 since (i) ηT (x̂ + λνx) = ηT x̂ and (ii)

x̂ + λνx ∈ {Ax = b, x ≥ 0}. That is, X (v̄) is unbounded. Therefore, there is a

point (x0, z0) ∈ X (v̄)×Z(v̄), which is also an equilibrium of (3.12) by assumption,

that is arbitrarily far from the set X × Z. Clearly, t 7→ (x(t), z(t)) = (x0, z0) is

an equilibrium trajectory of (3.12) starting from (x0, z0) when v(t) = v̄. The fact

that (x0, z0) can be made arbitrarily far from X × Z precludes the possibility of

the dynamics from being ISS.

Next, we deal with case (ii), when {Ax = b, x ≥ 0} is bounded. Consider

the linear program

min − bT z

s.t. AT z ≥ 0.

Since {Ax = b, x ≥ 0} is bounded, Lemma 3.3.5 implies that {AT z ≥ 0} is

unbounded. Using an analogous approach as in case (i), one can find η ∈ R
m such

that the set of solutions to

min ηT z (3.15)

s.t. AT z ≥ 0,

is unbounded. Because g is surjective, there exists v̄ such that g(v̄) = (−c,−b−η).
In this case, the program (3.15) is the dual to (3.13), with primal-dual solution
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set X (v̄) × Z(v̄). Since Z(v̄) is unbounded, one can find equilibrium trajectories

of (3.12) under the disturbance v(t) = v̄ that are arbitrarily far away from X ×Z,

which contradicts ISS.

Note that, in particular, the perturbed problem (3.11) and (3.13) coincide

when

g(w) = g(wx, wz) = (−wx − ATwz,−wz).

Thus, by Theorem 3.3.4, the discontinuous saddle-point dynamics (3.10) is not

ISS. Nevertheless, one can establish an ISS-like result for this dynamics under

small enough and constant disturbances. We state this result next, where we also

provide a quantifiable upper bound on the disturbances in terms of the solution

set of some perturbed linear program.

Proposition 3.3.6. (ISS of discontinuous saddle-point dynamics under

small constant disturbances). Suppose there exists δ > 0 such that the primal-

dual solution set X (w) × Z(w) of the perturbed problem (3.11) is nonempty for

w ∈ B(0, δ) and ∪w∈B(0,δ)X (w)×Z(w) is compact. Then there exists a continuous,

zero-at-zero, and increasing function γ : [0, δ] → R≥0 such that, for all trajectories

t 7→ (x(t), z(t)) of (3.10) with constant disturbance w ∈ B(0, δ), it holds that

lim
t→∞

‖(x(t), z(t))‖X×Z ≤ γ(‖w‖).

Proof. Let γ : [0, δ] → R≥0 be given by

γ(r) := max

{
‖(x, z)‖X×Z : (x, z) ∈

⋃

w∈B(0,r)

X (w)×Z(w)

}
.

By hypotheses, γ is well-defined. Note also that γ is increasing and satisfies γ(0) =

0. Next, we show that γ is continuous. By assumption, X (w)×Z(w) is nonempty

and bounded for every w ∈ B(0, δ). Moreover, it is clear that X (w)×Z(w) is closed

for every w ∈ B(0, δ) since we are considering linear programs in standard form.

Thus, X (w) × Z(w) is nonempty and compact for every w ∈ B(0, δ). By [111,

Corollary 11], these two conditions are sufficient for the set-valued map w 7→
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X (w)×Z(w) to be continuous on B(0, δ). Since r 7→ B(0, r) is also continuous, [9,

Proposition 1, pp. 41] ensures that the following set-valued composition map

r 7→
⋃

w∈B(0,r)

X (w)×Z(w),

is continuous (with compact values, by assumption). Therefore, [9, Theorem 6, pp.

53] guarantees then that γ is continuous on B(0, δ). Finally, to establish the bound

on the trajectories, recall from Corollary 3.3.2 that each trajectory t 7→ (x(t), z(t))

of (3.10) with constant disturbance w ∈ B(0, δ) converges asymptotically to a point

in X (w)×Z(w). The distance between X × Z and the point in X (w)×Z(w) to

which the trajectory converges is upper bounded by

lim
t→∞

‖(x(t), z(t))‖X×Z ≤ max{‖(x, z)‖X×Z : (x, z) ∈ X (w)×Z(w)} ≤ γ(‖w‖),

which concludes the proof.

3.3.2 Discontinuous saddle-point dynamics is integral

input-to-state stable

Here we establish that the dynamics (3.10) possess a notion of robustness

weaker than ISS, namely, integral input-to-state stability (iISS). Informally, iISS

guarantees that disturbances with small energy give rise to small deviations from

the equilibria. This is stated formally next.

Definition 3.3.7. (Integral input-to-state stability [6]). The dynamics (3.10)

is iISS with respect to the set X ×Z if there exist functions α ∈ K∞, β ∈ KL, and
γ ∈ K such that, for any trajectory t 7→ (x(t), z(t)) of (3.10) and all t ≥ 0, one

has

α(‖(x(t), z(t))‖X×Z) ≤ β(‖(x(0), z(0)‖X×Z , t) +

∫ t

0

γ(‖w(s)‖)ds. (3.16)

Our ensuing discussion is based on a suitable adaptation of the exposition

in [6] to the setup of asymptotically stable sets for discontinuous dynamics. A

useful tool for establishing iISS is the notion of iISS Lyapunov function, whose

definition we review next.
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Definition 3.3.8. (iISS Lyapunov function). A differentiable function V :

R
n+m → R≥0 is an iISS Lyapunov function with respect to the set X × Z for

dynamics (3.10) if there exist functions α1, α2 ∈ K∞, σ ∈ K, and a continuous

positive definite function α3 such that

α1(‖(x, z)‖X×Z) ≤ V (x, z) ≤ α2(‖(x, z)‖X×Z), (3.17a)

a ≤ −α3(‖(x, z)‖X×Z) + σ(‖w‖), (3.17b)

for all a ∈ LF [fw
dis

]V (x, z) and x ∈ R
n, z ∈ R

m, w ∈ R
n+m.

Note that, since the set X ×Z is compact by assumption, (3.17a) is equiva-

lent to V being proper with respect to X ×Z. The existence of an iISS Lyapunov

function is critical in establishing iISS, as the following result states.

Theorem 3.3.9. (iISS Lyapunov function implies iISS). If there exists an

iISS Lyapunov function with respect to X × Z for (3.10), then the dynamics is

iISS with respect to X × Z.

This result is stated in [6, Theorem 1] for the case of differential equations

with locally Lipschitz right-hand side and asymptotically stable origin, but its ex-

tension to discontinuous dynamics and asymptotically stable sets, as considered

here, is straightforward. We rely on Theorem 3.3.9 to establish that the discontinu-

ous saddle-point dynamics (3.10) is iISS. Interestingly, the function V employed to

characterize the convergence properties of the unperturbed dynamics in Section 3.2

is not an iISS Lyapunov function (in fact, our proof of Theorem 3.2.1 relies on the

set-valued LaSalle Invariance Principle because, essentially, the Lie derivative of V

is not negative definite). Nevertheless, in the proof of the next result, we build on

the properties of this function with respect to the dynamics to identify a suitable

iISS Lyapunov function for (3.10).

Theorem 3.3.10. (iISS of saddle-point dynamics). The dynamics (3.10) is

iISS with respect to X × Z.

Proof. We proceed by progressively defining functions Veuc, V rep
euc , VCLF, and

V rep
CLF : R

n × R
m → R. The rationale for our construction is as follows. Our
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starting point is the squared Euclidean distance from the primal-dual solution set,

denoted Veuc. The function V rep
euc is a reparameterization of Veuc (which remains

radially unbounded with respect to X × Z) so that state and disturbance ap-

pear separately in the (set-valued) Lie derivative. However, since Veuc is only a

LaSalle-type function, this implies that only the disturbance appears in the Lie

derivative of V rep
euc . Nevertheless, via a Converse Lyapunov Theorem, we identify

an additional function VCLF whose reparameterization V rep
CLF has a Lie derivative

where both state and disturbance appear. The function V rep
CLF, however, may not

be radially unbounded with respect to X × Z. This leads us to the construction

of the iISS Lyapunov function as V = V rep
euc + V rep

CLF.

We begin by defining the differentiable function Veuc

Veuc(x, z) = min
(x∗,z∗)∈X×Z

1

2
(x− x∗)

T (x− x∗) +
1

2
(z − z∗)

T (z − z∗).

Since X×Z is convex and compact, applying Theorem 2.5.3 one gets∇Veuc(x, z) =
(x− x∗(x, z), z − z∗(x, z)), where

(x∗(x, z), z∗(x, z)) = argmin
(x∗,z∗)∈X×Z

1

2
(x− x∗)

T (x− x∗) +
1

2
(z − z∗)

T (z − z∗).

It follows from Theorem 3.2.1 and Proposition 3.2.4 that LF [fdis]Veuc(x, z) ⊂
(−∞, 0] for all (x, z) ∈ R

n
≥0 × R

m. Next, define the function V rep
euc by

V rep
euc (x, z) =

∫ Veuc(x,z)

0

dr

1 +
√
2r
.

Clearly, V rep
euc (x, z) is positive definite with respect to X × Z. Also, V rep

euc (x, z)

is radially unbounded with respect to X × Z because (i) Veuc(x, z) is radially

unbounded with respect to X ×Z and (ii) limy→∞
∫ y

0
dr

1+
√
2r

= ∞. In addition, for

any a ∈ LF [fw
dis

]V
rep
euc (x, z) and (x, z) ∈ R

n
≥0 × R

m, one has

a ≤
√
2Veuc(x, z)‖w‖

1 +
√
2Veuc(x, z)

≤ ‖w‖. (3.18)

Next, we define the function VCLF. Since X × Z is compact and globally asymp-

totically stable for (3.8) (ẋ, ż) = F [fw
dis](x, z) when w ≡ 0 (cf. Corollary 3.2.5) the

Converse Lyapunov Theorem [26, Theorem 3.13] ensures the existence of a smooth
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function VCLF : Rn+m → R≥0 and class K∞ functions α̃1, α̃2, α̃3 such that

α̃1(‖(x, z)‖X×Z) ≤ VCLF(x, z) ≤ α̃2(‖(x, z)‖X×Z),

a ≤ −α̃3(‖(x, z)‖X×Z),

for all a ∈ LF [fdis]VCLF(x, z) and (x, z) ∈ R
n
≥0 × R

m. Thus, when w 6≡ 0, for

a ∈ LF [fw
dis

]VCLF(x, z) and (x, z) ∈ R
n
≥0 × R

m, we have

a ≤ −α̃3(‖(x, z)‖X×Z) +∇VCLF(x, z)w,

≤ −α̃3(‖(x, z)‖X×Z) + ‖∇VCLF(x, z)‖ · ‖w‖,
≤ −α̃3(‖(x, z)‖X×Z) + (‖(x, z)‖X×Z + ‖∇VCLF(x, z)‖) · ‖w‖,
≤ −α̃3(‖(x, z)‖X×Z) + λ(‖(x, z)‖X×Z) · ‖w‖,

where λ : [0,∞) → [0,∞) is given by

λ(r) = r + max
‖η‖X×Z≤r

‖∇VCLF(η)‖.

Since VCLF is smooth, λ is a class K function. Next, define

V rep
CLF(x, z) =

∫ VCLF(x,z)

0

dr

1 + λ ◦ α̃−1
1 (r)

.

Without additional information about λ ◦ α̃−1
1 , one cannot determine if V rep

CLF is

radially unbounded with respect to X × Z or not. Nevertheless, V rep
CLF is positive

definite with respect to X × Z. Then for any a ∈ LF [fw
dis

]V
rep
CLF(x, z) and (x, z) ∈

R
n
≥0 × R

m we have,

a ≤ −α̃3(‖(x, z)‖X×Z) +∇VCLF(x, z)w

1 + λ ◦ α̃−1
1 (VCLF(x, z))

,

≤ −α̃3(‖(x, z)‖X×Z)

1 + λ ◦ α̃−1
1 ◦ α̃2(‖(x, z)‖X×Z)

+
λ(‖(x, z)‖X×Z)

1 + λ(‖(x, z)‖X×Z)
‖w‖,

≤ −ρ(‖(x, z)‖X×Z) + ‖w‖, (3.19)

where ρ is the positive definite function given by

ρ(r) = α̃3(r)/(1 + λ ◦ α̃−1
1 ◦ α̃2(r)).

We now show that V = V rep
euc + V rep

CLF is an iISS Lyapunov function for (3.10) with

respect to X × Z. First, (3.17a) is satisfied because V is positive definite and
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radially unbounded with respect to X × Z since (i) V rep
euc is positive definite and

radially unbounded with respect to X × Z and (ii) V rep
CLF is positive definite with

respect to X×Z. Second, (3.17b) is satisfied as a result of the combination of (3.18)

and (3.19). Since V satisfies the conditions of Theorem 3.3.9, (3.10) is iISS.

Based on the discussion in Section 3.3.1, the iISS property of (3.10) is

an accurate representation of the robustness of the dynamics, not a limitation of

our analysis. A consequence of iISS is that the asymptotic convergence of the

dynamics is preserved under finite energy disturbances [98, Proposition 6]. In

the case of (3.10), a stronger convergence property is true under finite variation

disturbances (which do not have finite energy). The following formalizes this fact.

Corollary 3.3.11. (Finite variation disturbances). Suppose w : R≥0 → R
n ×

R
m is such that

∫∞
0

‖w(s)−w‖ds <∞ for some w = (wx, wz) ∈ R
n×R

m. Assume

that X (w)×Z(w) is nonempty and compact. Then each trajectory of (3.10) under

the disturbance w converges asymptotically to a point in X (w)×Z(w).

Proof. Let f v
dis,pert be the discontinuous saddle-point dynamics derived for the

perturbed program (3.11) associated to w with additive disturbance v : R≥0 →
R

n × R
m. By Corollary 3.3.2, X (w)× Z(w) 6= ∅ is globally asymptotically stable

for f 0
dis,pert. Additionally, by Theorem 3.3.10 and since X (w) × Z(w) is compact,

f v
dis,pert is iISS. As a consequence, by [98, Proposition 6], each trajectory of f v

dis,pert

converges asymptotically to a point in X (w) × Z(w) if
∫∞
0

‖v(s)‖ds < ∞. The

result now follows by noting that fw
dis with disturbance w is exactly f v

dis,pert with

disturbance v = w − w and that, by assumption, the latter disturbance satisfies
∫∞
0

‖v(s)‖ds <∞.

3.4 Robustness in recurrently connected graphs

In this section, we build on the iISS properties of the saddle-point dynam-

ics (3.3) to study its convergence under communication link failures. As such,

agents do not receive updated state information from their neighbors at all times

and use the last known value of their state to implement the dynamics. The link
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failure model we considered is described by recurrently connected graphs (RCG),

in which periods of communication loss are followed by periods of connectivity.

We formalize this notion next.

Definition 3.4.1. (Recurrently connected graphs). Given a strictly increas-

ing sequence of times {tk}∞k=0 ⊂ R≥0 and a base graph Gb = (V , Eb), we call

G(t) = (V , E(t)) recurrently connected with respect to Gb and {tk}∞k=0 if E(t) ⊆ Eb
for all t ∈ [t2k, t2k+1) while E(t) ⊇ Eb for all t ∈ [t2k+1, t2k+2), k ∈ Z≥0.

Intuitively, one may think of Gb as a graph over which (3.8) is distributed:

during time intervals of the form [t2k, t2k+1), links are failing and hence the network

cannot execute the algorithm properly, whereas during time intervals of the form

[t2k+1, t2k+2), enough communication links are available to implement it correctly.

In what follows, and for simplicity of presentation, we only consider the worst-

case link failure scenario: i.e., if a link fails during the time interval [t2k, t2k+1), it

remains down during its entire duration. The results stated here also apply to the

general scenarios where edges may fail and reconnect multiple times within a time

interval.

In the presence of link failures, the implementation of the evolution of the z

variables, cf. (3.9), across different agents would yield in general different outcomes

(given that different agents have access to different information at different times).

To avoid this problem, we assume that, for each ℓ ∈ {1, . . . ,m}, the agent with

minimum identifier index,

j = S(ℓ) := min{i ∈ {1, . . . , n} : aℓ,i 6= 0},

implements the zℓ-dynamics and communicates this value when communication is

available to its neighbors. Incidentally, only neighbors of j = S(ℓ) need to know

zℓ. With this convention in place, we may describe the network dynamics under

link failures. Let F(k) be the set of failing communication edges for t ∈ [tk, tk+1).

In other words, if (i, j) ∈ F(k) then agents i and j do not receive updated state

information from each other during the whole interval [tk, tk+1). The nominal flow



50

function of i on a RCG for t ∈ [tk, tk+1) is

fnom,RCG
i (x, z) = −ci −

m∑

ℓ=1
(i,S(ℓ))/∈F(k)

aℓ,izℓ −
m∑

ℓ=1
(i,S(ℓ))∈F(k)

aℓ,izℓ(tk)

−
m∑

ℓ=1

aℓ,i

[ n∑

j=1
(i,j)/∈F(k)

aℓ,jxj +
n∑

j=1
(i,j)∈F(k)

aℓ,jxj(tk)− bℓ

]
.

Thus the xi-dynamics during [tk, tk+1) for i ∈ {1, . . . , n} is

ẋi =




fnom,RCG
i (x, z), if xi > 0,

max{0, fnom,RCG
i (x, z)}, if xi = 0.

(3.20a)

Likewise, the z-dynamics for ℓ ∈ {1, . . . ,m} is

żℓ =
n∑

i=1
(i,S(ℓ))/∈F(k)

aℓ,ixi +
n∑

i=1
(i,S(ℓ))∈F(k)

aℓ,ixi(tk)− bℓ. (3.20b)

It is worth noting that (3.20) and (3.8) coincide when F(k) = ∅. The next result

shows that the discontinuous saddle-point dynamics still converge under recur-

rently connected graphs.

Proposition 3.4.2. (Convergence of saddle-point dynamics under RCGs).

Let G(t) = (V , E(t)) be recurrently connected with respect to Gb = (V , Eb)
and {tk}∞k=0. Suppose that (3.20) is distributed over Gb and Tmax

disconnected :=

supk∈Z≥0
(t2k+1 − t2k) < ∞. Let t 7→ (x(t), z(t)) be a trajectory of (3.20). Then

there exists Tmin
connected > 0 (depending on Tmax

disconnected, x(t0), and z(t0)) such that

infk∈Z≥0
(t2k+2 − t2k+1) > Tmin

connected implies that ‖(x(t2k), z(t2k))‖X×Z → 0 as

k → ∞.

Proof. The proof method is to (i) show that trajectories of (3.20) do not escape in

finite time and (ii) use a KL characterization of asymptotically stable dynamics [26]

to find Tmin
connected for which ‖(x(t2k), z(t2k))‖X×Z → 0 as k → ∞. To prove (i),

note that (3.20) represents a switched system of affine differential equations. The

modes are defined by all κ-combinations of link failures (for κ = 1, . . . , |Eb|) and

all κ-combinations of agents (for κ = 1, . . . , n). Thus, the number of modes is
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d := 2|Eb|+n. Assign to each mode a number in the set {1, . . . , d}. Then, for any

given t ∈ [tk, tk+1), the dynamics (3.20) is equivalently represented as

[
ẋ

ż

]
= Pσ(t)

[
x

z

]
+ qσ(t)(x(tk), z(tk)),

where σ : R≥0 → {1, . . . , d} is a switching law and Pσ(t) (resp. qσ(t)) is the flow

matrix (resp. drift vector) of (3.20) for mode σ(t). Let ρ = ‖(x(t0), z(t0))‖X×Z

and define

q̃ := max
p∈{1,...,d}

‖(x,z)‖X×Z≤ρ

‖qp(x, z)‖,

µ̃ := max
p∈{1,...,d}

µ(Pp),

where µ(Pp) = limh→0+
‖I−hPp‖−1

h
is the logarithmic norm of Pp. Both q̃ and µ̃ are

finite. Consider an arbitrary interval [t2k, t2k+1) where ‖(x(t2k), z(t2k))‖X×Z ≤ ρ.

In what follows, we make use of the fact that the trajectory of an affine differential

equation ẏ = Ay + β for t ≥ t0 is

y(t) = eA(t−t0)y(t0) +

∫ t

t0

eA(t−s)βds. (3.21)

Applying (3.21), we derive the following bound,

‖(x(t2k+1), z(t2k+1))− (x(t2k), z(t2k))‖

≤ ‖(x(t2k), z(t2k))‖(eµ̃(t2k+1−t2k) − 1) +

∫ t2k+1

t2k

eµ̃(t2k+1−s)q̃ds,

≤ (ρ+ q̃/µ̃)(eµ̃T
max
disconnected − 1) =:M.

In words,M bounds the distance that trajectories travel on intervals of link failures.

Also, M is valid for all such intervals where ‖(x(t2k), z(t2k))‖X×Z ≤ ρ. Next,

we address the proof of (ii) by designing Tmin
connected to enforce this condition. By

definition, ‖(x(t0), z(t0))‖X×Z = ρ. Thus, ‖(x(t1), z(t1)) − (x(t0), z(t0))‖ ≤ M .

Given that X × Z is globally asymptotically stable for (3.20) if F(k) = ∅ (cf.

Corollary 3.2.5), [26, Theorem 3.13] implies the existence of β ∈ KL such that

‖(x(t), z(t))‖X×Z ≤ β(‖(x(t0), z(t0))‖X×Z , t).
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By [98, Proposition 7], there exist θ1, θ2 ∈ K∞ such that β(s, t) ≤ θ1(θ2(s)e
−t).

Thus,

α(‖(x(t2), z(t2))‖X×Z) ≤ θ1(θ2(‖(x(t1), z(t1))‖X×Z)e
−t2+t1),

≤ θ1(θ2(ρ+M)e−t2+t1).

Consequently, if

t2 − t1 > Tmin
connected := ln

(
θ2(ρ+M)

θ−1
1 (α(ρ))

)
> 0,

then ‖(x(t2), z(t2))‖X×Z < ρ. Repeating this analysis reveals that

‖(x(t2k+2), z(t2k+2))‖X×Z < ‖(x(t2k), z(t2k))‖X×Z for all k ∈ Z≥0 when t2k+2 −
t2k+1 > Tmin

connected. Thus ‖(x(t2k), z(t2k))‖X×Z → 0 as k → ∞ as claimed.

Remark 3.4.3. (More general link failures). Proposition 3.4.2 shows that, as

long as the communication graph is connected with respect to A for a sufficiently

long time after periods of failure, the discontinuous saddle-point dynamics con-

verge. We have observed in simulations, however, that the dynamics is not robust

to more general link failures such as when the communication graph is never con-

nected with respect to A but its union over time is. We believe the reason is the

lack of consistency in the z−dynamics for all time across agents in this case. •

3.5 Simulations

Here we illustrate the convergence and robustness properties of the dis-

continuous saddle-point dynamics. We consider a finite-horizon optimal control

problem for a network of agents with coupled dynamics and underactuation. The

network-wide dynamics is open-loop unstable and the aim of the agents is to find

a control to minimize the actuation effort and ensure the network state remains

small. To achieve this goal, the agents use the discontinuous saddle-point dynam-

ics (3.8). Formally, consider the following finite-horizon optimal control problem,

min
T∑

τ=0

‖x(τ + 1)‖1 + ‖u(τ)‖1 (3.22a)

s.t. x(τ + 1) = Gx(τ) +Hu(τ), τ = 0, . . . T, (3.22b)
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x1

x2x5

x4 x3

= node with
actuation

Figure 3.2: Network topology of the multi-agent system defined by dynam-
ics (3.24). The presence of a communication link among every pair of agents whose
dynamics are coupled in (3.24) ensures that the algorithm (3.8) is distributed over
the communication graph.

where x(τ) ∈ R
N and u(τ) ∈ R

N is the network state and control, respectively, at

time τ . The initial point xi(0) is known to agent i and its neighbors. The matrices

G ∈ R
N×N and H = diag(h) ∈ R

N×N , h ∈ R
N , define the network evolution, and

the network topology is encoded in the sparsity structure of G. We interpret each

agent as a subsystem whose dynamics is influenced by the states of neighboring

agents. An agent knows the dynamics of its own subsystem and its neighbor’s

subsystem, but does not know the entire network dynamics. A solution to (3.22)

is a time history of optimal controls (u∗(0), . . . , u∗(T )) ∈ (RN)T .

To express this problem in standard linear programming form (2.8), we

split the states into their positive and negative components, x(τ) = x+(τ)−x−(τ),
with x+(τ), x−(τ) ≥ 0 (and similarly for the inputs u(τ)). Then, (3.22) can be

equivalently formulated as the following linear program,

min
T∑

τ=0

N∑

i=1

x+i (τ + 1) + x−i (τ + 1) + u+i (τ) + u−i (τ) (3.23a)

s.t. x+(τ + 1)− x−(τ) =

G(x+(τ)− x−(τ)) +H(u+(τ)− u−(τ)), τ = 0, . . . , T, (3.23b)

x+(τ + 1), x−(τ + 1), u+(τ), u−(τ) ≥ 0, τ = 0, . . . , T. (3.23c)

The optimal control for (3.22) at time τ is then u∗(τ) = u+∗ (τ)− u−∗ (τ), where the

vector (u+∗ (0), u
−
∗ (0), . . . , u

+
∗ (T ), u

−
∗ (T )) is a solution to (3.23), cf. [36, Lemma 6.1].



54

−4

−3

−2

−1

0

1

2

3

4

5

6

Time, t

A
g
e
n
t

1
’s

c
o
n
tr

o
l

u
1
(0

),
.
.
.,

u
1
(1

1
)

Figure 3.3: Trajectories of the discontinuous saddle-point dynamics (3.10) for
agent 1 as it computes its time history of optimal controls. The noise depicted in
Figure 3.4 was applied to the dynamics.
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Figure 3.4: Noise that was applied to agents’ dynamics resulting in the distur-
bances observed in the trajectoriies of Figure 3.3.

We implement the discontinuous saddle-point dynamics (3.8) for prob-
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lem (3.23) over a network of 5 agents described by the dynamics

x(τ + 1) =




0.5 0 0 0 0.7

0.7 0.5 0 0 0

0 0.7 0.5 0 0

0 0 0.7 0.5 0

0 0 0 0.7 0.5




x(τ) + diag







1

0

0

0

0







u(τ). (3.24)

Note that this dynamics is underactuated and open-loop unstable but control-

lable. Figure 3.2 reveals the network topology induced by this dynamics. Note

that, when implementing this dynamics, agent i ∈ {1, . . . , 5} computes the time

history of its optimal control, u−i (0), u
+
i (0), . . . , u

−
i (T ), u

+
i (T ), as well as the time

history of its states, x−i (1), x
+
i (1), . . . , x

−
i (T + 1), x+i (T + 1). With respect to the

solution of the optimal control problem, the time history of states are auxiliary

variables used in the discontinuous dynamics and can be discarded after the control

is determined. Figure 3.3 shows the results of the implementation of (3.8) when

a finite energy noise signal, shown in Figure 3.4, disturbs the agents’ execution.

Convergence is achieved initially in the absence of noise. Then, the finite energy

noise signal enters each agents’ dynamics and disrupts this convergence, albeit not

significantly due to the iISS property of (3.10) characterized in Theorem 3.3.10.

Once the noise disappears, convergence ensues. The time horizon of the prob-

lem is T = 11. The 12 trajectories represent agent 1’s evolving estimates of the

optimal controls u1(0), . . . , u1(11). The steady-state values achieved by these tra-

jectories correspond to the solution of (3.22). Once determined, these controls are

implemented by agent 1, resulting in the network evolution depicted in Figure 3.5.

Clearly, agent 1 is able to drive the open-loop unstable system state to zero.

Figure 3.6 shows the results of the implementation of (3.8) when the com-

munication graph is recurrently connected, where convergence is achieved in agree-

ment with Proposition 3.4.2. The link failure model here is a random number of

random links failing during times of disconnection. The graph is repeatedly con-

nected for 1s and then disconnected for 4s (i.e., the ratio Tmax
disconnected : Tmin

connected

is 4 : 1). The fact that convergence is still achieved under this unfavorable ratio

highlights the strong robustness properties of the algorithm.
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Figure 3.5: Once the optimal control is determined (the steady state values
depicted in Figure 3.3 and 3.6), these controls are then implemented by agent 1
and result in the network evolution (3.22b) depicted above.
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Figure 3.6: Trajectories of the dynamics under a recurrently connected commu-
nication graph where a random number of random links failed during periods of
disconnection.

This concludes our study of robust distributed linear programming.

Chapter 3, in part, is a reprint of the material [80] as it appears in ‘Dis-

tributed linear programming and bargaining in exchange networks’ by D. Richert
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and J. Cortés in the proceedings of the 2013 American Control Conference as well

as [81] as it appears in ‘Integral input-to-state stable saddle-point dynamics for

distributed linear programming’ by D. Richert and J. Cortés in the proceedings of

the 2013 IEEE Conference on Decision and Control as well as [83] as it appears

in ‘Robust distributed linear programming’ by D. Richert and J. Cortés which

was submitted to the IEEE Transactions on Automatic Control. The dissertation

author was the primary investigator and author of these papers.



Chapter 4

Distributed event-triggered linear

programming

From an analysis viewpoint, the availability of powerful concepts and tools

from stability analysis made the development of the continuous-time coordination

algorithm (3.8) of the previous chapter appealing. However, its implementation

requires the continuous flow of information among agents. To relax this require-

ment, the goal of this chapter is to synthesize realistic communication protocols

for the exchange of information between agents. One plausible approach would

be to design the Euler discretization of the continuous-time algorithm, determine

an appropriate stepsize to ensure convergence, and, based on it, have agents syn-

chronously and periodically broadcast their states. Besides requiring synchronous

state broadcasting, making this solution unattractive is the fact that the stepsize

has to take into account worst-case situations, leading to an inefficient use of the

network resources. Rather, our preferred solution is to develop a set of state-based

rules, termed triggers, that individual agents use to determine when to oppor-

tunistically broadcast their state to neighboring agents while ensuring asymptotic

convergence to a solution of the linear program.

As a preliminary development, we design a centralized trigger law whereby

agents use global knowledge of the network to determine when to synchronously

broadcast their state. The characterization of the convergence properties of

the centralized implementation is challenging for two reasons: (i) the original

58
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continuous-time dynamics is discontinuous in the agents’ state and (ii) a com-

mon smooth Lyapunov function is unknown. Regarding (ii), the LaSalle function

used in the previous chapter is inadequate to prove convergence because there

are certain points in the state space where arbitrarily fast state broadcasting is

required to ensure its monotonicity. Nevertheless, using concepts and tools from

switched and hybrid systems, we are able to overcome these obstacles by introduc-

ing a discontinuous Lyapunov function and examining its evolution during time

intervals where state broadcasts do not occur.

We then investigate to what extent the centralized triggers can be imple-

mented in a distributed way and modify them when necessary. In doing so, we

face the additional difficulty posed by the fact that the mode switches associ-

ated to the discontinuity of the original dynamics are not locally detectable by

individual agents. To address this challenge, we bound the evolution of the Lya-

punov function under mode mismatch and, based on this understanding, design

the distributed triggers so that any potential increase of the Lyapunov function

due to the mismatch is compensated by the decrease in its value before the mis-

match took place. Moreover, the distributed character of the agent triggers leads

to asynchronous state broadcasts, which poses an additional challenge for both

design and analysis. Our main result establishes the asymptotic convergence of

the distributed implementation and identifies sufficient conditions for executions

to be persistently flowing (that is, state broadcasts are separated by a uniform time

infinitely often). We show that the asynchronous state broadcasts cannot be the

cause of non-persistently flowing executions and we conjecture that all executions

are in fact persistently flowing. As a byproduct of using a hybrid systems model-

ing framework in our technical approach, we are also able to guarantee that the

global asymptotic stability of the proposed distributed algorithm is robust to small

perturbations. This chapter concludes with simulation results of a distributed as-

signment problem.

We would like to remark that our contributions in this chapter are also

relevant to the field of switched and hybrid systems [44, 47, 57]. To the authors’

knowledge, this thesis is the first to consider event-triggered implementations of
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state-dependent switched dynamical systems. As already eluded to in this intro-

duction, a unique challenge that must be overcome is the fact that the use of

outdated state information may cause the system to miss a mode switch and in

turn may affect the overall stability and performance.

4.1 Problem Statement

Let us formally state the problem of distributed linear programming with

event-triggered communication using the notion of hybrid systems described in

Chapter 2.

Problem Statement 4.1.1. (Distributed linear programming with event-

triggered communication). Design a hybrid system that, for each i ∈
{1, . . . , n}, takes the form,

ẋi = gi(x̂), if (x, x̂) /∈ Ti, (4.1a)

x̂+i = xi, if (x, x̂) ∈ Ti, (4.1b)

where gi : R
n → R is agent i’s flow map and Ti ⊆ R

n ×R
n is agent i’s trigger set,

which determines when i should broadcast its state, such that

(i) gi is computable by agent i and the inclusion (x, x̂) ∈ Ti is detectable by agent

i using local information and communication, and

(ii) the aggregate of the agents’ states converge to a solution of (2.8).

The interpretation of Problem 4.1.1 is as follows. Equation (4.1a) models

the fact that agent i ∈ {1, . . . , n} uses the last broadcast states from neighboring

agents and itself to compute the continuous-time flow gi governing the evolution

of its state. In-between two consecutive broadcasts of agent i (i.e., while flow-

ing), there is no dynamics for its last broadcast state x̂i. Formally, ˙̂xi = 0 if

(x, x̂) /∈ Ti. For this reason, the state evolution is quite easy to compute since it

changes according to a constant rate during continuous flow. Our use of the term

“continuous-time flow” is motivated by the fact that we model the event-triggered



61

design in the hybrid system framework. Moreover, viewing the dynamics (4.1a) as

a continuous-time flow will aid our analysis in subsequent sections. Equation (4.1b)

models the broadcast procedure. The condition (x, x̂) ∈ Ti is a state-based trigger

used by agent i to determine when to broadcast its current state xi to its neigh-

bors. Since communication is instantaneous, x+i = xi if (x, x̂) ∈ Ti. The dynamical

coupling between different agents is through the broadcast states in x̂ only. Note

that an agent cannot pre-determine the time of its next state broadcast because

it cannot predict if or when it will receive a broadcast from a neighbor. For this

reason, we call the strategy outlined in Problem 4.1.1 event-triggered as opposed

to self-triggered.

4.2 Re-design of the continuous-time algorithm

Our initial aim was to simply use the continuous-time dynamics (3.8) to

define the agents’ state dynamics between broadcasts (i.e., the gi in (4.1a), albeit

with auxiliary states z). However, it turns out that this dynamics is not directly

amenable to an event-triggered implementation (we make this point clearer in

Remark 4.3.4 later). Nevertheless a slight modification of that algorithm deems it

suitable. In this section we motivate and introduce that modification. We will also

state and prove the analogs of Propositions 3.1.1 and 3.2.4 for this new dynamics

as they will be necessary for our technical analysis later.

The dynamics we introduce here are derived in a parallel way as done in

Chapter 3 but for a regularized linear program instead. More specifically, consider

the following quadratic regularization of (2.8),

min γcTx+
1

2
xTx (4.2a)

s.t. Ax = b, x ≥ 0, (4.2b)

where γ ≥ 0. The following result reveals that this regularization is exact for

suitable values of γ. The result is a modification of [60, Theorem 1] for linear

programs in standard form rather than in inequality form.

Lemma 4.2.1. (Exact regularization). There exists γmin > 0 such that, for
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γ ≥ γmin, the solution to the regularization (4.2) is a solution to the linear pro-

gram (2.8).

Proof. We use the fact that a point x∗ ∈ R
n (resp. z∗ ∈ R

m) is a solution to (2.8)

(resp. the dual of (2.8)) if and only if it satisfies the KKT conditions for (2.8),

c+ AT z∗ ≥ 0, Ax∗ = b, x∗ ≥ 0, (c+ AT z∗)
Tx∗ = 0. (4.3)

We also consider the optimization problem

min
1

2
xTx (4.4a)

s.t. Ax = b, cTx = p, x ≥ 0, (4.4b)

where p is the optimal value of (2.8). Note that the solution to the above problem

is a solution to (2.8) by construction of the constraints. Likewise, (x̄, z̄, w̄) ∈
R

n×R
m×R are primal-dual solutions to (4.4) if and only if they satisfy the KKT

conditions for (4.4)

x̄+ AT z̄ + cw̄ ≥ 0, Ax̄ = b, cT x̄ = p, x̄ ≥ 0, (x̄+ AT z̄ + cw̄)T x̄ = 0.

(4.5)

Since x̄ is a solution to (2.8), without loss of generality, we suppose that x∗ = x̄.

We consider the cases when (i) w̄ = 0, (ii) w̄ > 0, and (iii) w̄ < 0. In case (i),

combining (4.3) and (4.5), one can obtain for any γ ≥ 0,

γc+ x∗ + AT (γz∗ + z̄) ≥ 0, Ax∗ = b, x∗ ≥ 0,

(γc+ x∗ + AT (γz∗ + z̄))Tx∗ = 0.

The above conditions reveal that (x∗, γz∗+ z̄) satisfy the KKT conditions for (4.2).

Thus, x∗ (which is a solution to (2.8)) is the solution to (4.2) and this would com-

plete the proof. Next, consider case (ii). If γ = γmin := w̄ > 0, the conditions (4.5)

can be manipulated to give

γc+ x∗ + AT z̄ ≥ 0, Ax∗ = b, x∗ ≥ 0, (γc+ x∗ + AT z̄)Tx∗ = 0.

This means that (x∗, z̄) satisfy the KKT conditions for (4.2). Thus, x∗ (which

is a solution to (2.8)) is the solution to (4.2) and this would complete the proof.
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Now, for any γ ≥ γmin, there exists an η ≥ 0 such that γ = γmin + η = w̄ + η.

Combining (4.3) and (4.5), one can obtain

γc+ x∗ + AT (ηz∗ + z̄) ≥ 0, Ax∗ = b, x∗ ≥ 0,

(γc+ x∗ + AT (ηz∗ + z̄)Tx∗ = 0.

This means that (x∗, ηz∗ + z̄) satisfy the KKT conditions for (4.2). Thus, x∗

(which is a solution to (2.8)) is the solution to (4.2) and this would complete the

proof. Case (iii) can be considered analogously to case (ii) with γmin := −w̄. This
completes the proof.

The actual value of γmin in Lemma 4.2.1 is somewhat generic in the following

sense: if one replaces c in (4.2) by γ̄c for some γ̄ > 0, then the regularization is

exact for γ ≥ γmin

γ̄
. Therefore, to ease notation, we make the following standing

assumption,

SA #1: γmin ≤ 1.

This justifies our focus on the case γ = 1. Our next result establishes the cor-

respondence between the solution of (4.2) and the saddle points of an associated

augmented Lagrangian function. This result can be seen as the analog of Propo-

sition 3.1.1.

Lemma 4.2.2. (Solutions of (4.2) as saddle points). For K ≥ 0, consider the

augmented Lagrangian function LK
QR : Rn×R

m → R associated to the quadratically

regularized optimization problem (4.2) with γ = 1,

LK
QR(x, z) = cTx+

1

2
xTx+

1

2
(Ax− b)T (Ax− b) + zT (Ax− b) +K1T max{0,−x}.

Then, LK
QR is convex in x and concave in z. Let x∗ ∈ R

n (resp. z∗ ∈ R
m) be

the solution to (4.2) (resp. a solution to the dual of (4.2)). Then, for K >

‖c+ x∗ + AT z∗‖∞, the following holds,

(i) (x∗, z∗) is a saddle point of LK
QR,

(ii) if (x̄, z̄) is a saddle point of LK
QR, then x̄ = x∗ is the solution of (4.2).
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Proof. For any x ∈ R
n,

LK
QR(x, z∗) = cTx+

1

2
xTx+

1

2
(Ax− b)T (Ax− b) + zT∗ (Ax− b) +K1T max{0,−x},

≥ cTx+
1

2
xTx+ zT∗ (Ax− b) + ‖c+ x∗ + AT z∗‖∞x,

≥ cTx+
1

2
xTx+ zT∗ (Ax− b)− (c+ x∗ + AT z∗)

Tx,

≥ cTx+
1

2
xTx+ zT∗ A(x− x∗)− (c+ x∗ + AT z∗)

T (x− x∗),

≥ cTx+
1

2
xTx− (c+ x∗)

T (x− x∗),

≥ cTx∗ +
1

2
(x− x∗)

T (x− x∗) +
1

2
xT∗ x∗,

≥ cTx∗ +
1

2
xT∗ x∗ = LK

QR(x∗, z∗). (4.6)

For any z, it is easy to see that LK
QR(x∗, z) = LK

QR(x∗, z∗). Thus (x∗, z∗) is a saddle

point of LK
QR.

Let us now prove (ii). As a necessary condition for (x̄, z̄) to be a saddle point

of LK
QR, it must be that ∂zL

K
QR(x̄, z̄) = Ax̄−b = 0 as well as LK

QR(x∗, x̄) ≥ LK
QR(x̄, z̄)

which means that

cTx∗ +
1

2
xT∗ x∗ ≥ cT x̄+

1

2
x̄T x̄+K1T max{0,−x̄}. (4.7)

If x̄ ≥ 0 then cTx∗ +
1
2
xT∗ x∗ ≥ cT x̄+ 1

2
x̄T x̄ and thus x̄ would be a solution to (4.2).

Consider then that x̄ 6≥ 0. Then,

cT x̄+
1

2
x̄T x̄ = cTx∗ +

1

2
xT∗ x∗ + (c+ x∗)

T (x̄− x∗) +
1

2
(x̄− x∗)

T (x̄− x∗),

≥ cTx∗ +
1

2
xT∗ x∗ + (c+ x∗)

T (x̄− x∗),

≥ cTx∗ +
1

2
xT∗ x∗ − zT∗ A(x̄− x∗) + (c+ x∗ + AT z∗)

T (x̄− x∗),

≥ cTx∗ +
1

2
xT∗ x∗ − zT∗ (Ax̄− b) + (c+ x∗ + AT z∗)

T x̄,

≥ cTx∗ +
1

2
xT∗ x∗ − ‖c+ x∗ + AT z∗‖∞ max{0,−x̄},

> cTx∗ +
1

2
xT∗ x∗ −K1T max{0,−x̄},

contradicting (4.7). Thus, x̄ ≥ 0 and must be the solution to (4.2).
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Then, as in Chapter 3, a sensible strategy to find a solution of (2.8) is via

the saddle point dynamics,

ẋ ∈ −∂xLK
QR(x, z), (4.8a)

ż = ∂zL
K
QR(x, z). (4.8b)

This dynamics is well-defined since LK
QR is a locally Lipschitz function. In a sim-

ilar fashion to our approach in Chapter 3, we consider instead the discontinuous

dynamics

ẋi =




fQR
i (x, z), if xi > 0,

max{0, fQR
i (x, z)}, if xi = 0,

(4.9a)

ż = Ax− b, (4.9b)

for each i ∈ {1, . . . , n} where fQR : Rn × R
m → R

n is defined as

fQR(x, z) := −(AT z + c)− AT (Ax− b)− x = f(x, z)− x.

Note the −x term, appearing due to the quadratic regularization, appears in

fQR(x, z) when compared with f(x, z).

The next result shows that the above discontinuous dynamics simply repre-

sent a certain selection of elements from the set-valued saddle-point dynamics (4.8).

Lemma 4.2.3. (Generalized gradients of the Lagrangian). Given a compact

set X × Z ⊂ R
n
≥0 × R

m, let

K∗(X × Z) := max
(x,z)∈X×Z

‖fQR(x, z)‖∞.

Then, if K ≥ K∗(X × Z), for each (x, z) ∈ X × Z, ∂zL
K
QR(x, z) = {Ax − b} and

there exists a ∈ −∂xLK
QR(x, z) ⊂ R

n such that, for each i ∈ {1, . . . , n},

ai =




fQR
i (x, z), if xi > 0,

max{0, fQR
i (x, z)}, if xi = 0.
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Proof. Let (x, z) ∈ R
n × R

m. It is straightforward to see that ∂zL
K
QR(x, z) =

{Ax− b} for any K. Next, note that for any a ∈ −∂xLK
QR(x, z), we have

−a− (AT z + c+ x)− AT (Ax− b) ∈ K∂max{0,−x}, (4.10)

or, equivalently, −a + fQR(x, z) ∈ K∂max{0,−x}. For any i ∈ {1, . . . , n} such

that xi > 0, the corresponding set in the right-hand side of (4.10) is the singleton

0 and therefore ai = fQR
i (x, z). On the other hand, if xi = 0, then

−ai + fQR
i (x, z) ∈ [−K, 0].

If fQR
i (x, z) ≥ 0, the choice ai = fQR

i (x, z) satisfies the equation. Conversely,

if fQR
i (x, z) < 0, then ai = 0 satisfies the equation for all K ≥ K∗(X × Z) by

definition of K∗(X × Z). This completes the proof.

The above result can be understood as the analog of Proposition 3.2.4 but

with a slightly different emphasis to fit our application in this chapter. Specifically,

this result reveals that, on a compact set, the trajectories of the dynamics (4.9)

are trajectories of (4.8). In other words, any bounded trajectory of (4.9) is also a

trajectory of (4.8).

The dynamics (4.9) is precisely the one we use to design an event-triggered

implementation for in the next sections. Besides the standard considerations in

designing an event-triggered implementation (such as ensuring convergence and

preventing arbitrarily fast broadcasting), we face several unique challenges includ-

ing the fact that the equilibria of (4.9) are not known a priori as well as having

to account for the switched nature of the dynamics. However, we note that the

distributed implementation of (4.9) is equivalent to that of (3.8). In the context

of this chapter, it is useful to think of each zℓ as the state of a virtual agent with

identifier n+ ℓ.

We conclude this section by stating a final standing assumptions that will

simplify the technical exposition in subsequent sections. Namely, without loss of

generality, we assume

SA #2: ρ(ATA) ≤ 1.
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Two reasons justify the generality of SA #2: the results are easily extensible

to the case ρ(ATA) > 1 and there exists a O(m) distributed algorithm, that we

explain briefly here, to ensure the assumption holds. It can be viewed as a simple

pre-processing algorithm based on max-consensus:

For each row aℓ of the matrix A, the virtual agent n+ℓ can compute the ℓth

row of ATA. Then, this agent stores the following estimate of the spectral radius,

ρ̂n+ℓ = (ATA)(ℓ,ℓ) +
∑

i∈{1,...,n}\{ℓ}
|(ATA)(ℓ,i)|.

The virtual agents use these estimates as an initial point in the standard max-

consensus algorithm [33]. In O(m) steps, the max-consensus converges to a point

ρ∗ ≥ ρ(ATA), where the inequality is a consequence of the Gershgorin Circle

Theorem [48, Corollary 6.1.5]. Then, each virtual agent scales its corresponding

row of A and entry of b by 1/ρ∗, and communicates this new data to its neighbors.

The resulting linear program is min{cTx : Ãx = b̃, x ≥ 0}, with Ã = A/ρ∗ and

b̃ = b/ρ∗. Both the solutions and optimal value of the new linear program are the

same as the original linear program and, by construction, ρ(ÃT Ã) ≤ 1.

4.3 Algorithm design with centralized event-

triggered communication

Here, we build on the discussion of Section 4.2 to address the main ob-

jective of this chapter as outlined in Problem 4.1.1. Our starting point is the

distributed continuous-time algorithm (4.9), which requires continuous-time com-

munication. Our approach is divided in two steps because of the complexity of

the challenges (e.g., asymptotic convergence, asynchronism, and persistence of

solutions) involved in going from continuous-time to opportunistic discrete-time

communication. First, we design a centralized event-triggered scheme that the

network can use to determine in an opportunistic way when information should be

updated. Then, in the next section, we build on this development to design a dis-

tributed event-triggered communication scheme that individual agents can employ

to determine when to share information with their neighbors.
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The problem we solve in this section can be formally stated as follows.

Problem Statement 4.3.1. (Linear programming with centralized event-

triggered communication). Identify a set T c ⊆ R
n
≥0 × R

m × R
n
≥0 × R

m such

that the hybrid system, for i ∈ {1, . . . , n}, of the form,

ẋi =




fQR
i (x̂, ẑ), x̂i > 0,

max{0, fQR
i (x̂, ẑ)}, x̂i = 0,

(4.11a)

ż = Ax̂− b, (4.11b)

if (x, z, x̂, ẑ) 6∈ T c and

(x̂+, ẑ+) = (x, z), (4.11c)

if (x, z, x̂, ẑ) ∈ T c, makes the aggregate x ∈ R
n of the real agents’ states converge

to a solution of the linear program (2.8).

We refer to the set T c in Problem 4.3.1 as the centralized trigger set. Note

that, in this centralized formulation of the problem, we do not require individual

agents, but rather the network as a whole, to be able to detect whether (x, z, x̂, ẑ) ∈
T c. In addition, when this condition is enabled, state broadcasts among agents

are performed synchronously, as described by (4.11c). Our strategy to design T c

is to first identify a candidate Lyapunov function and study its evolution along the

trajectories of (4.11). We then synthesize T c based on the requirement that our

Lyapunov function decreases along the trajectories of (4.11) and conclude with a

result showing that the desired convergence properties are attained.

Before we introduce the candidate Lyapunov function, we present an alter-

native representation of (4.11a)-(4.11b) that will be useful in our analysis later.

Given (x̂, ẑ) ∈ R≥0×R
m, let σ(x̂, ẑ) be the set of agents i for which ẋi = fQR

i (x̂, ẑ)

in (4.11a). Formally,

σ(x̂, ẑ) =
{
i ∈ {1, . . . , n} : fQR

i (x̂, ẑ) ≥ 0 or x̂i > 0
}
.

Next, let Iσ(x̂,ẑ) ∈ R
n×n be defined by

(Iσ(x̂,ẑ))i,j =




0, if i 6= j or i /∈ σ(x̂, ẑ),

1, otherwise.
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Note that this matrix is an identity-like matrix with a zero (i, i)-element if i /∈
σ(x̂, ẑ). The matrix Iσ(x̂,ẑ) has the following properties,

Iσ(x̂,ẑ) � 0, Iσ(x̂,ẑ) = ITσ(x̂,ẑ), I2σ(x̂,ẑ) = Iσ(x̂,ẑ), ρ(Iσ(x̂,ẑ)) ≤ 1.

Then, a compact representation of (4.11a)-(4.11b) is

(ẋ, ż) = F (x̂, ẑ) := (Iσ(x̂,ẑ)f
QR(x̂, ẑ), Ax̂− b),

where F = (Fx, Fz) : R
n
≥0 × R

m → R
n × R

m.

4.3.1 Candidate Lyapunov function and its evolution

Now let us define and analyze the candidate Lyapunov function that we use

to design the trigger set T c. The overall Lyapunov function is the sum of 2 separate

functions V1 and V2, that we introduce next. To define V1 : Rn × R
m → R≥0, fix

K > ‖c + x∗ + AT z∗‖∞ where x∗ (resp. z∗) is the solution to (4.2) (resp. any

solution of the dual of (4.2)) and let (x̄, z̄) be a saddle-point of LK
QR. Then

V1(x, z) =
1

2
(x− x̄)T (x− x̄) +

1

2
(z − z̄)T (z − z̄).

Note that V1 ≥ 0 is smooth with compact sublevel sets. Next, V2 : R
n×R

m → R≥0

is given by

V2(x, z) =
1

2
fQR(x, z)T Iσ(x,z)f

QR(x, z) +
1

2
(Ax− b)T (Ax− b).

Note that V2 ≥ 0 but, due to the state-dependent matrix Iσ(x,z), is only piece-

wise smooth. In this sense V2 can be viewed as a collection of multiple (smooth)

Lyapunov functions, each defined on a neighborhood where σ is constant. Also,

V −1
2 (0) is, by definition, the set of saddle-points of LK

QR (cf. Lemma 4.2.3). It

turns out that the negative terms in the Lie derivative of V1 alone are insufficient

to ensure that V1 is always decreasing given any practically implementable trig-

ger design (by practically implementable we mean a trigger design that does not

demand arbitrarily fast state broadcasting). The analogous statement regarding

V2 is also true which is why we consider instead a candidate Lyapunov function

V : Rn × R
m → R≥0 that is their sum

V (x, z) = (V1 + V2)(x, z).
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We would like to establish an upper bound on LFV in terms of the state errors in x

and z. However, because V2 is discontinuous, we are unable to apply the definition

of Lie-derivative as revealed in Chapter 2. Rather, we use the following definition:

The Lie derivative of V along F at (x, z) is

LFV (x, z) := lim
α→0

V ((x, z) + αF (x, z))− V (x, z)

α
. (4.12)

We say that LFV (x, z) exists when the limit in (4.12) exist. When V is dif-

ferentiable at (x, z), then we recover the standard Lie derivative, LFV (x, z) =

∇V (x, z)TF (x, z). We may now state the result.

Proposition 4.3.2. (Evolution of V ). Let X × Z ⊆ R
n
≥0 × R

m be compact and

suppose that (x, z, x̂, ẑ) ∈ X × Z ×X × Z is such that σ(x̂, ẑ) ⊆ σ(x, z) and

σ(x, z) = lim
α→0

σ(x+ αFx(x̂, ẑ), z + αFz(x̂, ẑ)). (4.13)

Then LFV (x, z) exists and

LFV (x, z) ≤ −1

2
fQR(x̂, ẑ)T Iσ(x̂,ẑ)f

QR(x̂, ẑ)− 1

4
(Ax̂− b)T (Ax̂− b) + 40eTx ex

+ 20eTz ez + 15fQR(x, z)T Iσ(x,z)\σ(x̂,ẑ)f
QR(x, z), (4.14)

where ex = x− x̂ and ez = z − ẑ.

Proof. For convenience, we use the shorthand notation p = σ(x, z) and p̂ = σ(x̂, ẑ).

Consider first V1, which is differentiable and thus LFV1(x, z) exists,

LFV1(x, z) = (x− x̄)T Ip̂f
QR(x̂, ẑ) + (z − z̄)T (Ax̂− b),

= (x̂− x̄)T Ip̂f
QR(x̂, ẑ) + (ẑ − z̄)T (Ax̂− b) + eTx Ip̂f

QR(x̂, ẑ)

+ eTz (Ax̂− b). (4.15)

Since X × Z is compact, without loss of generality assume that K ≥ K∗(X × Z)

so that −Ip̂fQR(x̂, ẑ) ∈ ∂xL
K
QR(x̂, ẑ), cf. Lemma 4.2.3. This, together with the fact

that LK
QR is convex in its first argument, implies

LK
QR(x̂, ẑ) ≤ LK

QR(x̄, ẑ)− (x̂− x̄)T Ip̂f
QR(x̂, ẑ).
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Since LK
QR is linear in z, we can write

LK
QR(x̂, ẑ) = LK

QR(x̂, z̄) + (ẑ − z̄)T (Ax̂− b).

Substituting these expressions into (4.15), we get

LFV1(x, z) ≤ LK
QR(x̄, ẑ)− LK

QR(x̂, z̄) + eTx Ip̂f
QR(x̂, ẑ) + eTz (Ax̂− b),

≤ cT x̄+
1

2
x̄T x̄− cT x̂− 1

2

n∑

i=1

x̂T x̂− z̄T (Ax̂− b)−K1T max{0,−x̂}

− 1

2
(Ax̂− b)T (Ax̂− b) + eTx Ip̂f

QR(x̂, ẑ) + eTz (Ax̂− b).

From the analysis in the proof of Lemma 4.2.2, inequality (4.6) showed that

cT x̄+
1

2
x̄T x̄

≤ cT x̂+
1

2
x̂T x̂+ z̄T (Ax̂− b) +

1

2
(Ax̂− b)T (Ax̂− b) +K1T max{0,−x̂},

where we use the fact that x̄ is also a solution to (4.2), cf. Lemma 4.2.2. Therefore,

LFV1(x, z) ≤ −1

2
(Ax̂− b)T (Ax̂− b) + eTx Ip̂f

QR(x̂, ẑ) + eTz (Ax̂− b),

≤ −1

2
(Ax̂− b)T (Ax̂− b) +

κ

2
(Ax̂− b)T (Ax̂− b)

+
κ

2
fQR(x̂, ẑ)T Ip̂f

QR(x̂, ẑ) +
1

2κ
eTx ex +

1

2κ
eTz ez, (4.16)

where we have used Lemma 2.1.1. Next, let us consider V2. We begin by showing

that (4.13) is sufficient for LFV2(x, z) to exist. Since σ is a discrete set of indices,

for the limit in (4.13) to exist, there must exist an ᾱ > 0 such that

σ(x, z) = σ(x+ αFx(x̂, ẑ), z + αFz(x̂, ẑ)),

for all α ∈ [0, ᾱ]. This means that one can substitute Iσ(x,z) for

Iσ(x+αFx(x̂,ẑ),z+αFz(x̂,ẑ)) in the definition of the Lie derivative (4.12). Since Iσ(x,z)

is constant with respect to α, it is straightforward to see that

LFV2(x, z) =
1

2
∇(fQR(x, z)T Ipf

QR(x, z))TF (x̂, ẑ)

+
1

2
∇((Ax− b)T (Ax− b))TF (x̂, ẑ).
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Thus,

LFV2(x, z) = fQR(x, z)T Ip(Dxf
QR(x, z)Fx(x̂, ẑ) +Dzf

QR(x, z)Fz(x̂, ẑ))

+ (Ax− b)TAFx(x̂, ẑ),

= −fQR(x, z)T Ip(A
TA+ I)Ip̂f

QR(x̂, ẑ)− fQR(x, z)T IpA
T (Ax̂− b)

+ (Ax− b)TAIp̂f
QR(x̂, ẑ). (4.17)

Due to the assumption that p̂ ⊆ p, we can write Ip = Ip̂ + Ip\p̂. Also, fQR(x, z)

can be written equivalently in terms of the errors ex, ez as

fQR(x, z) = fQR(x̂, ẑ)− AT ez − ex − ATAex.

Likewise, Ax− b = Ax̂− b+ Aex. Substituting these quantities into (4.17),

LFV2(x, z) = −(fQR(x̂, ẑ)− AT ez − ex − ATAex)
T Ip̂(A

TA+ I)Ip̂f
QR(x̂, ẑ)

− fQR(x, z)T Ip\p̂(A
TA+ I)Ip̂f

QR(x̂, ẑ)

− (fQR(x̂, ẑ)− AT ez − ex − ATAex)
T Ip̂A

T (Ax̂− b)

− fQR(x, z)T Ip\p̂A
T (Ax̂− b)

+ (Ax̂− b+ Aex)
TAIp̂f

QR(x̂, ẑ). (4.18)

We now derive upper bounds for a few terms in (4.18). For example,

eTz AIp̂A
TAIp̂f

QR(x̂, ẑ) ≤ 1

2κ
eTz ez +

κ

2
fQR(x̂, ẑ)T Ip̂A

TAIp̂A
TAIp̂A

TAIp̂f
QR(x̂, ẑ),

≤ 1

2κ
eTz ez +

κ

2
fQR(x̂, ẑ)T Ip̂f

QR(x̂, ẑ),

where we have used Lemma 2.1.1 and Theorem 2.1.2 along with the facts that

ρ(ATA) = ρ(AAT ) ≤ 1 and ρ(Ip̂) ≤ 1. Likewise,

eTx Ip̂A
TAIp̂f

QR(x̂, ẑ) ≤ 1

2κ
eTx ex +

κ

2
fQR(x̂, ẑ)T Ip̂A

TAIp̂A
TAIp̂f

QR(x̂, ẑ),

≤ 1

2κ
eTx ex +

κ

2
fQR(x̂, ẑ)T Ip̂f

QR(x̂, ẑ),

and

fQR(x, z)T Ip\p̂A
T (Ax̂− b) ≤ 1

2κ
fQR(x, z)T Ip\p̂f

QR(x, z)

+
κ

2
(Ax̂− b)TAAT (Ax̂− b),

≤ 1

2κ
fQR(x, z)T Ip\p̂f

QR(x, z) +
κ

2
(Ax̂− b)T (Ax̂− b).
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Repeatedly bounding every term in (4.18) in an analogous way (which we omit for

the sake of space and presentation) and adding the bound (4.16), we attain the

following inequality

LFV (x, z) ≤ −(1− 5κ)fQR(x̂, ẑ)T Ip̂f
QR(x̂, ẑ)− 1

2
(1− 5κ)(Ax̂− b)T (Ax̂− b)

+
3

2κ
fQR(x, z)T Ip\p̂f

QR(x, z) +
4

κ
eTx ex +

2

κ
eTz ez.

Equation (4.14) follows by choosing κ = 1
10
, completing the proof.

The reason why we have only considered the case σ(x̂, ẑ) ⊆ σ(x, z) (and

not the more general case of σ(x̂, ẑ) 6= σ(x, z)) when deriving the bound (4.14) in

Proposition 4.3.2 is the following: our distributed trigger design later (specifically,

the trigger sets T 0
i introduced in Section 4.4) ensures that σ(x̂, ẑ) ⊆ σ(x, z) always.

For this reason, we need not know how V evolves in the more general case.

4.3.2 Centralized trigger set design and convergence anal-

ysis

Here, we use our knowledge of the evolution of the function V , cf. Proposi-

tion 4.3.2, to design the centralized trigger set T c. Our approach is to incrementally

design subsets of T c and then combine them at the end to define T c. The main

observation that we base our design on is the following: The first two terms in

the right-hand-side of (4.14) are negative and thus desirable and the rest are pos-

itive. However, following a state broadcast, the positive terms become zero. This

motivates our first trigger set that should belong to T c,

T c,e := {(x, z, x̂, ẑ) ∈ (Rn
≥0 × R

m)2 : Ax̂− b 6= 0 or Iσ(x̂,ẑ)f
QR(x̂, ẑ) 6= 0, and

1

8
(Ax̂− b)T (Ax̂− b) +

1

4
fQR(x̂, ẑ)T Iσ(x̂,ẑ)f

QR(x̂, ẑ) ≤ 20eTz ez + 40eTx ex}.
(4.19)

The numbers 1
8
and 1

4
in the inequalities that define T c,e are design choices that

we have made to ease the presentation. Any other choice in (0, 1) is also possible,

with the appropriate modifications in the ensuing exposition. Note that, when
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both Ax̂ − b = Iσ(x̂,ẑ)f
QR(x̂, ẑ) = 0, no state broadcasts are required since the

system is at a (desired) equilibrium.

Likewise, after a state broadcast, σ(x, z) = σ(x̂, ẑ) and Iσ(x,z)\σ(x̂,ẑ) = 0

which means that the last term in (4.14) is also zero. For this reason, define

T c,σ := {(x, z, x̂, ẑ) ∈ (Rn
≥0 × R

m)2 : σ(x, z) 6= σ(x̂, ẑ)}, (4.20)

which prescribes a state broadcast when the mode σ changes.

We require one final trigger for the following reason. While the set Rn
≥0×R

m

is invariant under the continuous-time dynamics (4.9), this does not hold any more

in the event-triggered case because agents use outdated state information. To

preserve the invariance of this set, we define

T c,0 := {(x, z, x̂, ẑ) ∈ (Rn
≥0 × R

m)2 : ∃i ∈ {1, . . . , n} s.t. x̂i > 0, xi = 0}. (4.21)

If this trigger is activated by some agent i’s state becoming zero, then it is easy to

see from the definition of the dynamics (4.11a) that ẋi ≥ 0 after the state broadcast

and thus xi remains non-negative. Finally, the overall centralized trigger set is

T c := T c,e ∪ T c,σ ∪ T c,0. (4.22)

The following result characterizes the convergence properties of (4.11) under the

centralized event-triggered communication scheme specified by (4.22).

Theorem 4.3.3. (Convergence of the centralized event-triggered design).

If ψ is a persistently flowing solution of (4.11) with T c defined as in (4.22), then

there exists a point (x∗, z′) ∈ X × R
m such that,

ψ(t, j) → (x∗, z
′, x∗, z

′) as t+ j −→ ∞, (t, j) ∈ dom(ψ).

Proof. Let (t, j) 7→ ψ(t, j) = (x(t, j), z(t, j), x̂(t, j), ẑ(t, j)). We begin the proof

by showing that V is non-increasing along ψ. To this end, it suffices to prove

that (a) LFV (x(t, j), z(t, j)) ≤ 0 when ψ is flowing and LFV (x(t, j), z(t, j))

exists, (b) V (x(t, j), z(t, j)) ≤ limτ→t− V (x(t, j), z(t, j)) when ψ(t, j) is flow-

ing but LFV (x(t, j), z(t, j)) does not exist, and (c) V (x(t, j + 1), z(t, j + 1)) ≤
V (x(t, j), z(t, j)) when ψ is jumping.
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We begin with (a) and consider (t, j) ∈ dom(ψ) for which ψ is flow-

ing. Then, the interval Ij := {t : (t, j) ∈ dom(ψ)} has non-empty interior and

t ∈ int(Ij). This means that ψ(t, j) /∈ T c and, in particular, σ(x(t, j), z(t, j)) =

σ(x̂(t, j), ẑ(t, j)) by construction of T c,σ. Also, let X × Z be a compact set such

that ψ(t, j) ∈ X × Z ×X × Z. Therefore, the conditions of Proposition 4.3.2 are

satisfied and LFV (x(τ, j), z(τ, j)) exists for all τ ∈ int(Ij). Using (4.14), it holds

that

LFV (x(t, j), z(t, j)) ≤ −1

8
(Ax̂(t, j)− b)T (Ax̂(t, j)− b)

− 1

4
fQR(x̂(t, j), ẑ(t, j))T Iσ(x̂(t,j),ẑ(t,j))f

QR(x̂(t, j), ẑ(t, j)),

where we have used (i) the fact that, since σ(x(t, j), z(t, j)) = σ(x̂(t, j), ẑ(t, j)), the

last quantity in (4.14) is zero and (ii) the bound on 20eTx ex+40eTz ez in the definition

of T c,e. Clearly, in this case, LFV (x(t, j), z(t, j)) ≤ 0 when ψ(t, j) ∈ X×Z×X×Z.
Next, consider (b). Since V1 is smooth, LFV1(x(t, j), z(t, j)) exists, how-

ever, when V2(x(t, j), z(t, j)) is discontinuous, LFV (x(t, j), z(t, j)) does not. This

happen at any (t, j) ∈ dom(ψ) for which (i) Ij (as defined previously) has non-

empty interior and (ii) σ(x(t, j), z(t, j)) 6= limτ→t− σ(x(τ, j), z(τ, j)) (cf. Propo-

sition 4.3.2). Note that condition (i) ensures that the limit in condition (ii) is

well-defined. For purposes of presentation, define the sets

S+ := σ(x(t, j), z(t, j)) \ lim
τ→t−

σ(x(τ, j), z(τ, j)),

S− := lim
τ→t−

σ(x(τ, j), z(τ, j)) \ σ(x(t, j), z(t, j)).

Note that one of S+,S− may be empty. We can write

V2(x(t, j), z(t, j)) = lim
τ→τ−

V2(x(τ, j), z(τ, j))

+
1

2

∑

i∈S+

fQR
i (x(t, j), z(t, j))2 − 1

2

∑

i∈S−

fQR
i (x(t, j), z(t, j))2.

For each i ∈ S+, it must be that fQR
i (x(t, j), z(t, j)) = 0 since fQR

i (x̂(t, j), ẑ(t, j)) <

0 and fQR, x, z are continuous. Moreover, the last term in the right-hand-

side of the above expression is non-positive. Thus, V2(x(t, j), z(t, j)) ≤
limτ→t− V2(x(τ, j), z(τ, j)).
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Next, when ψ is jumping, as is case (c), V (x(t, j), z(t, j)) = V (x(t, j +

1), z(t, j+1) because (x(t, j+1), z(t, j+1)) = (x(t, j), z(t, j)) according to (4.11c).

To summarize, V (x(t, j), z(t, j)) is non-increasing when ψ(t, j) ∈ X × Z ×
X × Z. Without loss of generality, we choose X × Z = V −1(≤ c), where c =

V (x(0, 0), z(0, 0)). X × Z is compact because the sublevel sets of V1 are compact,

and X × Z × X × Z is invariant so as not to contradict V (x(t, j), z(t, j)) being

non-increasing on X ×Z ×X ×Z. Thus, V (x(t, j), z(t, j)) is non-increasing at all

times and ψ is bounded.

Now we establish the convergence property of (4.11). First note that, in this

preliminary design, ψ being persistently flowing implies also that the Lie derivative

of V along F exists for τP time on those intervals of persistent flow. This is because

ψ flowing implies that σ is constant and thus the Lie derivative of V along F exists

(cf. (4.13)). There are two possible characterizations of persistently flowing ψ as

given in Chapter 2. Consider (PFi). By the boundedness of ψ just established, it

must be that for all t ≥ tJ

0 = ẋ(t, j) = Iσ(x̂(tJ ,J),ẑ(tJ ,J))f
QR(x̂(tJ , J)), ẑ(tJ , J)),

0 = ż(t, j) = Ax̂(tJ , J)− b.

By Lemma 4.2.3 this means that (x̂(tJ , J), ẑ(tJ , J)) is a saddle-point of LK
QR (with-

out loss of generality, we assume that K ≥ K∗(X × Z)). Applying Lemma 4.2.2

reveals that x̂(tJ , J) ∈ X . Since x̂(t, j) is a sampled version of x(tJ , J) it is clear

that x(tJ , J) ∈ X as well, and since their dynamics are stationary in finite time,

they converge to a point, completing the proof.

Consider then (PFii), the second characterization of persistently flowing.

We have established that {V (x(tjk , jk), z(tjk , jk))}∞k=0 is non-increasing. Since it is

also bounded from below by 0, by the monotone convergence theorem there exists

a V∗ ∈ [0, c] such that limk→∞ V (x(tjk , jk), z(tjk , jk)) = V∗. Thus

V (x(tjk , jk), z(tjk , jk))− V (x(tjk+1
, jk+1), z(tjk+1

, jk+1)) → 0.

Let δ > 0 and consider κ ∈ N such that

V (x(tjk , jk), z(tjk , jk))− V (x(tjk+1
, jk+1), z(tjk+1

, jk+1)) < δ,
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for all k ≥ κ. By the bound established on LFV (x(t, jk), z(t, jk)), which exists for

all (t, jk) ∈ ([tjk , tjk + τP ), jk), it holds that,

V (x(tjk+1
, jk+1), z(tjk+1

, jk+1))

≤ V (x(tjk , jk), z(tjk , jk))−
1

8
(Ax̂(tjk , jk)− b)T (Ax̂(tjk , jk)− b)τP

− 1

4
fQR(x̂(tjk , jk), ẑ(tjk , jk))

T Iσ(x̂(tjk ,jk),ẑ(tjk ,jk))f
QR(x̂(tjk , jk), ẑ(tjk , jk))τP .

Therefore, V (x(tjk , jk), z(tjk , jk))−V (x(tjk+1
, jk+1), z(tjk+1

, jk+1)) < δ for all k ≥ κ

implies that

fQR(x̂(tjk , jk), ẑ(tjk , jk))
T Iσ(x̂(tjk ,jk),ẑ(tjk ,jk))f

QR(x̂(tjk , jk), ẑ(tjk , jk)) ≤ 4δτP ,

(Ax̂(tjk , jk)− b)T (Ax̂(tjk , jk)− b) ≤ 8δτP ,

for all k ≥ κ. Since τP is a uniform constant and δ > 0 can be taken arbitrarily

small, we deduce

Iσ(x̂(tjk ,jk),ẑ(tjk ,jk))f
QR(x̂(tjk , jk), ẑ(tjk , jk)) → 0 and Ax̂(tjk , jk)− b→ 0,

as k → ∞. By Lemma 4.2.3, this means that (x̂(tjk , jk), ẑ(tjk , jk)) converges to the

set of saddle-points of LK
QR. The same argument holds for x(tjk , jk) since x̂(tjk , jk)

is a sampled version of that state.

Finally, we establish the convergence to a point. By the Bolzano-Weierstrass

Theorem, there exists a subsequence {jkℓ} such that (x(tjkℓ , jkℓ), z(tjkℓ , jkℓ)) con-

verges to a saddle-point (x̄′, z̄′) of LK
QR. Fix δ

′ > 0 and let ℓ∗ be such that

‖(x(tjkℓ , jkℓ), z(tjkℓ , jkℓ))− (x̄′, z̄′)‖ < δ′,

for all ℓ ≥ ℓ∗. Consider the function W = W1 + V2 where

W1(x, z) =
1

2
(x− x̄′)T (x− x̄′) +

1

2
(z − z̄′)T (z − z̄′).

Let c′ = W (x(tjkℓ∗
, jkℓ∗ ), z(tjkℓ∗

, jkℓ∗ )) and X ′ × Z ′ = W−1(≤ c′). Repeating the

previous analysis, but for W instead of V , we deduce that X ′ × Z ′ × X ′ × Z ′ is

invariant. Consequently, ‖(x(t, j), z(t, j)) − (x̄′, z̄′)‖ < δ′ for all (t, j) ∈ dom(ψ)

such that t+ j ≥ tjkℓ∗
+ jkℓ∗ . Since δ

′ > 0 is arbitrary, it holds that

ψ(t, j) → (x̄′, z̄′, x̄′, z̄′) as t+ j −→ ∞, (t, j) ∈ dom(ψ).
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Since (x̄′, z̄′) is a saddle-point of LK
QR and, without loss of generality K ≥ K∗(X ×

Z), applying Lemma 4.2.2 reveals that x̄′ ∈ X , which completes the proof.

Remark 4.3.4. (Motivation for quadratic regularization of linear pro-

gram). Here we revisit the claim made in Section 4.2 that using the saddle-

point dynamics (3.8) derived for the original linear program (2.8) would not be

amenable to an event-triggered implementation. If we were to follow the same

design methodology for such dynamics, we would find that the bound on the

Lie derivative of V would resemble (4.14), but without the non-positive term

−fQR(x̂, ẑ)T Iσ(x̂,ẑ)f
QR(x̂, ẑ). Following the same methodology to identify the trig-

ger set, one would then use the trigger

1

8
(Ax̂− b)T (Ax̂− b) ≤ 20eTz ez + 40eTx ex,

to define T c,e and ensure that the function V does not increase. However, this

trigger may easily result in continuous-time communication: consider a scenario

where Ax̂− b = 0, but the state x is still evolving. Then the trigger would require

continuous-time broadcasting of x to ensure that ex remains zero. •

4.4 Algorithm design with distributed event-

triggered communication

In this section, we provide a distributed solution to Problem 4.1.1, e.g., a

coordination algorithm to solve linear programs requiring only communication at

discrete instants of time triggered by criteria that agents can evaluate with local

information. Our strategy to accomplish this is to investigate to what extent the

centralized triggers identified in Section 4.3.2 can be implemented in a distributed

way. In turn, making these triggers distributed poses the additional challenge of

dealing with the asynchronism in the state broadcasts across different agents, which

raises the possibility of non-persistency in the solutions. We deal with both issues

in our forthcoming discussion and establish the convergence of our distributed

design.
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4.4.1 Distributed trigger set design

Here, we design distributed triggers that individual agents can evaluate with

the local information available to them to guarantee the monotonically decreasing

evolution of the candidate Lyapunov function V . Our design methodology builds

on the centralized trigger sets T c,e, T c,σ, and T c,0 of Section 4.3.2. As a technical

detail, the distributed algorithm that results from this section has an extended

state which, for ease of notation, we denote by

ξ = (x, z, s, q, r, x̂, ẑ),

⊆ Ξ := R
n
≥0 × R

m × R
n
≥0 × {0, 1}(n+m)×n × R

n+m × R
n
≥0 × R

m.

The meaning and dynamics of states s, q, and r will be revealed as they become

necessary in our development.

We start by showing how the inequality that defines whether the network

state belongs to the set T c,e in (4.19) can be distributed across the group of agents.

Given µ1, . . . , µn+m > 0, consider the following trigger set for each agent,

T e
i :=




{ξ ∈ Ξ : fQR

i (x̂, ẑ) 6= 0 and (ex)
2
i ≥ µif

QR
i (x̂, ẑ)2}, if i ≤ n,

{ξ ∈ Ξ : aTi−nx̂− bi−n 6= 0 and (ez)
2
i−n ≥ µi(a

T
i−nx̂− bi−n)

2}, if i ≥ n+ 1.

If each µi ≤ 1
160

and (x, z, x̂, ẑ) is such that the inequalities defining each T e
i

do not hold, then it is clear that (x, z, x̂, ẑ) /∈ T c,e. To ensure convergence of

the resulting algorithm, we later characterize the specific ranges for the design

parameters {µi}n+m
i=1 .

Next, we show how the inclusion of the network state in the triggered

set T c,0 defined in (4.21) can be easily evaluated by individual agents with partial

information. In fact, for each i ∈ {1, . . . , n}, define the set

T 0
i := {ξ ∈ Ξ : x̂i > 0 but xi = 0}.

Clearly, (x, z, x̂, ẑ) ∈ T c,0 if and only if there is i ∈ {1, . . . , n} such that ξ ∈ T 0
i .

The triggered set T c,σ defined in (4.20) presents a greater challenge from

a distributed computation viewpoint. The problem is that, in the absence of

fully up-to-date information from its neighbors, an agent will fail to detect the
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mode switches that characterize the definition of this set. The specific scenario

we refer to is the following: assume agent i ∈ {1, . . . , n} has xi = 0 and the

information available to it confirms that its state should remain constant, i.e.,

with fQR
i (x̂, ẑ) < 0. If the condition fQR

i (x, z) ≥ 0 becomes true as the network

state evolves, this fact is undetectable by i with its outdated information. In such

a case, i /∈ σ(x̂, ẑ) but i ∈ σ(x, z), meaning that the equality σ(x, z) = σ(x̂, ẑ)

defining the trigger set T c,σ would not be not enforced. To deal with this issue,

we first need to understand the effect that a mismatch in the modes has on the

evolution of the candidate Lyapunov function V . We address this in the following

result.

Proposition 4.4.1. (Bound on evolution of candidate Lyapunov function

under mode mismatch). Suppose that (x̂, ẑ) ∈ R
n
≥0×R

m is such that i /∈ σ(x̂, ẑ)

for some i ∈ {1, . . . , n} and let t 7→ (x(t), z(t)) be the solution to

(ẋ, ż) = F (x̂, ẑ),

starting from (x̂, ẑ). Let T > 0 be the minimum time such that i ∈ σ(x(T ), z(T )).

Then, for any ν > 0, and all t such that t− T < ν
2
√
2
, the following holds,

fQR
i (x(t), z(t))2 ≤ ν2fQR(x̂, ẑ)T Iσ(x̂,ẑ)∩Nx

i
fQR(x̂, ẑ) + ν2(Ax̂− b)T IN z

i
(Ax̂− b),

where N x
i := Ni ∩ {1, . . . , n} and N z

i := Ni ∩ {n+ 1, . . . , n+m}.

Proof. We use the shorthand notation p̂ = σ(x̂, ẑ) and p(t) = σ(x(t), z(t)). Since

i /∈ p̂, it must be that x̂i = 0 and fQR
i (x̂, ẑ) < 0. Moreover, if i ∈ p(T ), it must be,

by continuity of t 7→ (x(t), z(t)) and (x, z) 7→ fQR(x, z), that fQR
i (x(T ), z(T )) = 0.

Let us compute the Taylor expansion of t 7→ fQR
i (x(t), z(t)) using t = T as the

initial point. For technical reasons, we actually consider the equivalent mapping

t 7→ I{i}fQR(x(t), z(t)) instead,

I{i}f
QR(x(t), z(t)) = I{i}f

QR(x(T ), z(T )) +DxI{i}f
QR(x(T ), z(T ))TFx(x̂, ẑ)(t−T )

+DzI{i}f
QR(x(T ), z(T ))TFz(x̂, ẑ)(t− T ),

= I{i}(A
TA+ I)Ip̂f

QR(x̂, ẑ)(t− T ) + I{i}A
T (Ax̂− b)(t− T ),
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where the equality holds because the higher order terms are zero. Thus,

fQR(x(t), z(t))T I{i}f
QR(x(t), z(t))

= fQR(x̂, ẑ)T Ip̂(A
TA+ I)I{i}(A

TA+ I)Ip̂f
QR(x̂, ẑ)(t− T )2

+ 2fQR(x̂, ẑ)T Ip̂(A
TA+ I)I{i}A

T (Ax̂− b)(t− T )2

+ (Ax̂− b)TAI{i}A
T (Ax̂− b)(t− T )2.

Using Lemma 2.1.1 with κ = 1
2
and exploiting the consistency between the matrix

A and the neighbors of i, we obtain

fQR(x(t), z(t))T I{i}f
QR(x(t), z(t))

≤ 2fQR(x̂, ẑ)T Ip̂(A
TA+ I)I{i}(A

TA+ I)Ip̂f
QR(x̂, ẑ)(t− T )2

+ 2(Ax̂− b)TAI{i}A
T (Ax̂− b)(t− T )2,

≤ 2fQR(x̂, ẑ)T Ip̂∩Nx
i
(ATA+ I)2Ip̂∩Nx

i
fQR(x̂, ẑ)(t− T )2

+ 2(Ax̂− b)T IN z
i
AAT IN z

i
(Ax̂− b)(t− T )2,

≤ 8fQR(x̂, ẑ)T Ip̂∩Nx
i
fQR(x̂, ẑ)(t− T )2 + 2(Ax̂− b)T IN z

i
(Ax̂− b)(t− T )2,

≤ 8(t− T )2(fQR(x̂, ẑ)T Ip̂∩Nx
i
fQR(x̂, ẑ) + (Ax̂− b)T IN z

i
(Ax̂− b)).

Using the bound t−T ≤ ν
2
√
2
in the statement of the result completes the proof.

The importance of Proposition 4.4.1 comes from the following observation:

given the upper bound on the evolution of the candidate Lyapunov function V

obtained in Proposition 4.3.2, one can appropriately choose the value of ν so that

the negative terms in (4.14) can compensate for the presence of the last term due to

a mode mismatch of finite time length. This observation motivates the introduction

of the following trigger sets, which cause neighbors to send synchronized broadcasts

periodically to an agent if its state remains at zero. First, if an agent i’s state is

zero and it has not received a synchronized broadcast from its neighbors for τi time

(here, τi > 0 is a design parameter), it triggers a broadcast to notify its neighbors

that it requires new states. This behavior is captured by the trigger set

T request
i :=




{ξ ∈ Ξ : xi = 0 and si ≥ τi}, if i ≤ n,

∅, if i ≥ n+ 1.
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where we use the state si to denote the time since i has last sent a broadcast.

On the receiving end, if i receives a broadcast request from a neighbor j, then it

should also broadcast immediately,

T send
i := {ξ ∈ Ξ : ∃j ∈ N x

i s.t. qi,j = 1},

where qi,j ∈ {0, 1} is a state with qi,j = 1 indicating that j has requested a

broadcast from i.

Our last component of the distributed trigger design addresses the problem

posed by the asynchronism in state broadcasts. In fact, given that agents determine

autonomously when to communicate with their neighbors, this may cause non-

persistence in the resulting network evolution. As an example, consider a scenario

where successive state broadcasts by one agent cause another neighboring agent to

generate a state broadcast of its own after increasingly smaller time intervals, and

vice versa. To address this problem, we provide a final component to the design

of the distributed trigger set as follows,

T synch
i := {ξ ∈ Ξ : 0 ≤ ri ≤ rmin

i },

where ri represents the time elapsed between when agent i received a state broad-

cast from a neighbor and i’s last broadcast. We use ri = −1 to indicate that i

has not received a broadcast from a neighbor since its own last state broadcast.

The threshold rmin
i > 0 is a design parameter (smaller values result in less frequent

updates). Intuitively, this trigger means that if an agent broadcasts its state and

in turn receives a state broadcast from a neighbor faster than some tolerated rate,

the agent broadcasts its state immediately again. The effect of this trigger is that,

if broadcasts start occurring too frequently in the network, neighboring agents’

broadcasts synchronize. This emergent behavior is described in more depth in the

proof of Theorem 4.4.3 later.

Finally, the overall distributed trigger set for each i ∈ {1, . . . , n+m} is,

Ti := T e
i ∪ T 0

i ∪ T request
i ∪ T send

i ∪ T synch
i . (4.23)
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4.4.2 Distributed algorithm and convergence analysis

We now state the distributed algorithm and its convergence properties

which are the main contributions of this chapter.

Algorithm 4.4.2. (Distributed linear programming with event-triggered

communication). For each agent i ∈ {1, . . . , n+m}, if ξ /∈ Ti then

ẋi =




fQR
i (x̂, ẑ), if x̂i > 0,

max{0, fQR
i (x̂, ẑ)}, if x̂i = 0,

if i ≤ n (4.24a)

żi−n = aTi−nx̂− bi−n, if i ≥ n+ 1 (4.24b)

ṡi =




1, if si < τi,

0, if si ≥ τi,
for all i (4.24c)

and, if ξ ∈ Ti, then

x̂+i = xi if i ≤ n (4.24d)

ẑ+i−n = zi−n, if i ≥ n+ 1 (4.24e)

(s+i , r
+
i , r

+
j ) = (0,−1, sj), for all i and all j ∈ Ni (4.24f)

q+j,i = 1, if ξ ∈ T request
i and for all j ∈ Ni (4.24g)

q+i,j = 0, if ξ ∈ T send
i and for all j ∈ N x

i (4.24h)

The entire network state is given by ξ ∈ Ξ. However, the local state of an

individual agent i ∈ {1, . . . , n} consists of xi, x̂i, si, ri, and ∪j∈Nx
i
{qi,j}. Likewise,

the local state of agent i ∈ {n + 1, . . . , n + m} consists of zi−n, ẑi−n, si, ri, and

∪j∈Nx
i
{qi,j}. These latter agents may be implemented as virtual agents. Then, re-

calling the assumptions on local information outlined in Section 3.2.2, it is straight-

forward to see that the coordination algorithm (4.24) can be implemented by the

agents in a distributed way. We are now ready to state our main convergence

result.

Theorem 4.4.3. (Distributed triggers - convergence and persistently

flowing solutions). For each i ∈ {1, . . . , n+m}, let 0 < µi ≤ 1
160

and

0 < rmin
i ≤ τi <

1√
960|Ni|maxj∈Ni

|Nj|
.
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Let ψ be a solution of (4.24), with each set Ti defined by (4.23). Then,

(i) if ψ is persistently flowing, there exists a point (x∗, z) ∈ X × R
m such that,

(x(t, j), z(t, j)) → (x∗, z
′) as t+ j −→ ∞, (t, j) ∈ dom(ψ),

(ii) if there exists δP > 0 such that, for any time (t′, j′) ∈ dom(ψ) where

ψ(t′, j′) ∈ T 0
i for some i ∈ {1, . . . , n}, it holds that ψ(t, j) /∈ T 0

i for all

(t, j) ∈ ((t′, t′ + δP ]× N) ∩ dom(ψ), the solution ψ is persistently flowing.

Proof. The proof of the convergence result in (i) follows closely the argument we

employed to establish Theorem 4.3.3. One key difference is that the intervals on

which ψ flows do not necessarily correspond to the intervals on which LFV exists.

This is because the value of σ may change even though ψ still flows. However,

since the dynamics (ẋ, ż) = F (x̂, ẑ) is constant on periods of flow it is easy to see

that there can be at most n agents added to σ in any given period of flow. This

means that, if ψ is persistently flowing according to the characterization (PFii),

the Lie derivative LFV exists persistently often for periods of length τP/n (since σ

must be constant for an interval of length at least τP/n persistently often). Thus,

let us consider a time (t, j) such that (t, j) ∈ (tj, tj + τp/n) × {j} ⊂ dom(ψ) and

LFV (x(t, j), z(t, j)) exists. Note that, if ψ is persistently flowing according to the

characterization (PFi), we may take τP = ∞ and the following analysis holds.

To ease notation, denote p(t, j) = σ(x(t, j), z(t, j)) and p̂(t, j) = σ(x̂(t, j), ẑ(t, j)).

Then, following the exposition in the proof of Theorem 4.3.3, one can see that, due

to trigger sets T e
i and T 0

i and the conditions on µi,

LFV (x(t, j), z(t, j))

≤ −1

4
fQR(x̂(t, j), ẑ(t, j))T Ip̂(t,j)f

QR(x̂(t, j), ẑ(t, j))

− 1

8
(Ax̂(t, j)− b)T (Ax̂(t, j)− b)

+ 15fQR(x(t, j), z(t, j))Ip(t,j)\p̂(t,j)f
QR(x(t, j), z(t, j)). (4.25)

We focus on the last term, which is the only positive one. If i ∈ p(t, j)\ p̂(t, j), then
it must be that x̂i = 0 and thus i is receiving state broadcasts from its neighbors
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every τi seconds by design of T request
i and {T send

j }j∈Ni
. Therefore, the maximum

amount of time that any i remains in p(t, j) \ p̂(t, j) is τi seconds. Since each

τi <
1√

960|Ni|maxj∈Ni
|Nj |

, we apply Proposition 4.4.1 using ν < 2
√
2√

960|Ni|maxj∈Ni
|Nj |

to obtain

fQR
i (x(t, j), z(t, j))2

<
1

120|Ni|maxj∈Ni
|Nj|

(
fQR(x̂(t, j), ẑ(t, j))T Ip̂(t,j)∩Nx

i
fQR(x̂(t, j), ẑ(t, j))

+ (Ax̂(t, j)− b)T IN z
i
(Ax̂(t, j)− b)

)
.

From the above bound it is clear that

fQR(x(t, j), z(t, j))Ip(t,j)\p̂(t,j)f
QR(x(t, j), z(t, j))

< 1
120

∑

i∈p(t,j)\p̂(t,j)

1
|Ni|maxj∈Ni

|Nj |
(
fQR(x̂(t, j), ẑ(t, j))T Ip̂(t,j)∩Nx

i
fQR(x̂(t, j), ẑ(t, j))

+ (Ax̂(t, j)− b)T IN z
i
(Ax̂(t, j)− b)

)
,

< 1
120

∑

i∈{1,...,n}

1
|Ni|

∑

k∈Nj

1
|Nj |

(
fQR(x̂(t, j), ẑ(t, j))T Ip̂(t,j)f

QR(x̂(t, j), ẑ(t, j))

+ (Ax̂(t, j)− b)T (Ax̂(t, j)− b)
)
,

< 1
120

(
fQR(x̂(t, j), ẑ(t, j))T Ip̂(t,j)f

QR(x̂(t, j), ẑ(t, j))+(Ax̂(t, j)−b)T (Ax̂(t, j)−b)
)
,

which, when combined with (4.25), reveals that there exists some ε > 0 such that

LFV (x(t, j), z(t, j))

≤ −ε
(
fQR(x̂(t, j), ẑ(t, j))T Ip̂(t,j)f

QR(x̂(t, j), ẑ(t, j))+(Ax̂(t, j)−b)T (Ax̂(t, j)−b)
)
.

The remainder of the convergence proof now follows in the same way as the proof

of Theorem 4.3.3.

Next, we prove (ii) by contradiction. Suppose that the conditions in (ii) are

satisfied but ψ is not persistently flowing. Then, for any ε > 0, there exists Tε such

that for every (t, j) ∈ dom(ψ) with t+ j ≥ Tε, the time between state broadcasts

is less than ε. Choose

ε < min
{ 1

n+ 1
min

i
rmin
i ,min

i
τi,

1

n+ 1
δP ,min

i

√
µi

}
.
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Then, we can show that all the state broadcasts in the network are synchronized

from Tε time forward due to the trigger sets T synch
i : by our choice of ε, there are

at least (n + 1)ε broadcasts every mini r
min
i seconds. This means that at least

one agent has broadcast twice in the last mini r
min
i seconds. Accordingly, all the

neighbors of that agent synchronously broadcast their state at the same time due

to the trigger sets T synch
i . Propagating this logic to the second-hop neighbors and

so on, one can see that the entire network is synchronously broadcasting its state

and this will be true for all t + j ≥ Tε. Let us then explore the possible causes

of the next broadcast. Clearly, the next broadcast will not be due to any T synch
i ,

since agent broadcasts are synchronized already. Likewise, it will not be due to

any T request
i or T send

i since, by construction, mini τi > ε time must have elapsed

before T request
i is enabled by any agent. By assumption, only n broadcasts due

to the T 0
i can occur in δP seconds. Without loss of generality, we can assume

that the next broadcast due to one of T 0
i does not occur for another δP

n+1
> ε

time. This leaves the T e
i trigger sets. Let us look at the evolution of (ex)i for any

given i ∈ {1, . . . , n}. Since i has not received a broadcast from its neighbors, the

evolution of (ex)i is

(ex)i(t, j) = fQR
i (x̂, ẑ)(t− tj).

Therefore, for T e
i to have been enabled, mini

√
µi > ε time must have elapsed

(the same conclusion holds for i ∈ {n+ 1, . . . , n+m}). This means that the next

broadcast is not triggered in ε time, contradicting the definition of ε, and this

completes the proof.

As shown in the proof of Theorem 4.4.3, the triggers defined by T e
i , T request

i ,

T send
i , and T synch

i do not cause non-persistency in the solutions of (4.24). If we

had used (2.8) in our derivation instead of (4.2), the resulting design would not

have enjoyed this attribute, cf. Remark 4.3.4. In our experience, the hypothesis in

Theorem 4.4.3(ii) is always satisfied with δP = ∞, which suggests that all solutions

of (4.24) are persistently flowing.

Remark 4.4.4. (Robustness to perturbations). We briefly comment here on

the robustness properties of the coordination algorithm (4.24) against perturba-



87

tions. These may arise in the execution as a result of communication noise, mea-

surement error, modeling uncertainties, or disturbances in the dynamics, among

other reasons. A key advantage of modeling the execution of the coordination algo-

rithm in the hybrid systems framework introduced in Chapter 2 is that there exist a

suite of established robustness characterizations for such systems. In particular, it

is fairly straightforward to verify that (4.24) is a ‘well-posed’ hybrid system, as de-

fined in [43], and as a consequence of this fact, the convergence properties stated in

Theorem 4.4.3(i) remain valid if the hybrid system (4.24) is subjected to sufficiently

small perturbations (see e.g., [43, Theorem 7.21]). Moreover, in Chapter 3, we have

shown that the continuous-time dynamics (4.9) (upon which our distributed algo-

rithm with event-triggered communication is built) is integral-input-to-state stable,

and thus robust to disturbances of finite energy. We believe that the coordination

algorithm (4.24) inherits this desirable property, although we do not characterize

this explicitly here for reasons of space. Nevertheless, Section 4.5 below illustrates

the algorithm performance under perturbation in simulation. •

Agents Tasks

A1
5

15 20

10

T1

A2 T2

Figure 4.1: Assignment graph with agents A1 and A2 in blue, tasks T1 and T2

in red, and the benefit of a potential assignment as edge weights.

4.5 Simulations

Here we illustrate the execution of the coordination algorithm (4.24) with

event-triggered communication in a multi-agent assignment example. The multi-

agent assignment problem we consider is a resource allocation problem where N
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B2,1

B1,1 B1,2

B2,2

Figure 4.2: Connectivity among brokers. Broker Bi,j is responsible for determin-
ing the potential assignment of task Tj to agent Ai (see Figure 4.1). The dashed
nodes represent the virtual brokers whose states correspond to the components of
the Lagrange multipliers z in (4.24), see Section 3.2.2.

tasks are to be assigned to N agents. Each potential assignment of a task to an

agent has an associated benefit and the global objective of the network is to max-

imize the sum of the benefits in the final assignment. The assignment of an agent

to a task is managed by a broker and the set of all brokers use the strategy (4.24)

to find the optimal assignment. Presumably, a broker is only concerned with the

assignments of the agent and task that it manages and not the assignments of

the entire network. Additionally, there may exist privacy concerns that limit the

amount of information that a network makes available to any individual broker.

These are a couple of reasons why a distributed algorithm is well-suited to solve

this problem.

We consider an assignment problem with 2 agents (denoted by A1 and A2)

and 2 tasks (denoted by T1 and T2) as shown in Figure 4.1. The assignment

problem is to be solved by a set of 4 brokers as shown in Figure 4.2. In general,

the number of brokers is the number of edges in the assignment graph. Broker Bi,j

is responsible for determining the potential assignment of task Tj to agent Ai and

has state xi,j ∈ {0, 1}. Here, xi,j = 1 means that task Tj is assigned to agent Ai

(with associated benefit ci,j ∈ R≥0) and xi,j = 0 means that they are not assigned

to each other. We formulate the multi-agent assignment problem as the following
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optimization problem,

max c1,1x1,1 + c1,2x1,2 + c2,1x2,1 + c2,2x2,2 (4.26a)

s.t. x1,1 + x1,2 = 1, (4.26b)

x2,1 + x2,2 = 1, (4.26c)

x1,1 + x2,1 = 1, (4.26d)

x1,2 + x2,2 = 1, (4.26e)

x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}. (4.26f)

Constraints (4.26b)-(4.26c) (resp. (4.26d)-(4.26e)) ensure that each agent (resp.

Time (s)

x
(t

)

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

x( t)

x̂(t)

Figure 4.3: State trajectories of the brokers implementing (4.24) to solve the
multi-agent assignment problem (4.27). An inlay displays the transient response
in detail. The brokers’ state is x = (x1,1, x1,2, x2,1, x2,2) and the inlay also shows
the evolution of the broadcast states, x̂ = (x̂1,1, x̂1,2, x̂2,1, x̂2,2) in dashed lines. The
aggregate of the brokers’ states converge to the unique solution X = {(0, 1, 1, 0)}.

task) is assigned to one and only one task (resp. agent). Note that the connectivity

between brokers shown in Figure 4.2 is consistent with the requirements for a

distributed implementation as specified by the constraint equations of (4.26). It

is known, see e.g., [93], that the relaxation xi,j ≥ 0 of the constraints (4.26f) gives

rise to a linear program with an optimal solution that satisfies xi,j ∈ {0, 1}. Thus,
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for our purposes, we solve instead the following linear program

min − 5x1,1 − 15x1,2 − 20x2,1 − 10x2,2 (4.27a)

s.t. x1,1 + x1,2 = 1, (4.27b)

x2,1 + x2,2 = 1, (4.27c)

x1,1 + x2,1 = 1, (4.27d)

x1,2 + x2,2 = 1, (4.27e)

x1,1, x1,2, x2,1, x2,2 ≥ 0, (4.27f)

where we have also converted the maximization into a minimization by considering

the negative of the objective function and substituted the values of the benefits

given in Figure 4.1. Clearly, the linear program (4.27) is in standard form. Its

solution set is X = {x∗}, with x∗ = (x∗1,1, x
∗
1,2, x

∗
2,1, x

∗
2,2) = (0, 1, 1, 0), corresponding

to the optimal assignment consisting of the pairings (A1,T2) and (A2,T1).
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Figure 4.4: Evolution of the virtual brokers’ states.

Figure 4.3 show the result of brokers executing the distributed coordina-

tion algorithm (4.24) with event-triggered communication. The trajectories of the

virtual brokers is displayed in Figure 4.4, the evolution of the Lyapunov function



91

Time (s)

V

0 2 4 6 8 10 12 14

1450

1500

1550

1600

1650

0 0.1 0.2 0.3 0.4 0.5 0.6
1400

1450

1500

1550

1600

1650

Figure 4.5: Evolution of the Lyapunov function V , which is discontinuous but
decreasing.
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Figure 4.6: The cumulative number of broadcasts appears roughly linear and the
execution is clearly persistently flowing.

is displayed in Figure 4.5, and the resulting cumulative number of broadcasts in

displayed in Figure 4.6.

Figures 4.7 and 4.8 illustrate the algorithm performance in the presence
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Figure 4.7: Trajectories of the noisy brokers’ states as they implement (4.24) to
solve the multi-agent assignment problem (4.27). The disturbances are additive
noise in the communication channels.
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Figure 4.8: Trajectories of the noisy virtual brokers’ states as they imple-
ment (4.24) to solve the multi-agent assignment problem (4.27). The disturbances
are additive noise in the communication channels.

of additive white noise on the state broadcasts. In this simulation, broadcasts of

information are corrupted by noise which is normally distributed with zero mean
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and standard deviation 1. The convergence in this case shows the algorithm’s

robustness to sufficiently small disturbances, as pointed out in Remark 4.4.4.

This concludes our study of distributed event-triggered linear programming.

Chapter 4, in part, is a reprint of the material [85] as it appears in ‘Dis-

tributed event-triggered optimization for linear programming’ by D. Richert and J.

Cortés which was submitted to the 2014 IEEE Conference on Decision and Control

as well as [86] as it appears in ‘Distributed linear programming with event-triggered

communication’ by D. Richert and J. Cortés which was submitted to the SIAM

Journal of Control and Optimization. The dissertation author was the primary

investigator and author of these papers.



Chapter 5

Distributed bargaining in

dyadic-exchange networks

In this chapter we consider resource-constrained networks where collabora-

tion between subsystems gives rise to a more efficient use of these resources. We

assume that agents are autonomous and rational and thus bargain with each other

over who to collaborate with and how to split a transferable utility between them.

We begin with a problem statement, outlining the notion of bargaining out-

comes in dyadic-exchange networks. Three outcomes that we focus on are stable,

balanced, and Nash. Our design methodology proceeds linearly, first considering

stable, then balanced, and finally Nash outcomes. We are able to show how the

robust distributed linear programming algorithm of Chapter 3 can be used to find

stable outcomes. Then a novel distributed balancing dynamics is proposed. The

proof of convergence for this dynamics requires us to first establish boundedness

of the states, and then use the LaSalle Invariance Principle to show asymptotic

convergence. Distributed Nash bargaining dynamics are then proposed based on

a merging of the stable and balancing dynamics. Drawing on the results of Chap-

ter 3 and [43, Theorem 7.21], the proposed dynamics is shown be to robust to

small disturbances.

As an interesting application, we conclude this chapter by applying the

Nash bargaining dynamics to a wireless communication scenario. We consider

multiple devices that send data to a base station according to a time division

94
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multiple access (TDMA) protocol. Devices may share their transmission time

slots in order to gain an improved channel capacity. Simulation results show how

a Nash outcome is achieved, yielding fair capacity improvements for each matched

device and a network-wide capacity improvement of around 16%.

5.1 Problem statement

The main objective of this chapter is the design of provably correct dis-

tributed dynamics that solve the network bargaining game. This section provides

a formal description of the problem. We begin by presenting the model for the

group of agents and then recall various important notions of outcome for the net-

work bargaining game.

Let G = (V , E ,W ) be an undirected weighted graph where V = {1, . . . , n} is

a set of vertices, E ⊆ V×V is a set of edges, andW ∈ R
|E|
≥0 is a vector of edge weights

indexed by edges in G. In an exchange network, vertices correspond to agents (or

players) and edges connect agents who have the ability to negotiate with each other.

The set of agents that i can negotiate with are its neighbors and is denoted by

N (i) := {j : (i, j) ∈ E}. Edge weights represent a transferable utility that agents

may, should they come to an agreement, divide between them. Here, we assume

that the network is a dyadic-exchange network, meaning that agents can pair with

at most one other agent. Agents are selfish and seek to maximize the amount they

receive. However if two agents i and j cannot come to an agreement, they forfeit

the entire amount wi,j . We consider bargaining outcomes of the following form.

Definition 5.1.1. (Outcomes). A matching M ⊆ E is a subset of edges without

common vertices. An outcome is a pair (M,α), where M ⊆ E is a matching and

α ∈ R
n is an allocation to each agent such that αi + αj = wi,j if (i, j) ∈ M and

αk = 0 if agent k is not part of any edge in M . •

In any given outcome (M,α), an agent may decide to unilaterally deviate

by matching with another neighbor. As an example, suppose that (i, j) ∈ M and

agent k is a neighbor of i. If αi + αk < wi,k, then there is an incentive for i to

deviate because it could receive an increased allocation of α̂i = wi,k − αk > αi.
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Such a deviation is unilateral because k’s allocation stays constant. Conversely, if

αi + αk ≥ wi,k, then i does not have an incentive to deviate by matching with k.

This discussion motivates the notion of a stable outcome, in which no agent benefits

from a unilateral deviation.

Definition 5.1.2. (Stable outcome). An outcome (M,αs) is stable if αs ≥ 0

and

αs
i + αs

j ≥ wi,j, ∀(i, j) ∈ E . •

Given an arbitrary matchingM , it is not always possible to find allocations

αs such that (M,αs) is a stable outcome. Thus, finding stable outcomes requires

one to find an appropriate matching as well, making the problem combinatorial in

the number of possible matchings.

Stable outcomes are not necessarily fair between matched agents, and this

motivates the notion of balanced outcomes. As an example, again assume that the

outcome (M,αb) is given and that (i, j) ∈ M . The best allocation that i could

expect to receive by matching with a neighbor other than j is

bai\j(α
b) = max

k∈N (i)\j
{wi,k − αb

k}+.

Moreover, the set (possibly empty) of best neighbors with whom i could receive

this allocation is

bni\j(α
b) = argmaxk∈N (i)\j{wi,k − αb

k}+.

Then, if agent i were to unilaterally deviate from the outcome and match instead

with k ∈ bni\j , the resulting benefit of this deviation would be

bai\j(α
b)− αb

i .

When the benefit of a deviation is the same for both i and j, we call the outcome

balanced.

Definition 5.1.3. (Balanced outcome). An outcome (M,αb) is balanced if for

all (i, j) ∈M ,

bai\j(α
b)− αb

i = baj\i(α
b)− αb

j . •
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From its definition, it is easy to see that the main challenge in finding

balanced outcomes is the fact that the allocations must satisfy a system of nonlinear

(in fact, piecewise linear) equations, coupled between agents. Of course, outcomes

that are both stable and balanced are desirable and what we seek in this chapter.

Such outcomes are called Nash.

Definition 5.1.4. (Nash outcome). An outcome (M,αN ) is Nash if it is stable

and balanced. •

Figure 5.1 shows an example of each outcome, highlighting their various

attributes.

44

1

1

34

10

(a) Stable

44

1

1

0.50.5

0.50.5

(b) Balanced

44

1

1

22

22

(c) Nash

Figure 5.1: Stable, balanced, and Nash outcomes. For each outcome, matched
agents are connected with thicker grey edges, dotted edges connect agents who
decided not to match, and allocations are indicated by arrows. In the stable
outcome, the 0 allocation is unfair to that node since its partner receives the
whole edge weight. In the balanced outcome, agents can receive higher allocations
by deviating from their matches. Nash outcomes do not exhibit either of these
shortcomings.

The problem we aim to solve is to develop distributed dynamics that con-

verge to each of the class of outcomes defined above: stable, balanced, and Nash.

We refer to a dynamics as 1-hop distributed, or simply distributed, over G if its

implementation requires each agent i ∈ {1, . . . , n} only knowing (i) the states of

1-hop neighboring agents and (ii) the utilities wi,j for each j ∈ N (i). Likewise,

we refer to a dynamics as 2-hop distributed over G if its implementation requires

each agent i ∈ {1, . . . , n} only knowing (i) the states of 1- and 2-hop neighboring

agents and (ii) the utilities wi,j and wj,k for each j ∈ N (i) and k ∈ N (j). As
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agents’ allocations evolve in the dynamics that follow, the quantity wi,j −αi(t) has

the interpretation of “i’s offer to j at time t”, thus motivating the terminology

bargaining in exchange networks.

5.2 Distributed dynamics to find stable out-

comes

In this section, we propose a distributed dynamics to find stable outcomes

in network bargaining. Our strategy to achieve this builds on a reformulation of

the problem of finding a stable outcome in terms of finding the solutions to a linear

program.

5.2.1 Stable outcomes as solutions of linear program

Here we relate the existence of stable outcomes to the solutions of a lin-

ear programming relaxation for the maximum weight matching problem. This

reformulation allows us later to synthesize a distributed dynamics to find stable

outcomes. Our discussion here follows [54], but because that reference does not

present formal proofs of the results we need, we include them here for completeness.

We begin by recalling the formulation of the maximum weight matching

problem on G. Essentially, this corresponds to a matching in which the sum of

the edge weights in the matching is maximal. Formally, for every (i, j) ∈ E we

use variables mi,j ∈ {0, 1} to indicate whether (i, j) is in the maximum weight

matching (i.e., mi,j = 1) or not (mi,j = 0). Then, the solutions of the following

integer program can be used to deduce a maximum weight matching,

max
∑

(i,j)∈Ewi,jmi,j (5.1a)

s.t.
∑

j∈N (i)
mi,j ≤ 1, ∀i ∈ V , (5.1b)

mi,j ∈ {0, 1}, ∀(i, j) ∈ E . (5.1c)

The constraints (5.1b) ensure that each agent is matched to at most one other

agent. If m∗ ∈ {0, 1}|E| is a solution (indexed by edges in G) to the above opti-
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mization problem, then a maximum weight matching is well-defined by the rela-

tionship (i, j) ∈ M ⇔ m∗
i,j = 1. Since (5.1) is combinatorial in the number of

edges in the graph due to constraint (5.1c), we are interested in studying its linear

programming relaxation,

max
∑

(i,j)∈Ewi,jmi,j

s.t.
∑

j∈N (i)
mi,j ≤ 1, ∀i ∈ V , (5.2)

mi,j ≥ 0, ∀(i, j) ∈ E ,

and its associated dual

min
∑

i∈Vα
s
i

s.t. αs
i + αs

j ≥ wi,j, ∀(i, j) ∈ E , (5.3)

αs
i ≥ 0, ∀i ∈ V .

Arguing with the KKT conditions for the relaxation (5.2), the following result

states that when a stable outcome (M,αs) exists, the matching M is a maximum

weight matching on G.

Lemma 5.2.1. (Maximum weight matchings and stable outcomes [54]).

Suppose that a stable outcome (M,αs) exists for a given graph G. Then M is a

maximum weight matching.

Proof. Our proof method is to encode the matchingM using the indicator variables

m ∈ {0, 1}|E| and then show that m is a solution of the maximum weight matching

problem (5.1). To begin, for all (i, j) ∈ E , let mi,j = 1 if (i, j) ∈ M and zero

otherwise. Use m to denote the vector of mi,j, indexed by edges in G. Then m is

feasible for the relaxation (5.2). By definition of outcome, cf. Definition 5.1.1, it

holds that mi,j(α
s
i + αs

j − wi,j) = 0 for all (i, j) ∈ E and αs
i (1 −

∑
j∈N (i)mi,j) = 0

for all i ∈ V . In other words, complementary slackness is satisfied. Also, note

that αs is feasible for the dual (5.3). This means that (m,αs) satisfy the KKT

conditions for (5.2) and so m is a solution of (5.2). Since m is integral, it is also a

solution of (5.1) implying that M is a maximum weight matching. This completes

the proof.
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Building on this result, we show next that the existence of stable outcomes

is directly related to the existence of integral solutions of the linear programming

relaxation (5.2).

Lemma 5.2.2. (Existence of stable outcomes [54]). A stable outcome exists

for the graph G if and only if (5.2) admits an integral solution. Moreover, if G
admits a stable outcome and m∗ ∈ {0, 1}|E| is a solution to (5.2), then (M,αs,∗) is

a stable outcome where the matching M is well-defined by the implication

(i, j) ∈M ⇔ m∗
i,j = 1, (5.4)

and αs,∗ is a solution to (5.3).

Proof. The proof of Lemma 5.2.1 revealed that, if a stable outcome exists, (5.2)

admits an integral solution. Let us prove the other direction. By assumption, (5.2)

yields an integral solution m∗ ∈ {0, 1}|E| and let αs,∗ be a solution to the dual (5.3).

We induce the following matching: (i, j) ∈M if m∗
i,j = 1 and (i, j) /∈M otherwise.

By complementary slackness, m∗
i,j(α

s,∗
i + αs,∗

j − wi,j) = 0 for all (i, j) ∈ E and

αs,∗
i (1 − ∑

j∈N (i)m
∗
i,j) = 0 for all i ∈ V . Then, it must be that m∗

i,j = 1 implies

that αs,∗
i +αs,∗

j = wi,j and α
s,∗
i = 0 if i is not part of any matching. Thus, (M,αs,∗)

is a valid outcome. Next, αs,∗ must be feasible for (5.3), which reveals that it is

a stable allocation. Therefore, (M,αs,∗) is a stable outcome. This completes the

proof.

5.2.2 Stable outcomes via distributed linear programming

Since we are interested in finding stable outcomes, from here on we make

the standing assumption that one exists and that the maximum weight matching

is unique. Besides its technical implications, requiring uniqueness has a practical

motivation and is a standard assumption in exchange network bargaining. For

example, if an agent has two equally good alternatives, it is unclear with whom it

will choose to match with. It turns out that the set of graphs for which a unique

maximum weight matching exists is open and dense in the set of graphs that admit

a stable outcome, further justifying the assumption of uniqueness of the maximum

weight matching.
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Given the result in Lemma 5.2.2 above, finding a stable outcome is a matter

of solving the relaxed maximum weight matching problem, where the matching is

induced from the solution of (5.2) and the allocation is a solution to (5.3). Our

next step is to put (5.3) in standard form by introducing slack variables si,j for

each (i, j) ∈ E ,

min
∑

i∈Vα
s
i

s.t. αs
i + αs

j − si,j = wi,j, ∀(i, j) ∈ E ,
αs
i ≥ 0 ∀i ∈ V ,
si,j ≥ 0 ∀(i, j) ∈ E .

We use the notation s to represent the vector of slacks indexed by edges in G.
In the dynamics that follow, the variables s and m will be states. Thus, as a

convention, we assume that each si,j and mi,j are states of agent min{i, j}. This

means that the state of agent i ∈ V is

(αs
i , {si,j}j∈N+(i), {mi,j}j∈N+(i)) ∈ R≥0 × R

|N+(i)|
≥0 × R

|N+(i)|,

where, for convenience, we denote by N+(i) := {j ∈ N (i) : i < j} the set of

neighbors of i whose identity is greater than i.

Next, using the dynamics (3.8) of Section 3.2.1 to solve the linear program

above results in the following dynamics for agent i ∈ {1, . . . , n},

α̇s
i =




fα
i (α

s, s,m), αs
i > 0,

max{0, fα
i (α

s, s,m)}, αs
i = 0,

(5.6a)

and, for each j ∈ N+(i)

ṡi,j =




f s
i,j(α

s, s,m), si,j > 0,

max{0, f s
i,j(α

s, s,m)}, si,j = 0,
(5.6b)

ṁi,j = αs
i + αs

j − si,j − wi,j, (5.6c)

where

fα
i (α

s, s,m) := −1−
∑

j∈N (i)

[
mi,j + αs

i + αs
j − si,j − wi,j

]
,
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and

f s
i,j(α

s, s,m) := −mi,j − αs
i − αs

j + si,j + wi,j ,

are derived from (3.7). The next result reveals how this dynamics can be used as

a distributed algorithm to find stable outcomes.

Proposition 5.2.3. (Convergence to stable outcomes). Given a graph G,
let t → (αs(t), s(t),m(t)) be a trajectory of (5.6) starting from an initial point in

R
n
≥0 × R

|E|
≥0 × R

|E|. Then the following limit exists

lim
t→∞

(αs(t), s(t),m(t)) = (α∗, s∗,m∗),

where (αs,∗, s∗) (resp. m∗) is a solution to (5.3) (resp. (5.2)). Moreover, if a stable

outcome exists, a maximum weight matching M is well-defined by the implication

(i, j) ∈M ⇔ m∗
i,j = 1,

and (M,αs,∗) is a stable outcome. Finally, the dynamics (5.6) is distributed over

G.

The proof of the above results follows directly from Corollary 3.2.5,

Lemma 5.2.2, and the assumptions made on the information available to each

agent.

5.3 Distributed dynamics to find balanced out-

comes

In this section, we introduce distributed dynamics that converge to balanced

outcomes. Our starting point is the availability of a matching M to the network,

i.e., each agent already knows if it is matched and who its partner is. Hence, the

dynamics focuses on negotiating the allocations to find a balanced one. We drop

this assumption later when considering Nash outcomes.

Our algorithm design is based on the observation that the condition αb
i +

αb
j = wi,j for (i, j) ∈M that defines an allowable allocation for an outcome and the
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balance condition in Definition 5.1.3 for two matched agents can be equivalently

stated as

0=αb
i−

1

2
(wi,j+ bai\j(α

b)− baj\i(α
b)) =: ebi(α

b), (5.7a)

0=αb
j−

1

2
(wi,j− bai\j(α

b)+ baj\i(α
b)) =: ebj(α

b). (5.7b)

We refer to ebi , e
b
j : Rn → R as the errors with respect to satisfying the balance

condition of i and j, respectively. For an unmatched agent k, we define ebk = αb
k.

We refer to eb(αb) ∈ R
n as the vector of balancing errors for a given allocation.

Based on the observation above, we propose the following distributed dynamics

whereby agents adjust their allocations proportionally to their balancing errors,

α̇b = −eb(αb). (5.8)

An important fact to note is that the equilibria of the above dynamics are, by

construction, allocations in a balanced outcome. Also, note that (5.8) is continuous

and requires agents to know 2-hop information, because for its pair of matched

agents (i, j) ∈ M , agent i updates its own allocation (and hence its offer to j)

based on baj\i.

The following result establishes the boundedness of the balancing errors

under (5.8) and is useful later in establishing the asymptotic convergence of this

dynamics to an allocation in a balanced outcome with matching M .

Proposition 5.3.1. (Balancing errors are bounded). Given a matching M ,

let t 7→ αb(t) be a trajectory of (5.8) starting from any point in R
n. Then

t 7→ V (eb(αb(t))) := 1
2
max
i∈V

(ebi(α
b(t)))2,

is non-increasing. Thus, t 7→ eb(αb(t)) lies in a bounded set.

Proof. Our proof strategy is to compute, for each i ∈ V , the Lie derivative of

ebi along the trajectories of (5.8). Based on these Lie derivatives, we introduce a

new dynamics whose trajectories contain t 7→ eb(αb(t)) and establish the result

reasoning with it.

Since ebi is locally Lipschitz, it is differentiable almost everywhere. Let

Ωi ⊆ R
n be the set, of measure zero, of allocations for which ebi is not differentiable.
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If i is matched, say (i, j) ∈ M , then Ωi is precisely the set of allocations where at

least one of the next best neighbor sets bni\j(αb) or bnj\i(αb) have more than one

element. If i is unmatched, then Ωi = ∅. Then, whenever αb ∈ R
n \ Ωi, it is easy

to see that for every i ∈ V ,

L−ebe
b
i(α

b) =





−ebi(αb), if i is unmatched or

if bni\j(αb) = ∅ and bnj\i(αb) = ∅,

−ebi(αb) + 1
2
ebτ (α

b), if bni\j(αb) = τ and bnj\i(αb) = ∅,

−ebi(αb)− 1
2
ebκ(α

b), if bni\j(αb) = ∅ and bnj\i(αb) = κ,

−ebi(αb) + 1
2
ebτ (α

b)− 1
2
ebκ(α

b), if bni\j(αb) = τ and bnj\i(αb) = κ.

This observation motivates our study of the dynamics

ξ̇i =





−ξi, if i is unmatched or

if bni\j(ω) = ∅ and bnj\i(ω) = ∅,

−ξi + 1
2
ξτ , if bni\j(ω) = τ and bnj\i(ω) = ∅,

−ξi − 1
2
ξκ, if bni\j(ω) = ∅ and bnj\i(ω) = κ,

−ξi + 1
2
ξτ − 1

2
ξκ, if bni\j(ω) = τ and bnj\i(ω) = κ,

(5.9a)

ω̇i = −ξi, (5.9b)

for every i ∈ V , defined on R
n × (Rn \ Ω), where Ω := ∪i∈VΩi. For convenience,

we use the shorthand notation F = (F 1, F 2) : Rn × (Rn \ Ω) → R
n × R

n to refer

to (5.9). Note that F is piecewise continuous (because F 1 is piecewise continuous,

while F 2 is continuous). Therefore, we understand its trajectories in the sense

of Filippov. Using (2.3), we compute the Filippov set-valued map, defined on

R
n × R

n, for any matched i and (ξ, ω) ∈ R
n × R

n, as

F [F 1
i ](ξ, ω) =

{
− ξi−1

2

∑

τ∈bni\j(ω)
λiτξτ +

1
2

∑

κ∈bnj\i(ω)
µi
κξκ :

λi ∈ R
n
≥0 is s.t.

∑

τ∈bni\j(ω)
λiτ = 1 if bni\j(ω) 6= ∅ and

µi ∈ R
n
≥0 is s.t.

∑

κ∈bnj\i(ω)
µi
κ = 1 if bnj\i(ω) 6= ∅

}
.
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Here, we make the convention that the empty sum is zero. If i is unmatched,

then F [F 1
i ](ξ, ω) = {−ξi}. Furthermore, F [F 2

i ] = {−ξi} for all i ∈ V . Based on

the discussion so far, we know that t 7→ (eb(αb(t)), αb(t)) is a Filippov trajectory

of (5.9) with initial condition (eb(αb(0)), αb(0)) ∈ R
n × R

n. Thus, to prove the

result, it is sufficient to establish the monotonicity of

V (ξ) = max
i∈V

1

2
ξ2i ,

along (5.9). For notational purposes, we denote

Ω(ξ) := argmaxi∈V
1

2
ξ2i .

The generalized gradient of V is

∂V (ξ) =
{ ∑

i∈Ω(ξ)

ηihiξi : η ∈ R
n
≥0 s.t.

∑

i∈Ω(ξ)

ηi = 1
}
,

where hi ∈ R
n is the unit vector with 1 in its ith component and 0 elsewhere.

Then, the set-valued Lie derivative of V along F [F ] is given next

LF [F ]V (ξ) = {a ∈ R : there exists v ∈ F [F ](ξ, ω) s.t. a = ζTv for all ζ ∈ ∂V (ξ)},

=

{
a ∈ R : for each i ∈ V there exists λi ∈ R

n
≥0 with

∑

τ∈bni\j(ω)
λiτ = 1 if

bni\j(ω) 6= ∅ and µi ∈ R
n
≥0 with

∑

κ∈bnj\i(ω)
µi
κ = 1 if bnj\i(ω) 6= ∅ s.t.

a=

(∑

i∈V
hi

[
−ξi − 1

2

∑

τ∈bni\j(ω)
λiτξτ +

1
2

∑

κ∈bnj\i(ω)
µi
κξκ

])T( ∑

i∈Ω(ξ)

ηihiξi

)
for all

η ∈ R
n
≥0 with

∑

i∈Ω(ξ)

ηi = 1

}
,

=

{
a ∈ R : for each i ∈ Ω(ξ) there exists λi ∈ R

n
≥0 with

∑

τ∈bni\j(ω)
λiτ = 1 if

bni\j(ω) 6= ∅ and µi ∈ R
n
≥0 with

∑

κ∈bnj\i(ω)
µi
κ = 1 if bnj\i(ω) 6= ∅ s.t.

a =
∑

i∈Ω(ξ)

ηi

(
− ξ2i − 1

2

∑

τ∈bni\j(ω)
λiτξiξτ +

1
2

∑

κ∈bnj\i(ω)
µi
κξiξκ

)
for all

η ∈ R
n
≥0 with

∑

i∈Ω(ξ)

ηi = 1

}
. (5.10)
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To upper bound the element in LF [F ]V (ξ), note that

−1
2

∑

τ∈bni\j(ω)
λiτξiξτ ≤ 1

4

∑

τ∈bni\j(ω)
λiτ (ξ

2
i + ξ2τ ),

where we have used the inequality ab ≤ 1
2
a2+ 1

2
b2 for a, b ∈ R. For

∑
τ∈bni\j(ω) λ

i
τ =

1 and i ∈ Ω(ξ) (that is ξ2i ≥ ξ2τ for all τ ∈ bni\j(ω)), we can further refine the

bound as,

1
2

∑

τ∈bni\j(ω)
λiτξiξτ ≤ 1

2
ξ2i ,

The analogous bound

1
2

∑

κ∈bnj\i(ω)
µi
κξiξκ ≤ 1

2
ξ2i ,

can be derived similarly if
∑

κ∈bnj\i(ω) µ
i
κ = 1 and i ∈ Ω(ξ). Using these bounds in

the Lie derivative (5.10) and noting that
∑

i∈Ω(ξ) ηi = 1, it is straightforward to see

that for any element a ∈ LF [F ]V (ξ) it holds that a ≤ 0. It follows that t 7→ V (ξ(t))

and thus t 7→ V (eb(αb(t))) is non-increasing and t 7→ eb(αb(t)) lies in the bounded

set V −1(eb(αb(0))), which completes the proof.

The next result establishes the local stability of the balanced allocations

associated with a given matching and plays a key role later in establishing the

global asymptotic pointwise convergence of the dynamics (5.8).

Proposition 5.3.2. (Local stability of each balanced allocation). Given a

matching M ⊆ E , let BM = {αb,∗ ∈ R
n | (M,αb,∗) is a balanced outcome}. Then

every allocation in BM is locally stable under the dynamics (5.8).

The proof of the above result makes use of the upper-semicontinuity of the

next-best-neighbor sets.

Lemma 5.3.3. (Upper-semicontinuity of the next-best-neighbor sets

map). Let αb,∗ ∈ R
n. Then there exists ε > 0 such that, for all (i, j) ∈ E

and all ‖αb − αb,∗‖ < ε, the following inclusion holds

bni\j(α
b) ⊆ bni\j(α

b,∗).
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Proof. Note that, since the number of edges is finite, it is enough to prove that

such ε exists for each edge (i, j) ∈ E (because then one takes the minimum over all

of them). Therefore, let (i, j) ∈ E and, arguing by contradiction, assume that for

every ε > 0, there exists αb with ‖αb − αb,∗‖ < ε such that bni\j(αb) 6⊆ bni\j(αb,∗).

Equivalently, suppose that {αb,k}∞k=1 is a sequence converging to αb,∗ such that, for

every k, there exists a τ k ∈ bni\j(αb,k) \ bni\j(αb,∗). By definition of the next-best-

neighbor set, it must be that

wi,τk − αb,k
τk

≥ wi,τ − αb,k
τ ,

for all τ ∈ N (i) \ j. Since N (i) \ j has a finite number of elements, there must

be some τ̂ ∈ N (i) such that τ k = τ̂ infinitely often. Therefore, let {kℓ}∞ℓ=1 be a

subsequence such that τ kℓ = τ̂ for all ℓ. Then

wi,τ̂ − αb,kℓ
τ̂ ≥ wi,τ − αb,kℓ

τ ,

for all τ ∈ N (i) \ j. Taking now the limit as ℓ→ ∞,

wi,τ̂ − αb,∗
τ̂ ≥ wi,τ − αb,∗

τ ,

for all τ ∈ N (i) \ j, which contradicts τ̂ /∈ bni\j(αb,∗).

We may now prove the local stabliity of balanced allocations.

Proof of Proposition 5.3.2. Take an arbitrary balanced allocation αb,∗ ∈ BM and

consider the change of coordinates α̃b = αb − αb,∗. Then

˙̃αb = −eb(α̃b + αb,∗).

For brevity, denote this dynamics F̃ : Rn → R
n. We compute the Lie derivative of

V (α̃b) =
1

2
max
i∈V

(α̃b
i)

2,

along F̃ . The derivation is very similar the one used in the proof of Proposi-

tion 5.3.1,

LF̃V (α̃b) =

{
a ∈ R : a = −

∑

i∈M(α̃b)

λiα̃
b
ie

b
i(α̃

b + α̃b,∗), for all λ ∈ R
n
≥0 s.t.

∑

i∈M(α̃b)

λi = 1

}
,
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where

M(α̃b) :=
1

2
argmaxi∈V(α̃

b
i)

2.

Consider one of the specific summands −α̃b
ie

b
i(α̃

b + αb,∗) for some i ∈ M(α̃b). For

(i, j) ∈M , take τ ∈ bni\j(α̃b + αb,∗) and κ ∈ bnj\i(α̃b + αb,∗) so that we can write,

−α̃b
ie

b
i(α̃

b + α̃b,∗) = −α̃b
i(α̃

b
i + αb,∗

i − 1
2
(wi,j + wi,τ − α̃b

τ − αb,∗
τ − wj,κ + α̃b

κ + αb,∗
κ )).

Now, according to Lemma 5.3.3, there exists ε > 0 such that, for all (k, l) ∈ E , we
have

bnk\l(α̃
b + αb,∗) = bnk\l(α

b) ⊆ bnk\l(α
b,∗),

for all αb such that ‖α̃b‖ = ‖αb − αb,∗‖ < ε. Therefore, for such allocations, we

have τ ∈ bni\j(αb,∗) and κ ∈ bnj\i(αb,∗), and hence

−α̃b
ie

b
i(α̃

b + α̃b,∗) = −α̃b
i(α̃

b
i +

1
2
α̃b
τ − 1

2
α̃b
κ + ebi(α

b,∗)),

= −(α̃b
i)

2 − 1
2
α̃b
i α̃

b
τ +

1
2
α̃b
i α̃

b
κ,

≤ −(α̃b
i)

2 + 1
4
(α̃b

i)
2 + 1

4
(α̃b

τ )
2 + 1

4
(α̃b

i)
2 + 1

4
(α̃b

κ)
2 ≤ 0,

where we have used the fact that αb,∗ ∈ BM in the second equality, the inequality

ab ≤ 1
2
a2 + 1

2
b2 for a, b ∈ R in the first inequality and the fact that i ∈ M(α̃b) in

the last inequality. Thus a ≤ 0 for each a ∈ LF̃ Ṽ (α̃b) when ‖α̃b‖ ≤ ε, which means

that α̃b = 0 is locally stable. In the original coordinates, αb = αb,∗ is locally stable.

Since αb,∗ is arbitrary, we deduce that every allocation in BM is locally stable.

The boundedness of the balancing errors together with the local stability

of the balanced allocations under the dynamics allow us to employ the LaSalle

Invariance Principle, cf. Theorem 2.3.1 in the proof of the next result and establish

the pointwise convergence of the dynamics to an allocation in a balanced outcome

with matching M .

Proposition 5.3.4. (Convergence to a balanced outcome). Given a match-

ing M , let t → αb(t) be a trajectory of (5.6) starting from an initial point in

R
n. Then t 7→ (M,αb(t)) converges to a balanced outcome. Moreover, the dynam-

ics (5.8) is distributed with respect to 2-hop neighborhoods over G.
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Proof. Note that, for each pair of matched agents (i, j) ∈ M , the sum α̇b
i + α̇b

j =

wi,j − (αb
i + αb

j), implying that αb
i(t) + αb

j(t) → wi,j exponentially fast. For each

unmatched agent k, one has that α̇b
k = −αb

k, implying that αb
i(t) → 0 exponentially

fast. Therefore, it follows that t 7→ (M,αb(t)) converges to the set of (valid)

outcomes. It remains to further show that it converges to the set of balanced

outcomes. Following the approach employed in the proof of Proposition 5.3.1,

we argue with the trajectories of (5.9), which we showed contain the trajectory

t 7→ eb(αb(t)). For matched agents (i, j) ∈M ,

ξ̇i + ξ̇j = −(ξi + ξj), (5.11)

under the dynamics (5.9). Interestingly, this dynamics is independent of ω. Thus,

using the Lyapunov function

Ṽ (ξ) = 1
2

∑

(i,j)∈M
(ξi + ξj)

2 + 1
2

∑

{i∈V:
i is unmatched}

(ξi)
2,

it is trivial to see that

LF [F ]Ṽ (ξ) = −
∑

(i,j)∈M
(ξi + ξj)

2 −
∑

{i∈V:
i is unmatched}

(ξi)
2,

which, again, is independent of ω. By the boundedness of t 7→ ξ(t) established in

Proposition 5.3.1, and using Ṽ , we are now able to apply the LaSalle Invariance

Principle, cf. Theorem 2.3.1, which asserts that the trajectory t 7→ ξ(t) converges

to the largest weakly positively invariant set M contained in

L : = {ξ ∈ R
n : LF [F ]Ṽ (ξ) = 0},

= {ξ ∈ R
n : ξi = −ξj, ∀(i, j) ∈M, and ξi = 0 if i is unmatched}.

Incidentally, this set is closed already which is why we omit the closure operator.

We next show, using the fact that t 7→ V (ξ(t)) is non-increasing (cf. Proposi-

tion 5.3.1) and the weak invariance of M, that in fact M = {0}. Take a point

ξ ∈ M ⊆ L and take an i ∈ Ω(ξ). If i is unmatched, then ξi = 0 already and the

proof would be complete. So, assume (i, j) ∈ M for some j ∈ V . Then, ξj = −ξi
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and it also holds that ξ̇i = −ξ̇j (see e.g., (5.11)). In fact, it must be that ξ̇i = ξ̇j = 0,

otherwise one of ξi or ξj would be increasing, which would contradict t 7→ V (ξ(t))

being non-increasing. If bni\j(ω) = bnj\i(ω) = ∅ then 0 = ξ̇i = −ξi = ξj, which

would complete the proof. Suppose then that τ = bni\j(ω) and bnj\i(ω) = ∅.
Then 0 = ξ̇i = −ξi + 1

2
ξτ , which contradicts i ∈ Ω(ξ) (unless of course ξi = 0,

which would complete the proof). A similar argument holds if bni\j(ω) = ∅ and

bnj\i(ω) = κ. The final case is if bni\j(ω) = τ and bnj\i(ω) = κ. In this case,

0 = ξ̇i = −ξi + 1
2
ξτ − 1

2
ξκ. So as not to contradict i ∈ Ω(ξ), it must be that

ξi = −ξτ = ξκ, which means that τ, κ ∈ Ω(ξ) as well. Therefore, using the same

argument we used for i, it must be that 0 = ξ̇τ = ξ̇κ. Assume without loss of

generality that ξτ is strictly negative (if it were zero the proof would be complete

and if it were positive we could argue instead with ξκ). This means that ξτ grows

larger at a constant rate since ω̇τ = −ξτ . At some time, it would happen that

ωτ > wi,τ , which would make bni\j(ω) = ∅. This corresponds to a case we previ-

ously considered where we showed that, so as not to contradict the monotonicity of

t 7→ V (ξ(t)) it must be that ξi = 0. In summary, M = {0} ⊂ R
n, so ξ(t) → 0. By

construction of the dynamics (5.9) it follows that eb(αb(t)) → 0 which means, by

construction of eb, that (M,αb(t)) converges to the set of balanced outcomes. This,

along with the local stability of each balanced allocation (cf. Proposition 5.3.2) is

sufficient to ensure pointwise convergence to a balanced outcome [49, Proposition

2.2]. Finally, it is clear from (5.8) that the dynamics is distributed with respect to

2-hop neighborhoods, which completes the proof.

5.4 Distributed dynamics to find Nash outcomes

In this section, we combine the previous developments to propose dis-

tributed dynamics that converge to Nash outcomes. The design of this dynamics

is inspired by the following result from [10] revealing that balanced outcomes as-

sociated with maximum weight matchings are stable.

Proposition 5.4.1. (Balanced implies stable). Let M be a maximum weight

matching on G and suppose that G admits a stable outcome. Then, a balanced
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outcome of the form (M,αb) is also stable, and thus Nash.

In a nutshell, our proposed dynamics combine the fact that (i) the dis-

tributed dynamics (5.6) of Section 5.2 allow agents to determine a maximum weight

matching and (ii) given such a maximum weight matching, the distributed dynam-

ics (5.8) of Section 5.3 converge to balanced outcomes. The combination of these

facts with Proposition 5.4.1 yields the desired convergence to Nash outcomes.

When putting the two dynamics together, however, one should note that

the convergence of (5.6) is asymptotic, and hence agents implement (5.8) before

the final stable matching is realized. To do this, we have agents guess with whom

(if any) they will be matched in the final Nash outcome. An agent i guesses that

it will match with j ∈ N (i) if the current value of the matching state mi,j(t)

coming from the dynamics (5.6) is closest to 1 as compared to all other neighbors

in N (i) \ j. As we show later, this guess becomes correct in finite time. Formally,

agent i predicts its partner by computing

Pi(m)={j ∈ N (i) : |mi,j − 1|< |mi,k − 1|, ∀k ∈ N (i)\j}.

Clearly, Pi(m) is at most a singleton and can be computed by i using local infor-

mation. If Pi(m) = {j}, we use the slight abuse of notation and write Pi(m) = j.

With the above discussion in mind, we next propose the following dis-

tributed strategy: each agent i ∈ V implements its corresponding dynamics in (5.6)

to find a stable outcome but only begins balancing its allocation if, for some

j ∈ N (i), agents i and j identify each other as partners. Formally, this dynamics

is represented by, for each i ∈ V ,

α̇s
i =




fα
i (α

s, s,m), αs
i > 0,

max{0, fα
i (α

s, s,m)}, αs
i = 0,

(5.12a)

α̇b
i =





− ebi(α
b), if for some j ∈ N (i),Pi(m) = j and Pj(m) = i,

− αb
i , otherwise,

(5.12b)



112

and, for each j ∈ N+(i),

ṡi,j =




f s
i,j(α

s, s,m), si,j > 0,

max{0, f s
i,j(α

s, s,m)}, si,j = 0,
(5.12c)

ṁi,j = αs
i + αs

j − si,j − wi,j. (5.12d)

The state of agent i ∈ V is then

(αs
i , α

b
i , {si,j}j∈N+(i), {mi,j}j∈N+(i)) ∈ R≥0 × R× R

|N+(i)|
≥0 × R

|N+(i)|.

For convenience, we denote the dynamics (5.12) by

FNash :Rn
≥0×R

n×R
|E|
≥0×R

|E| → R
n
≥0× R

n×R
|E|
≥0×R

|E|.

The dynamics (5.12) can be viewed as a cascade system, with the states m feeding

into the balancing dynamics (5.12b). The next result establishes the asymptotic

convergence of this cascade system.

Theorem 5.4.2. (Asymptotic convergence to Nash outcomes). Let t →
(αs(t), αb(t), s(t),m(t)) be a trajectory of (5.12) starting from an initial point in

R
n
≥0 ×R

n ×R
|E|
≥0 ×R

|E|. Then, if there exists a stable outcome, for some T > 0 the

maximum weight matching M is well-defined by the implication

(i, j) ∈M ⇔ Pi(m(t)) = j and Pj(m(t)) = i.

for all t ≥ T . Furthermore, t 7→ (M,αb(t)) converges to a Nash outcome. More-

over, (5.12) is distributed with respect to 2-hop neighborhoods over G.

Proof. Let m∗ ∈ R
|E| be the unique integral solution of (5.2). The asymptotic

convergence properties of (5.6), cf. Proposition 5.2.3, guarantee that, for every

ε > 0, there exists T > 0 such that, for all t ≥ T ,

ε >




|mi,j(t)− 1|, if m∗

i,j = 1,

|mi,j(t)|, if m∗
i,j = 0.

Thus, taking ε < 1
2
, it is straightforward to see that the matching induced by the

implication

(i, j) ∈M ⇔ Pi(m(t)) = j and Pj(m(t)) = i,
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is well-defined, a maximum weight matching, and constant for all t ≥ T . Then,

considering only t ≥ T and applying Propositions 5.3.4 and 5.4.1, we deduce that

t 7→ (M,αb(t)) converges to a Nash outcome. The fact that (5.12) is distributed

with respect to 2-hop neighborhoods follows from its definition, which completes

the proof.

Finally, we comment on the robustness properties of the Nash bargaining

dynamics (5.12) against perturbations such as communication noise, measurement

error, modeling uncertainties, or disturbances. A central motivation for using the

linear programming dynamics (3.8), and continuous-time dynamics in general, is

that there exist various established robustness characterizations for them. In par-

ticular, using previously established results from Chapter 3, it holds that (5.12) is a

‘well-posed’ dynamics, as defined in [43]. As a straightforward consequence of [43,

Theorem 7.21], the Nash bargaining dynamics is robust to small perturbations, as

we state next.

Corollary 5.4.3. (Robustness to small perturbations). Given a graph G,
assume there exists a stable outcome and let t → (αs(t), αb(t), s(t),m(t)) be a

trajectory, starting from an initial point in R
n
≥0×R

n×R
|E|
≥0×R

|E|, of the perturbed

dynamics

(α̇s, α̇b, ṡ, ṁ) = FNash(αs + d1, α
b + d2, s+ d3,m+ d4) + d5,

where d1, d2 : R≥0 7→ R
n, d3, d4 : R≥0 7→ R

|E|, and d5 : R≥0 7→ R
2n+2|E| are distur-

bances. Then, for every ε > 0, there exist δ, T > 0 such that, for maxi ‖di‖∞ < δ,

the maximum weight matching M is well-defined by the implication

(i, j) ∈M ⇔ Pi(m(t)) = j and Pj(m(t)) = i,

for all t ≥ T , and t 7→ (M,αb(t)) converges to an ε-neighborhood of the set of Nash

outcomes of G.
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x1 = (0, 3)

x2 = (2.5, 1.7)

x3 = (.8, -.6)

x4 = (1, -1.7)

x5 = (.1, -1)

BS

3

2

1

0

-1

210

Figure 5.2: Spatial distribution of devices {1, . . . , 5} and the base station (BS).

device, i 1 2 3 4 5

% access, ρi 20% 28% 11% 21% 20%

one transmission period, T

Figure 5.3: TDMA transmission time allocations for each device.

1 2 3

4

5

0.106 0.173

0.133

0.153

0.127

Figure 5.4: Bargaining graph resulting from the position and TDMA transmission
time allocations for each device. Here, we have taken Pmax = 3.

5.5 Application to multi-user wireless communi-

cation

In this section, we provide some simulation results of our proposed Nash

bargaining dynamics as applied to a multi-user wireless communication scenario.
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The scenario we describe here is a simplified version of the one found in [90], and

we direct the reader to that reference for a more detailed discussion on the model.

We assume that there are n = 5 single antenna devices distributed spatially in

an environment that send data to a fixed base station. We denote the position

of device i ∈ {1, . . . , 5} as xi ∈ R
2 and we assume without loss of generality that

the base station is located at the origin. Figure 5.2 illustrates the position of

the devices. An individual device’s transmission is managed using a time division

multiple access (TDMA) protocol. That is, each device i is assigned a certain

percentage ρi of a transmission period of length T in which it is allowed to transmit

as specified in Figure 5.3. We use a commonly used model for the capacity ci > 0

of the communication channel from device i to the base station, which is a function

of their relative distance,

ci = log(1 + |xi|−1).

In the above, we have taken various physical parameters (such as transmit power

constraints, path loss constants, and others) to be 1 for the sake of presentation.

Since i only transmits for ρi percent of each transmission period, the effective

capacity of the channel from device i to base station is ρici. It is well-known

in wireless communication [105] that multiple antenna devices can improve the

channel capacity. Thus, devices i and j may decide to share their data and transmit

a multiplexed data signal in both i and j’s allocated time slots. In essence, i and j

would behave as a single virtual 2-antenna device. The resulting channel capacity

is given by

ci,j = log(1 + |xi|−1 + |xj|−1),

which is greater than both ci and cj. However, there is a cost to agent i and j

cooperating in this way because their data must be transmitted to each other. We

assume that the device-to-device transmissions do not interfere with the device-

to-base station transmissions. The power needed to transmit between i and j is

given by

Pi,j = |xi − xj|.
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Figure 5.5: Evolution of each device’s allocation in dynamics (5.12). At various
times (i.e., t ≈ 4 and 9), certain devices change who they identify as partners in
the matching which explains the kinks in the trajectories at those times. This
occurs because of the evolution of the matching states in Figure 5.6 and devices
cannot correctly deduce the stable matching until t ≈ 9.
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m3 ,5 (t )

m3 ,4 (t )

Figure 5.6: Evolution of neighboring device’s matching states in dynamics (5.12).
The final convergence of the matching states to {0, 1}|E| (which we do not show
for the sake of presentation) takes much longer than devices need to accurately
identify a Nash outcome.
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1 2 3

4
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0 0.113 0.06

0.079

0.074

0.106 0.173

0.133
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Figure 5.7: Nash outcome that is distributedly computed by devices. Device
matchings are shown by thicker grey edges and allocations to each device are
indicated with arrows

Table 5.1: Improvements in capacity due to collaboration

Effective channel Increase in effective %
Device capacity without channel capacity improve-

collaboration, ci in Nash outcome, αb
i ment

1 0.288 0 0
2 0.288 0.113 39.2
3 0.693 0.06 8.7
4 0.693 0.079 11.4
5 0.406 0.074 18.2

{1,. . . ,5} 0.441 0.070 15.8

If this power is larger than some Pmax > 0, then i and j will not share their data.

We can model this scenario via a graph G = (V , E ,W ), where V = {1, . . . , 5} are

the devices, edges correspond to whether or not i and j are willing, based on the

power requirements, to share their data

(i, j) ∈ E ⇔ Pi,j ≤ Pmax,

and the edge weights represent the increase in effective channel capacity should

devices cooperate,

wi,j = (ρi + ρj)ci,j − ρici − ρjcj, ∀(i, j) ∈ E .

Figure 5.4 shows this graph, using the data for the scenario we consider. It is

interesting to note that, besides channel capacity and power constraints, one could
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incorporate other factors into the edge weight definition. For example, if privacy is

a concern in the network, then devices may be less likely to share their data with

untrustworthy devices which can be modeled by a smaller edge weight. A matching

0 2 4 6 8 10 12 14 16 18 20
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Figure 5.8: Trajectories of the noisy Nash dynamics. The noise is normally
distributed with zero mean and standard deviation 0.01. Stable matchings are
still correctly deduced and devices’ allocations converge to a neighborhood of the
allocations in the Nash outcome.

M in the context of this setting corresponds to disjoint pairs of devices that decide

to share their data and transmission time slots in order to achieve a higher effective

channel capacity. An allocation corresponds to how the resulting improved bit rate

is divided between matched devices. For example, if i is allocated an amount of αb
i ,

then i and j will transmit their data such that i’s data reaches the base station at

a rate of ci +αb
i . The percent improvement in bit rate for i is then given by αb

i/ci.

Devices use the dynamics (5.12) to find, in a distributed way, a Nash outcome

for this problem. Figures 5.5 and 5.6 reveal the resulting state trajectories and

Figure 5.7 displays the final Nash outcome. The percent improvements resulting

from collaboration for each device are collected in Table 5.1. The last row in

this table show that the network-wide improvement is 15.8%. Before bargaining,

devices 1 and 2 have the lowest individual channel capacities and would thus greatly

benefit from collaboration. However, due to power constraints, device 1 can only

match with device 2, who in turn prefers to match with device 3. This explains

why, in the end, device 1 is left unmatched. Figure 5.8 illustrates how convergence

is still achieved when noise is present in the devices’ dynamics, as forecasted by
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Corollary 5.4.3.

This concludes our study of distributed bargaining in dyadic-exchange net-

works.

Chapter 5, in part, is a reprint of the material [80] as it appears in ‘Dis-

tributed linear programming and bargaining in exchange networks’ by D. Richert

and J. Cortés in the proceedings of the 2013 American Control Conference as well

as the material [84] as it appears in ‘Distributed bargaining in dyadic-exchange

networks’ by D. Richert and J. Cortés which was submitted to the IEEE Trans-

actions on Control of Network Systems. The dissertation author was the primary

investigator and author of this paper and unpublished material.



Chapter 6

Cooperation inducing mechanisms

in UAV formation pairs

Digging deeper into the bargaining problem in exchange networks, this

chapter explores the logistical issues surrounding how agents may effectively real-

ize the payoff that they were promised in a bargaining outcome. As an illustrative

example, we consider the problem of optimally allocating the leader task between

pairs of selfish unmanned aerial vehicles (UAVs) flying in formation. The UAV

that follows the other achieves a fuel benefit due to a reduction in aerodynamic

drag. We assume (e.g., using the Nash bargaining dynamics of Chapter 5) that a

network of UAVs have autonomously agreed upon who to fly with in formation as

well as a division of the combined fuel benefit of the formation. However, the non-

cooperative nature of the agents makes it necessary to arbitrate leader-allocation

mechanisms that induce collaboration. The aim of this chapter is the design of

such mechanisms and algorithms that individual agents can use to compute them.

Upon modeling the UAV formation scenario, we find that such mechanisms

only exist if UAVs are willing to forgo some cost gain, modeled by a parameter

ε ≥ 0, before breaking a formation. Restricting our search to only those leader

allocations that induce cooperation, the result is an optimization problem with two

components. On the one hand, given a fixed number of leader switches, the problem

is to determine the optimal leader allocation and, on the other, the problem is

to find the optimal number of leader switches. Both problems turn out to be

120
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nonconvex.

Nonconvex problems (see e.g. [40] and references therein) are widely con-

sidered the most challenging in the field of optimization. In particular, a unified

theory on how to solve them does not exist. Nevertheless, a common approach is

to convert the nonconvex problem into a convex one, for which efficient solution

methods do exist [17, 23]. Such conversions can be performed by way of relax-

ations of the constraints or restrictions of the feasible set [1]. For the first problem

of finding optimal leader allocations given a fixed number of leader switches, we

employ the latter approach. This is achieved by first considering the case when

switching the lead has no cost, allowing us to find the optimal value of the program.

To this end, we design the cost realization algorithm to determine an op-

timal cooperation-inducing leader allocation. Considering the more general case,

when switching the lead is costly, we restrict the feasible set of leader allocations

to mimic those of the solution provided by the cost realization algorithm.

Remarkably, the restriction convexifies the feasible set of the original nonconvex

problem while maintaining its optimal value.

Regarding the second problem, our analysis reveals a quasiconvexity-like

property of the optimal value of the problem as a function of the number of

switches. This property allows us to design the binary search algorithm,

which finds the optimal number of leader switches in logarithmic time.

Several simulations throughout the chapter illustrate our results.

6.1 Problem setup

This section describes the problem setup. After introducing the notions of

formation, lead distance, and cost-to-target function, we present the optimization

problem we seek to solve. Consider a pair of UAVs with unique identifiers (UIDs)

i and j evolving in X ⊂ R
3. Both i and j have synchronized clocks and can com-

municate with each other. A superscript i (resp. j) denotes a quantity associated

with i (resp. j). Agent i has position xi(t) ∈ X at time t ∈ R≥0, a target location

x̄i ∈ X, and the objective of flying from origin xi(0) to target location while con-
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suming the least amount of fuel. The same is valid for agent j. For UAVs flying

in close proximity, the inter-agent distance between them is negligible compared

to the total distance they must travel to their target. Therefore we make the

abstraction that i and j are point masses that may have concurrent position.

6.1.1 Formations and lead distances

To move from origin to destination efficiently, agents i and j might decide

to travel in formation. Here, we formally introduce this notion and examine the

associated costs. Without loss of generality (via an appropriate change of coordi-

nate frame), suppose that i and j have rendezvoused at the origin, xr = 0, at time

t = 0 and are flying in the direction u = (1, 0, 0). Agents i and j are in formation

at a time t if

(i) xi(0) = xj(0) = xr,

(ii) [xi(0), xi(t)] = [xj(0), xj(t)] ∈ ray(xr, u),

(iii) d(xi(τ), xj(τ)) = 0 for all τ ∈ [0, t],

where ray(xr, u) is the ray originating at xr in the direction of u and d : R3×R
3 →

R≥0 is the Euclidean distance between two points. The execution of a formation

is completely described by a vector of lead distances (VOLD) and the UID of the

agent which leads first. Without loss of generality, let i lead the formation first.

A VOLD ℓ ∈ R
N
≥0 is a finite-dimensional vector prescribing which UAV leads the

formation when and for how long. For instance, i will initially lead the formation

for distance ℓ1 at which point i and j will switch the lead. Upon completion of the

leader switch, j will lead the formation for distance ℓ2. As such, for n odd (resp.

even), ℓn is the nth distance led by i (resp. j). We use N to denote the cardinality

of a VOLD.

A leader switch is a maneuver which takes a distance s to complete, see

Figure 6.1. During a leader switch, the fuel consumption per unit distance is Γ > 1,

and hence, the fuel consumed by both UAVs is sΓ. We have scaled the quantity Γ

relative to the fuel consumption per unit distance of leading the formation (which,
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by assumption, is 1). Conversely, flying in the wake of another UAV reduces the

aerodynamic drag on the following UAV. Thus, the relative fuel cost per unit

distance of a UAV following is γ < 1. Flying solo or leading the formation incur

the same fuel consumption per unit distance. Upon completion (or breaking)

of the formation, UAVs fly directly to their respective targets. For reasons of

presentation, we assume that UAVs are identical in the sense that γ, Γ, and the

cost per unit distance of flying solo are the same for all agents. However, the

remaining analysis could easily be adapted for agents that are not identical.

0

u = (1, 0, 0)

x1 x2

x̄i

x̄j

x1 = D1(ℓ)u = ℓ1u

x2 = D2(ℓ)u = (ℓ1 + s + ℓ2)u

(a) Red begins leading the formation

u = (1, 0, 0)

0
x1 x2

x̄
i

x̄
j

(b) A leader switch is initiated at x1

{

u = (1, 0, 0)

0
x1 x2

x̄i

x̄j

s

(c) Blue leads after the switch

Figure 6.1: Example flight behavior of UAVs given a VOLD ℓ = (ℓ1, ℓ2). The
dashed lines represent the proposed flight paths of the UAVs. During a switch, the
UAVs deviate slightly from the formation heading and red (resp. blue) decreases
(resp. increases) its speed. After maintaining the new speeds for distance s, the
UAVs return to the original heading and speed of the formation. Both UAVs
consume sΓ amount of fuel in this maneuver. At x2, the UAVs fly directly to their
respective targets.

6.1.2 Cost-to-target functions

Here we define an agent’s cost-to-target. To begin we introduce some aux-

iliary functions. Given a VOLD ℓ ∈ R
N
≥0, the distance of the nth switch from the
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origin is

Dn(ℓ) =




0, n = 0,
∑n

k=1 ℓk + (n− 1)s, 1 ≤ n ≤ N.

The total distance of the formation prescribed by ℓ is DN(ℓ). Likewise, given a

VOLD ℓ, the number of leader switches that have been initiated when the UAVs

have been in formation for distance D ≥ 0 is

#sw(ℓ,D) = max{n ∈ {0, 1, . . . , N} : Dn(ℓ) ≤ D},

and the distance from the last switch is DLS(ℓ,D) = D − D#sw(ℓ,D)(ℓ). Given a

VOLD and a distance D, a UAV is able to compute the relative fuel consumed

on its flight from xr to its target if it were to break the formation at Du. We

refer to it as the UAV’s cost-to-target function. Formally, for agent i, we have

cti : RN
≥0 × R≥0 → R>0 given by

cti(ℓ,D) =

#sw(ℓ,D)∑

k∈N∩O
ℓk + sΓ(#sw(ℓ,D)− 1)+ + γ

#sw(ℓ,D)∑

k∈N∩E
ℓk +Ri(ℓ,D) + d(Du, x̄i).

The first term is the fuel consumed by leading, the second term is the fuel consumed

due to switching the lead, and the third term is the fuel consumed while following.

The fourth term is a residual term accounting for the fuel consumed since the last

switch. For #sw(ℓ,D) odd

Ri(ℓ,D) = γ(DLS(ℓ,D)− s)+ + Γmin{DLS(ℓ,D), s},

and for #sw(ℓ,D) even

Ri(ℓ,D) = (DLS(ℓ,D)− s)+ + Γmin{DLS(ℓ,D), s}.

Lastly, the d(Du, x̄i) is the fuel that i would consume by breaking the formation

at Du and flying to its target. Slight variations of a UAV’s cost-to-target are the

cost-to-target-at-the-kth-switch functions. For k = 1, . . . , N , these are given by

ctik : R
k
≥0 → R>0 defined as

ctik(ℓ1, . . . , ℓk) =
k∑

n∈N∩O
ℓn + γ

k∑

n∈N∩E
ℓn + sΓ(k − 1) + d

(( k∑

n=1

ℓn + s(k − 1)

)
u, x̄i

)
.
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By construction, cti(ℓ,Dk(ℓ)) ≡ ctik(ℓ1, . . . , ℓk). Analogous ctj and ct
j
k exist for

j. In addition to an individual UAV’s cost-to-target, it is possible to characterize

the combined cost-to-targets of i and j at the end of their formation in terms of

the formation breakaway location. To do so, consider any ci, cj ∈ R>0 and suppose

there exists an ℓ ∈ R
N
≥0 such that ci = ctiN(ℓ) and cj = ct

j
N(ℓ) (i.e., the final

cost-to-target at the end of the formation for i and j are ci and cj respectively).

The UAVs’ combined cost-to-targets at the end of the formation is

cj + ci = ct
j
N(ℓ) + ctiN(ℓ).

Under a change of variables L =
∑N

k=1 ℓk this becomes

cj + ci = ct
i+j
N (L) := (1 + γ)L+ 2(N − 1)sΓ

+ d
(
(L+ s(N − 1))u, x̄j

)
+ d

(
(L+ s(N − 1))u, x̄i

)
.

We call cti+j
N : R≥0 → R>0 the combined cost-to-target function of a formation

with N − 1 switches. Note that the formation breakaway distance is L+ s(N − 1).

6.1.3 Problem statement

Upon arrival at the rendezvous location xr, the agents need to determine

a VOLD to dictate how to execute their formation. Suppose i declares an upper

bound C i on its final cost-to-target. Then j would propose a VOLD which solves

the following two-stage optimization problem. First, among VOLDs with a fixed

cardinality N , the minimum cost-to-target j can expect is

min
ℓ∈RN

≥0

ct
j
N(ℓ) (6.1a)

s.t. ctiN(ℓ) ≤ C i, (6.1b)

ctiN(ℓ) ≤ cti(ℓ,D) + εi, ∀D ∈ [0, DN (ℓ)], (6.1c)

ct
j
N(ℓ) ≤ ctj(ℓ,D) + εj, ∀D ∈ [0, DN(ℓ)]. (6.1d)

The parameters εi, εj ≥ 0, intrinsic to each UAV, model their degree of cooperation

(see Remark 6.1.1). Constraint (6.1c) ensures that at no point in the formation

will i’s cost-to-target be εi less than its final cost-to-target. The assumption is
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that i would break the formation earlier if it could benefit (by more than εi) in

doing so. An analogous reason for j motivates (6.1d). The optimal value of (6.1)

is denoted Cj(N). Next, among all VOLDs (of any number of leader switches),

the minimum cost-to-target that j could expect is

min
N∈N≥2

Cj(N). (6.2)

If N∗ is minimizes (6.2) and ℓ∗ minimizes (6.1) for fixed N∗, then j would propose

ℓ∗ to i. For reasons of notation, let F(N) be the feasible set of (6.1). To relate

this problem setup to the network bargaining of Chapter 5, the transferable utility

between i and j would be

wi,j = d(xr, x̄
i) + d(xr, x̄

j)− C i − ct
j
N∗(ℓ∗),

and the mechanism to ensure that agents realize their allocation of wi,j is the vector

of lead distances prescribed by ℓ∗.

In general, F(N) is nonconvex and (6.2) is combinatorial. We devote much

of this chapter to transforming (6.1) into a convex problem (i.e., a convex objective

function minimized over a convex set) and developing tools to efficiently solve (6.2).

From this point on, we assume that the formation heading is not in the

same direction as either agents’ target,

x̄i /∈ ray(xr, u) and/or x̄j /∈ ray(xr, u). (6.3)

Without this assumption, inducing cooperation between i and j is trivial: if a

UAV cannot “breakaway” from the formation, the other UAV will just follow in

the formation until it no longer benefits from doing so.

Remark 6.1.1. (Selfish vs. fully cooperative UAVs). If εi = εj = 0, con-

straints (6.1c)-(6.1d) imply that i and j only abide by VOLDs for which their

cost-to-target at any time in formation is never better than their cost-to-target at

the end of the formation. We call such UAVs selfish. For selfish UAVs, the solution

to problem (6.1) is trivially ℓ∗ = 0 ∈ R
N for any N (agents never fly in formation).

This is because neither UAV is willing to be the last to lead the formation com-

pared to flying straight to its target. On the other hand, removing (6.1c)-(6.1d)
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(equivalently, setting εi = εj = ∞) implies that UAVs will abide by any VOLD

ℓ ∈ R
N
≥0. We call such UAVs fully cooperative. However, these UAVs could poten-

tially save fuel by breaking the formation earlier. This discussion motivates our

problem formulation, which accounts for agents who are selfishly motivated yet

willing to forfeit a small amount of fuel to ensure the formation occurs. Figure 6.2

shows the dependency of Cj
∗ on εi, εj. •

Cooperation parameter (ǫ = ǫi = ǫj)

85

84

83O
p
ti

m
al

co
st

-t
o-

ta
rg

et

0.3 0.5 0.7 0.9

l

Figure 6.2: Optimal value of (6.2) with respect to ε = εi = εj. As ε increases,
j’s optimal cost-to-target, Cj

∗ decreases. The nonsmoothness at ε ≈ 0.41 and
ε ≈ 0.58 is due to decreases in the optimal number of leader switches in the
solution to (6.2). The simulation data are: C i = 82, s = 0.2, Γ = 1.7, γ = 0.5,
x̄i = (100, 10), x̄j = (90,−20).

6.2 Unveiling the structure of optimal VOLDs

This section describes properties of the cost-to-target functions and of the

solutions to (6.1). Using them, we provide a more explicit description of the feasible

set, allowing us to express (6.1) in standard form. Without loss of generality, many

of the results only refer to i.

6.2.1 Properties of the cost-to-target functions

A cost-to-target function is continuous and piecewise differentiable with re-

spect to distance D. In particular, cti is not differentiable at distances where

leader switches are initiated or completed. That is, ∂Dct
i exists at (ℓ,D) iff
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DLS(ℓ,D) /∈ {0, s}. The following reveals a useful convexity-like property of the

cost-to-target functions.

Lemma 6.2.1. (Leading, following, and switching become more costly

as the formation progresses). Let ℓ be a VOLD and D1 < D2. Suppose that,

under ℓ, UAV i is leading (or following, or switching) at both D1u and D2u. Then

∂Dct
i(ℓ,D1) < ∂Dct

i(ℓ,D2). Moreover, if i is leading or switching at D1u, then

∂Dct
i(ℓ,D1) > 0.

Proof. The derivative of cti with respect to D is

∂Dct
i(ℓ,D) = ∂Dd(Du, x̄

i) +





γ, if i follows at Du,

1, if i leads at Du,

Γ, otherwise.

The function D 7→ d(Du, x̄i) is strictly convex under (6.3). Thus, ∂Dd(Du, x̄
i) is

strictly increasing. Suppose that i is leading at both D1u and D2u. Then

∂Dct
i(ℓ,D1) = ∂Dd(D1u, x̄

i) + 1,

< ∂Dd(D2u, x̄
i) + 1 = ∂Dct

i(ℓ,D2).

Similar analysis holds for when i is following (or switching) at both D1u and D2u.

To show that ∂Dct
i(ℓ,D1) > 0 when i is leading at D1u, let a > 0 be sufficiently

small such that i is also leading at (D1 − a)u. Then

cti(ℓ,D1) = cti(ℓ,D1 − a)− d((D1 − a)u, x̄i) + a+ d(D1u, x̄
i) > cti(ℓ,D1 − a),

where we have used the triangle inequality. Since a can be taken arbitrarily small,

∂Dct
i(ℓ,D1) > 0 follows. If i is switching at D1u, the above argument with Γa

instead of a, together with Γ > 1, yields the same conclusion.

Roughly speaking, Lemma 6.2.1 states that it is more costly to lead (or fol-

low or switch) in the formation as it progresses. The last statement in Lemma 6.2.1

simply states that leading or switching is always costly. This is to be distinguished

from following which, as we show later, decreases the cost-to-target function in

an optimal VOLD. Using a similar argument as in the proof of Lemma 6.2.1, the

following states some properties of the cost-to-target-at-the-kth-switch functions.
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Lemma 6.2.2. (Properties of the cost-to-target-at-the-kth-switch func-

tions). For ℓ ∈ R
N
≥0

(P1) ∂ℓ1ct
i
k(ℓ1, . . . , ℓk) > 0, for k ≥ 1,

(P2) ∂ℓ2ct
j
k(ℓ1, . . . , ℓk) > 0, for k ≥ 2,

(P3) ∂ℓnct
m
k (ℓ1, . . . , ℓk) = ∂ℓn+2

ctmk (ℓ1, . . . , ℓk), for k ≥ n+ 2 and m = i, j,

(P4) ∂ℓnct
m
k (ℓ1, . . . , ℓk) < ∂ℓnct

m
k+2(ℓ1, . . . , ℓk), for k ≥ n and m = i, j.

6.2.2 Properties of the optimal VOLDs

This section explores an important property of the breakaway distance pre-

scribed by a solution to (6.1). For some ℓ ∈ R≥0 let cj = ct
j
N(ℓ) and c

i = ctiN(ℓ).

Recalling the discussion on the combined cost-to-target function (cf. Section 6.1.2),

the possible breakaway locations of the formation can be described by all L satis-

fying

cj + ci = ct
i+j
N (L).

Since ct
i+j
N is strictly convex, there exist two solutions L1, L2 to this equation

(note that L1, L2 may not be distinct). Letting L∗
N = argminL ct

i+j
N (L), we assume

without loss of generality that L1 ≤ L∗
N ≤ L2. The following result states that

L1 + s(N − 1), and not L2 + s(N − 1), is the breakaway location for a solution

to (6.1).

Proposition 6.2.3. (UAVs breakaway as soon as possible). For N ∈ N, let

ℓ∗ be a solution to (6.1). Then,

ℓ∗ ∈ LN :=

{
ℓ ∈ R

N
≥0 :

N∑

k=1

ℓk ≤ L∗
N

}
.

Proof. Consider the case when N is even so that j leads the last segment. Proving

the result by contradiction, suppose ℓ solves (6.1) but
∑N

k=1 ℓk = L̂ > L∗
N . Since

ct
i+j
N is strictly convex, we know ∂Lct

i+j
N (L̂) > 0. That is

γ + ∂Ld((L̂+ s(N − 1))u, x̄i) > −1− ∂Ld((L̂+ s(N − 1))u, x̄j). (6.4)
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In other words, ∂ℓNct
i
N(ℓ) > −∂ℓNctjN(ℓ). A rearrangement of (6.4) reveals that

∂ℓN−1
ct

j
N(ℓ) > −∂ℓN−1

ctiN(ℓ) also. Consider the alternative VOLD ℓ′ ∈ R
N
≥0 where,

for some a, b ≥ 0 to be designed, ℓ′N−1 = ℓN−1 − a, ℓ′N = ℓN − b, and ℓ′k = ℓk

otherwise. To reach a contradiction of ℓ being a solution of (6.1), we want to design

a, b such that ctiN(ℓ
′) ≤ ctiN(ℓ), ct

j
N(ℓ

′) < ct
j
N(ℓ) and ℓ′ satisfies (6.1c)-(6.1d).

First, let a, b be sufficiently small such that the following linear approximations

are valid. We desire

a∂ℓN−1
ct

j
N(ℓ) + b∂ℓNct

j
N(ℓ) > 0, (6.5a)

a∂ℓN−1
ctiN(ℓ) + b∂ℓNct

i
N(ℓ) ≥ 0. (6.5b)

There are four cases: (i) ∂ℓNct
i
N(ℓ), ∂ℓN−1

ct
j
N(ℓ) > 0 (ii) ∂ℓNct

i
N(ℓ) < 0 <

∂ℓN−1
ct

j
N(ℓ) (iii) ∂ℓN−1

ct
j
N(ℓ) < 0 < ∂ℓNct

i
N(ℓ) (iv) ∂ℓNct

i
N(ℓ), ∂ℓN−1

ct
j
N(ℓ) < 0.

For the sake of space, consider only case (iv) which we claim is the most complex.

Combining (6.5) yields

−a∂ℓN−1
ctiN(ℓ)

∂ℓNct
i
N(ℓ)

< b < −a∂ℓN−1
ct

j
N(ℓ)

∂ℓNct
j
N(ℓ)

.

Given a > 0, ∃b > 0 since ∂ℓN−1
ct

j
N(ℓ) > −∂ℓN−1

ctiN(ℓ) and ∂ℓNct
i
N(ℓ) >

−∂ℓNctjN(ℓ). It remains to show that ℓ′ satisfies (6.1c)-(6.1d). Consider first the

interval D ∈ [0, DN−1(ℓ
′)] where, by construction of ℓ′, cti(ℓ′, D) = cti(ℓ,D).

Since ℓ satisfies (6.1c)-(6.1d) on this interval

cti(ℓ′, D) ≥ ctiN(ℓ)− εi > ctiN(ℓ
′)− εi.

Similar analysis holds for j (i.e., cooperation is induced up until DN−1(ℓ
′)u). Be-

yond DN−1(ℓ
′)u, UAV j is switching and leading. So, ∀D ∈ (DN−1(ℓ

′), DN(ℓ
′)]

ctj(ℓ′, D) > ct
j
N−1(ℓ

′) > ct
j
N(ℓ

′)− εj,

due to Lemma 6.2.1. Thus, j will cooperate under ℓ′. Still under case (iv), note

that ∂ℓNct
i
N(ℓ) < 0 ⇒ ∂−Dct

i(ℓ,DN(ℓ)) < 0 ⇒ ∂−Dct
i(ℓ′, DN(ℓ

′)) < 0 which, due

to Lemma 6.2.1, further implies that following always decreases i’s cost-to-target

function in the formation. Agent i only switches and follows beyond DN−1(ℓ
′)u.

So, ∀D ∈ (DN−1(ℓ
′), DN−1(ℓ

′) + s]

cti(ℓ′, D) > cti(ℓ′, DN−1(ℓ
′)) > cti(ℓ′, DN(ℓ

′))− εi,



131

and ∀D ∈ [DN−1(ℓ
′) + s,DN(ℓ

′))

cti(ℓ′, D) > cti(ℓ′, DN(ℓ
′)) > cti(ℓ′, DN(ℓ

′))− εi.

Thus, i will also cooperate (i.e., ℓ′ satisfies (6.1c)-(6.1d)). Similar arguments hold

for cases (i)-(iii). In summary, ℓ′ decreases (6.1a) while satisfying (6.1d) which

contradicts ℓ solving (6.1). N odd is dealt with analogously.

Proposition 6.2.3 gives an upper bound on the breakaway distance of an

optimal VOLD. Thus, we can restrict the feasible set of (6.1) to ℓ ∈ F(N) ∩ LN .

Following this result, for ℓ ∈ LN , one has the additional property that a UAV’s

cost-to-target strictly decreases while following.

Corollary 6.2.4. (Following is beneficial). If ℓ ∈ LN has i following at D̂u,

∂Dct
i(ℓ, D̂) < −∂Dctj(ℓ, D̂) < 0.

Proof. Following the proof of Proposition 6.2.3, if ℓ ∈ LN then we arrive at (6.4)

with the inequality reversed. However, the LHS of (6.4) is ∂Dct
i(ℓ, D̂) where

D̂ = L̂. The result follows from applying Lemma 6.2.1

Corollary 6.2.4 also allows us to identify additional properties of the cost-

to-target-at-the-kth-switch functions.

Lemma 6.2.5. (Properties of the cost-to-target-at-the-kth-switch func-

tions - continued). For ℓ ∈ LN ,

(P5) ∂ℓ1ct
j
k(ℓ1, . . . , ℓk)≤−∂ℓ1ctik(ℓ1, . . . , ℓk) < 0, k ≥ 2,

(P6) ∂ℓ2ct
i
k(ℓ1, . . . , ℓk)≤−∂ℓ2ctjk(ℓ1, . . . , ℓk) < 0, k ≥ 2.

The results thus far are now used to state a fact about the final cost-to-

target for UAV i given a solution to (6.1).

Lemma 6.2.6. (i receives its bound on final cost-to-target). If ℓ is a

solution to (6.1) then C i = ctiN(ℓ).
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Proof. The proof is by contradiction, so let ℓ solve (6.1) and assume C i < ctiN(ℓ).

Decrease ℓ2 by some amount a > 0, thus increasing i’s cost-to-target and decreasing

j’s cost-to-target (cf. Lemma 6.2.5(P6)). For a sufficiently small, (6.1b) is still

satisfied and (6.1a) decreases. Also (6.1c)-(6.1d) are satisfied, as shown by repeated

application of Lemma 6.2.2(P4). Thus, we have reached a contradiction (i.e., if

C i < ctiN(ℓ) then ℓ does not solve (6.1)).

6.2.3 Equivalent formulation

Here, we combine the results established above to reduce the feasibility

set of (6.1) to only those VOLDs exhibiting properties of optimal VOLDs. In

particular, Lemma 6.2.1 and Corollary 6.2.4 reveal that, for ℓ ∈ LN , the local

minima of cti and ctj occur at the distances where an agent initiates a switch

from following to leading. So, if cooperation is induced at those points, then

cooperation is induced for the entire formation. Additionally, we can now fix i’s

final cost-to-target at C i. To summarize, we reformulate (6.1) in terms of the

cost-to-target-at-the-kth-switch functions as follows. For fixed N ∈ N

min
ℓ∈LN

ct
j
N(ℓ) (6.6a)

s.t. cj = ct
j
N(ℓ), C i = ctiN(ℓ), (6.6b)

cj ≤ ct
j
k(ℓ1, . . . , ℓk) + εj, k ∈ O[1,N−1], (6.6c)

C i ≤ ctik(ℓ1, . . . , ℓk) + εi, k ∈ E[2,N−1]. (6.6d)

Given the above discussion, the set of solutions to (6.6) is the set of solutions

to (6.1). The equality constraints in (6.6) are not affine and substituting them

into the inequality constraints yields nonconvex inequality constraints.

Remark 6.2.7. (Total lead distance functions). For ℓ ∈ LN satisfying (6.6b)-

(6.6d), one can show that, without knowing the specific elements of ℓ, there exists

a unique distance that i must lead the formation. This is

tliN(c
j) :=

[
L+ d((L+ (N − 1)s)u, x̄j)

+ (N − 1)sΓ− cj
]
/(1− γ) ≡

N∑

k∈N∩O
ℓk,
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where L satisfies cj + C i = ct
i+j
N (L) (tliN is well-defined since L is unique). Also,

tl
j
N(c

j) := L− tliN(c
j). •

6.3 Optimal VOLDs under no-cost switching

This section solves problem (6.2) when switching the lead does not incur a

cost to UAVs (i.e., s = sΓ = 0). We start by characterizing the optimal value Cj
∗

and then design the cost realization algorithm to generate a VOLD that

realizes the optimal fuel consumption of UAV j in the formation. Note that, under

no-cost switching

ct
i+j
N ′ (L) = ct

i+j
N ′′ (L), ∀N ′, N ′′ ∈ N.

This can be interpreted as follows. Given a fixed breakaway location (in this case,

L because s = 0) and i’s cost-to-target, the final cost-to-target for j is independent

of the number of leader switches in the VOLD. Based on this observation, we are

able to prove the following.

Theorem 6.3.1. (Optimal value under no-cost switching). For s = 0,

max{εi, εj} > 0, and any N ≥ 2, Cj
∗ is the optimal value of the convex problem

min
L

{cti+j
N (L)− C i}. (6.7)

Proof. The proof is constructive. For s = 0, let cj = minL ct
i+j
N (L) − C i for any

N ≥ 2 and for brevity, let ℓiL = tliN(c
j) and ℓjL = tl

j
N(c

j) (cf. Remark 6.2.7).

Begin with the VOLD ℓ = (ℓiL, ℓ
j
L). If ℓ is not feasible then it must be that

ct
j
1(ℓ

i
L) < cj−εj . By assumption, ctj1(0) > cj−εj. Therefore, by the intermediate

value theorem, there exists a ℓ1 ∈ (0, ℓiL) such that ctj1(ℓ1) = cj − εj. With a slight

abuse of notation, let ℓ = (ℓ1, ℓ
j
L, ℓ

i
L − ℓ1). Then, because the breakaway distance

has been preserved, i and j still realize their costs of C i and cj, respectively. Again,

if ℓ is not feasible, then it must be that cti2(ℓ1, ℓ
j
L) < C i−εi and, by the intermediate

value theorem, there exists a ℓ2 ∈ (0, ℓjL) such that cti2(ℓ1, ℓ2) = C i − εi. Then,

update ℓ = (ℓ1, ℓ2, ℓ
i
L − ℓ1, ℓ

j
L − ℓ2). This process may be repeated as long as ℓ is

not feasible. If it never happens that ℓ is feasible, this implies that ℓk → 0 (we
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view {ℓk} as a sequence which is bounded and monotonic). This further implies

that there exists a L :=
∑∞

k=1 ℓk such that cj−εj+C i−εi = ct
i+j
N (L). However, if

max{εi, εj} > 0, this contradicts cj being the optimal value of (6.7). Therefore, it

must be that for some finite number of steps, ℓ becomes feasible under the proposed

procedure.

Begin formation (set n = 1)

At current time t, is i’s
cost-to-target Ci

−ǫi or is j’s
cost-to-target cj

−ǫj?

No

Yes

Initiate leader switch (n 7→n + 1)

At current time t, has i led the
formation for tl

i
n+1(c

j) or has j
led the formation for tl

j

n+1(c
j)?No

Yes

Initiate leader switch

Continue until j’s cost-to-target is cj

Break formation

C
on

ti
n
u
e

in
fo

rm
at
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Figure 6.3: The cost realization algorithm, with input cj, over ε-
cooperative agents i and j. Upon breaking the formation, UAVs fly directly to
their respective targets. UAVs have knowledge of the following parameters when
implementing the algorithm: C i, s, Γ, γ, εi, εj, x̄i, x̄j.

The above result establishes that the optimal value of (6.2) under no-cost

switching can be found as the optimal value of a simple convex problem. This

result is useful for j as it is able to know a priori what final cost-to-target it can

expect from a formation with i. However, i and j still do not know how to realize

these cost-to-targets. The cost realization algorithm provided in Figure 6.3
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resolves this issue. Its design is inspired by the constructive proof of Theorem 6.3.1.

Agents i and j implement this algorithm on-the-fly while in formation and only

require knowledge of the optimal value to (6.2).

Corollary 6.3.2. (Inducing optimal solutions: no-cost switching). For

sΓ = 0 and input Cj
∗, the cost realization algorithm induces a VOLD

that solves (6.2).

Figure 6.4 reports the cost-to-targets in a simulation of two UAVs flying

from origin to target locations while implementing the cost realization algo-

rithm. A leader switch is indicated when an agents’ cost-to-target transitions from

increasing to decreasing (or vice versa). As one can see, the cost realization

algorithm schedules a leader switch whenever one of the agents’ cost-to-target

reaches ε below the projected final cost-to-target.

Remark 6.3.3. (Robustness of the cost realization algorithm). Small

measurement, modeling (i.e., unmodeled wind effects), and computational uncer-

tainties result in small perturbations to an agent’s final cost-to-target resulting

from the cost realization algorithm. Thus, for εi (resp. εj) sufficiently

large, i (resp. j) is willing to remain in formation despite these perturbations to

its expected final cost-to-target. In this sense, the parameters εi and εj ensure

that the cost realization algorithm is robust to small uncertainties. •

6.4 Optimal VOLDs under costly switching

This section solves problem (6.2) when switching is costly. The key dif-

ference with respect to Section 6.3 is that, under no-cost switching, whenever an

inequality constraint in (6.6) becomes active, agents can initiate a leader switch

to ensure cooperation is maintained without affecting their final cost-to-targets.

However, under costly switching, the same logic does not hold because adding a

leader switch increases the final cost-to-target of both agents.
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Figure 6.4: Execution of the cost realization algorithm under no-cost
switching with input Cj

∗ = 84. (a) shows the cost-to-targets for i (red) and j
(blue) resulting from the induced VOLD. Horizontal lines are final cost-to-targets
and dash-dot lines are εi = εj below that. (b) shows the actual flight paths: a
red (resp. blue) dotted line is a segment on which i (resp. j) leads. Simulation
data are C i = 80,γ = 0.5, εi = εj = 0.05, x̄i = (100, 10), x̄j = (90,−20). The
cost-benefits of the formation are d(xr, x̄

i)−C i = 20 (20%) and d(xr, x̄
j)−Cj

∗ = 8
(8.7%) for i and j, resp.

6.4.1 Convex restriction

We start by restricting the feasible set of (6.6) to VOLDs that exhibit the

same structure as in the no-cost case (i.e., equality constraints for k = 1, . . . , N−2).
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That is,

min
cj

cj (6.8a)

s.t. cj = ct
j
k(ℓ1, . . . , ℓk) + εj, k ∈ O[1,N−2], (6.8b)

C i = ctik(ℓ1, . . . , ℓk) + εi, k ∈ E[2,N−2], (6.8c)

cj = ct
j
N(ℓ1, . . . , ℓN), (6.8d)

C i = ctiN(ℓ1, . . . , ℓN), (6.8e)

ℓ ∈ LN , (6.8f)

cj ≤ ct
j
N−1(ℓ1, . . . , ℓN−1) + εj, N ∈ E, (6.8g)

C i ≤ ctiN−1(ℓ1, . . . , ℓN−1) + εi, N ∈ O. (6.8h)

Given cj, (6.8b)-(6.8e) define a unique ℓ. Thus, the variable of optimization is now

cj. Constraints (6.8g)-(6.8h) ensure that the entire VOLD induces cooperation.

Denote the set of feasible cj in the above problem by Fr(N) and the optimal value

by Cj
r (N). In general, for any given N ∈ N and optimal value Cj(N), one has

Cj
r (N) ≥ Cj(N). However, for some N , we have Cj

r (N) = Cj
∗ .

Theorem 6.4.1. (Restriction is exact). Let Cj
∗ < ∞ be the optimal value

of (6.2). Then there exists an N ≥ 2 such that Cj
r (N) = Cj

∗.

Proof. Let N be a minimizer of (6.2) and suppose ℓ is a solution of (6.6) for

fixed N . Our method is to build a new VOLD, ℓ′ satisfying (6.8b)-(6.8e), from

ℓ. Initially, set ℓ′ = ℓ and let k0 ∈ [1, N − 2] be the smallest k such that one

of the constraints (6.6c)-(6.6d) is not active when evaluated at ℓ′. Assume k0

is odd, so Cj
∗ − εj < ct

j
k0
(ℓ′1, . . . , ℓ

′
k0
). Increase ℓ′k0 and decrease ℓ′k0+2 at the

same rate until Cj
∗ − εj = ct

j
k0
(ℓ′1, . . . , ℓ

′
k0
) (this is possible due to (P5)). After

performing this procedure, the k0 constraint is active, the RHS of the k0 + 1

constraint has increased in value (see (P1) and (P3)), and all other constraint

functions have maintained their original value (thus, the final cost-to-go for i and

j have also remained at Cj
∗ and C i respectively). Thus, ℓ′ still solves (6.6). Next,

we focus on the k0 + 1 constraint whose RHS has increased in value and thus

C i − εi < ctik0+1(ℓ
′
1, . . . , ℓ

′
k0+1). Again, increase ℓ′k0+1 and decrease ℓ′k0+3 at the
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same rate until the k0 + 1 constraint becomes active. We are able to repeat this

procedure until the N − 1 constraint is reached. It is not possible to make this

constraint active using the same procedure because there is no ℓ′N+1 component to

decrease. Therefore, once the N − 1 constraint is reached, ℓ′ satisfies (6.8b)-(6.8e).

One point of concern in the proposed procedure occurs if when decreasing (say)

ℓ′k0+2 it happens that ℓ
′
k0+2 ≤ 0. However, in this event, one can show that N is not

a minimizer of (6.2): a new VOLD with one less leader switch can be constructed

that decreases the objective function and satisfies the constraints.

Recall that, given input Cj
∗ , the cost realization algorithm generates

a VOLD satisfying (6.8b)-(6.8h) for some N . Thus, the following is a result of

Theorem 6.4.1.

Corollary 6.4.2. (Constructing an optimal solution: costly switching).

Under costly switching, the cost realization algorithm with input Cj
∗ induces

a VOLD which solves (6.2).

Corollary 6.4.2 generalizes Corollary 6.3.2. Next, we state an analogous

result to Theorem 6.3.1, allowing us to find the optimal value of (6.2) under costly

switching.

Theorem 6.4.3. (Restriction is convex). The problem (6.8) is convex.

Proof. It suffices to show that Fr(N) is convex. Suppose that N is even, begin

with cj ∈ int(Fr(N)), and let a > 0 and b ∈ R
N be sufficiently small such that

the following analysis holds. Let ℓ + b satisfy (6.8b)-(6.8e) for cj + a. Towards

characterizing b, notice that cj + a − εj = ct
j
1(ℓ1 + b1). Hence, a = b1∂ℓ1ct

j
1(ℓ1),

implying b1 < 0. Next, note that C i − εi = cti2(ℓ1 + b1, ℓ2 + b2). Therefore

0 = b1∂ℓ1ct
i
2(ℓ1, ℓ2) + b2∂ℓ2ct

i
2(ℓ1, ℓ2),

from which we see that b2 < 0. Repeating this argument while invoking Lem-

mas 6.2.2 and 6.2.5, we see that bk < 0 for k = 1, . . . , N − 2 and bN−1, bN need to

satisfy

bN−1∂ℓ2ct
j
N(ℓ) + bN∂ℓ1ct

j
N(ℓ) > 0,

bN−1∂ℓ2ct
i
N(ℓ) + bN∂ℓ1ct

i
N(ℓ) > 0.
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Evoking (P5)-(P6), we deduce bN−1, bN < 0 as well, and hence b < 0. Next, we

study how (6.8g) changes as we increase slightly cj. In particular, b < 0 satisfies

the equation cj + a = ct
j
N(ℓ+ b). Or, in other words

a = ∂ℓ1ct
j
N(ℓ)

N−1∑

k∈N∩O
bk + ∂ℓ2ct

j
N(ℓ)

N∑

k∈N∩E
bk,

< ∂ℓ1ct
j
N−1(ℓ1, . . . , ℓN−1)

N−1∑

k∈N∩O
bk + ∂ℓ2ct

j
N−1(ℓ1, . . . , ℓN−1)

N−2∑

k∈N∩E
bk, (6.9)

where (P4) has been used. The LHS (resp. RHS) of (6.9) represents the increase

in the LHS (resp. RHS) of (6.8g). Thus, (6.8g) remains satisfied by increasing cj.

Therefore, by increasing cj the only constraint one may violate is ℓ ∈ R
N
≥0 ⊃ LN .

However, increasing cj more further decreases each ℓi. Thus, Fr(N) must be

convex.

By Theorem 6.4.3, given N ∈ N, the optimal value of (6.8) can be efficiently

found under costly switching. Note that the restriction to the feasible set does not

limit the type of real-world scenarios that we can solve. Moreover, the solution

of (6.8) maximizes the distance between switches. From an implementation point

of view, this is a desirable and robust switching protocol because UAVs are not

required to perform switching maneuvers arbitrarily fast. To find the optimal value

of (6.2), we next study how to determine the optimal number of leader switches.

6.4.2 Optimal number of leader switches

Here, we identify a criterion that allows us to determine an optimal N

and helps us search for it. The following result provides such a criterion via a

quasiconvexity-like property of Cj
r (N). Figure 6.5 illustrates Theorem 6.4.4.

Theorem 6.4.4. (Certificate for optimal number of switches). For N ∈ N,

the following statements hold

(i) if adding two switches increases (6.8)

Cj
r (N) < Cj

r (N + 2),
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then adding any more multiple of two switches also increases it

Cj
r (N + 2k) ≤ Cj

r (N + 2(k + 1)), ∀k ∈ N.

The inequality is strict iff (6.8) is feasible for N + 2k.

(ii) if removing two switches increases (6.8)

Cj
r (N) < Cj

r (N − 2),

then removing any more multiple of two switches also increases it

Cj
r (N − 2k) ≤ Cj

r (N − 2(k + 1)), ∀k ≤ N/2− 2.

The inequality is strict iff (6.8) is feasible for N − 2k.

The proof of the above Theorem makes use of the following two technical

results.

Lemma 6.4.5. (Property of the last two lead/follow distances). Let ℓN ∈
LN and ℓN+2k ∈ LN+2k, for k ∈ N, such that the distance to the second last switch

under ℓN is less than or equal to the distance to the second last switch under ℓN+2k

N−2∑

k=1

ℓNk ≤
N+2(k−1)∑

k=1

ℓN+2k
k , (6.10a)

j’s cost-to-target at the second last switch under ℓN is no more than its cost-to-

target at the second last switch under ℓN+2k

ct
j
N−2(ℓ

N
1 , . . . , ℓ

N
N−2) ≤ ct

j
N+2(k−1)(ℓ

N+2k
1 , . . . , ℓN+2k

N+2(k−1)), (6.10b)

i’s cost-to-targets at the second last switch under both VOLDs are the same

ctiN−2(ℓ
N
1 , . . . , ℓ

N
N−2) = ctiN+2(k−1)(ℓ

N+2k
1 , . . . , ℓN+2k

N+2(k−1)), (6.10c)

and the final cost-to-targets for i and j are the same under both VOLDs

ct
j
N(ℓ

N) = ct
j
N+2k(ℓ

N+2k), (6.10d)

ctiN(ℓ
N) = ctiN+2k(ℓ

N+2k). (6.10e)

Then, ℓNN−1 < ℓN+2k
N+2k−1 and ℓNN < ℓN+2k

N+2k.
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Proof. Suppose that k = 1 and N is even. Recall (cf. Section 6.2.2) that cti+j
N is

strictly decreasing and convex on LN . Also, ct
i+j
N has the convexity-like property

0 < ct
i+j
N (L)− ct

i+j
N−2(L) < ct

i+j
N+2(L)− ct

i+j
N (L).

Therefore, if for some L1 ≤ L2 and a, b > 0, for some a, b > 0,

0 > ct
i+j
N (L+ a)− ct

i+j
N−2(L) > ct

i+j
N+2(L+ b)− ct

i+j
N (L),

then it must be that a < b. Building on this fact,

0 > ct
i+j
N (L1 + a)− ct

i+j
N−2(L1)

> ct
i+j
N+2(L2 + b)− ct

i+j
N (L2), (6.11)

then a < b. Take L1 =
∑N−2

k=1 ℓ
N
k , L2 =

∑N+2k−2
k=1 ℓN+2k

k , a = ℓNN−1 + ℓNN , and

b = ℓN+2
N+1 + ℓN+2

N+2. Now note that, expressing (ii) − (iv) in terms of the combined

fuel functions, shows that the condition (6.11) is satisfied for this choice of values.

Thus a = ℓNN−1 + ℓNN < b = ℓN+2
N+1 + ℓN+2

N+2. Next, we show by contradiction that

ℓNN−1 < ℓN+2
N+1 and ℓNN < ℓN+2

N+2. Suppose ℓ
N
N−1 ≥ ℓN+2

N+1. Thus

ct
j
N−2(ℓ

N
1 , . . . , ℓ

N
N−2)− ct

j
N−1(ℓ

N
1 , . . . , ℓ

N
N−1)

> ct
j
N(ℓ

N+2
1 , . . . , ℓN+2

N )− ct
j
N+1(ℓ

N+2
1 , . . . , ℓN+2

N+1).

Since (ii) is true and following is more beneficial to j earlier in the formation, the

above implies that ctjN−1(ℓ
N
1 , . . . , ℓ

N
N−1) < ct

j
N+1(ℓ

N+2
1 , . . . , ℓN+2

N+1). To satisfy (iv),

this would mean

ct
j
N(ℓ

N) − ct
j
N−1(ℓ

N
1 , . . . , ℓ

N
N−1) > ct

j
N+2(ℓ

N+2) − ct
j
N+1(ℓ

N+2
1 , . . . , ℓN+2

N+1).

Since leading is more costly further in the formation, the above can only be satisfied

if ℓNN > ℓN+2
N+2. However, this would contradict ℓNN−1+ ℓ

N
N < ℓN+2

N+1+ ℓ
N+2
N+2. Reasoning

instead with i’s cost-to-target and starting with ℓNN > ℓN+2
N+2, a similar contradiction

can be reached. N odd and k ≥ 2 can be handled similarly.

Corollary 6.4.6. (Sufficient condition to benefit from switch removal).

Let ℓ solve (6.6) for N ∈ N. If

ct
j
N−2(k+1)(ℓ1, . . . , ℓN−2(k+1)) ≤ ct

j
N−2(ℓ1, . . . , ℓN−2),

for some k ≤ N/2− 2 then Cj
r (N − 2k) < Cj

r (N).
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Proof. Suppose that N is even and let ℓN−2k satisfy (6.8b)-(6.8f) for N − 2k and

Cj
r (N). Note that

ℓN−2k
n = ℓn, for n = 1, . . . , N − 2(k + 1). (6.12)

Since the assumptions of Lemma 6.4.5 are satisfied, ℓN−2k
N−2k < ℓNN . Thus

ct
j
N−2k(ℓ

N−2k)− ct
j
N−2k−1(ℓ

N−2k
1 , . . . , ℓN−2k

N−2k−1)

< ct
j
N(ℓ

N)− ct
j
N−1(ℓ

N
1 , . . . , ℓ

N
N−1),

⇒ ct
j
N−2k−1(ℓ

N−2k
1 , . . . , ℓN−2k

N−2k−1) > ct
j
N−1(ℓ

N
1 , . . . , ℓ

N
N−1) ≥ Cj

r (N)− εj.

In other words, (6.8g) is satisfied for ℓN−2k, Cj
r (N) is feasible for (6.8) for VOLDs

of cardinality N − 2k. and thus Cj
r (N − 2k) < Cj

r (N) (this relation is strict

because (6.8g) is not active and thus there exists a feasible cj < Cj
r (N)). N odd

can be dealt with analogously.

We may now prove Theorem 6.4.4

Proof of Theorem 6.4.4. The result follows from the combination of:

(S1) If Cj
r (N) < Cj

r (N + 2) for some N ∈ N, then Cj
r (N) ≤ Cj

r (N + 2k) for all

k ∈ N. The inequality is strict iff (6.8) is feasible for N + 2.

(S2) If Cj
r (N) < Cj

r (N − 2) for some N ∈ N, then Cj
r (N) ≤ Cj

r (N − 2k) for all

k ∈ N such that k ≤ N/2− 2. The inequality is strict iff (6.8) is feasible for

N − 2.

Suppose N is even. Consider first (S1). If Cj
r (N) < Cj

r (N + 2) then Cj
r (N) /∈

Fr(N + 2). That is, for N + 2 and cj = Cj
r (N), either (S1.1) constraints (6.8b)-

(6.8f) are violated or (S1.2) the constraint (6.8g) is violated.

Consider (S1.1). Let cjmin(N) be the minimum cj such that (6.8b)-(6.8f)

are satisfied for N . As per the analysis in the proof of Theorem 6.4.3, cjmin(N) ≡
minL ct

i+j
N (L)−C i. By the properties of cti+j

N , it follows that cjmin(N) < cjmin(N +

2k) for any k ∈ N. Therefore, if (S1.1) is true, this means that Cj
r (N) /∈ Fr(N +

2k) ⇒ Cj
r (N) < Cj

r (N + 2k) and this would prove (S1).
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Consider (S1.2). Let ℓN (resp. ℓN+2) (resp. ℓN+4) satisfy (6.8g) for Cj
r (N)

and N (resp. N + 2) (resp. N + 4). We know ℓN+2
k = ℓNk for k = 1, . . . , N − 1.

Denote ℓN+2
N = ℓNN + a. Note that

ctiN(ℓ
N) = ctiN(ℓ

N
1 , . . . , ℓ

N
N + a) + εi, (6.13)

so a > 0. Also, because (6.8g) is violated

Cj
r (N)>ct

j
N+1(ℓ

N
1 , . . . , ℓ

N
N−1, ℓ

N
N+a, ℓN+2

N+1) + εj. (6.14)

For now let ℓN+4
k = ℓN+2

k for k = 1, . . . , N + 1 and denote ℓN+4
N+2 = ℓN+2

N+2 + b. Define

ℓN+4
N+3, ℓ

N+4
N+4 implicitly by

C i = ctiN+2(ℓ
N+2
1 , . . . , ℓN+2

N+2 + b) + εi,

cj = ct
j
N+4(ℓ

N+4
1 , . . . , ℓN+4

N+4),

C i = ctiN+4(ℓ
N+4
1 , . . . , ℓN+4

N+4).

Likewise, b > 0 since

ctiN+2(ℓ
N+2) = ctiN+2(ℓ

N+2
1 , . . . , ℓN+2

N+2 + b) + εi.

Comparing the above and (6.13), we see that a < b. Thus ctjN(ℓ
N
1 , . . . , ℓ

N
N + a) <

ct
j
N+2(ℓ

N+2
1 , . . . , ℓN+2

N+2 + b). Therefore, the conditions of Lemma 6.4.5 are satisfied

and ℓN+4
N+4 > ℓN+2

N+2. Since j leads last, this means that ct
j
N+3(ℓ

N+4
1 , . . . , ℓN+4

N+3) <

ct
j
N+1(ℓ

N+2
1 , . . . , ℓN+2

N+1). Recalling (6.14), the above means that (6.8d) is vio-

lated. As a final step to creating ℓN+4, employ the strategy as in the proof

of Theorem 6.4.1: decrease ℓN+4
N+1 and increase ℓN+4

N+3 by the same amount un-

til (6.8b) is satisfied. However, increasing ℓN+4
N+3 further violates (6.8d). Therefore,

Cj
r (N) < Cj

r (N + 4). We can repeat this process for N + 6 and so on to attain

the desired result. So long as (6.8b)-(6.8f) are satisfied for Cj
r (N) and N + 2k,

the above construction is valid. However, if Cj
r (N + 2) = ∞, recall (S1.1). Then

Cj
r (N + 2k) = ∞ for all k. This completes the proof of (S1).

Next, we prove (S2). Let ℓN (resp. ℓN−2) (resp. ℓN−4) satisfy (6.8g) for

Cj
r (N) and N (resp. N − 2) (resp. N − 4). To reach a contradiction, suppose

Cj
r (N − 4) ≤ Cj

r (N) < Cj
r (N − 2). (6.15)



144

N
2 6 10 14 18 22

C
j r
(N

)

∞

...

90

88

86

84

10 14 18 22

84.48

84.52

84.56

l l

Figure 6.5: An example of the optimal value of (6.6) with respect to N . The
magenta (resp. dark green) dots represent Cj

r (N) for odd (resp. even) N .

First, let a > b > 0 be such that

C i = ctiN−2(ℓ
N
1 , . . . , ℓ

N
N−3, ℓ

N
N−2 − a),

= ctiN−4(ℓ
N
1 , . . . , ℓ

N
N−5, ℓ

N
N−4 − b).

Let L =
∑N−2

k=1 ℓ
N
N−2− a. If cj ≥ ct

j
N−2(ℓ

N
1 , . . . , ℓ

N
N−2− a) then cj +C i > ct

i+j
N−2(L)

(i.e., the formation length is too long). Since we know ℓNk = ℓN−2
k for k = 1, . . . , N−

4, decreasing the formation distance must be accomplished by decreasing ℓNN−3 +

ℓNN−2−a. Since i’s cost-to-target must be maintained at C i, both ℓNN−3 and ℓ
N
N−2−

a must decrease (i.e., ℓN−2
N−3 ≤ ℓNN−3). But since (6.8g) is violated for ℓN−2, it

must be that ℓN−2
N−3 > ℓNN−3 which is a contradiction. Thus, it must be that cj <

ct
j
N−2(ℓ

N
1 , . . . , ℓ

N
N−2 − a). Under the assumption of (6.15), a similar argument

can be made to show that cj ≥ ct
j
N−4(ℓ

N
1 , . . . , ℓ

N
N−4 − b) . Let us now reverse the

change of a (resp. b) in ℓN−2 (resp. ℓN−4). Then we see that ctjN−4(ℓ
N
1 , . . . , ℓ

N
N−4) <

ct
j
N−2(ℓ

N
1 , . . . , ℓ

N
N−2). But, by Corollary 6.4.6, this would mean that Cj

r (N − 2) <

Cj
r (N), contradicting (6.15). The claim can be extended analogously for cases

where more switches are removed. Thus, Cj
r (N) < Cj

r (N − 4). So long as (6.8b)-
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(6.8f) are satisfied for Cj
r (N) and N − 2k, the above construction is valid. Thus,

Cj
r (N − 2) = ∞ ⇒ Cj

r (N − 4) = ∞, and so on. This proves (S2).

Next, we design a method to find the optimal N . Define

∆N := Cj
r (N)− Cj

r (N + 2).

If N∗ ∈ E is optimal, then Theorem 6.4.4 implies ∆N > 0 for all N ∈ N[2,N∗) ∩
E and ∆N < 0 for all N ∈ N(N∗,∞) ∩ E (so long as ∆N is finite). Also, 0 ∈
[∆N∗ ,∆N∗−2]. Thus, the problem of finding an optimal N is well-suited for a binary

search (see [31]), which is presented in Algorithm 1 adapted to our problem.

Algorithm 1 The binary search algorithm

Input: N with ∆N or ∆N+2 finite

1: if ∆N ≥ 0 then

2: Nl := N and Nu := N + 2

3: while ∆Nu
≥ 0 do

4: Nl := Nu

5: Nu 7→2Nu

6: end while

7: else Nl := 2 + (N mod 2) and Nu := N

8: end if

9: while Nu −Nl ≥ 4 and ∆N 6= 0 do

10: N := (Nu −Nl)/2

11: if ∆N ≥ 0

12: Nl := N

13: else Nu := N end if

14: end while

15: return N if ∆N ≤ 0, N + 1 otherwise

The method is implemented for odd and even inputs, the optimal N being

the lesser of the two outputs. The computational intensity of the binary search

algorithm stems from the evaluation of ∆N , which solves (6.8).
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Figure 6.6: An optimal cooperation inducing VOLD. N∗ is computed using the
binary search algorithm, Cj

r (N
∗) = 85 is fed to the cost realization

algorithm to attain the optimal VOLD. Note the effect of costly switching on
the cost-to-target function. The data for the simulation are: C i = 82, s = 0.2,
Γ = 1.7, γ = 0.5, εi = 0.2, εj = 0.3, x̄i = (100, 10), x̄j = (90,−20). The cost-
benefits of the formation are 18 (18%) and 7 (7.6%) for i and j, resp. (slightly less
for each UAV than the no-cost of switching case).

Corollary 6.4.7. (Correctness and complexity). Suppose (6.2) is feasible and

N∗ is its minimizer. Let No
0 ∈ O (resp. N e

0 ∈ E) be a valid input to the binary

search algorithm with output No (resp. N e). Then N∗ ∈ {No, N e}. Moreover,

to determine N∗ the problem (6.8) is solved at most 4⌈log2N∗⌉ times.
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The correctness result in Corollary 6.4.7 follows from Theorem 6.4.4 and

the complexity result is inherited from binary search algorithms [31]. Figure 6.6

presents simulation results verifying the correctness of the binary search al-

gorithm. The main differences when compared to the simulations presented in

Figure 6.4 pertain to the cost of switching (sΓ) being positive and the degree of

cooperation between agents (εi, εj). The agents in Figure 6.4 are able to induce

cooperation even when εi, εj are small because adding a switch does not increase

their final cost-to-target. On the other hand, when there is a cost associated with

switching, the agents are not able to switch arbitrarily fast without increasing their

final cost-to-targets. In fact, the problem (6.6) is infeasible for small εi, εj under

costly switching. In terms of real-world implementation, the binary search al-

gorithm is run prior to agents beginning their formation. For this reason, the

implementation time of the binary search algorithm is not reflected in the

simulation of Figure 6.6. However, on-board processors must be able to run the bi-

nary search algorithm within the time required for UAVs to fly from their

current location to the formation rendezvous location. If executed online, the com-

plexity bound for the binary search (cf. Corollary 6.4.7) provides guidance as to

how fast a processor should be with respect to UAV motion.

This concludes our study of cooperation inducing mechanisms for UAV

formation pairs.

Chapter 6, in part, is a reprint of the material [79] as it appears in ‘Optimal

leader allocation in UAV formation pairs under no-cost switching’ by D. Richert

and J. Cortés in the proceedings of the 2012 American Control Conference as well

as [78] as it appears in ‘Optimal leader allocation in UAV formation pairs under

costly switching’ by D. Richert and J. Cortés in the proceedings of the 2012 IEEE

Conference on Decision and Control as well as [82] as it appears in ‘Optimal leader

allocation in UAV formation pairs ensuring cooperation’ by D. Richert and J.

Cortés in Automatica. The dissertation author was the primary investigator and

author of these papers.



Chapter 7

Conclusions

In this thesis, we studied the design of control algorithms for network sys-

tems. As a natural starting point, we considered network control objectives posed

as mathematical optimization problems. Focusing our attention on linear programs

in particular, we investigated problems where the network structure was consistent

with the sparsity structure of the linear constraints.

Building the foundation for the rest of the thesis, Chapter 3 solved the

problem of designing a robust continuous-time distributed dynamics to solve lin-

ear programs. In this context, the network objective was for the aggregate of the

agents’ states to converge to a solution of the linear program. We proposed an

equivalent formulation of this problem in terms of finding the saddle points of a

modified Lagrangian function. To make an exact correspondence between the solu-

tions of the linear program and saddle points of the Lagrangian we incorporated a

nonsmooth penalty term. This formulation naturally led us to study the associated

saddle-point dynamics, for which we established the point-wise convergence to the

set of solutions of the linear program. Based on this analysis, we introduced an

alternative algorithmic solution with the same asymptotic convergence properties.

In this chapter, we also studied the robustness against disturbances and link fail-

ures of the dynamics. We showed that it is integral-input-to-state stable but not

input-to-state stable (and, in fact, no algorithmic solution for linear programming

is). These results allowed us to formally establish the resilience of our distributed

dynamics to disturbances of finite variation and recurrently disconnected commu-

148
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nication graphs.

Towards a more realistic implementation of the continuous-time dynamics,

Chapter 4 sought to design an event-triggered communication protocol. Rather

than having continuous flow of information between agents, we looked at a more

practical model where agents autonomously and opportunistically decide when to

broadcast their state to neighbors. Our methodology combined elements from

linear programming, switched and hybrid systems, event-triggered control, and

Lyapunov stability theory to provide provably correct centralized and distributed

strategies. We rigorously characterized the asymptotic convergence of persistently

flowing executions to a solution of the linear program. We also identified a sufficient

condition for executions to be persistently flowing, and based on it, we conjecture

that they all are. We also identified the area of switched and hybrid systems as

benefiting from the contributions of this chapter. To our knowledge, this thesis is

the first to consider event-triggered protocols for that class of systems.

Turning our attention to a more specific network control problem, in Chap-

ter 5 we considered bargaining between agents in an exchange network. In partic-

ular, we studied dyadic-exchanges where an agent can pair with at most one other

agent. In the end, players had to autonomously decide with whom (if any) to match

and agree on an allocation of a common good. We designed continuous-time dis-

tributed dynamics to converge to each of stable, balanced, and Nash outcomes.

The robust and distributed linear programming dynamics developed in Chapter 3

were instrumental for agents to find stable outcomes. The distributed balancing

dynamics we proposed had an intuitive interpretation of agents adjusting their

allocations based on an error measuring how far the allocations of matched agents

were from being balanced. The proof of convergence of the balancing dynamics

made use of powerful results from nonsmooth analysis and set-valued dynamical

systems. The final Nash bargaining dynamics used a clever combination of both

the dynamics to find stable outcomes and the dynamics to find balanced outcomes.

Applying the Nash bargaining dynamics to a wireless communication scenario, we

showed how agent collaborations can, in a fair way, improve both individual and

network-wide performance. In particular, agents who had the option of sharing
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their allocation of a communication channel achieved an improved effective bit

rate.

Finally, we questioned how matched agents in a bargaining outcome can

realize their promised allocations. We made our point by studying the optimal

leader allocation in UAV formation pairs in Chapter 6. We studied how strate-

gic allocations of the leading role could induce cooperation between selfish UAVs.

If UAVs were completely selfish, then such mechanisms did not exist. However,

UAVs that were ε-cooperative could indeed construct optimal leader allocations.

Formulated as a nonlinear program, the problem posed two distinct challenges:

(i) determining the optimal leader allocation when given a fixed number of leader

switches, and (ii) finding the optimal number of leader switches. We showed that,

when switching the lead has no cost, the optimal value can be obtained via a con-

vex program and we designed the cost realization algorithm to determine

an optimal cooperation-inducing leader allocation. In the costly switching case, we

restricted the feasible set of allocations to mimic the structure of the solutions pro-

vided by this policy. The resulting restriction has the same optimal value and, for

a fixed number of leader switches, is convex. We also unveiled a quasiconvexity-like

property of the optimal value as a function of the number of switches and designed

the binary search algorithm to find the optimal number in logarithmic time.

7.1 Future research directions

This thesis provides a constructive framework for future developments. Our

control systems approach to each problem leaves open the possibility of numerous

extensions and additional analysis. Here we outline some general future research

directions and then a few in the context of the specific contributions of this thesis.

User privacy in networks has become a critical consideration of late. There-

fore, it is increasingly important that messages passed between agents do not reveal

sensitive data to adversaries. A distributed approach to privately solving linear

programs has not yet been explored, and we believe that the results of this thesis

could be applied in that direction. Also, linear programs have manifested them-
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selves in recent work on unreliable sensor networks and power distribution systems.

We would like to further explore how our contributions in this thesis would apply

to those problems.

With regards to robust distributed linear programming, the rate of con-

vergence of the algorithm has yet to be determined. Knowing it would open up

the study of this dynamics to scenarios where the data of the linear program is

changing in time. Related to this, we would like to characterize the behavior of the

dynamics when the local information of an agent is inconsistent with its neighbors.

Also, we observed that this dynamics is robust to more general link failure models,

beyond recurrently connected graphs. Specifically, we strongly believe that the

dynamics is robust to graphs that are uniformly jointly connected. On the topic

of robustness, we would like to explore the convergence of our dynamics under dis-

turbance signals with certain statistical properties, such as white noise. Another

direction we would like to explore is the extension of the dynamics to more gen-

eral convex optimization problems, establishment of the robustness properties in

those cases, and the comparison to existing optimization algorithms. Finally, we

plan to explore the benefits of the proposed distributed dynamics in a number of

engineering scenarios, including for example the smart grid and power distribution

and model predictive control.

In terms of event-triggered optimization, we would like to formally extend

our contributions to switched and hybrid systems in general. Additionally, it is

yet to be established that all solutions of the event-triggered implementation are

persistently flowing, though we strongly believe them to be. Further characterizing

the robustness properties (i.e., beyond robust asymptotic stability) of our design

would also be constructive. Finally, implementing the results of Chapter 4 on a

multi-agent testbed would also provide insight into other implementation issues

that may exist.

Future research in the area of network bargaining will include considering

other solution concepts on dyadic-exchange networks such as the nucleolus. Ap-

plying our techniques to multi-exchange networks (i.e., allowing coalitions of more

than two) would also be interesting. In addition, we would like to study the rate
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of convergence and establish more quantifiable robustness properties of the bal-

ancing dynamics; in particular, the effects of time delays, adversarial agents, and

dynamically changing system data. Finally, we wish to apply our dynamics to

other coordination tasks and implement them on a real multi-agent testbed.

Extensions in the area of cooperation-inducing mechanisms would include

exploring more abstract problem setups, thus broadening the utility of our contri-

butions beyond UAV formation pairs. Another interesting question is whether our

results can apply to formations of more than two UAVs or scenarios with obstacle

avoidance/no-fly zones. Also, formally connecting the results of Chapter 5 and

Chapter 6 would allow us to consider networks of multiple UAVs.
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