
UNIVERSITY OF CALIFORNIA SAN DIEGO

Data-Driven System Analysis Using the Koopman Operator:
Eigenfunctions, Invariant Subspaces, and Accuracy Bounds

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Masih Haseli

Committee in charge:

Professor Jorge Cortés, Chair
Professor Nikolay A. Atanasov
Professor Boris Martin Josef Krämer
Professor Miroslav Krstić
Professor Melvin Leok

2022

Copyright

Masih Haseli, 2022

All rights reserved.

The dissertation of Masih Haseli is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2022

iii

DEDICATION

To pioneers who challenge the status quo and seek a better world.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Literature Review . 3

1.1.1 Projection-based Learning Methods 5
1.1.2 Invariant Subspace Methods 7

1.2 Statement of Contributions . 8

Chapter 2 Preliminaries . 15
2.1 Notations . 15

2.1.1 Sets and Functions . 15
2.1.2 Number Systems, Vectors, and Matrices 16
2.1.3 Vector Spaces . 17

2.2 Graph Theory . 17
2.3 Koopman Operator . 18

2.3.1 Discrete-Time Systems . 18
2.3.2 Continuous-Time Systems 21

2.4 Extended Dynamic Mode Decomposition 22

Chapter 3 Data-driven Identification of Koopman Eigenfunctions and Invariant
Subspaces . 25
3.1 Problem Statement . 26
3.2 Identifying Koopman Eigenfunctions by Forward and Backward

Extended Dynamic Mode Decomposition 28
3.3 Identifying Koopman-Invariant Subspaces via Symmetric Subspace

Decomposition . 37
3.3.1 Convergence Analysis of the SSD Algorithm 38
3.3.2 Identification of Linear Evolutions and Koopman Eigen-

functions with the SSD Algorithm 44

v

3.4 Streaming Symmetric Subspace Decomposition 52
3.5 Approximating Koopman-Invariant Subspaces 63
3.6 Simulation Results . 70
3.7 Chapter Appendix . 76

Chapter 4 Parallel Identification of Koopman Eigenfunctions and Invariant Subspaces 81
4.1 Problem Statement . 82
4.2 Parallel Symmetric Subspace Decomposition 85

4.2.1 Equilibria and Termination of P-SSD 86
4.2.2 Properties of Agents’ Matrix Iterates along P-SSD 90

4.3 Equivalence of P-SSD and SSD 96
4.4 Robustness Against Packet Drops and Time-Varying Networks . . 105
4.5 Simulation Results . 109

Chapter 5 Balancing Accuracy and Expressiveness in Koopman Approximations . 121
5.1 Problem Statement . 122
5.2 ε-Apart Spaces Measure Invariance Proximity 125
5.3 Tunable Symmetric Subspace Decomposition 128

5.3.1 The T-SSD Algorithm . 129
5.3.2 Basic Properties of T-SSD 132

5.4 T-SSD Balances Accuracy and Expressiveness 137
5.4.1 T-SSD Identifies ε-Apart Subspaces 137
5.4.2 T-SSD Captures Maximal Koopman-Invariant Subspace . . 142

5.5 EDMD and SSD are Special Cases of T-SSD 145
5.6 Efficient Implementation of T-SSD 150
5.7 Simulation Results . 153

Chapter 6 Assessing the Prediction Accuracy and Dictionary Quality of EDMD . 164
6.1 Motivation: Residual Error of EDMD Does Not Characterize the

Dictionary’s Quality . 165
6.2 Problem Statement . 167
6.3 Forward-Backward Temporal Consistency 169
6.4 Consistency Index Determines EDMD’s Prediction Accuracy on Data173
6.5 Chapter Appendix . 181

Chapter 7 Conclusions . 183
7.1 Summary . 184
7.2 Future Work . 186

Bibliography . 188

vi

LIST OF FIGURES

Figure 3.1: Relative (left) and angle (right) prediction errors on the original and SSD
subspaces for system (3.53) on a trajectory of length M = 20. 73

Figure 3.2: The eigenfunction corresponding to the eigenvalue λ = 0.9919 (left) and
the absolute value of the eigenfunctions corresponding to the eigenval-
ues λ = 0.9989 ± 0.0037j (right) for the Koopman operator associated
with (3.55), as identified by the Approximated-SSD algorithm. 75

Figure 3.3: Relative (left) and angle (right) prediction errors on Approximated-SSD
and original subspaces for system (3.55) on a trajectory of length M = 30. 76

Figure 4.1: Median and range between first and third quartiles of relative (left) and
angle (right) prediction errors for the original dictionary and the dictio-
nary identified by P-SSD for system (4.23) on 1000 trajectories of length
L = 15 with initial conditions randomly selected from [−0.1, 0.1]× [−3, 3]. 113

Figure 4.2: Average iterations taken for P-SSD to achieve consensus versus packet
drop percentage for Example 4.5.2. 114

Figure 4.3: Absolute value (left) and angle (right) of the approximated eigenfunction
corresponding to eigenvalue 0.9647 + 0.018j. 117

Figure 4.4: Median and range between first and third quartiles of relative (left) and
angle (right) errors for the original dictionary and the dictionary identified
with Approximated P-SSD for system (4.25) on 1000 trajectories of length
L = 20 with initial conditions randomly selected from M. 117

Figure 4.5: Median and range between first and third quartiles of relative (left) and
angle (right) errors for dictionary D̃ identified by Approximated P-SSD
and the original dictionary D for system (4.26) on 1000 trajectories of
length L = 20 with initial conditions randomly selected from M. 120

Figure 5.1: Vector field and limit cycle of system (5.33) (left) and the absolute value
of eigenfunction with eigenvalue λ = 0.9066 (right). 154

Figure 5.2: Absolute value (left) and phase (right) of the eigenfunction with eigen-
value λ = 0.9938 + 0.0195j for (5.33). 155

Figure 5.3: Relative linear prediction error for dictionary identified by T-SSD (ε =
0.05) (left) and the original dictionary (right) for (5.33). 156

Figure 5.4: Vector field (left) and eigenfunction with eigenvalue λ = 0.9839 (right)
for (5.36). 159

Figure 5.5: Relative linear prediction error for dictionary identified by T-SSD (ε =
0.02) (left) and the original dictionary (right) for (5.36). 159

Figure 5.6: Relative linear prediction error on test data for the dictionary identified
with T-SSD (ε = 0.15) and the original dictionary. 162

Figure 6.1: Residual error (left) and relative residual error (right) of EDMD for α ∈
[0.01, 100]. 166

vii

LIST OF TABLES

Table 3.1: Identified eigenfunctions and eigenvalues of the Koopman operator associ-
ated with system (3.53). 72

Table 4.1: Time elapsed to identify the maximal Koopman-invariant subspace in
span(D) associated with the dynamics (4.23). 110

Table 4.2: Identified eigenfunctions and eigenvalues of the Koopman operator associ-
ated with the dynamics (4.23). 111

Table 5.1: Dimension of subspace identified by Efficient T-SSD vs ε for (5.33). . . . 154
Table 5.2: Maximum Relative Root Mean Square Error vs ε for (5.33). 157
Table 5.3: Dimension of subspace identified by Efficient T-SSD vs ε for (5.36). . . . 158
Table 5.4: Maximum Relative Root Mean Square Error vs ε for (5.36). 160
Table 5.5: Dimension of subspace identified by Efficient T-SSD vs ε for (5.37). . . . 161
Table 5.6: Maximum Relative Root Mean Square Error vs ε for (5.37). 163

viii

ACKNOWLEDGEMENTS

This dissertation is the culmination of the efforts made by all the people I have been

in contact with (possibly indirectly) in my lifetime. I have learned from many to reach this

stage of my life. Although infeasible to thank everyone, I mention a few directly impacting

this dissertation.

First, I would like to express my deepest gratitude to my advisor, Prof. Jorge Cortés,

for his profound impact on my personal and professional life. His patience, integrity, ob-

jective thinking, and kindness have reshaped my attitude towards research and personal

development. I sincerely thank Jorge for patiently helping me to become a better person.

Looking back, I do not think I could find a better advisor. This dissertation is his more than

it is mine.

I would like to thank my dissertation committee, Prof. Nikolay Atanasov, Prof. Boris

Krämer, Prof. Miroslav Krstić, and Prof. Melvin Leok, for their time and effort. I sincerely

thank them for providing me with guidance and constructive criticism. Having them on my

committee was a great honor for me.

My time at UCSD was fruitful. During this time, I got the chance to learn from the

best. I would like to express my gratitude to Prof. Robert Bitmead, Prof. Philip Gill, Prof.

Miroslav Krstić, Prof. Mauŕıcio de Oliveira, Prof. Sonia Martinez, and Prof. Jorge Cortés

from whom I have learned important lessons. Moreover, I would like to thank Behrooz,

Vishaal, Pio, Amit, and Sven, whose role as teaching assistants was crucial.

I would like to express my gratitude to our current and former group members for

creating a friendly and dynamic environment. Special thanks to Prof. Sonia Martinez and

ix

my advisor, Prof. Jorge Cortés, for organizing our weekly group meetings to discuss the

latest advances in the field. Moreover, I would like to thank my precious friend and former

office mate (and now professor), Erfan Nozari, from whom I have learned crucial lessons. I

also would like to thank our former group member, Dariush Fooladivanda, for assisting me

during a challenging time.

My utmost gratitude goes to my father for his unconditional love and support through-

out my life. Particularly for believing in me and providing a safe and pleasant environment

for me to grow. I will never forget his sacrifices.

The research reported in this dissertation was supported in part by the Office of Naval

Research Award N00014-18-1-2828 and the National Science Foundation Award IIS-2007141.

Chapter 3, in part, is a reprint of the material [HC22a] as it appears in ‘Learning

Koopman Eigenfunctions and Invariant Subspaces from Data: Symmetric Subspace Decom-

position’ by M. Haseli and J. Cortés, in IEEE Transactions on Automatic Control 2022. The

dissertation author was the primary investigator and author of this paper.

Chapter 4, in part, is a reprint of the material [HC21b] as it appears in ‘Parallel

Learning of Koopman Eigenfunctions and Invariant Subspaces For Accurate Long-Term

Prediction’ by M. Haseli and J. Cortés, in IEEE Transactions on Control of Network Systems

2021. The dissertation author was the primary investigator and author of this paper.

Chapter 5 is taken, in part, from the material [HC21a] which has been submitted

for publication as ‘Generalizing dynamic mode decomposition: balancing accuracy and ex-

pressiveness in Koopman approximations’ by M. Haseli and J. Cortés, in Automatica. The

dissertation author was the primary investigator and author of this paper.

x

Chapter 6 is taken, in part, from the material [HC22b] which has been submitted for

publication as ‘Temporal Forward-Backward Consistency, Not Residual Error, Measures the

Prediction Accuracy of Extended Dynamic Mode Decomposition’ by M. Haseli and J. Cortés,

in IEEE Control Systems Letters. The dissertation author was the primary investigator and

author of this paper.

xi

VITA

2013 Bachelor’s Degree in Electrical Engineering – Control, Amirkabir Uni-
versity of Technology

2015 Master’s Degree in Electrical Engineering – Control, Amirkabir Uni-
versity of Technology

2022 Doctor of Philosophy in Engineering Sciences (Mechanical Engineer-
ing), University of California San Diego

PUBLICATIONS

Journal publications:

[1] M. Haseli and J. Cortés, “Temporal Forward-Backward Consistency, Not Residual Er-
ror, Measures the Prediction Accuracy of Extended Dynamic Mode Decomposition,”
IEEE Control Systems Letters, 2022, submitted.

[2] M. Haseli and J. Cortés, “Generalizing Dynamic Mode Decomposition: Balancing Accu-
racy and Expressiveness in Koopman Approximations,” Automatica, 2021, submitted.

[3] M. Haseli and J. Cortés, “Parallel learning of Koopman eigenfunctions and invariant
subspaces for accurate long-term prediction,” IEEE Transactions on Control of Network
Systems, vol. 8, no. 4, pp. 1833–1845, 2021.

[4] M. Haseli and J. Cortés, “Learning Koopman eigenfunctions and invariant subspaces
from data: Symmetric Subspace Decomposition,” IEEE Transactions on Automatic
Control, vol. 67, no. 7, pp. 3442–3457, 2022.

Conference proceedings:

[5] M. Haseli and J. Cortés, “Temporal Forward-Backward Consistency, Not Residual Er-
ror, Measures the Prediction Accuracy of Extended Dynamic Mode Decomposition,” in
American Control Conference, San Diego, CA, submitted.

[6] M. Haseli and J. Cortés, “Data-driven approximation of Koopman-invariant subspaces
with tunable accuracy,” in American Control Conference, New Orleans, LA, July 2021,
pp. 469–474.

[7] M. Haseli and J. Cortés, “Fast identification of Koopman-invariant subspaces: parallel
symmetric subspace decomposition,” in American Control Conference, Denver, CO,
July 2020, pp. 4545–4550.

[8] M. Haseli and J. Cortés, “Efficient identification of linear evolutions in nonlinear vector
fields: Koopman invariant subspaces,” in IEEE Conf. on Decision and Control, Nice,
France, Dec. 2019, pp. 1746–1751.

[9] M. Haseli and J. Cortés, “Approximating the Koopman operator using noisy data:
noise-resilient extended dynamic mode decomposition,” in American Control Confer-
ence, Philadelphia, PA, July 2019, pp. 5499–5504.

xii

ABSTRACT OF THE DISSERTATION

Data-Driven System Analysis Using the Koopman Operator:
Eigenfunctions, Invariant Subspaces, and Accuracy Bounds

by

Masih Haseli

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2022

Professor Jorge Cortés, Chair

Ranging from natural phenomena such as biological and chemical systems to artificial

technologies such as mechanical and electronic devices, dynamical systems form an insepara-

ble part of the world surrounding us. Understanding, modeling, predicting, and controlling

such systems have always been the leading goals of science and engineering. While in the

past centuries, the most advances in the field of dynamical systems were mainly analytical

and based on limited observations, in the last decade, we have witnessed a rapid growth in

our ability to gather, store, and process data. This data-driven revolution has imposed a

xiii

high demand for new viewpoints and systematic structures that can effectively utilize the

available modern tools. The Koopman operator theory for dynamical systems has recently

gained widespread attention. Unlike the traditional state space methods, which explain the

evolution of the states according to the dynamics, the Koopman operator characterizes the

effect of the dynamics on functions in a linear function space. Despite the system being

linear or nonlinear, its associated Koopman operator is always linear. This linearity proves

to be extremely useful for algorithmic computations.

This dissertation is focused on the data-driven analysis of dynamical systems based on

their associated Koopman operator. Given the infinite-dimensional nature of the Koopman

operator, we aim to find finite-dimensional spaces on which the operator’s action can be cap-

tured accurately. Such finite-dimensional spaces must be close to being invariant under the

action of the Koopman operator; otherwise, the approximation will be erroneous. We pro-

vide data-driven algebraic methods to provably find the exact maximal Koopman-invariant

subspace and all Koopman eigenfunctions in any arbitrary finite-dimensional space of func-

tions. We also offer equivalent algorithms tailored for working with large and streaming

data sets, as well as parallel computing hardware. Keeping in mind that an exact finite-

dimensional linear model might not capture complete information for some systems, we also

consider approximating subspaces to capture more information about the dynamics. We

provide data-driven measures to quantify how close a linear space of functions is to being

invariant under the Koopman operator. In addition, we provide an algebraic procedure that

can approximate Koopman-invariant subspaces with tunable accuracy.

xiv

Chapter 1

Introduction

Our world is changing. We just need to think about the technologies that we trivially

use nowadays. Many of them did not exist a decade ago, and some were even unimaginable.

This rapid development is mainly fueled by advances in computing, sensing, data processing,

data storage, cloud services, and algorithms. With these advances also come new challenges.

Almost all physical devices and computer programs ruling our world are dynamical

systems. Thus understanding, designing, and controlling them are of utmost importance.

However, the traditional methods to study dynamical systems are not designed to deal with

large data sets, nor do they consider digital computers’ limitations in dealing with creative

geometric ideas. As a result, to effectively utilize the new capabilities at our disposal, we

need new viewpoints of dynamical systems compatible with large data sets and adaptable

to the shortcomings of digital computers in creative thinking.

Statistical and probabilistic approaches provide an alternative description for dy-

namical systems conducive to dealing with data and even incomplete information about the

1

underlying dynamics. Even though such methods can extract useful information from data,

they generally require some a priori knowledge about the system and the sampling schemes.

Moreover, under such approaches, deriving mathematical guarantees for general nonlinear

systems may be difficult if not impossible

Using neural networks to deal with data is another interesting approach that has

gained widespread attention recently. Given sufficient data, neural networks can describe

nonlinear dynamics with high accuracy, a feature that has led to their striking popularity

over the past decade. Despite significant advances in neural network training algorithms,

they are still considered computationally intensive. Perhaps the main drawback of neural

networks is their complexity. The neural network models are generally highly nonlinear and

difficult to analyze. As a result, to use neural networks in system analysis with theoretical

guarantees, the underlying methods must be tailored to the dynamics, which is generally

challenging and might require some basic assumptions or knowledge.

These reasons have motivated researchers to seek alternative strategies to capture the

dynamics using data with minimum a priori information in a computationally efficient way

that result in simple yet accurate models. Approximating the Koopman operator associated

with a dynamical system is one of such strategies. The Koopman operator is a linear but

generally infinite-dimensional operator that fully describes the behavior of the underlying

dynamical system. Even though the linearity of the Koopman operator makes its spectral

properties a powerful tool for analysis, its infinite-dimensional nature prevents the use of

conventional linear algebraic tools developed to work with digital computers. One way to

circumvent this issue is to identify finite-dimensional subspaces that are invariant under the

2

Koopman operator. This dissertation develops efficient data-driven methods to identify and

approximate such subspaces accompanied by accuracy bounds and theoretical guarantees.

1.1 Literature Review

The Koopman operator [Koo31, KN32] is a linear but generally infinite-dimensional

operator that provides an alternative view of dynamical systems by describing the ef-

fect of the dynamics on a function space. Being a linear operator enables one to use

its spectral properties to capture and predict the behavior of nonlinear dynamical sys-

tems [Mez05, RMB+09, BMM12]. Even though the Koopman operator is generally infinite-

dimensional, its eigenfunctions still can be useful in finite-dimensional spaces. Given that

the Koopman eigenfunctions evolve linearly on the system’s trajectories, they can encode

valuable information about the dynamics and the features of the vector field. The work

in [MMM13] uses Koopman eigenfunctions to define natural action-angle coordinates for

stable fixed points and shows that such coordinates are connected to specific types of Lya-

punov functions. The work in [LM13] shows that certain Koopman eigenfunctions can be

used as change of coordinates to put nonlinear systems with stable equilibria or periodic

orbits in linear form on the basin of attraction. Interestingly, this linearization is simply a

change of coordinates and is not obtained by embedding in infinite-dimensional space. More-

over, [MM16] studies the connection of Koopman operator and global stability of hyperbolic

fixed points and periodic orbits, providing equivalence between global stability of attrac-

tors and the existence of certain Koopman eigenfunctions. As a practical and interesting

byproduct, the analysis provides a recipe for construction of Lyapunov functions based on

3

the aforementioned Koopman eigenfunctions.

The deep connection of the Koopman eigenfunctions with the system’s behavior, and

the linearity of the operator have lead to a wide variety of applications. [SWMB17,NM18] use

the Koopman operator approaches for state estimation. [MG16,MG19,BRV19,KGB+17] rely

on the linearity of the Koopman operator for system identification. The work [SVR16] uses

the Koopman operator framework to study the sensor and actuator placement problem. Per-

haps one of the most important applications of the Koopman paradigm is model reduction,

see e.g. [Mez05], since the Koopman eigenfunctions naturally decompose the dynamic be-

havior. Such decomposition and model reduction can be calculated directly based on data

acquired form the system [KNK+18,AK17,KNP+20].

Even though the Koopman operator is not defined for systems with input, it is

still useful for control of dynamical systems. In [KKB21], the authors present a data-

driven method for identification of Koopman eigenfunctions with applications in control

systems. [KM18a] provides a class of approximate linear predictors based on Koopman

operator and provides a control method using model predictive control (MPC) schemes.

The works [HMV18, GP21] propose Koopman-based bilinear models for certain classes

of control affine systems and provide appropriate methods for their stabilization. [SE17]

studies the problem of control under uncertainty for a certain class of monotone systems

and [LWJ21] proposes a data-based Koopman predictive control considering the system’s

uncertainty. [PK19] provides a model reduction and control scheme for partial differential

equation (PDE) systems based on linear switched modeling. Interestingly, there have been

some effort to connect the Koopman operator theory to well-known and widely used con-

4

trol concepts such as Lyapunov and barrier functions. The work in [ZB22b] provides a

neural network based method to create control Lyapunov functions in Koopman paradigm

and [FCAB20] provides a method to synthesize control barrier functions to ensure the safety

of controlled systems. The rapid advances in Koopman-based control schemes have also

found their way into robotic applications recently [ZB22a,AdlTM17,MCTM21,SK21].

Due to the infinite-dimensional nature of the Koopman operator, the digital imple-

mentation of the aforementioned applications is not possible unless one can find a way to

represent the effect of the operator on finite-dimensional subspaces. The literature has ex-

plored several data-driven methods to find such finite-dimensional approximations, which

can be divided into two main categories: projection-based methods and invariant-subspace

methods. We discuss these methods next.

1.1.1 Projection-based Learning Methods

Projection methods fit a linear model to the data acquired from the system. The most

popular approach in this category is Dynamic Mode Decomposition (DMD), first proposed to

capture dynamical information from fluid flows [Sch10]. DMD uses linear algebraic methods

to form a linear model from time series data and extract the dominant features of the flow.

The work [CTR12] explores the properties of DMD and its connection with the Koopman

operator, and [TRL+14] generalizes it to work with non-sequential data snapshots.

As a result of the popularity of DMD, there have been several extensions for it in the

literature. To deal with large data sets, [HWR14] provides a streaming method that itera-

tively updates its solution as new data become available and [ZRDC19] proposes a similar

5

online approach for time-varying systems. Moreover, [AM19] proposes a variant of DMD

that is compatible with parallel processing schemes as well as large and streaming data sets.

The DMD’s algebraic mechanism does not consider the existence of measurement noise in

the data. To tackle this issue, the work in [DHWR16] studies the effect of noise on DMD and

provides several indirect and direct methods to deal with it. In addition, [HRDC17] proposes

a two-step algorithm, similar to total least squares method, to deal with measurement noise

in DMD. Other extensions of DMD use sparsity promoting techniques [JSN14] and consider

time-lagged data snapshots [CV17] to enhance the captured information. Given that DMD is

generally designed to extract dominant features of the dynamics, it should be used with care

for prediction purposes. The work in [LT20] analyzes the accuracy of long-term prediction

by DMD and its variants.

Extended Dynamic Mode Decomposition (EDMD) [WKR15] is an important varia-

tions of DMD that lifts the states of the system to a (generally higher-dimensional) function

space using a predefined dictionary of functions and finds the projection of the Koopman

operator on that space. The work [KM18b] studies the convergence properties of EDMD

to the Koopman operator as the number of data snapshots and dictionary elements go to

infinity. Similarly to DMD, EDMD is specifically designed to work with exact data and

experiments and simulations show that it may not work well with data corrupted with mea-

surement noise. The work in [HC19a] presents a noise-resilient extension of EDMD based on

element-wise weighted total least squares methods. The quality of EDMD directly depends

on its dictionary. As a result, the dictionary must be chosen based on the dynamics. The

work [MCTM21] provides a Taylor expansion method to enrich the dictionary for EDMD

6

to achieve lower errors in long-term predictions. [ZZ21] uses finite element methods to sys-

tematically learn Koopman approximations on finite-dimensional spaces. This work also

provides a variant of EDMD to learn the Koopman generator combined with finite element

methods. Another area worth noting regarding EDMD is characterizing its accuracy while

finitely many data samples are available. [NPP+21] addresses this important issue by provid-

ing several probabilistic finite sample bounds for approximation of the Koopman operator

both for deterministic and stochastic systems.

The aforementioned projection methods provide linear higher-dimensional approxima-

tions for the underlying dynamics that are, however, not suitable for long-term predictions,

since they are generally not exact. This issue can be tackled by finding subspaces that are

invariant under the Koopman operator, since the acquired linear models are exact over them.

This is the subject of the second group of approaches.

1.1.2 Invariant Subspace Methods

On a finite-dimensional Koopman-invariant subspace, the action of the Koopman op-

erator can be captured by a matrix product. Hence, finding such invariant subspaces has

major theoretical and practical implications. The works [BBPK16, JY18] use the system’s

model to analytically derive Koopman-invariant subspaces for specific classes of nonlinear

systems. For the data-driven setting, [LDBK17,TKY17,YKH19,LKB18] provide approaches

to find functions that span Koopman-invariant subspaces using neural networks. A alterna-

tive approach is to find Koopman eigenfunctions which span Koopman-invariant subspaces.

The work [KKB21] provides a data-driven method to identify Koopman eigenfunctions.

7

Moreover, [KM20] provides theoretical results and empirical methods based on multi-step

predictions on nonrecurrent sets to find Koopman eigenfunctions. A different approach to

approximate Koopman invariant subspaces is to use data combined with other information

about the system. [BBK+21,FYR+21] approximate finite-dimensional Koopman models re-

lying on knowledge about the system’s attractors and their stability.

1.2 Statement of Contributions

This dissertation studies the data-driven identification of nonlinear systems through

their associated Koopman operator. We study the algebraic properties of the Koopman

eigenfunctions and their relation to data acquired from the system’s trajectories. Relying

on our findings, we provide algebraic algorithms to identify Koopman eigenfunctions and

invariant subspaces with accuracy and convergence guarantees. Moreover, we provide specific

methods to tackle practical challenges such as dealing with large and streaming data sets as

well as using parallel computation to speed up the identification process. Next, we briefly

review the contributions made in each chapter.

Chapter 3: We present data-driven methods to identify Koopman eigenfunctions

and Koopman-invariant subspaces associated with a potentially nonlinear dynamical system.

First, we study the properties of the standard Extended Dynamic Mode Decomposition

(EDMD) method regarding the identification of Koopman eigenfunctions. We prove that

EDMD correctly identifies all the Koopman eigenfunctions in the span of the predefined

dictionary. This necessary condition however is not sufficient, i.e., the functions identified by

the EDMD method are not necessarily Koopman eigenfunctions. This motivates our next

8

contribution, which is a necessary and sufficient condition that characterizes the functions

that evolve linearly according to the available data snapshots. This condition is based on

the application of EDMD forward and backward in time. The identified functions are not

necessarily Koopman eigenfunctions, since one can only guarantee that they evolve linearly

on the available data (but not necessarily starting anywhere in the state space). However,

we prove that under reasonable assumptions on the density of the sampling, the identified

functions are Koopman eigenfunctions almost surely.

Our next contribution seeks to provide computationally efficient ways of identifying

Koopman eigenfunctions and Koopman-invariant subspaces. In fact, checking the aforemen-

tioned necessary and sufficient condition requires one to calculate and compare the eigende-

composition of two potentially large matrices, which can be computationally cumbersome.

Moreover, even though the subspace spanned by all the eigenfunctions in the span of the

original dictionary is Koopman-invariant, it might not be maximal. To address these lim-

itations, we propose the Symmetric Subspace Decomposition (SSD) strategy, which is an

iterative method to find the maximal subspace that remains invariant under the application

of dynamics (and its associated Koopman operator) according to the available data. We

prove that SSD also finds all the functions that evolve linearly in time according to the avail-

able data. Moreover, we prove that under the same conditions on the sampling density, the

SSD strategy identifies the maximal Koopman-invariant subspace in the span of the original

dictionary almost surely.

Our next contribution is motivated by applications where the data becomes available

in an online fashion. In such scenarios, at any given time step, one would need to perform SSD

9

on all the available data received up to that time. Performing SSD requires the calculation of

several singular value decompositions for matrices that scale with the size of the data, in turn

requiring significant memory capabilities. To address these shortcomings, we propose the

Streaming Symmetric Subspace Decomposition (SSSD) strategy, which refines the calculated

Koopman-invariant subspaces each time it receives new data and deals with matrices of fixed

and relatively small size (independent of the size of the data). We prove that SSSD and SSD

methods are equivalent, in the sense that for a given dataset, they both identify the same

maximal Koopman-invariant subspace.

Our last contribution is motivated by the fact that, in some cases the predefined

dictionary does not contain sufficient eigenfunctions to capture important information from

the dynamics. To address this, we provide an extension of SSD, termed Approximated-SSD,

enabling us to approximate Koopman eigenfunctions and invariant subspaces, and show how

its accuracy can be tuned using a design parameter.

Chapter 4: We present a counterpart to the Symmetric Subspace Decomposition

(SSD) algorithm presented in Chapter 3. The proposed method is compatible with parallel

processing hardware. Our starting point is a group of processors communicating through a

directed graph, with each processor aware of a common dictionary of functions and equipped

with a local set of data snapshots acquired from the dynamics. We introduce the Paral-

lel Symmetric Subspace Decomposition (P-SSD) algorithm to find the maximal Koopman-

invariant subspace and all the Koopman eigenfunctions in the finite-dimensional linear func-

tional space spanned by the dictionary. The proposed strategy has each processor refine its

estimate of the invariant dictionary by iteratively employing the information received from

10

its neighbors to prune it. We show that the P-SSD algorithm reaches an equilibrium in a

finite number of time steps for any (possibly time-varying) network topology and carefully

characterize the properties of the agents’ dictionary iterates along its execution, particu-

larly in what concerns monotonicity of the associated subspaces. We also establish that the

globally reachable processors in the communication digraph find the same solution as the

SSD algorithm would if all data was centrally available at a single processor. This allows

us to conclude that the P-SSD algorithm finds the maximal Koopman-invariant subspace in

the space spanned by the original dictionary if the network topology is strongly connected.

Finally, we conclude by characterizing the algorithm’s time, computational, and communi-

cation complexity, demonstrating its computational advantage over SSD, and showing its

robustness against communication failures and packet drops.

Chapter 5: In Chapters 3-4, we proposed algorithms to identify the maximal

Koopman-invariant subspace of any arbitrary finite-dimensional space of functions. The

Koopman-based models on such invariant subspaces are exact. However, in general, cap-

turing complete information about a nonlinear system’s behavior might not be possible on

finite-dimensional Koopman-invariant subspaces. A practical remedy for this issue is to

approximate models in order to capture more (although inexact) information at the cost of

introducing some error in the models. This is especially relevant since most practical applica-

tions only need reasonably accurate (but possibly inexact) models. Our goal in Chapter 5 is

to provide methods that can identify Koopman-based models with tunable level of accuracy

and expressiveness.

Our main result, consists of the synthesis of a computational procedure, termed Tun-

11

able Symmetric Subspace Decomposition (T-SSD), that given an arbitrary finite-dimensional

functional space, balances the trade-off between the expressiveness of its subspaces and the

accuracy of the Koopman approximations on them.

The roadmap of supporting contributions leading to the design and full character-

ization of T-SSD is as follows. Our first contribution builds on the observation that the

proximity of a functional space to being invariant is a measure of its (and consequently

its members’) prediction accuracy under finite-dimensional Koopman approximations, as an

exact invariant subspace leads to exact predictions of the evolution of observables. We intro-

duce the novel notion of ε-apart spaces to measure invariance proximity using data snapshots

sampled from the trajectories of the unknown dynamics. Using this notion, and given an

arbitrary finite-dimensional functional space spanned by a dictionary of functions, we for-

mulate our objective as that of finding a parametric family of subspaces whose value of the

parameter determines the desired level of invariance proximity. This parametric family can

be viewed as balancing invariance proximity (i.e., prediction accuracy) and the dimension of

the subspace (i.e., expressiveness).

Given a desired accuracy parameter, our second contribution is the design of T-SSD

as an algorithmic procedure that finds a functional space satisfying the desired accuracy

by iteratively removing the functions in the span of the original dictionary that violate

the desired accuracy. We show that T-SSD terminates in finite iterations and characterize

its computational complexity. Moreover, we show that its identified subspaces contain the

maximal Koopman-invariant subspace and all Koopman eigenfunctions in the span of the

original dictionary. We also show that the accuracy parameter bounds the relative root mean

12

square prediction error for all (uncountably many) functions in the identified subspace. This

advantage of the T-SSD algorithm in deriving accuracy bounds on the prediction of individual

functions independently of linear changes of coordinates stems from focusing on the subspaces

instead of their basis. Our next contribution establishes that both Extended Dynamic Mode

Decomposition and Symmetric Subspace Decomposition algorithms are particular cases of

T-SSD.

Our final contribution is a computationally efficient version of T-SSD with drastically

lower computational complexity when the number of data snapshots is significantly larger

than the dimension of the original dictionary.

Chapter 6: In the previous chapters, we proposed algebraic algorithms to find finite-

dimensional subspaces that are close to being invariant under the action of the Koopman

operator. The Koopman-based model then is calculated by applying the Extended Dynamic

Mode Decomposition (EDMD) algorithm on the identified subspaces by our methods. Many

existing methods in the literature, however, use optimization or neural-network based meth-

ods to find the correct dictionary and subspace for EDMD. In Chapter 6, we aim to find an

appropriate accuracy measure for EDMD that can be used as a cost function in optimization

and neural-network based methods.

Our starting point is the observation that the residual error of EDMD, typically used

for dictionary learning, does not necessarily measure the quality of the subspace spanned

by the dictionary and, consequently, the prediction accuracy of EDMD on the subspace.

To illustrate this point, we provide an example showing that one can choose a sequence

of dictionaries spanning the same subspace that make the residual error arbitrarily close to

13

zero. This motivates our goal of identifying better measures to assess the EDMD’s prediction

accuracy and its dictionary’s quality. We define the notion of the consistency matrix and its

spectral radius, which we term consistency index, which measures the deviation of the EDMD

solutions forward and backward in time from being the inverse of each other. This is justified

by the fact that if a subspace is Koopman invariant, the EDMD solutions applied forward and

backward in time are the inverse of each other. We characterize various algebraic properties

of the consistency index and show that it only depends on the data and the space spanned

by the dictionary, and is hence invariant under changes of basis. We also establish that the

square root of the consistency index in fact provides a tight upper bound on the relative root

mean square EDMD prediction error of all functions in the span of the dictionary.

14

Chapter 2

Preliminaries

In this chapter, we introduce the notations used in the dissertation. Moreover, we

review basic concepts from graph theory, Koopman operator theory, as well as the Extended

Dynamic Mode Decomposition method.

2.1 Notations

Here, we present the notations used throughout this dissertation.

2.1.1 Sets and Functions

Given a set S, we denote its complement by Sc. Given sets S1 and S2, S1 ⊆ S2 and

S1 (S2 respectively mean that S1 is a subset and proper subset of S2. We denote by S1∩S2

and S1∪S2, the intersection and union of S1 and S2. Moreover, we define S1 \S2 := S1∩Sc2.

Given a sequence of sets {Si}∞i=1, we denote its superior and inferior limits by lim supi→∞ Si

and lim infi→∞ Si, respectively. Given functions f and g with appropriate domains and co-

15

domains, f ◦g denotes their composition. We also refer to the set consisting of all continuous

strictly increasing functions α : R≥0 → R≥0 with α(0) = 0 as class-K.

2.1.2 Number Systems, Vectors, and Matrices

We denote by N, N0, R, R≥0, and C, the sets of natural, nonnegative integer, real,

nonnegative real, and complex numbers respectively. We use j to denote the imaginary unit

(the solution of x2 + 1 = 0). Given integers a, b we use a mod b to represent the remainder

of division of a by b.

For a matrix A ∈ Cm×n, we denote the sets comprised of its rows by rows(A), its

columns by cols(A), the number of its rows by]rows(A), and the number of its columns

by]cols(A), respectively. In addition, we denote its pseudo-inverse, transpose, complex

conjugate, conjugate transpose, Frobenius norm, and range space by A†, AT , Ā, AH , ‖A‖F ,

and R(A), respectively. Moreover, for 1 ≤ i < k ≤ m, we denote by Ai:k the matrix

formed with the ith to kth rows of A. Also, Ai,j denotes the ijth element of A. Given

matrices A ∈ Cm×n and B ∈ Cm×d, we denote by [A,B] ∈ Cm×(n+d) the matrix created by

concatenating A and B.

Given the square matrix B, we use B−1 to denote its inverse. We denote by spec(B)

the set comprised of the eigenvalues of B. Similarly, spec 6=0(B) denotes the set of nonzero

eigenvalues of A. Moreover, sprad(B) := max{|λ| | λ ∈ spec(B)} is the spectral radius of

B. If spec(B) ⊂ R, then λmin(B) and λmax(B) denote the smallest and largest eigenvalues

of B. We denote by 0m×n and In, the m × n zero matrix and the identity matrix of size n

respectively (we omit the indices when the context is clear).

16

For v ∈ Cn, we denote its real and imaginary parts by Re(v) and Im(v), and its

2-norm as ‖v‖2 :=
√
vHv. The angle between vectors v, w ∈ Rn is denoted by ∠(v, w).

2.1.3 Vector Spaces

Given the vector space V defined on the field (C or R) 1, dimV denotes its dimension.

Moreover, given a set S ⊆ V , span(S) is a vector space comprised of all linear combinations

of elements in S. If vectors v, w ∈ Rn and vector spaces V ,W ⊆ Rn are orthogonal, we write

v ⊥ w and V ⊥ W . Moreover, V⊥ denotes the orthogonal complement of V . For a vector

space V ⊆ Rm, PV denotes the orthogonal projection operator on V . For convenience, we

denote the orthogonal projection operator on the range space of a matrix A by PA, which

takes the form PAw = AA†w, for w ∈ Rm. We define the sum of vector spaces V1,V2 by

V1 + V2 := {v1 + v2|v1 ∈ V1 ∧ v2 ∈ V2}.

2.2 Graph Theory

Our exposition here mainly follows [BCM09, LMNB17]. Given a set V comprised of

m nodes and a set E ⊆ V × V comprised of ordered pairs of nodes called edges, the pair

G = (V,E) defines a directed graph (digraph) on nodes V and edges E. We say node i is

an in-neighbor of node j and node j is an out-neighbor of node i if (i, j) ∈ E. We denote

by Nin(i) and Nout(i) the sets of in- and out-neighbors of i, respectively. A directed path

with length l is an ordered sequence of l + 1 nodes such that the ordered pair of every two

1All vector spaces in this dissertation are defined on the field of complex numbers or real numbers. We
omit mentioning the field where the context is clear.

17

consecutive nodes is an edge of the digraph. A path is closed if its first and last nodes are the

same. A node is called globally reachable if there is a directed path from every other node to

it. A digraph is strongly connected if all of its nodes are globally reachable. Given two nodes

i, j in a digraph, the distance from i to j, denoted dist(i, j), is the length of the shortest

directed path from i to j. If there is no such directed path, the distance is ∞. Given two

digraphs G1 = (V,E1) and G2 = (V,E2), we define their composition as G2 ◦ G1 = (V,E◦)

such that E◦ = {(i, j) | ∃k ∈ V with (i, k) ∈ E1 ∧ (k, j) ∈ E2}. A finite sequence of digraphs

{Gi = (V,Ei)}ki=1 is jointly strongly connected if Gk ◦ · · · ◦ G1 is strongly connected. An

infinite sequence of digraphs (or a time-varying digraph) {Gi = (V,Ei)}∞i=1 is repeatedly

jointly strongly connected if there exists l, τ ∈ N such that for every k ∈ N0, the sequence of

digraphs {Gτ+kl+j}l−1
j=0 is jointly strongly connected.

2.3 Koopman Operator

Here, we introduce the Koopman operator associated with discrete- and continuous-

time systems and its properties. Our exposition mainly follows [BMM12].

2.3.1 Discrete-Time Systems

Consider a nonlinear, time-invariant map T : M → M on M ⊆ Rn, defining the

dynamical system

x+ = T (x). (2.1)

18

The dynamics (2.1) acts on the points in the state space M and generates trajectories of

the system. The Koopman operator, on the other hand, provides an alternative approach

to analyze (2.1) based on evolution of functions (also known as observables) defined on M

and taking values in C. Formally, let F be a linear space of functions (defined on the field

C) from M to C which is closed under composition with T , i.e.,

f ◦ T ∈ F , ∀f ∈ F . (2.2)

The Koopman operator K : F → F associated with (2.1) is

Kf = f ◦ T. (2.3)

A closer look at the definition of the Koopman operator shows that it advances the observ-

ables in time, i.e.,

Kf(x) = f ◦ T (x) = f(x+), ∀x ∈M. (2.4)

This equation shows how the Koopman operator encodes the dynamics on the functional

space F . The operator is linear as a direct consequence of linearity in F , i.e., for every

f1, f2 ∈ F and c1, c2 ∈ C,

K(c1f1 + c2f2) = c1K(f1) + c2K(f2). (2.5)

19

Assuming F contains the functions describing the states of the system, gi(x) = xi with

i ∈ {1, . . . , n}, the Koopman operator fully characterizes the global features of the dynamics

in a linear fashion. Moreover, the operator might be (and generally is) infinite dimensional

either by choice of F or due to closedness requirement in (2.2).

Being linear, one can naturally define its eigendecomposition. A function φ ∈ F is

an eigenfunction of K associated with eigenvalue λ ∈ C if

Kφ = λφ. (2.6)

The combination of (2.4) and (2.6) leads to a significant property of the Koopman operator:

the linear evolution of its eigenfunctions in time. Formally, given an eigenfunction φ with

eigenvalue λ,

φ(x+) = φ ◦ T (x) = Kφ(x) = λφ(x). (2.7)

The linear evolution of eigenfunctions (cf. (2.7)), together with the linearity of the operator

in (2.5), enables us to use spectral properties to analyze the nonlinear system (2.1). Given

a set of eigenpairs {(λi, φi)}Nk
i=1 such that Kφi = λiφi, i ∈ {1, . . . , Nk}, one can describe the

evolution of every function f in span({φi}Nk
i=1), i.e., f =

∑Nk

i=1 ciφi, for some {ci}Nk
i=1 ⊂ C, as

f(x(k)) =

Nk∑
i=1

ciλ
k
i φi(x(0)), ∀k ∈ N0, (2.8)

where {x(l)}∞l=0 is the trajectory of the system starting from the initial condition x(0). The

20

constants {ci}Nk
i=1 are called Koopman modes. It is important to note that one might need to

use infinitely many eigenfunctions to fully describe the behavior of the dynamical system.

Another important notion in the analysis of the Koopman operator is the invariance

of subspaces under its application. Formally, a subspace S ⊆ F is Koopman-invariant if for

every f ∈ S we have Kf ∈ S. Furthermore, S is maximal Koopman-invariant in L ⊆ F if

it contains every Koopman-invariant subspace in L. Naturally, a set comprised of Koopman

eigenfunctions spans a Koopman-invariant subspace.

2.3.2 Continuous-Time Systems

Consider the following continuous-time dynamical system 2 defined on the state space

M∈ Rn

ẋ = g(x). (2.9)

Also, let Gt(x0) be the flow map associated with the dynamics mapping the initial condition

x0 to Gt(x0), the solution of the system at time t. Similarly to the the discrete-time case

(cf. (2.3)), for each time t ∈ R≥0, the flow map induces a Koopman operator

Ktf = f ◦ Gt, ∀f ∈ F .

The set {Kt}t∈R≥0
is known as the Koopman semigroup and its infinitesimal generator is

often used to describe the behavior of the system.

2We assume the dynamics has a unique solution starting from every point in the state space.

21

Remark 2.3.1. (In this dissertation we consider discrete-time or sampled

continuous-time systems). In this dissertation, we generally consider discrete-time sys-

tems in the form of (2.1). However, the material presented here can be used for continuous-

time systems. In fact, if the trajectories of system (2.9) are sampled with the sampling time

∆t, the presented data-driven algorithms in this dissertation capture the behavior of the

operator K∆t associated with the flow map G∆t. �

2.4 Extended Dynamic Mode Decomposition

Here, we briefly introduce the Extended Dynamic Mode Decomposition (EDMD)

method following [WKR15] 3. As mentioned earlier, the infinite-dimensional property of

the Koopman operator prevents its direct use in practical data-driven settings. This leads

naturally to constructing finite-dimensional approximations. EDMD is a method for con-

structing finite-dimensional Koopman approximations from data. EDMD uses a dictionary

D :M→ R1×Nd containing Nd functions in the form of

D(x) = [d1(x), . . . , dNd
(x)].

To capture the behavior of the dynamics (and hence the Koopman operator), EDMD uses

data matrices X, Y ∈ RN×n containing N data snapshots gathered from the trajectories of

3For convenience, the notation employed in this dissertation is slightly different from the traditional
notation in the literature.

22

the system (2.1),

yi = T (xi), ∀i ∈ {1, . . . , N}, (2.10)

where xTi and yTi correspond to the ith rows of X and Y . EDMD approximates the action

of the Koopman operator on span(D) by solving the least-squares problem

minimize
K

‖D(Y)−D(X)K‖F (2.11)

which has the closed-form solution

KEDMD = EDMD(D,X, Y) := D(X)†D(Y). (2.12)

Throughout this dissertation, we rely on the following basic assumption.

Assumption 2.4.1. (Full Rank Dictionary Matrices). D(X) and D(Y) have full

column rank. �

Assumption 2.4.1 implies that the functions in D are linearly independent, i.e., they

form a basis for span(D) and the data are diverse enough to distinguish between the elements

of D. Moreover, Assumption 2.4.1 ensures that KEDMD is the unique solution for (2.11).

One can use the eigendecomposition of KEDMD to approximate Koopman eigenfunc-

tions. Formally, given the eigenvector v ∈ CNd \ {0} of KEDMD with eigenvalue λ ∈ C, we

23

define the following approximated Koopman eigenfunction with eigenvalue λ as

φ(·) = D(·)v. (2.13)

Moreover, one can use KEDMD to approximate the action of the operator on span(D). Given

a function f ∈ span(D) in the form of f(·) = D(·)vf for vf ∈ CNd , we define the predictor

function for Kf as

PKf (·) = D(·)KEDMDvf . (2.14)

It should be noted that, the predictor (2.14) can be viewed as L2-orthogonal projection of

Kf on span(D) calculated using an empirical measure defined based on the rows of the

data matrix X (see e.g. [KM18b, Theorem 1]). As a result of this projection, the quality

of this predictor directly depends on the choice of the dictionary. If span(D) is Koopman-

invariant, i.e., if Kg ∈ span(D) for all g ∈ span(D), then the EDMD predictor (2.14) is exact.

Otherwise, the prediction is inexact for some functions in the space. In this dissertation, we

aim to find suitable dictionaries which lead to accurate EDMD prediction.

24

Chapter 3

Data-driven Identification of

Koopman Eigenfunctions and

Invariant Subspaces

This chapter develops data-driven methods to identify eigenfunctions of the Koop-

man operator associated to a dynamical system and subspaces that are invariant under the

operator. Given any arbitrary finite-dimensional space of functions spanned by a dictionary

(basis), we propose a necessary and sufficient condition to identify all Koopman eigenfunc-

tions in the space based on the application of the Extended Dynamic Mode Decomposition

(EDMD) forward and backward in time. Moreover, we propose the Symmetric Subspace

Decomposition (SSD) algorithm, an iterative method which provably identifies the maximal

Koopman-invariant subspace and the Koopman eigenfunctions in the span of the dictionary.

We also introduce the Streaming Symmetric Subspace Decomposition (SSSD) algorithm, an

25

online extension of SSD that only requires a small, fixed memory and incorporates new data

as is received. Finally, we propose an extension of SSD that approximates Koopman eigen-

functions and invariant subspaces when the dictionary does not contain sufficient informative

eigenfunctions.

3.1 Problem Statement

Consider a nonlinear, time-invariant, continuous map T : M → M on M ⊆ Rn,

defining the dynamical system

x+ = T (x). (3.1)

Moreover, let K be its associated Koopman operator defined on the linear space of func-

tions F . Our goal is to find the maximal Koopman-invariant subspace and all Koopman

eigenfunctions associated with system (3.1) in any arbitrary finite-dimensional subspace of

F using data gathered from the system’s trajectories. Formally, let D : M → R1×Nd be

a dictionary of Nd functions in F such that D(·) = [d1(·), . . . , dNd
(·)] where {di}Nd

i=1 ⊂ F .

Moreover, let X, Y ∈ RN×n be matrices comprised of N data snapshots such that

yi = T (xi), i ∈ {1, . . . , N}, (3.2)

where xTi and yTi are ith rows of X and Y , respectively. Our main goal is two-fold:

Problem 3.1.1. (Main Problem). Given dictionary D and data matrices X and Y , we

26

aim to

(i) find all the Koopman eigenfunctions in span(D);

(ii) find a basis for the maximal Koopman-invariant subspace in span(D). �

Note that (i) and (ii) in Problem 3.1.1 are closely related. The eigenfunctions found

by solving Problem 3.1.1(i) span Koopman-invariant subspaces. Those invariant subspaces

however might not be maximal. This mild difference between Problem 3.1.1(i) and Prob-

lem 3.1.1(ii) requires the use of different solution approaches. Since we are dealing with

finite-dimensional linear subspaces, we aim to use linear algebra instead of optimization-

based methods, which are widely used for solving these types of problems. This enables us

to directly use computationally efficient linear algebraic packages that optimization methods

rely on.

We also pursue two secondary problems in order to improve the applicability of our

methods in practical settings.

Problem 3.1.2. (Secondary Problems). Extend the solutions for Problem 3.1.1 to the

following settings:

(i) updating the results sequentially when data is available in streaming format;

(ii) approximating Koopman eigenfunctions and invariant subspace when span(D) does not

contain informative exact eigenfunctions. �

Throughout this chapter, we rely on the following standard assumption regarding the

dictionary snapshots.

27

Assumption 3.1.3. (Full Column Rank Dictionary Matrices). The matrices D(X)

and D(Y) have full column rank. �

Assumption 3.1.3 is reasonable: in order to hold, the dictionary functions must be

linearly independent, i.e., the functions must form a basis for span(D). Moreover, the as-

sumption requires the set of initial conditions rows(X) to be diverse enough to capture

important characteristics of the dynamics. Our treatment here relies on the Extended Dy-

namic Mode Decomposition (EDMD) algorithm (cf. Section 2.4), which is not specifically

designed to work with data corrupted with measurement noise. Hence, we assume access to

data with high signal-to-noise ratio. In practice, one might need to pre-process the data to

use the algorithms proposed here.

3.2 Identifying Koopman Eigenfunctions by Forward

and Backward Extended Dynamic Mode Decom-

position

Here, we investigate the capabilities and limitations of the EDMD method regarding

the identification of Koopman eigenfunctions. Throughout this chapter, we use the following

notations to represent the EDMD matrices applied on data matrices X and Y forward and

backward in time

KF = EDMD(D,X, Y), KB = EDMD(D, Y,X).

28

The next result shows that EDMD is not only able to capture Koopman eigenfunctions but

also all the functions that evolve linearly according to the available data.

Lemma 3.2.1. (EDMD Captures the Koopman Eigenfunctions in the Span of

the Dictionary). Suppose Assumption 3.1.3 holds. Let f(·) = D(·)v for some v ∈ CNd \

{0}.

(i) Let f evolve linearly according to the available data, i.e., there exists λ ∈ C such that

f(yi) = f ◦T (xi) = λf(xi) for every i ∈ {1, . . . ,]rows(X)}, where xi and yi are related

through (3.2). Then, the vector v is an eigenvector of KF with eigenvalue λ;

(ii) Let f be an eigenfunction of the Koopman operator with eigenvalue λ. Then, the vector

v is an eigenvector of KF with eigenvalue λ.

Proof. (i) Based on the linear evolution of f , we have D(Y)v = λD(X)v. Moreover, using

the closed-form solution of EDMD, we have KF v = D(X)†D(Y)v = λD(X)†D(X)v = λv,

where the last equality follows from Assumption 3.1.3.

(ii) Based on the definition of Koopman eigenfunction, we have f(x+) = λf(x).

Since this linear evolution reflects in data snapshots, we have f(yi) = λf(xi) for every

i ∈ {1, . . . ,]rows(X)} where xTi and yTi are the ith rows of X and Y respectively. The rest

follows from (i).

Despite its simplicity, this result provides significant insight into the EDMD method.

Lemma 3.2.1 shows that EDMD can capture eigenfunctions in the span of the dictionary

even if the underlying subspace is not Koopman invariant. In the literature, it is well known

that the (E)DMD method can capture physical constraints, conservation laws, and other

29

properties of the underlying system, which actually correspond to Koopman eigenfunctions,

e.g., see [WKR15, KNP+20]. We note that Lemma 3.2.1 is a generalization of [TRL+14,

Theorem 1] to EDMD when the underlying system is not necessarily linear (or cannot be

approximated by a linear system accurately) and the underlying subspace is not Koopman

invariant. The next result shows that EDMD accurately predicts the evolution of functions

in the span of Koopman eigenfunctions evaluated on the system’s trajectories.

Proposition 3.2.2. (EDMD Accurately Predicts Evolution of any Linear Com-

bination of Eigenfunctions on System’s Trajectories). Let f(·) = D(·)v for some

v ∈ CNd \ {0}. Assume f is in the span of eigenfunctions {φi}mi=1 ⊂ span(D) with corre-

sponding eigenvalues {λi}mi=1 ⊂ C. Then, given any trajectory {x(j)}∞j=0 of (3.1),

f(x(j)) = D(x(0))Kj
Fv, ∀j ∈ N0. (3.3)

Proof. Since f ∈ span({φi}mi=1), there exist scalars {ci}mi=1 ⊂ C such that

f =
m∑
i=1

ciφi. (3.4)

Since {φi}mi=1 ⊂ span(D), there exist vectors {wi}mi=1 ⊂ CNd such that

φi(·) = D(·)wi, ∀i ∈ {1, . . . ,m}. (3.5)

30

Combining (3.4) and (3.5) with the definition of f , we deduce that
∑m

i=1 ciwi = v. Now,

D(x(0))Kj
Fv = D(x(0))Kj

F

m∑
i=1

ciwi

= D(x(0))
m∑
i=1

ciλ
j
iwi,

where in the last equality we have used Lemma 3.2.1(ii) for the eigenfunctions φis. Us-

ing (3.5),

D(x(0))Kj
Fv =

m∑
i=1

ciλ
j
iφi(x(0)) =

m∑
i=1

ciφi(x(j)),

where in the second equality we have used the linear temporal evolution of Koopman eigen-

functions (2.7). The proof is now complete by noting that the previous equation holds for

all j ∈ N0 and its the right-hand side is equal to f(x(j)) based on (3.4).

Lemma 3.2.1 provides a necessary condition for the identification of Koopman eigen-

functions. This condition however is not sufficient, see e.g. [HC19b, Example IV.3] for a

counter example. Interestingly, if a function evolves linearly forward in time, it also evolves

linearly backward in time. The next result shows that checking this observation provides a

necessary and sufficient condition for identification of functions that evolve linearly in time

according to the available data.

Theorem 3.2.3. (Identification of Linear Evolutions by Forward and Backward

EDMD). Suppose Assumption 3.1.3 holds. Let f(·) = D(·)v for some v ∈ CNd \ {0}. Then

f ◦T (xi) = f(yi) = λf(xi) for some λ ∈ C\{0} and for all i ∈ {1, . . . ,]rows(X)} if and only

31

if v is an eigenvector of KF with eigenvalue λ, and an eigenvector of KB with eigenvalue λ−1.

Proof. (⇐): Using the closed-form solutions of the EDMD problem and Assumption 3.1.3,

one can write,

KF = (D(X)TD(X))−1D(X)TD(Y),

KB = (D(Y)TD(Y))−1D(Y)TD(X).

Using these along with the definition of the eigenpair,

λD(X)TD(X)v = D(X)TD(Y)v, (3.7a)

λ−1D(Y)TD(Y)v = D(Y)TD(X)v. (3.7b)

By multiplying (3.7a) from the left by vH and using (3.7b),

λ‖D(X)v‖2
2 = vHD(X)TD(Y)v = λ̄−1‖D(Y)v‖2

2

which implies

|λ|2‖D(X)v‖2
2 = ‖D(Y)v‖2

2. (3.8)

Now, we decompose D(Y)v orthogonally as

D(Y)v = cD(X)v + w, (3.9)

32

with vHD(X)Tw = 0. Substituting (3.9) into (3.7a) and multiplying both sides from the left

by vH yields

λvHD(X)TD(X)v = cvHD(X)TD(X)v.

Since v 6= 0, and under Assumption 3.1.3, we deduce that c = λ. Substituting the value of

c in (3.9), finding the 2-norm, and using the fact that vHD(X)Tw = 0, one can write

‖D(Y)v‖2
2 = |λ|2‖D(X)v‖2

2 + ‖w‖2
2.

Comparing this with (3.8), one deduces that w = 0 and D(Y)v = λD(X)v. The result

follows by looking at this equality in a row-wise manner and noting that f(·) = D(·)v.

(⇒): Based on Lemma 3.2.1(i), v must be an eigenvector of KF with eigenvalue

λ. Moreover, since λ 6= 0 one can write f(xi) = λ−1f(yi) for every i ∈ {1, . . . ,]rows(X)}

and, consequently, using Lemma 3.2.1(i) once again, we have KBv = λ−1v, concluding the

proof.

If the function f satisfies the conditions provided by Theorem 3.2.3, then f(x+) =

λf(x) for all x ∈ rows(X). However, Theorem 3.2.3 does not guarantee that f is an eigen-

function, i.e., there is no guarantee that f(x+) = λf(x) for all x ∈ M. To circumvent this

issue, we introduce an infinite sampling scheme and make an assumption about its density.

Assumption 3.2.4. (Almost sure dense sampling from a compact state space).

Assume the state space M is compact. Suppose we gather infinitely (countably) many data

33

snapshots. For N ∈ N, the first N data snapshots are represented by matrices X1:N and

Y1:N such that yi = T (xi) for all i ∈ {1, . . . , N}, where xi and yi are the ith rows of X1:N

and Y1:N , respectively (we refer to the columns of XT
1:N as the set SN of initial conditions).

Assume there exists a class-K function α and sequence {pN}∞N=1 ⊂ [0, 1] such that, for every

N ∈ N,

∀m ∈M, ∃x ∈ SN such that ‖m− x‖2 ≤ α
(1

N

)

holds with probability pN , and limN→∞ pN = 1. �

Assumption 3.2.4 is not restrictive as, in most practical cases, the state space is

compact or the analysis is limited to a specific bounded region. Moreover, the data is

usually available on a bounded region due the limited range of sensors. Regarding the

sampling density, Assumption 3.2.4 holds for most standard random samplings.

Noting that our methods presented later require Assumption 3.1.3 to hold, we provide

a definition for dictionary matrices acquired from infinite sampling.

Definition 3.2.5. (R-rich Sequence of Dictionary Snapshots). Let {X1:N}∞N=1 and

{Y1:N}∞N=1 be the sequence of data snapshot matrices acquired from system (3.1). Given the

dictionary D : M→ R1×Nd, we say the sequence of dictionary snapshot matrices is R-rich

if R = min{M ∈ N | rank(D(X1:M)) = rank(D(Y1:M)) = Nd} exists (R is called richness

constant). �

34

In Definition 3.2.5, if

{M ∈ N | rank(D(X1:M)) = rank(D(Y1:M)) = Nd} 6= ∅

then based on the well-ordering principle, see e.g. [Fol99, Chapter 0], the minimum of the set

exists and the sequence of the dictionary snapshot matrices is R-rich. Moreover, given an

R-rich sequence of dictionary snapshots matrices D(X1:N) and D(Y1:N), Assumption 3.1.3

holds for every N ≥ R.

We are now ready to identify the Koopman eigenfunctions in the span of the dictionary

using forward-backward EDMD.

Theorem 3.2.6. (Identification of Koopman Eigenfunctions by Forward and

Backward EDMD). Given an infinite sampling, suppose that the sequence of dic-

tionary snapshot matrices is R-rich. Let KF,N = EDMD(D,X1:N , Y1:N), KB,N =

EDMD(D, Y1:N , X1:N). Given v ∈ CNd \ {0} and λ ∈ C \ {0}, let f(·) = D(·)v. Then,

(i) If f is an eigenfunction of the Koopman operator with eigenvalue λ, then KF,Nv = λv

and KB,Nv = λ−1v for every N ≥ R;

(ii) Conversely, and assuming the dictionary functions are continuous and Assump-

tion 3.2.4 holds, if KF,Nv = λv and KB,Nv = λ−1v for every N ≥ R, then f is

an eigenfunction of the Koopman operator with probability 1.

Proof. (i) Since f is a Koopman eigenfunction, for every i ∈ N we have f(yi) = Kf(xi) =

λf(xi). Moreover, for every N ≥ R, D(X1:N) and D(Y1:N) have full column rank. Therefore,

the result follows from Theorem 3.2.3.

35

(ii) Based on Theorem 3.2.3, we deduce that, for every N ≥ R

f(yi) = λf(xi)v, ∀i ∈ {1, . . . , N}, (3.10)

where xTi and yTi are the ith rows of X1:N and Y1:N respectively. Now, define h(x) :=

Kf(x)−λf(x) = f◦T (x)−λf(x). The function h is continuous since f is a linear combination

of continuous functions and T is also continuous. By inspecting h on the data points and

using (3.10) and the fact that yi = T (xi), for all i ∈ {1, . . . , N}, one can show that h(xi) =

f ◦ T (xi) − λf(xi) = f(yi) − λf(xi) = 0 for every i ∈ {1, . . . , N}. Moreover, note that

based on Assumption 3.2.4, the set S∞ =
⋃∞
i=1 Si is dense in M with probability 1 and

h(x) = 0 for every x ∈ S∞. As a result, h(x) = 0 on M with probability 1. This implies

that f ◦ T (x) = λf(x) for every x ∈ M almost surely. Consequently, we have Kf = λf

almost surely, and the result follows.

We note that the technique of considering the evolution forward and backward in

time has also been used in the literature for other purposes, e.g., to alleviate the effect of

measurement noise on the data when performing DMD [DHWR16,HRDC17]. To our knowl-

edge, the use of this technique here for the identification of Koopman eigenfunctions and

invariant subspaces is novel. Moreover, unlike [KM20, Algorithm 1], the methods proposed

here do not require access to the system’s multi-step trajectories. Theorems 3.2.3 and 3.2.6

provide conditions to identify Koopman eigenfunctions. The identified eigenfunctions then

can span Koopman-invariant subspaces. However, one still needs to compare Nd potentially

complex eigenvectors and their corresponding eigenvalues. This procedure can be impracti-

36

cal for large Nd. Moreover, sinceM⊆ Rn, the eigenfunctions of the Koopman operator form

complex-conjugate pairs. Such pairs can be fully characterized using their real and imaginary

parts, which allows to use instead real-valued functions. This motivates the development of

algorithms to directly identify Koopman-invariant subspaces.

3.3 Identifying Koopman-Invariant Subspaces via

Symmetric Subspace Decomposition

Here we provide an algorithmic method to identify Koopman-invariant subspaces in

the span of a predefined dictionary and later show how it can be used to find Koopman

eigenfunctions. With the setup of Section 3.1, given the original dictionary D :M→ R1×Nd

comprised of Nd linearly independent functions, we aim to find a dictionary D̃ : M →

R1×Ñd with Ñd linearly independent functions such that the elements of D̃ span the maximal

Koopman-invariant subspace in span(D). Since the invariance of span(D̃) reflects in data,

given Assumption 3.1.3 we have

R(D̃(Y)) = R(D̃(X)). (3.11)

Moreover, since the elements of D̃ are in the span of D, there exists a full column rank

matrix C such that D̃(·) = D(·)C, for all x ∈M. Thus from (3.11),

R(D(Y)C) = R(D(X)C). (3.12)

37

Hence, we can reformulate the problem as a purely linear-algebraic problem consisting of

finding the full column rank matrix C with maximum number of columns such that (3.12)

holds. To solve this problem, we propose the Symmetric Subspace Decomposition (SSD)

method. The SSD algorithm relies on the fact, from (3.11), that

R(D̃(Y)) = R(D̃(X)) ⊆ R(D(X)) ∩R(D(Y)).

This fact can alternatively be expressed using the null space of the concatena-

tion [D(X), D(Y)]. SSD uses the null space to prune the dictionary and remove functions

that do not evolve linearly in time according to the available data to identify a potentially

smaller dictionary. At each iteration, SSD repeats the aforementioned procedure of (i) con-

catenation of current dictionary matrices, (ii) null space identification, and (iii) dictionary

reduction, until the desired dictionary is identified. Algorithm 1 presents the pseudocode1.

3.3.1 Convergence Analysis of the SSD Algorithm

Here, we characterize the convergence properties of the SSD algorithm. The next

result characterizes the dimension, maximality, and symmetry of the subspace defined by its

output.

Theorem 3.3.1. (Properties of SSD Output). Suppose Assumption 3.1.3 holds. For

matrices D(X), D(Y), let CSSD = SSD
(
D(X), D(Y)

)
. The SSD algorithm has the following

properties:

1The function null([Ai, Bi]) returns a basis for the null space of [Ai, Bi], and ZA
i and ZB

i in Step 4 have
the same size.

38

Algorithm 1 Symmetric Subspace Decomposition

Inputs: D(X), D(Y) ∈ RN×Nd Output: CSSD

Procedure: CSSD ← SSD
(
D(X), D(Y)

)
1: Initialization
2: i← 1, A1 ← D(X), B1 ← D(Y), CSSD ← INd

3: while 1 do

4:

[
ZA
i

ZB
i

]
← null([Ai, Bi]) . Basis for the null space

5: if null([Ai, Bi]) = ∅ then
6: return 0 . The basis does not exist
7: break
8: end if
9: if]rows(ZA

i) ≤]cols(ZA
i) then

10: return CSSD . The procedure is complete
11: break
12: end if
13: CSSD ← CSSDZ

A
i . Reducing the subspace

14: Ai+1 ← AiZ
A
i , Bi+1 ← BiZ

A
i , i← i+ 1

15: end while

(i) it stops after at most Nd iterations;

(ii) the matrix CSSD is either 0 or has full column rank, and satisfies R(D(X)CSSD) =

R(D(Y)CSSD);

(iii) the subspace R(D(X)CSSD) is maximal, in the sense that, for any matrix E with

R(D(X)E) = R(D(Y)E), we have R(D(X)E) ⊆ R(D(X)CSSD) and R(E) ⊆

R(CSSD);

(iv) R
(
SSD

(
D(X), D(Y)

))
= R

(
SSD

(
D(Y), D(X)

))
.

Proof. (i) First, we use (strong) induction to prove that at each iteration ZA
i , Z

B
i are matrices

with full column rank upon existence. By Assumption 3.1.3, A1 and B1 have full column

rank. Now, by using Lemma 3.7.1 one can derive that ZA
1 and ZB

1 have full column rank.

Now, suppose that the matrices ZA
1 , . . . , Z

A
k and ZB

1 , . . . , Z
B
k have full column rank. Using

39

Assumption 3.1.3 one can deduce that Ak+1 = A1Z
A
1 . . . Z

A
k , Bk+1 = B1Z

A
1 . . . Z

A
k have full

column rank since they are product of matrices with full column rank. Using Lemma 3.7.1,

one can conclude that ZA
k+1 and ZB

k+1 have full column rank.

Consequently, we have]rows(ZA
i) ≥]cols(ZA

i). Hence, Step 9 of the SSD algorithm

implies that the algorithm can only move to the next iteration if]rows(ZA
i) >]cols(ZA

i),

which means the number of columns in Ai+1 and Bi+1 decreases with respect to Ai and Bi.

Hence, the algorithm terminates after at mostNd iterations since A1 andB1 haveNd columns.

(ii) The CSSD = 0 case is trivial. Suppose that the algorithm stops after k iterations

with nonzero CSSD. This means that ZA
k and ZB

k are square full rank matrices. Also, by

definition we have AkZ
A
k = −BkZ

B
k which means that Ak = −BkZ

B
k (ZA

k)−1. Noting that

ZB
k (ZA

k)−1 is a full rank square matrix, one can derive R(Ak) = R(Bk). A closer look at

the definitions shows that Ak = D(X)CSSD and Bk = D(Y)CSSD. Hence, R(D(X)CSSD) =

R(D(Y)CSSD). Moreover, CSSD = ZA
1 · · ·ZA

k−1 and considering the fact that ZA
1 , . . . , Z

A
k−1

have full column rank, one can deduce that CSSD has full column rank.

(iii) Suppose that the matrix E satisfies R(D(X)E) = R(D(Y)E). First, we use

induction to prove that R(D(X)E) ⊆ R(Ai) ∩ R(Bi) for each iteration i that the al-

gorithm goes through. Let i = 1, then A1 = D(X) and B1 = D(Y). Consequently,

R(D(X)E) ⊆ R(A1) and R(D(X)E) = R(D(Y)E) ⊆ R(B1) based on the definition of

E. Hence, R(D(X)E) ⊆ R(A1) ∩R(B1). Now, suppose

R(D(X)E) ⊆ R(Ai) ∩R(Bi). (3.13)

40

Using Lemma 3.7.1, one can derive R(AiZ
A
i) = R(Ai)∩R(Bi). Combining this with (3.13),

we get

R(D(X)E) ⊆ R(AiZ
A
i) = R

(
D(X)ZA

1 · · ·ZA
i

)
. (3.14)

Using (3.14) with Lemma 3.7.2 one can derive R(E) ⊆ R(ZA
1 · · ·ZA

i). Using Lemma 3.7.2

once again, we get

R(D(X)E) = R(D(Y)E) ⊆ R
(
D(Y)ZA

1 · · ·ZA
i

)
. (3.15)

Definition of Ai+1, Bi+1 along with (3.14) and (3.15) lead to conclusion that R(D(X)E) ⊆

R(Ai+1) ∩R(Bi+1) and the induction is complete.

Now, suppose that the algorithm terminates at iteration k. In the case that CSSD = 0,

we have R(Ak) ∩R(Bk) = {0}, which means that E = 0 and R(D(X)E) ⊆ R(D(X)CSSD).

In the case that CSSD 6= 0, using the fact that R(D(X)E) ⊆ R(Ak) ∩ R(Bk), CSSD =

ZA
1 · · ·ZA

k−1, and R(D(X)CSSD) = R(D(Y)CSSD), one can deduce that R(D(X)E) ⊆

R(D(X)CSSD). Moreover, using Assumption 3.1.3 and Lemma 3.7.2 one can write R(E) ⊆

R(CSSD).

(iv) For convenience, let ESSD = SSD
(
D(Y), D(X)

)
. Based on the definition of CSSD

41

and ESSD, one can write

R(D(X)CSSD) = R(D(Y)CSSD)

R(D(X)ESSD) = R(D(Y)ESSD)

These equations in conjunction with the maximality of R(CSSD) from part (iii) imply

R(ESSD) ⊆ R(CSSD). Using a similar argument, invoking the maximality of R(ESSD), we

have R(CSSD) ⊆ R(ESSD), concluding the proof.

Remark 3.3.2. (Time and Space Complexity of the SSD Algorithm). Given N

data snapshots and a dictionary with Nd elements, where usually N � Nd, and assuming

that operations on scalar elements require time and memory of order O(1), the most time

and memory consuming operation in the SSD algorithm is Step 4. This step can be done by

truncated Singular Value Decomposition (SVD) and finding the perpendicular space to the

span of the right singular vectors, with time complexity O(NN2
d) and memory complexity

O(NNd), see e.g., [LWC19]. Since, based on Theorem 3.3.1(i), the SSD algorithm terminates

in at most Nd iterations, the total time complexity is O(NN3
d). However, since at each

iteration we can reuse the memory for Step 4, the space complexity of SSD is O(NNd). �

Note that SSD removes the functions that do not evolve linearly in time according

to the available data snapshots. Therefore, as we gather more data, the identified subspace

either remains the same or gets smaller, as stated next.

Lemma 3.3.3. (Monotonicity of SSD Output with Respect to Data Addition).

42

Let D(X), D(Y) and D(X̂), D(Ŷ) be two pairs of data snapshots such that

rows
(
[D(X), D(Y)]

)
⊆ rows

(
[D(X̂), D(Ŷ)]

)
, (3.16)

and for which Assumption 3.1.3 holds. Then

R
(
SSD(D(X̂), D(Ŷ))

)
⊆ R

(
SSD(D(X), D(Y))

)
.

Proof. We use the shorthand notation Ĉ = SSD
(
D(X̂), D(Ŷ)

)
and C = SSD

(
D(X), D(Y)

)
.

From (3.16), we deduce that there exists a matrix E with rows(E) ⊆ rows(I]rows(X̂)) such

that

ED(X̂) = D(X), ED(Ŷ) = D(Y). (3.17)

Moreover, based on the definition of Ĉ and Theorem 3.3.1(ii), we have R(D(X̂)Ĉ) =

R(D(Ŷ)Ĉ). Hence, there exists a full rank square matrix K̂ such that

D(Ŷ)Ĉ = D(X̂)ĈK̂.

Multiplying both sides from the left by E and using (3.17) gives D(Y)Ĉ = D(X)ĈK̂. Conse-

quently, we have R(D(Y)Ĉ) = R(D(X)Ĉ). Now, the maximality of C (Theorem 3.3.1(iii))

implies R(Ĉ) ⊆ R(C).

Remark 3.3.4. (Implementing SSD on Finite-Precision Machines). Since SSD is

43

iterative, its implementation using finite precision leads to small errors that can affect the

rank and null space of [Ai, Bi] in Step 4. To circumvent this issue, one can approximate

[Ai, Bi] at each iteration by a close (in the Frobenius norm) low-rank matrix. Let σ1 ≥ . . . ≥

σli be the singular values of [Ai, Bi] ∈ RN×li . Given a design parameter ε > 0, let ki be the

minimum integer such that

li∑
j=ki

σ2
j ≤ ε

(li∑
j=1

σ2
j

)
. (3.18)

One can then construct the matrix [Âi, B̂i] by setting σki = · · · = σli = 0 in the singular

value decomposition of [Ai, Bi]. The resulting matrix has lower rank and

‖[Ai, Bi]− [Âi, B̂i]‖2
F ≤ ε‖[Ai, Bi]‖2

F . (3.19)

Hence, ε tunes the accuracy of the approximation. It is important to note that similar error

bounds can be found for other unitarily invariant norms, see e.g. [Mir60]. �

3.3.2 Identification of Linear Evolutions and Koopman Eigenfunc-

tions with the SSD Algorithm

Here, we study the properties of the output of the SSD algorithm in what concerns the

identification of the maximal Koopman-invariant subspace and the Koopman eigenfunctions.

44

If CSSD 6= 0, we define the invariant dictionary as

DSSD(·) := D(·)CSSD. (3.20)

To find the action of the Koopman operator on the subspace spanned by DSSD, we apply

EDMD on D̃(X) and D̃(Y) to find

KSSD = EDMD(DSSD, X, Y) = DSSD(X)†DSSD(Y)

=
(
D(X)CSSD

)†(
D(Y)CSSD

)
. (3.21)

Based on Theorem 3.3.1(ii), we have

R(DSSD(X)) = R(DSSD(Y)). (3.22)

Moreover, DSSD(X) and DSSD(Y) have full column rank as a result of Assumption 3.1.3 and

Theorem 3.3.1(ii). Consequently, KSSD is a (unique) nonsingular matrix satisfying

DSSD(Y) = DSSD(X)KSSD. (3.23)

Interestingly, equation (3.23) implies that the residual error of EDMD, ‖D̃(Y) −

D̃(X)KSSD‖F , is equal to zero. Based on (3.22), one can find KSSD more efficiently and

only based on partial data instead of calculating the pseudo-inverse of D(X)CSSD. Formally,

45

consider full column rank data matrices X̂, Ŷ such that

rows
(
[X̂, Ŷ]

)
⊆ rows

(
[X, Y]

)
.

Then, KSSD = EDMD(DSSD, X̂, Ŷ). Next, we show that the eigenvectors of KSSD fully

characterize the functions that evolve linearly in time according to the available data.

Theorem 3.3.5. (Identification of Linear Evolutions using the SSD Algorithm).

Suppose that Assumption 3.1.3 holds. Let CSSD = SSD
(
D(X), D(Y)

)
6= 0, KSSD =(

D(X)CSSD

)†(
D(Y)CSSD

)
, and f ∈ span(D) denoted as f(·) = D(·)v with v ∈ CNd \ {0}.

Then Kf(xi) = f(yi) = λf(xi) for some λ ∈ C\{0} and for all i ∈ {1, . . . ,]rows(X)} if and

only if v = CSSDw with KSSDw = λw.

Proof. (⇐): Based on definition of KSSD, Assumption 3.1.3, and considering the fact that

CSSD has full column rank (Theorem 3.3.1(ii)), one can use (3.20)-(3.23) and the fact that

KSSDw = λw to write D(Y)CSSDw = λD(X)CSSDw. Consequently, using v = CSSDw we

have

D(Y)v = λD(X)v.

By inspecting the equation above in a row-wise manner, one can deduce that f(yi) = λf(xi)

for some λ ∈ C \ {0} and for all i ∈ {1, . . . ,]rows(X)}, as claimed.

46

(⇒): Based on the hypotheses, we have

D(Y)v = λD(X)v. (3.24)

Consider first the case when v ∈ RNd . Then using (3.24), we deduceR(D(X)v) = R(D(Y)v).

The maximality of CSSD (Theorem 3.3.1(iii)) implies that R(v) ⊆ R(CSSD) and consequently

v = CSSDw for some w. Replacing v by CSSDw in (3.24) and using the definition of KSSD,

one deduces KSSDw = λw.

Now, suppose that v = vR+jvI with vI 6= 0. Since D(X) and D(Y) are real matrices,

one can use (3.24) and write D(Y)v̄ = λ̄D(X)v̄. This, together with (3.24), implies

D(Y)E = D(X)EΛ, (3.25)

where E = [vR, vI] and

Λ =

 Re(λ) Im(λ)

− Im(λ) Re(λ)

 .

Since Λ is full rank, we have R(D(X)E) = R(D(Y)E) and using Theorem 3.3.1(iii), one can

conclude R(E) ⊆ R(CSSD). Consequently, there exists a real vector z such that E = CSSDz.

By replacing this in (3.25) and multiplying both sides from the right by r = [1, j]T and

defining w = zr, one can conclude that v = Er = CSSDw and D(Y)CSSDw = λD(X)CSSDw.

This in conjunction with the definition of KSSD implies that KSSDw = λw, concluding the

proof.

47

Using Theorem 3.3.5, one can identify all the linear evolutions in the span of the

original dictionary, thereby establishing an equivalence with the forward-backward EDMD

characterization of Section 3.2.

Corollary 3.3.6. (Equivalence of Forward-Backward EDMD and SSD in the

Identification of Linear Evolutions). Suppose that Assumption 3.1.3 holds. Let KF =

EDMD(D,X, Y), KB = EDMD(D, Y,X), CSSD = SSD
(
D(X), D(Y)

)
6= 0 and KSSD =(

D(X)CSSD

)†(
D(Y)CSSD

)
. Then, KFv = λv and KBv = λ−1v for some v ∈ CNd \ {0} and

λ ∈ C \ {0} if and only if there exists vector w such that v = CSSDw and KSSDw = λw.

The proof of this result is a consequence of Theorems 3.2.3 and 3.3.5. Note that the

linear evolutions identified by SSD might not be Koopman eigenfunctions, since we can only

guarantee that they evolve linearly according to the available data snapshots, not starting

everywhere in the state space M. The following result uses the equivalence between SSD

and the Forward-Backward EDMD method to provide a guarantee for the identification of

Koopman eigenfunctions.

Theorem 3.3.7. (Identification of Koopman Eigenfunctions by the SSD Al-

gorithm). Given an infinite sampling, suppose that the sequence of dictionary snap-

shot matrices is R-rich. For N ≥ R, let CSSD,N = SSD
(
D(X1:N), D(Y1:N)

)
6= 0, and

KSSD,N =
(
D(X1:N)CSSD,N

)†(
D(Y1:N)CSSD,N

)
. Given v ∈ CNd \ {0} and λ ∈ C \ {0},

let f(·) = D(·)v. Then,

(i) If f is an eigenfunction of the Koopman operator with eigenvalue λ, then for every

N ≥ R, there exists wN such that v = CSSD,NwN and KSSD
N wN = λwN ;

48

(ii) Conversely, and assuming the dictionary functions are continuous and Assump-

tion 3.2.4 holds, if v ∈ R(CSSD,N) and there exists wN such that v = CSSD,NwN and

KSSD,NwN = λwN for every N ≥ R, then f is an eigenfunction of the Koopman

operator with probability 1.

This result is a consequence of Theorem 3.2.6 and Corollary 3.3.6. Theorem 3.3.7

shows that the SSD algorithm finds all the eigenfunctions in the span of the original dictio-

nary almost surely. The identified eigenfunctions span a Koopman-invariant subspace. This

subspace however is not necessarily the maximal Koopman-invariant subspace in the span of

the original dictionary. Next, we show that the SSD method actually identifies the maximal

Koopman-invariant subspace in the span of the dictionary.

Theorem 3.3.8. (SSD Finds the Maximal Koopman-Invariant Subspace as N →

∞). Given an infinite sampling and a dictionary composed of continuous functions, suppose

that the sequence of dictionary snapshot matrices is R-rich and Assumption 3.2.4 holds. Let

the columns of CSSD,∞ form a basis for limN→∞R(CSSD,N), i.e.,

R(CSSD,∞) = lim
N→∞

R(CSSD,N) =
∞⋂

N=R

R(CSSD,N). (3.26)

(note that the sequence {R(CSSD,N)}∞N=1 is monotonic, and hence convergent). Then

span(D(·)CSSD,∞) is the maximal Koopman-invariant subspace in the span of the dictio-

nary D with probability 1.

Proof. If CSSD,∞ = 0, considering the fact that for all N ≥ R, R(CSSD,N+1) ⊆ R(CSSD,N)

(Lemma 3.3.3), one deduces that there exists m ∈ N such that for all i ≥ m, CSSD,i = 0.

49

Hence based on Theorem 3.3.1(iii), the maximal Koopman-invariant subspace acquired from

the data is {0}. Noting that the subspace identified by SSD contains the maximal Koopman-

invariant subspace, we deduce that the latter is the zero subspace, which is indeed spanned

by D(·)CSSD,∞.

Now, suppose that CSSD,∞ 6= 0 and has full column rank. First, we show that

R(D(X1:N)CSSD,∞) = R(D(Y1:N)CSSD,∞), ∀N ≥ R. (3.27)

Considering (3.26) and the fact that for all N ≥ R, R(CSSD,N+1) ⊆ R(CSSD,N), we can write

for all N ≥ R

R(CSSD,∞) =
∞⋂
i=N

R(CSSD,i).

Invoking Lemma 3.7.4, we have for all N ≥ R,

R(D(X1:N)CSSD,∞) =
∞⋂
i=N

R(D(X1:N)CSSD,i), (3.28a)

R(D(Y1:N)CSSD,∞) =
∞⋂
i=N

R(D(Y1:N)CSSD,i). (3.28b)

Moreover, for all i ≥ N we have R(D(X1:i)CSSD,i) = R(D(Y1:i)CSSD,i) and hence by looking

at this equality in a row-wise manner, one can write

R(D(X1:N)CSSD,i) = R(D(Y1:N)CSSD,i), ∀i ≥ N. (3.29)

50

The combination of (3.28) and (3.29) yields (3.27). Based on the latter, the fact that D(X1:N)

and D(Y1:N) have full column rank for every N ≥ R and the fact that CSSD,∞ has full column

rank, there exists a unique nonsingular square matrixKSSD,∞ ∈ R]cols(CSSD,∞)×]cols(CSSD,∞) such

that

D(X1:N)CSSD,∞KSSD,∞ = D(Y1:N)CSSD,∞, ∀N ≥ R. (3.30)

Note that KSSD,∞ does not depend on N . Next, we aim to prove that for every function

f ∈ span(D(·)CSSD,∞), Kf is also in span(D(·)CSSD,∞) almost surely. Let v ∈ R]cols(CSSD,∞)

such that f(·) = D(·)CSSD,∞v and define

g(·) := D(·)CSSD,∞KSSD,∞v. (3.31)

We show that g = f ◦ T = Kf almost surely. Define the function h := g −Kf = g − f ◦ T .

Also, let S∞ =
⋃∞
N=R SN be the set of initial conditions. Based on (3.30), (3.31), and

definition of h,

h(x) = 0, ∀x ∈ S∞.

Moreover, h is continuous since D and T are continuous. This, together with the fact that

S∞ is dense in M almost surely (Assumption 3.2.4), we deduce h ≡ 0 on M almost surely.

Therefore, g = Kf = f ◦ T with probability 1. Noting that g(·) ∈ span(D(·)CSSD,∞), we

have proven that span(D(·)CSSD,∞) is Koopman invariant almost surely.

51

Finally, we prove the maximality of span(D(·)CSSD,∞). Let L be a Koopman-

invariant subspace in span(D). Then there exists a full column rank matrix E such that

L = span(D(·)E). Moreover, since the invariance of L reflects in data, R(D(X1:N)E) =

R(D(Y1:N)E), for all N ≥ R. As a result, based on Theorem 3.3.1(iii), we have R(E) ⊆

R(CSSD,N), for all N ≥ R, and hence R(E) ⊆ R(CSSD,∞). Therefore, by Lemma 3.7.2, we

have L = span(D(·)E) ⊆ span(D(·)CSSD,∞), which completes the proof.

Remark 3.3.9. (Generalized Koopman Eigenfunctions). One can also extend the

above discussion for generalized Koopman eigenfunctions (see e.g. [BMM12, Remark 11]).

Given a generalized eigenvector w of KSSD, the corresponding generalized Koopman eigen-

function is φ(·) = D(·)CSSDw. �

3.4 Streaming Symmetric Subspace Decomposition

In this section, we consider the setup where data becomes available in a streaming

fashion. A straightforward algorithmic solution for this scenario would be to re-run, at each

timestep, the SSD algorithm with all the data available up to then. However, this approach

does not take advantage of the answers computed in previous timesteps, and may become

inefficient when the size of the data is large. Instead, here we pursue the design of an online

algorithm, termed Streaming Symmetric Subspace Decomposition (SSSD), cf. Algorithm 2,

that updates the identified subspaces using the previously computed ones. Note that the

SSSD algorithm is not only useful for streaming data sets but also for the case of non-

streaming large data sets for which the execution of SSD requires a significant amount of

52

memory.

Algorithm 2 Streaming Symmetric Subspace Decomposition

1: Initialization

2: DX
S (1)←

[
D(X1:S)
D(xS+1)

]
, DY

S (1)←
[
D(Y1:S)
D(yS+1)

]
3: i← 1, A1 ← DX

S (1), B1 ← DY
S (1), C0 ← INd

4: while 1 do
5: if Ci−1 = 0 then

6: Ci ← 0 . The basis does not exist
7: return Ci
8: break
9: end if

10: Fi ← SSD
(
Ai, Bi

)
. Using Algorithm 1

11: if Fi = 0 then

12: Ci ← 0 . The basis does not exist
13: return Ci
14: break
15: end if
16: if]rows(Fi) >]cols(Fi) then
17: Ci ← basis(R(Ci−1Fi)) . Subspace reduction
18: else
19: Ci ← Ci−1 . No change
20: end if
21: return Ci
22: i← i+ 1

O Replacing the last data snapshot with the new one

23: DX
S (i) =

[
D(X1:S)
D(xS+i)

]
, DY

S (i) =

[
D(Y1:S)
D(yS+i)

]
O Calculating the reduced dictionary snapshots

24: Ai ← DX
S (i)Ci−1, Bi ← DY

S (i)Ci−1

25: end while

Given the signature snapshot matrices X1:S and Y1:S, for some S ∈ N, and a dictionary

of functions D, the SSSD algorithm proceeds as follows: at each iteration, the algorithm

receives a new pair of data snapshots, combines them with signature data matrices, and

applies the latest available dictionary on them. Then, it uses SSD on those dictionary

matrices and further prunes the dictionary. The basic idea of the SSSD algorithm stems

53

from the monotonicity of SSD’s output dictionary versus the data (cf. Lemma 3.3.3), i.e., by

adding more data the dimension of the dictionary does not increase. Since the SSD algorithm

relies on Assumption 3.1.3, we make the following assumption on the signature snapshots

and the original dictionary.

Assumption 3.4.1. (Full Rank Signature Dictionary Matrices). We assume that

there exists S ∈ N such that the matrices D(X1:S) and D(Y1:S) have full column rank. �

For a finite number of data snapshots, Assumption 3.4.1 is equivalent to Assump-

tion 3.1.3. For an infinite sampling, Assumption 3.4.1 holds for an R-rich sequence of snap-

shot matrices. The next result discusses the basic properties of the SSSD output at each

iteration.

Proposition 3.4.2. (Properties of SSSD Output). Suppose Assumption 3.4.1 holds.

For i ∈ N, let Ci denote the output of the SSSD algorithm at the ith iteration. Then, for all

i ∈ N,

(i) Ci has full column rank or is equal to zero;

(ii) R(Ci) ⊆ R(Ci−1);

(iii) R(DX
S (i)Ci) = R(DY

S (i)Ci).

Proof. (i) We prove the claim by induction. C0 = INd
and has full column rank. Now,

suppose that Ck has full column rank or is zero. We show the same fact for Ck+1. If Ck = 0,

then SSSD executes Step 6 and we have Ck+1 = 0. Now, suppose that Ck has full column

rank. Considering the fact that DX
S (k + 1) and DY

S (k + 1) have full column rank, one can

54

deduce that Ak+1 and Bk+1 have full column rank. Consequently, based on Theorem 3.3.1(ii),

Fk+1 has full column rank or is equal to zero. In the former case, the algorithm executes

Step 17 or Step 19, and based on definition of basis function and the fact that Ck has full

column rank, one deduces that Ck+1 has full column rank. In the latter case, the algorithm

executes Step 12, and Ck+1 = 0, as claimed.

Now we prove (ii). Note that at iteration i, Ci will be determined by either

Step 6, 12, 19, or 17. The proof for the first three cases is trivial. We only need to prove the

result for the case when the SSSD algorithm executes Step 17. Based on Theorem 3.3.1(ii),

one can deduce that Fi has full column rank. Also, we have R(Fi) ⊆ R(I]cols(Ci−1)). Hence

using Step 17 and Lemma 3.7.2, one can write

R(Ci) = R(Ci−1Fi) ⊆ R(Ci−1I]cols(Ci−1)) = R(Ci−1),

as claimed.

Next, we prove part (iii). If the SSSD algorithm executes Step 6 or Step 12, then the

result follows directly. Now, suppose that the algorithm executes Step 17 or Step 19. Note

that if the algorithm executes one of these two steps, then Fi 6= 0, Ci−1 6= 0 and they have full

column rank (Theorem 3.3.1(ii)). Hence,]rows(Fi) ≥]cols(Fi). As a result, if the algorithm

executes Step 19, we have]rows(Fi) =]cols(Fi) and consequently R(Fi) = R(I]cols(Ci−1)).

Therefore,

R(Ci) = R(Ci−1) = R(Ci−1I]cols(Ci−1)) = R(Ci−1Fi). (3.32)

55

Moreover, if the SSSD algorithm executes Step 17, then using the definition of basis function,

we have

R(Ci) = R(Ci−1Fi). (3.33)

Also, based on definition of Fi at Step 10, Theorem 3.3.1(ii), and the fact that Ai =

DX
S (i)Ci−1 and Bi = DY

S (i)Ci−1,

R(DX
S (i)Ci−1Fi) = R(DY

S (i)Ci−1Fi).

Using this together with (3.32) upon execution of Step 19 and (3.33) upon execution of

Step 17, one deduces R(DX
S (i)Ci) = R(DY

S (i)Ci), concluding the proof.

Next, we show that the SSSD algorithm at each iteration identifies exactly the same

subspace as the SSD algorithm given all the data up to that iteration.

Theorem 3.4.3. (Equivalence of SSD and SSSD). Suppose Assumption 3.4.1 holds.

For i ∈ N, let Ci denote the output of the SSSD algorithm at the ith iteration and let

CSSD,i = SSD
(
D(X1:S+i), D(Y1:S+i)

)
. Then,

R(Ci) = R(CSSD,i), ∀i ∈ N.

Proof. Inclusion R(CSSD,i) ⊆ R(Ci) for all i ∈ N: We reason by induction. Note that in

the SSSD algorithm, for i = 1 we have F1 = CSSD,1. As a result, if F1 = 0 then based on

Step 12, C1 = CSSD,1 = 0. If the SSSD algorithm executes Step 17, then using the fact that

56

C0 = INd
, one can write R(C1) = R(CSSD,1). Moreover, if the SSSD algorithm executes

Step 19, based on Step 16 and Theorem 3.3.1(ii), one can deduce that R(CSSD,1) = R(C1) =

R(F1) = R(INd
). Consequently, in all cases

R(CSSD,1) = R(C1). (3.34)

Hence, R(CSSD,1) ⊆ R(C1). Now, suppose that

R(CSSD,k) ⊆ R(Ck). (3.35)

We need to show that R(CSSD,k+1) ⊆ R(Ck+1). If CSSD,k+1 = 0 then the proof follows.

Now assume that CSSD,k+1 6= 0 and has full column rank based on Theorem 3.3.1(ii). By

Lemma 3.3.3, we have

R(CSSD,k+1) ⊆ R(CSSD,k). (3.36)

Using (3.35) and (3.36), one can deduce R(CSSD,k+1) ⊆ R(Ck). Consequently, based on

the fact that CSSD,k+1 6= 0, we have Ck 6= 0 and hence has full column rank based on

Proposition 3.4.2(i). Moreover, there exists a full column-rank matrix Ek such that

CSSD,k+1 = CkEk. (3.37)

Two cases are possible. In case 1, the SSSD algorithm executes Step 19. In case 2, the

57

algorithm executes Step 12 or Step 17. For case 1, we have Ck+1 = Ck. Consequently,

using (3.37) and considering the fact that R(Ek) ⊆ R(I]cols(Ck)) and the fact that Ck has full

column rank, one can use Lemma 3.7.2 and conclude

R(CSSD,k+1) = R(CkEk) ⊆ R(Ck) = R(Ck+1). (3.38)

Now, consider case 2. In this case, we have

R(Ck+1) = R(CkFk+1). (3.39)

Also, based on definition of CSSD,k+1 and Theorem 3.3.1(ii), one can write

R(D(X1:k+1CSSD,k+1)) = R(D(Y1:k+1CSSD,k+1)).

Looking at this equation in a row-wise manner and considering the fact that rows
(
[DX

S (k +

1), DY
S (k + 1)]

)
⊆ rows

(
[D(X1:k+1), D(Y1:k+1)]

)
, one can write

R(DX
S (k + 1)CSSD,k+1) = R(DY

S (k + 1)CSSD,k+1).

Now, using (3.37) we have R(DX
S (k + 1)CkEk) = R(DY

S (k + 1)CkEk). Also, noting the

definition of Fk+1 and the fact that Ak = DX
S (k + 1)Ck, Bk = DY

S (k + 1)Ck, one can

use Theorem 3.3.1(iii) to write R(Ek) ⊆ R(Fk+1). Since Ck has full column rank, we

58

use (3.37), (3.39), and Lemma 3.7.2 to write

R(CSSD,k+1) = R(CkEk) ⊆ R(CkFk+1) = R(Ck+1). (3.40)

In both cases, equations (3.38) and (3.40) conclude the induction.

Inclusion R(Ci) ⊆ R(CSSD,i) for all i ∈ N: We reason by induction too. Using (3.34),

we have R(C1) ⊆ R(CSSD,1). Now, suppose that

R(Ck) ⊆ R(CSSD,k). (3.41)

We prove the same result for k+1. If Ck+1 = 0 then the result directly follows. Now, assume

that Ck+1 6= 0. Consequently, based on (3.41), Proposition 3.4.2(i), and Theorem 3.3.1(ii),

we deduce that Ck+1 and CSSD,k+1 have full column rank.

The first part of the proof and (3.41) imply that R(Ck) = R(CSSD,k). Consequently,

noting the fact that CSSD,k is the output of the SSD algorithm with D(X1:S+k) and D(Y1:S+k),

one can use Theorem 3.3.1(ii) to write

R
(
D(X1:S+k)Ck

)
= R

(
D(Y1:S+k)Ck

)
. (3.42)

Moreover, based on Proposition 3.4.2(ii), we have R(Ck+1) ⊆ R(Ck). Hence, since Ck and

Ck+1 have full column rank, there exists a matrix Gk with full column rank such that

Ck+1 = CkGk. (3.43)

59

Also, based on Proposition 3.4.2(iii) at iteration k + 1 of the SSSD algorithm

R(DX
S (k + 1)Ck+1) = R(DY

S (k + 1)Ck+1). (3.44)

Consequently, based on (3.43) and (3.44), we have

R(D(X1:S)CkGk) = R(D(Y1:S)CkGk).

Using this equation together with (3.42) and Lemma 3.7.3,

R
(
D(X1:S+k)CkGk

)
= R

(
D(Y1:S+k)CkGk

)
.

Moreover, using (3.43) one can write

R
(
D(X1:S+k)Ck+1

)
= R

(
D(Y1:S+k)Ck+1

)
.

Hence, there exists a nonsingular square matrix K∗ such that

D(X1:S+k)Ck+1K
∗ = D(Y1:S+k)Ck+1. (3.45)

Also, based on (3.44) and noting that DX
S (k + 1), DX

S (k + 1), and Ck+1 have full

column rank, there exists a nonsingular square matrix K such that

DX
S (k + 1)Ck+1K = DY

S (k + 1)Ck+1. (3.46)

60

Using the first S rows of (3.45) and (3.46), one can write

D(X1:S)Ck+1K
∗ = D(Y1:S)Ck+1,

D(X1:S)Ck+1K = D(Y1:S)Ck+1.

By subtracting the second equation from the first one, we get

D(X1:S)Ck+1(K∗ −K) = 0.

Moreover, since D(X1:S)Ck+1 has full column rank, we deduce K∗ = K. Using this together

with (3.45) and (3.46) yields

R
(
D(X1:S+k+1)Ck+1

)
= R

(
D(Y1:S+k+1)Ck+1

)
. (3.47)

From (3.47), the definition of CSSD,k+1 and Theorem 3.3.1(iii), we deduce R(Ck+1) ⊆

R(CSSD,k+1), concluding the proof.

Theorem 3.4.3 establishes the equivalence between the SSSD and SSD algorithms. As

a consequence, all results regarding the identification of Koopman-invariant subspaces and

eigenfunctions presented in Section 3.3 are also valid for the output of the SSSD algorithm.

Remark 3.4.4. (Time and Space Complexity of the SSSD Algorithm). Given the

first N data snapshots and a dictionary with Nd elements, with N > S ≥ Nd, and assuming

that operations on scalar elements require time and space of order O(1), the most time

and memory consuming operation in the SSSD algorithm is Step 10 invoking SSD. In this

61

step, the most time consuming operation is performing SVD, with time complexity O(SN2
d)

and space complexity of O(SNd), see e.g., [LWC19]. After having performed the first SVD,

the ensuing ones result in a reduction of the dimension of the subspace. Therefore, the

SSSD algorithm performs at most N − S SVDs with no subspace reduction with overall

time complexity O(NSN2
d) and at most Nd SVD operations with subspace reductions with

overall time complexity O(SN3
d). Considering the fact that N ≥ Nd, the complexity of the

SSSD algorithm is O(NSN2
d). Moreover, in many real world applications S = O(Nd) (in fact

usually S = Nd), which reduces the time complexity of SSSD to O(NN3
d), which is the same

complexity as SSD. Moreover, since we can reuse the space used in Step 10 at each iteration,

and considering the fact that the space complexity of this step is O(SNd), we deduce that

the space complexity of SSSD is O(SNd). This usually reduces to O(N2
d) since S = O(Nd)

in many real-world applications. �

Remark 3.4.5. (SSSD is More Stable and Runs Faster than SSD). The SSSD

algorithm is more computationally stable than SSD, since it always works with matrices of

size at most (S+1)×Nd while SSD works with matrices of sizeN×Nd. Moreover, even though

SSD and SSSD have the same time complexity, the SSSD algorithm run faster for two reasons.

First, at each iteration of the SSSD algorithm, the dictionary gets smaller, which reduces

the cost of computation for the remaining data snapshots. Second, the characterizations

in Remarks 3.3.2 and 3.4.4 only consider the number of floating point operations for the

time complexity and ignore the amount of time used for loading the data. SSSD needs to

load significantly smaller data matrices, which leads to a considerable reduction in run time

compared to SSD. �

62

3.5 Approximating Koopman-Invariant Subspaces

We note that, if the span of the original dictionary D does not contain any Koopman-

invariant subspace, then the SSD algorithm returns the trivial solution, which does not result

in any information about the behavior of the dynamical system. To circumvent this issue,

here we propose a method to approximate Koopman-invariant subspaces. Noting the fact

that the existence of a Koopman-invariant subspace translates into the rank deficiency of the

concatenated matrix [Ai, Bi] in Step 4 of the SSD algorithm (cf. 1), we propose to replace

the null function in SSD with the approx-null routine presented in Algorithm 3 below. This

routine constructs an approximated null space by selecting a set of small singular values.

The parameter ε > 0 in Algorithm 3 is a design choice that tunes the accuracy of the

approximation2.

The next result studies the basic properties of Algorithm 3.

Proposition 3.5.1. (Properties of Algorithm 3). Let A and B be matrices of equal

size, ε > 0, and Z = approx-null(A,B, ε). Then,

(i) Algorithm 3 terminates in finite iterations;

(ii) Z is either ∅ or has full column rank;

(iii) if Z 6= ∅, let Z = [(ZA)T , (ZB)T]T with ZA, ZB of equal size. Then ZA and ZB have

full column rank.

Proof. (i) We prove it by contradiction, i.e., suppose the algorithm does not terminate in

finite iterations. Let Zi be the internal matrix in Step 8 at iteration i. Since by construction

2In Algorithm 3, A and B have equal size and both have full column rank.

63

Algorithm 3 approx-null(A,B, ε)

Inputs: A,B matrices, ε > 0 Output: Z . A,B have the same size
Procedure: Z ← approx-null(A,B, ε)
O Singular value decomposition of [A,B]

1: {U, S, V } ← svd([A,B]) . USV T = [A,B]

2: m←]cols(V) . # of columns of V

3: kmin ←
{

mink s. t.
(∑m

i=k S
2
i,i

‖S‖2F
≤ ε2 ∧ k >]cols(A)

)}
O Choosing the right singular vectors corresponding to small singular values as the
approximated null space

4: if kmin = ∅ then
5: return ∅
6: break
7: else
8: Z ← (V T

kmin:m)T

9: end if

O Make sure Assumption 3.1.3 holds for the output
10: while 1 do

11:

[
ZA

ZB

]
← Z .]rows(ZA) =]rows(ZB)

12: if rank(ZA) = rank(ZB) =]cols(Z) then
13: return Z . Basis for approximated null space
14: break
15: end if

O Reducing the space
16: if]cols(Z) = 1 then
17: return ∅
18: break
19: else
20: Z ← (ZT

2:]cols(Z))
T . Removing the 1st column

21: end if
22: end while

64

kmin >]cols(A) and m =]cols(V) =]cols(A) +]cols(B) (cf. Step 2), we deduce

]cols(Z1) = m− kmin ≤]cols(B). (3.48)

Moreover, since we assumed the algorithm never terminates, it executes Step 20 at each

iteration and consequently,]cols(Zi+1) =]cols(Zi) − 1 for i ∈ N. As a result, one can

use (3.48) to write

]cols(Zj) =]cols(Z1)− j + 1 ≤]cols(B)− j + 1,

which leads to]cols(Zj) < 0 for j >]cols(B) + 1, contradicting]cols(Zj) ≥ 0.

(ii) There are three ways for Algorithm 3 to terminate: either Steps 13-14, Steps 5-6,

or Steps 17-18. The latter two cases imply Z = ∅. In the other case, since the columns

of Z are selected from the right singular vectors of [A,B], they are nonzero and mutually

orthogonal. Consequently, Z has full column rank.

(iii) Since Z 6= ∅, the algorithm executes Steps 13-14 upon termination. Hence, the

condition in Step 12 holds, and consequently ZA and ZB have full column rank.

We next characterize the quality of Algorithm 3’s output.

Proposition 3.5.2. (Quality of Low-Rank Approximation of [A,B] Constructed

with Output of Algorithm 3). Let ε > 0, A and B full column rank matrices with equal

size, and assume Z = null-approx(A,B, ε) 6= ∅. Denote W = [A,B] and let W = USV T

be its singular value decomposition. Let S̄ be defined by setting in S the entries S̄i,i = 0

65

for i ∈ {]cols(V) −]cols(Z) + 1, . . . ,]cols(V)}. Define W̄ = US̄V T and express it as the

concatenation W̄ = [Ā, B̄], where Ā and B̄ have the same size. Then,

(i) ‖W − W̄‖F ≤ ε‖W‖F ;

(ii) the columns of Z form a basis for the null space of W̄ ;

(iii) ĀZA = −B̄ZB, where Z = [(ZA)T , (ZB)T]T and ZA, ZB have the same size.

Proof. (i) By construction we have Z = V T
(]cols(V)−]cols(Z)+1):]cols(V), i.e., the columns of Z are

the last]cols(Z) columns of V , corresponding to the smallest singular values of W . Moreover,

based on Step 3 of the algorithm, the fact that the singular values are ordered in a decreasing

manner in S, and noting that kmin ≤]cols(V)−]cols(Z) + 1, one can write

]cols(V)∑
i=]cols(V)−]cols(Z)+1

S2
i,i ≤ ε2

]cols(V)∑
i=1

S2
i,i = ε2‖W‖2

F .

The proof concludes by noting that the left hand side term in the previous equation is equal

to ‖W − W̄‖2
F .

(ii) The proof directly follows from the fact that W̄ = US̄V T is the singular value

decomposition of W̄ and the columns of Z are the right singular vectors corresponding to

zero singular values of W̄ .

(iii) Based on (ii), W̄Z = 0. Hence, ĀZA = −B̄ZB.

We formally define the Approximated-SSD algorithm (cf. Algorithm 4) as the modi-

66

fication of SSD that replaces Step 4 of Algorithm 1 by

ZA
i

ZB
i

← approx-null(Ai, Bi, ε).

Since all other steps of Approximated-SSD are identical to SSD, we omit presenting it for

space reasons.

Algorithm 4 Approximated Symmetric Subspace Decomposition

Inputs: D(X), D(Y) ∈ RN×Nd , ε > 0 Output: Caprx
SSD

Procedure: Caprx
SSD ← Approximated-SSD

(
D(X), D(Y), ε

)
1: Initialization
2: i← 1, A1 ← D(X), B1 ← D(Y), Caprx

SSD ← INd

3: while 1 do

4:

[
ZA
i

ZB
i

]
← approx-null(Ai, Bi, ε). . Calling Algorithm 3

5: if approx-null(Ai, Bi, ε) = ∅ then
6: return 0 . The basis does not exist
7: break
8: end if
9: if]rows(ZA

i) ≤]cols(ZA
i) then

10: return Caprx
SSD . The procedure is complete

11: break
12: end if
13: Caprx

SSD ← Caprx
SSDZ

A
i . Reducing the subspace

14: Ai+1 ← AiZ
A
i , Bi+1 ← BiZ

A
i , i← i+ 1

15: end while

Proposition 3.5.1 completely preserves the logical structure for the proof of Theo-

rem 3.3.1(i) and, as a result, we deduce that the Approximated-SSD algorithm terminates in

at most Nd iterations. Moreover, the Caprx
SSD matrix is zero or has full column rank, since the

second part of the proof for Theorem 3.3.1(ii) also holds for Approximated-SSD. If Caprx
SSD 6= 0,

67

one can define the reduced dictionary with Ñd =]cols(Caprx
SSD) elements as

D̃aprx(·) := D(·)Caprx
SSD . (3.49)

We propose calculating the linear prediction matrix Kaprx
SSD by solving the following total least

squares (TLS) problem (see e.g. [MH07] for more information on TLS)

minimize
K,∆1,∆2

‖[∆1,∆2]‖F (3.50a)

subject to D̃aprx(Y) + ∆2 = (D̃aprx(X) + ∆1)K. (3.50b)

Even though TLS problems do not always have a solution, the next result shows that (3.50)

does. We also provide its closed-form solution and a bound on the accuracy of the prediction

on the available data based on the parameter ε.

Theorem 3.5.3. (Solution and Prediction Accuracy of (3.50)). Let

[D̃aprx(X), D̃aprx(Y)] = USV T be the singular value decomposition of [D̃aprx(X), D̃aprx(Y)].

Let S̄ be defined by setting in S the entries S̄i,i = 0 for i ∈ {Ñd + 1, . . . , 2Ñd}. Let

US̄V T = [Ā, B̄], with Ā, B̄ of the same size. Define

Kaprx
SSD = Ā†B̄, (3.51a)

[∆∗1,∆
∗
2] = [Ā, B̄]− [D̃aprx(X), D̃aprx(Y)]. (3.51b)

68

Then, Kaprx
SSD , ∆∗1, ∆∗2 are the global solution of (3.50) and

‖[∆∗1,∆∗2]‖F ≤ ε‖[D̃aprx(X), D̃aprx(Y)]‖F . (3.52)

Proof. One can rewrite (3.50b) as

(
[D̃aprx(X), D̃aprx(Y)] + [∆1,∆2]

) K

−IÑd

 = 0,

which implies that rank([D̃aprx(X), D̃aprx(Y)] + [∆1,∆2]) ≤ Ñd. Using Eckart-Young

theorem [EY36], one deduces that [Ā, B̄] is the closest matrix (in Frobenius norm) to

[D̃aprx(X), D̃aprx(Y)] of rank smaller than or equal to Ñd. In other words, ∆∗1 and ∆∗2

in (3.51b) minimize the cost function in (3.50a). Next, we need to show that they also

satisfy (3.50b) with Kaprx
SSD defined in (3.51a).

Let t be the termination iteration of the Approximated-SSD algorithm. Since

Caprx
SSD 6= 0, the algorithm executes Step 10. Therefore, the condition in Step 9 holds and

]rows(ZA
t) ≤]cols(ZA

t), where [(ZA
t)T , (ZB

t)T]T = approx-null(At, Bt, ε). In addition, based

on Proposition 3.5.1(iii), ZA
t and ZB

t are nonsingular square matrices. Noting that by

definition in the Approximated-SSD algorithm, At = D(X)Caprx
SSD = D̃aprx(X) and Bt =

D(Y)Caprx
SSD = D̃aprx(Y), one can use Proposition 3.5.2(iii) with W = [D̃aprx(X), D̃aprx(Y)]

and W̄ = [Ā, B̄] to write ĀZA
t = −B̄ZB

t . Since ZA
t and ZB

t are nonsingular square matri-

ces, the previous equation leads to R(Ā) = R(B̄) and ĀKaprx
SSD = B̄, where Kaprx

SSD is defined

in (3.51a). As a result, ∆∗1,∆
∗
2, K

aprx
SSD satisfy the constraint (3.50b). Finally, the accuracy

69

bound defined in (3.52) follows from Proposition 3.5.2(i) with W = [D̃aprx(X), D̃aprx(Y)] and

W̄ = [Ā, B̄].

Note that, unlike in the exact case (cf. Theorem 3.3.8), Theorem 3.5.3 does not

provide an out-of-sample bound on prediction accuracy. According to this result, a small

perturbation [∆∗1,∆
∗
2] to the matrix [D̃aprx(X), D̃aprx(Y)] allows us to describe the evolution

of the dictionary matrices linearly through Kaprx
SSD . Moreover, the Frobenius norm of the

perturbation is upper bounded by ε‖[D̃aprx(X), D̃aprx(Y)]‖F , which implies that a smaller ε

leads to better accuracy on the observed samples.

3.6 Simulation Results

We illustrate the efficacy of the proposed methods in two examples.3

Example 3.6.1. (Unstable Discrete-time Polynomial System). Consider the non-

linear system

x+
1 = 1.1x1

x+
2 = 1.2x2 + 0.1x2

1 + 0.1, (3.53)

with state xT = [x1, x2]T . System (3.53) is actually an unstable Polyflow [JT19] which has

a state-inclusive finite-dimensional Koopman-invariant subspace comprised of polynomials.

3We have chosen on purpose low-dimensional examples to be able to fully detail the identified Koopman
eigenvalues and associated subspaces. However, it is worth pointing out that the results presented here are
applicable without any restriction on the type of dynamical system, its dimension, or the sparsity of the
model in the dictionary.

70

We use the dictionary D(x) = [1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x1x

2
2, x

2
1x2, x

3
2] with Nd = 10. More-

over, we gather 2× 104 data snapshots uniformly sampled from [−2, 2]× [−2, 2]. We use the

SSD and SSSD strategies to identify the maximal Koopman-invariant subspaces in span(D).

In the SSSD method, we use the first 10 data snapshots as signature snapshots and feed the

rest of the data to the algorithm according to the order they appear in the data set. We use

the strategy explained in Remark 3.3.4 with ε = 10−12 to overcome error due to the use of

finite-precision machines. Both methods find bases for the 6-dimensional subspace spanned

by {1, x1, x2, x1x2, x
2
1, x

3
1}, which is the maximal Koopman-invariant subspace in span(D).

The SSSD method, however, performs the calculations 96% faster than SSD. One can find

KSSD by applying EDMD on either of the identified dictionaries according to (3.21). More-

over, based on Theorems 3.3.5 and 3.3.7, we use the eigendecomposition of KSSD to find all

the Koopman eigenfunctions associated with the system (3.53) in span(D). Table 3.1 shows

the identified eigenfunctions. One can use direct calculation to verify that the identified

functions are the Koopman eigenfunctions associated with system (3.53). Note that since

x1 and x2 are both in the span of the identified Koopman-invariant subspace, one can fully

characterize the behavior of the system using the eigenfunctions and (2.8) linearly or directly

using the identified dictionary and KSSD.

Next, we evaluate the effectiveness of the original dictionary D and the dictionary

DSSD identified by SSD (equivalently, by SSSD) for long-term prediction. To do this, we

consider error functions defined as follows. Given an arbitrary dictionary D, consider its

associated matrix K = EDMD(D, X, Y). For a trajectory {x(k)}Mk=0 of (3.53) with length

71

Table 3.1: Identified eigenfunctions and eigenvalues of the Koopman operator associated
with system (3.53).

Eigenfunction Eigenvalue

φ1(x) = 1 λ1 = 1

φ2(x) = x1 λ2 = 1.1

φ3(x) = x2
1 λ3 = 1.21

φ4(x) = 20 x2
1 − 2x2 − 1 λ4 = 1.2

φ5(x) = x3
1 λ5 = 1.331

φ6(x) = 20 x3
1 − 2x1x2 − x1 λ6 = 1.32

M and initial condition x0, let

Erelative(k) =

∥∥D(x(k))−D(x0)Kk
∥∥

2

‖D(x(k))‖2

× 100, (3.54a)

Eangle(k) = ∠
(
D(x(k)),D(x0)Kk

)
, (3.54b)

where D(x0)Kk is the predicted dictionary vector at time k calculated using the dictionary D.

Erelative corresponds to the relative error in magnitude between the predicted and exact

dictionary vectors and Eangle corresponds to the error in the angle of the vectors.

We compute the errors associated to the original dictionary D, denoted EOrig
relative and

EOrig
angle, and the errors associated to the SSD dictionary DSSD, denoted ESSD

relative and ESSD
angle.

Figure 3.1 illustrates these errors along a trajectory starting from a random initial condition

in [−2, 2] × [−2, 2] for 20 time steps. The plot shows the importance of the dictionary

selection when performing EDMD. Unlike the prediction on span(D), the prediction on the

SSD subspace span(DSSD) matches the behavior of the system exactly. This is a direct

consequence of the fact that span(DSSD) is a Koopman-invariant subspace, on which EDMD

72

fully captures the behavior of the operator through KSSD. It is worth mentioning that based

on Proposition 3.2.2, EDMD with dictionary D also predicts the functions in span(DSSD)

exactly. However, its prediction for functions outside of span(DSSD) leads to large errors.

0 5 10 15 20

time step

0

200

400

600

800

1000

re
la

ti
v
e

er
ro

r
(%

)

E
relative

SSD

E
relative

Orig

0 5 10 15 20

time step

0

1

2

3

4

an
g

le
 (

ra
d

)

E
angle

SSD

E
angle

Orig

Figure 3.1: Relative (left) and angle (right) prediction errors on the original and SSD
subspaces for system (3.53) on a trajectory of length M = 20.

Example 3.6.2. (Duffing Equation). Here, we investigate the efficacy of the proposed

methods in approximating Koopman eigenfunctions and invariant subspaces. Consider the

Duffing equation [WKR15, Section 4.2]

ẋ1 = x2

ẋ2 = −0.5x2 + x1 − x3
1, (3.55)

with state xT = [x1, x2]T . The system has one unstable equilibrium at the origin and

two locally stable equilibria at [±1, 0]T . We consider the discretized version of (3.55) with

timestep ∆t = 0.01s and gather N = 5000 data snapshots uniformly sampled from M =

[−2, 2] × [−2, 2]. Moreover, we use the dictionary D comprised of all Nd = 36 monomials

73

up to degree 7 in the form of
∏7

i=1 yi, where yi ∈ {1, x1, x2}. The maximal Koopman-

invariant subspace in the span of the dictionary is one dimensional, spanned by the trivial

eigenfunction φ ≡ 1. Hence, applying the SSD and SSSD algorithms would result in a trivial

solution. Instead, we apply the Approximated-SSD algorithm on the available dictionary

snapshots with the accuracy parameter ε = 10−3. The outcome is the dictionary D̃aprx with

Ñd = 15 elements. We calculate the linear prediction matrix Kaprx
SSD using Theorem 3.5.3.

The norm of the perturbation ‖[∆∗1,∆∗2]‖F satisfies

‖[∆∗1,∆∗2]‖F ≈ 9.6× 10−4‖[D̃aprx(X), D̃aprx(Y)]‖F ,

agreeing with the upper bound provided in Theorem 3.5.3. We approximate the eigenfunc-

tions of the Koopman operator using the eigendecomposition of Kaprx
SSD . For space reasons, we

only illustrate the leading nontrivial approximated Koopman eigenfunctions with eigenvalue

closest to the unit circle. Figure 3.2(left) shows the real-valued approximated eigenfunc-

tion corresponding to the eigenvalue λ = 0.9919. Despite being an approximation, the

eigenfunction captures the behavior of the vector field accurately and correctly identifies the

attractiveness of the two locally stable equilibria. Given that |λ| < 1, Figure 3.2(left) predicts

that the trajectories eventually converge to one of the stable equilibria. Figure 3.2(right)

shows the absolute value of the approximated Koopman eigenfunctions corresponding to the

eigenvalues λ = 0.9989± 0.0037j. Similarly to the other plot, it captures information about

the shape of the vector field such as the attractive equilibria and their regions of attraction.

74

-2 -1 0 1 2

x
1

-2

-1

0

1

2
x

2

0

2

4

6

8

-2 -1 0 1 2

x
1

-2

-1

0

1

2

x
2

0.2

0.4

0.6

0.8

Figure 3.2: The eigenfunction corresponding to the eigenvalue λ = 0.9919 (left) and the
absolute value of the eigenfunctions corresponding to the eigenvalues λ = 0.9989 ± 0.0037j
(right) for the Koopman operator associated with (3.55), as identified by the Approximated-
SSD algorithm.

We use the relative and angle errors defined in (3.54) to compare the prediction ac-

curacy of the original dictionary D and the Approximated-SSD dictionary D̃aprx (for which

we use Kaprx
SSD). Figure 3.3 illustrates the relative and angle errors along a trajectory start-

ing from a random initial condition in [−2, 2] × [−2, 2] for 30 timesteps. The plot shows

the superiority of EDMD over the subspace identified by Approximated-SSD in long-term

prediction of dynamical behavior.

75

0 10 20 30

time step

0

20

40

60

80
re

la
ti

v
e

er
ro

r
(%

)
E

relative

Approx-SSD

E
relative

Orig

0 10 20 30

time step

0

0.1

0.2

0.3

0.4

an
g
le

 (
ra

d
)

E
angle

Approx-SSD

E
angle

Orig

Figure 3.3: Relative (left) and angle (right) prediction errors on Approximated-SSD and
original subspaces for system (3.55) on a trajectory of length M = 30.

3.7 Chapter Appendix

Here, we provide several linear algebraic results that we have used throughout the

chapter.

Lemma 3.7.1. (Intersection of Linear Spaces). Let A,B ∈ Rm×n be matrices with

full column rank. Suppose that the columns of Z = [(ZA)T , (ZB)T]T ∈ R2n×l form a basis for

the null space of [A,B], where ZA, ZB ∈ Rn×l. Then,

(i) R(AZA) = R(A) ∩R(B);

(ii) ZA and ZB have full column rank.

Proof. (i) First, note that R(AZA) ⊆ R(A). Moreover, by hypothesis, [A,B]Z = 0, which

leads to R(AZA) = R(BZB) ⊆ R(B). Consequently, R(AZA) ⊆ R(A) ∩ R(B). Now,

suppose that v ∈ R(A) ∩ R(B). By definition, there exist vectors w1, w2 ∈ Rn such that

76

v = Aw1 = Bw2. Then,

[
A,B

] w1

−w2

 = 0,

which means that [wT1 ,−wT2]T ∈ R(Z) and there exists r ∈ Rl such that w1 = ZAr and w2 =

−ZBr. Therefore, v = Aw1 = AZAr ∈ R(AZA). Consequently, R(A) ∩ R(B) ⊆ R(AZA)

and the claim follows.

(ii) We prove this part using contradiction. Suppose that there exists v 6= 0 such that

ZAv = 0. Also, since [A,B]Z = 0, one can conclude that AZAv = −BZBv = 0. Since B

has full column rank, we have ZBv = 0. Hence Zv = 0, which is a contradiction since the

columns of Z are linearly independent. A similar reasoning shows that ZB has full column

rank.

Lemma 3.7.2. Let A,C,D be matrices of appropriate sizes, with A having full column rank.

Then R(AC) ⊆ R(AD) if and only if R(C) ⊆ R(D).

Proof. (⇒): Suppose that v ∈ R(C), and hence there exists w such that v = Cw. Therefore,

Av = ACw ∈ R(AC). Since R(AC) ⊆ R(AD), one can deduce that there exist r such that

ACw = ADr, and we get A(v − Dr) = 0. This leads to v = Dr ∈ R(D) since A has full

column rank, and hence R(C) ⊆ R(D).

(⇐): Suppose that v ∈ R(AC), and hence v = ACw for some w. Since R(C) ⊆

R(D), there exists r such that Cw = Dr. As a result, v = ACw = ADr which leads to the

conclusion that v ∈ R(AD) and the claim follows.

77

Lemma 3.7.3. Let A1, B1 ∈ Rm×n, A2, B2 ∈ Rl×n, and C ∈ Rn×k with A1, B1, C having full

column rank. If

R

(A1

A2


)

= R

(B1

B2


)
, (3.56a)

R(A1C) = R(B1C), (3.56b)

then

R

(A1

A2

C
)

= R

(B1

B2

C
)
.

Proof. Based on (3.56a), one can deduce that there exists a nonsingular square matrix K

such that

A1 = B1K, (3.57a)

A2 = B2K. (3.57b)

Multiplying both sides of (3.57a) by C gives

A1C = B1KC. (3.58)

Moreover, based on (3.56b), one can deduce that there exists a nonsingular square matrix

78

K∗

A1C = B1CK
∗. (3.59)

By subtracting (3.59) from (3.58) and considering the fact that B1 has full column rank, one

can deduce that

CK∗ = KC. (3.60)

Now, multiplying both sides of (3.57b) from the right by C and using (3.60), one can write

A2C = B2CK
∗, which in conjunction with (3.59) leads to

A1

A2

C =

B1

B2

CK∗,

completing the proof.

Lemma 3.7.4. Let A, {Ci}∞i=1, and Ĉ be matrices of appropriate sizes. Assume that A has

full column rank and R(Ĉ) =
⋂∞
i=1R(Ci). Then R(AĈ) =

⋂∞
i=1R(ACi).

Proof. First, we prove that R(AĈ) ⊆
⋂∞
i=1R(ACi). Let v ∈ R(AĈ), then there exists a

vector w such that v = AĈw = Ar, with r = Ĉw. Note that r ∈ R(Ĉ) and consequently

r ∈ R(Ci) for all i ∈ N. Hence, for every i ∈ N there exists zi such that r = Cizi. Based on

the definition of v, we have v = Ar = ACizi for every i ∈ N. As a result, v ∈
⋂∞
i=1R(ACi)

which concludes the proof of this inclusion.

79

Now, we prove that
⋂∞
i=1R(ACi) ⊆ R(AĈ). Let v ∈

⋂∞
i=1R(ACi). Then for every

i ∈ N, there exists wi such that v = ACiwi. Moreover, v ∈ R(A) and since A has full column

rank, there exists a unique r such that v = Ar. Therefore, for all i ∈ N, we have r = Ciwi.

Thus, r ∈
⋂∞
i=1R(Ci) and consequently, r ∈ R(Ĉ). Since v = Ar, we have v ∈ R(AĈ),

concluding the proof.

Acknowledgements

This chapter, in part, is a reprint of the material [HC22a] as it appears in ‘Learning

Koopman Eigenfunctions and Invariant Subspaces from Data: Symmetric Subspace Decom-

position’ by M. Haseli and J. Cortés, in IEEE Transactions on Automatic Control 2022. The

dissertation author was the primary investigator and author of this paper. The work in this

chapter was partially supported by ONR Award N00014-18-1-2828.

80

Chapter 4

Parallel Identification of Koopman

Eigenfunctions and Invariant

Subspaces

Given the recent advances in parallel and cloud computing structures, designing meth-

ods that can utilize such hardware is of utmost importance. This chapter aims at providing

parallel computing methods to find the maximal Koopman-invariant subspace in the span of

an arbitrary dictionary of functions using data gather from trajectories of an unknown non-

linear system. In other words, this chapter presents a parallel counterpart to the Symmetric

Subspace Decomposition (SSD) algorithm, cf. Algorithm 1, presented in Chapter 3. We con-

sider a network of processors each aware of a common dictionary of functions and equipped

with a local set of data snapshots. The processors repeatedly interact over a directed commu-

nication graph. Each processor receives its neighbors’ estimates of the invariant dictionary

81

and refines its estimate by applying SSD with its local data on the intersection of the sub-

spaces spanned by its own dictionary and the neighbors’ dictionaries. We identify conditions

on the network topology to ensure the algorithm identifies the maximal Koopman-invariant

subspace in the span of the original dictionary, characterize its time, computational, and

communication complexity, and establish its robustness against communication failures.

4.1 Problem Statement

Our aim here is to use parallel computation to find Koopman eigenfunctions and

invariant subspaces. In other words, we aim to use parallel processing to speed up the

methods provided in Chapter 31. Consider the following discrete-time system defined over

the state space M⊆ Rn

x+ = T (x), (4.1)

and let K be its associated Koopman operator defined on the linear space of functions F

comprised of functions mapping elements inM toM. Given an arbitrary finite-dimensional

functional space P ⊆ F , our goal is to design efficient data-driven algorithms that are able to

identify the maximal Koopman-invariant subspace in P associated with a dynamical system

whose explicit model is unknown. To do so, we rely on data collected about the dynamical

behavior of the system and aim to ensure that the proposed methods are compatible with

parallel processing hardware.

1Some problem elements discussed here are similar to the elements used in Section 3.1 and are repeated
for completeness.

82

We start by defining the concepts of data snapshots and dictionary. We represent by

X, Y ∈ RN×n matrices comprised of N data snapshots acquired from system (4.1) such that

xTi and yTi , the ith rows of X and Y , satisfy

yi = T (xi), ∀i ∈ {1, . . . , N}.

Moreover, we define a dictionary D :M→ R1×Nd

D(·) = [d1(·), . . . , dNd
(·)],

comprised of Nd real-valued functions d1, . . . , dNd
defined on M with span(D) = P . Note

that, one can completely characterize any dictionary D̃ with elements in span(D) by a matrix

C with Nd rows as D̃(·) = D(·)C. The effect of the dictionary on data matrices is

D(X) = [D(x1)T , . . . , D(xN)T]T ∈ RN×Nd .

Throughout this chapter, we operate under the following standard assumption on

dictionary matrices.

Assumption 4.1.1. (Full Column Rank Dictionary Matrices). The matrices D(X)

and D(Y) have full column rank. �

Assumption 4.1.1 requires the dictionary functions to be linearly independent and the

data snapshots to be diverse enough to capture the important features of the dynamics.

We consider a group of M processors or agents that communicate according to a

83

digraph G. Every agent is aware of the dictionary. We assume the data snapshots X, Y are

distributed among the processors, forming the dictionary snapshots D(Xi), D(Yi) for each

agent i ∈ {1, . . . ,M} such that

M⋃
i=1

rows([D(Xi), D(Yi)]) = rows([D(X), D(Y)]).

Local data snapshots might be available at the agent as a result of distributed acquisition or

because the global data has been partitioned among the processors. The latter can be done

in different ways, including partitioning in a way that minimizes the maximum time taken

for each agent to finish one iteration of calculation. For homogeneous processors, this can

be done by evenly distributing the the data among the agents.

The processors share a small portion of dictionary snapshots, D(Xs) and D(Ys) with

full column rank, called the signature dictionary matrices (note that one can build signature

dictionary snapshots with no more than 2Nd rows according to Assumption 4.1.1). Hence,

we have

rows([D(Xs), D(Ys)]) ⊆ rows([D(Xi), D(Yi)]),

for i ∈ {1, . . . ,M}. Interestingly, for our forthcoming results, the processors do not need to

be aware of which data points correspond to the signature snapshots.

Problem Statement: Given a group of M processors communicating according to a

network, the dictionary D(·) = [d1(·), . . . , dNd
(·)], and the data snapshots X, Y ∈ RN×n, we

aim to design a parallel algorithm that is able to identify the dictionary D̃ spanning the

84

maximal Koopman-invariant subspace in span(D). The processors must only rely on the

their local data and communication with their neighbors to achieve this goal.

In general, the action of Koopman operator on the functional space P = span(D) is

not invariant, meaning that one needs to project back to P the image under K of functions

in P , thereby introducing error. Instead, the image of functions belonging to the identified

invariant subspace under the Koopman operator remains in the subspace, avoiding the need

for the projection and therefore eliminating the source of approximation error. We note that

efficient solutions to this problem could be employed in the construction of better dictionaries.

Although beyond the scope of this dissertation, one could envision, for instance, augmenting

the dictionary to increase its linear span of functions and then pruning it to eliminate the

approximation error. Throughout this chapter, we use data-driven methods that are not

specifically designed to work with data corrupted with measurement noise. Hence, one

might need to pre-process the data before applying the proposed algorithms.

4.2 Parallel Symmetric Subspace Decomposition

Here, we build on the Symmetric Subspace Decomposition (SSD) algorithm intro-

duced in Section 3.3 to address the problem laid out in Section 4.1, i.e., identifying D̃ by

means of a parallel strategy, either because the data is not centrally available at a single

processor or, even if it is, because its implementation over multiple processors speeds up the

identification significantly. Our algorithm, termed Parallel Symmetric Subspace Decompo-

85

sition2 (P-SSD), cf. Algorithm 5, has each processor use SSD on its local data and prune its

subspace using the estimates of the invariant dictionary communicated by its neighbors. In

Algorithm 5, the matrix Ci
k determines the local dictionary of agent i at iteration k in the

form of D(·)Ci
k. In other words, span(D(·)Ci

k) is the ith agent’s estimate of the maximal

Koopman-invariant subspace in span(D) at iteration k.

The following is an informal description of the algorithm steps:

[Informal description of P-SSD :] Given dictionary snapshots D(X), D(Y) distributed

over M processors communicating over a network, each agent iteratively: (i) receives its

neighbors’ estimates of the invariant dictionary, (ii) uses the SSD algorithm to identify the

largest invariant subspace (according to the local data) in the intersection of its dictionary

and its neighbors’ dictionaries, (iii) chooses a basis for the identified subspace as its own

dictionary, and (iv) transmits that dictionary to its neighbors.

The proposed P-SSD algorithm builds on the observation that the subspaces identified

by SSD are monotone non-increasing with respect to the addition of data (Lemma 3.3.3),

i.e., the dimension of the identified subspace does not increase when we add more data.

4.2.1 Equilibria and Termination of P-SSD

Here, we define the concept of equilibria of the P-SSD algorithm and discuss how

to detect whether the agents have attained one (we refer to this as termination). Viewing

the algorithm as a discrete-time dynamical system, we start by defining the concept of

equilibrium.

2The function basis(A) returns a matrix whose columns provide a basis for A. If A = {0}, then basis(A)
returns 0. Moreover,]cols(0) = 0.

86

Algorithm 5 Parallel Symmetric Subspace Decomposition

Inputs: D(Xi), D(Yi), i ∈ {1, . . . ,M}
Output for agent i: flagik, C

i
k, k ∈ N0 . D(·)Ci

k is the ith agent’s dictionary at
iteration k and flagik is the flag variable used to detect termination of the algorithm

Each agent i executes:
1: k ← 0, Ci

0 ← INd
, flagi0 ← 0

2: while 1 do
3: k ← k + 1
4: Receive Cj

k−1, ∀j ∈ N k
in(i)

5: Di
k ← basis

(⋂
j∈{i}∪N k

in(i)R(Cj
k−1)

)
6: Ei

k ← SSD(D(Xi)D
i
k, D(Yi)D

i
k) . Applying Algorithm 1 in Chapter 3

7: if]cols(Di
kE

i
k) <]cols(Ci

k−1) then
8: Ci

k ← Di
kE

i
k . The subspace gets smaller

9: flagik ← 0
10: else
11: Ci

k ← Ci
k−1 . The subspace does not change

12: flagik ← 1
13: end if
14: Transmit Ci

k to out-neighbors
15: end while

Definition 4.2.1. (Equilibrium of P-SSD). The agent matrices Ci
k, i ∈ {1, . . . ,M} in

Algorithm 5 are an equilibrium of P-SSD at time k ∈ N if Ci
p = Ci

k for all p > k and all

i ∈ {1, . . . ,M}. �

Note that, after reaching an equilibrium, the subspaces identified by the agents do

not change anymore. The next result shows that the P-SSD algorithm always reaches an

equilibrium in a finite number of iterations.

Proposition 4.2.2. (P-SSD Reaches an Equilibrium in a Finite Number of It-

erations). The P-SSD algorithm executed over any (possibly time-varying) digraph reaches

an equilibrium after a finite number of iterations.

Proof. We prove the result by contradiction. Suppose that the algorithm never reaches an

87

equilibrium, i.e., there exists an increasing sequence {kp}∞p=1 ⊆ N0 such that, at iteration kp,

at least an agent j ∈ {1, . . . ,M} executes Steps 7-9 in Algorithm 5. Hence,]cols(Cj
kp+1) <

]cols(Cj
kp

). Consequently, using the fact that the number of columns for the matrix of each

agent is non-increasing in time (since they execute either Step 8 or Step 11 of Algorithm 5)

and the fact that kp+1 ≥ kp + 1, one can write

M∑
i=1

]cols(Ci
kp+1

) <
M∑
i=1

]cols(Ci
kp), ∀p ∈ N.

Since
∑M

i=1]cols(Ci
0) = MNd, this equation implies that, for p > MNd+1,

∑M
i=1]cols(Ci

kp
) <

0, a contradiction.

Since the algorithm runs in parallel, we need a mechanism to detect if the P-SSD

algorithm has reached an equilibrium. The flag variables carry out this task.

Proposition 4.2.3. (P-SSD Equilibria are Detected by Flag Variables in Time

Invariant Digraphs). Given a time-invariant network and under the P-SSD algorithm,

flagil = 1 for some l ∈ N and for every i ∈ {1, . . . ,M} if and only if Ci
k = Ci

l−1 and flagik = 1

for every i ∈ {1, . . . ,M} and every k ≥ l.

Proof. The implication from right to left is straightforward (simply put k = l). To prove the

other implication, we use strong induction. By hypothesis, flagil = 1 for every i ∈ {1, . . . ,M}

and the P-SSD algorithm has executed Steps 11-12 at iteration l. Hence, Ci
l = Ci

l−1 for all

i ∈ {1, . . . ,M}. Now suppose that for every i ∈ {1, . . . ,M}

flagik = 1, Ci
k = Ci

l−1, ∀k ∈ {l + 1, l + 2, . . . , p}. (4.2)

88

We need to prove that for every i ∈ {1, . . . ,M}

flagip+1 = 1, Ci
p+1 = Ci

l−1.

Noting that the network is time-invariant, based on Step 5 of Algorithm 5 at iteration p+ 1

and the fact that Ci
p = Ci

p−1 = Ci
l−1 for every i ∈ {1, . . . ,M}, we have Di

p+1 = Di
p = Di

l−1

for every i ∈ {1, . . . ,M}. Similarly, Ei
p+1 = Ei

p = Ei
l−1 for every i ∈ {1, . . . ,M}. As a result,

]cols(Di
p+1E

i
p+1) =]cols(Di

pE
i
p), (4.3)

for all i ∈ {1, . . . ,M}. Based on the algorithm and (4.2),

]cols(Di
pE

i
p) ≥]cols(Ci

p−1) =]cols(Ci
l−1), (4.4)

for all i ∈ {1, . . . ,M}. Using (4.3), (4.4), and the fact that]cols(Ci
p) =]cols(Ci

l−1), we have

]cols(Di
p+1E

i
p+1) ≥]cols(Ci

p),

for all i ∈ {1, . . . ,M}. Consequently, the algorithm executes Steps 11-12 for every agent and

we have

flagip+1 = 1, Ci
p+1 = Ci

l−1,

for all i ∈ {1, . . . ,M}, which concludes the proof.

89

Note that the flags detect an equilibrium with one time-step delay. We say that the

P-SSD algorithm has terminated at step k if flagik = 1 for all i ∈ {1, . . . ,M}.

Remark 4.2.4. (Termination of the P-SSD Algorithm). We point out that one

may consider different notions of termination for P-SSD: (i) the algorithm reaches an equi-

librium, i.e., the agents continue their calculations but do not change their outputs; (ii)

based on Proposition 4.2.3, a user external to the parallel processing hardware terminates

the algorithm when
∏M

i=1 flagik = 1 for some k ∈ N; (iii) agents use distributed halting algo-

rithms [Lyn97,Pel00] to decide when to terminate based on their output and flags. Here, we

only employ (i) and (ii) as appropriate and do not implement (iii) for space reasons. �

4.2.2 Properties of Agents’ Matrix Iterates along P-SSD

Here, we characterize important properties of the matrices computed by the agents

at each iteration of the P-SSD algorithm. The results provided in this section hold for any

(including time-varying) communication network topology. The next result characterizes

basic properties of the agents’ matrix iterates.

Theorem 4.2.5. (Properties of Agents’ Matrix Iterates). Under the P-SSD algo-

rithm and for any (possibly time-varying) digraph, for each i ∈ {1, . . . ,M},

(i) for all k ∈ N0, Ci
k is zero or has full column rank;

(ii) for all k ∈ N, R(Di
kE

i
k) = R(Ci

k);

(iii) for all k ∈ N, R(D(Xi)C
i
k) = R(D(Yi)C

i
k).

90

Proof. Consider an arbitrary i ∈ {1, . . . ,M}. We prove (i) by induction. For k = 0,

Ci
0 = INd

. Now, suppose that Ci
k is zero or has full column rank, and let us show the same

fact for k+1. Note that, if Di
k+1 = 0 or Ei

k+1 = 0, then Ci
k+1 = 0 and the result follows. Now,

suppose that Di
k+1 6= 0 and Ei

k+1 6= 0. Based on definition of basis and Theorem 3.3.1(ii),

Di
k+1 and Ei

k+1 have full column rank. Note that the algorithm either executes Step 8 or

executes Step 11. Hence, Ci
k+1 = Di

k+1E
i
k+1 or Ci

k+1 = Ci
k. Consequently, one can deduce

that Ci
k+1 has full column rank (Ci

k 6= 0 since Di
k+1 6= 0, hence Ci

k has full column rank),

establishing (i).

Next, we show (ii). If the algorithm executes Step 8 at iteration k, then Ci
k = Di

kE
i
k

and consequently R(Di
kE

i
k) = R(Ci

k). Suppose instead that the algorithm executes Step 11,

and consequently Ci
k = Ci

k−1. For the case Ci
k = 0, using Step 5, we deduce Di

kE
i
k = 0

and the statement follows. Assume then that Ci
k 6= 0 and hence it has full column rank

as a result of (i). Consequently, since the condition in Step 7 does not hold and using the

definition of]cols, we have Di
k 6= 0 and Ei

k 6= 0. Also, they have full column rank based

on the definition of basis and Theorem 3.3.1(ii). Moreover, R(Di
kE

i
k) ⊆ R(Di

k) ⊆ R(Ci
k−1)

and since the matrices have full column rank,]cols(Di
kE

i
k) ≤]cols(Di

k) ≤]cols(Ci
k−1). In

addition, and based on Step 7,]cols(Di
kE

i
k) ≥]cols(Ci

k−1). Hence,

]cols(Di
kE

i
k) =]cols(Di

k) =]cols(Ci
k−1). (4.5)

We can use]rows(Ei
k) =]cols(Di

k) and]cols(Di
kE

i
k) =]cols(Ei

k) in conjunction with (4.5)

to deduce that Ei
k is square and nonsingular (since it has full column rank). Consequently,

91

R(Di
k) = R(Di

kE
i
k). This fact, in combination with R(Di

k) ⊆ R(Ci
k−1), yields

R(Di
kE

i
k) ⊆ R(Ci

k−1). (4.6)

Moreover, since Di
k, E

i
k, and Ci

k−1 have full column rank, one can use (4.5) and (4.6) to

deduce that R(Di
kE

i
k) = R(Ci

k−1). Finally, since Ci
k = Ci

k−1, we have R(Di
kE

i
k) = R(Ci

k),

which shows (ii).

To show (iii), from Step 6 of the algorithm and Theorem 3.3.1(ii), for each i ∈

{1, . . . ,M} and each k ∈ N,

R(D(Xi)D
i
kE

i
k) = R(D(Yi)D

i
kE

i
k).

Based on part (ii) and the fact that D(Xi), D(Yi) have full column rank, one can deduce

R(D(Xi)C
i
k) = R(D(Yi)C

i
k), concluding the proof.

Remark 4.2.6. (Computation of the basis Function with Finite-Precision Ma-

chines). Based on Theorem 4.2.5(i), we provide here a practical way of implementing the

basis function. Since the matrices Ci
k are either full rank or zero, instead of working with

their range space, one can work directly with the matrices themselves. Here, we compute it-

eratively the output of the basis function for the input matrices. Given the full column-rank

matrices A1, A2, we find basis(R(A1) ∩R(A2)) using Lemma 3.7.1 by finding the null space

of [A1, A2] (if one of the matrices is equal to zero, then basis(R(A1) ∩ R(A2)) = 0). This

92

procedure can be implemented iteratively for i ≥ 2 by noting

basis
(i+1⋂
j=1

R(Ai)
)

= basis

(
R
(

basis
(i⋂
j=1

R(Ai)
))⋂

R(Ai+1)

)
.

When implemented on digital computers, this might lead to small errors affecting the null

space of [A1, A2]. To avoid this problem, given the singular values σ1 ≥ · · · ≥ σl of [A1, A2]

and a tuning parameter ε∩ > 0, we compute k as the minimum integer satisfying
∑l

j=k σ
2
j ≤

ε∩(
∑l

j=1 σ
2
j) and then set σk = · · · = σl = 0. The parameter ε∩ tunes the sensitivity of the

implementation. �

Next, we show that the range space identified by an agent at any time step is contained

into the range space identified by that agent and its neighbors in the previous time step.

Lemma 4.2.7. (Subspace Monotonicity of Agents’ Matrix Iterates). Under the

P-SSD algorithm and for any (possibly time-varying) digraph, at each iteration k ∈ N, it

holds that R(Ci
k) ⊆ R(Cj

k−1) for all i ∈ {1, . . . ,M} and all j ∈ {i} ∪ N k
in(i).

Proof. Let i ∈ {1, . . . ,M}. The case Ci
k = 0 is trivial, so consider instead the case Ci

k 6=

0. This implies that Di
k 6= 0 and Ei

k 6= 0, with both having full column rank based on

definition of the basis function and Theorem 3.3.1(ii). Note that R(Di
kE

i
k) ⊆ R(Di

k) and,

by definition, R(Di
k) ⊆ R(Cj

k−1) for every j ∈ {i}∪N k
in(i). The result now follows by noting

that R(Di
kE

i
k) = R(Ci

k) (cf. Theorem 4.2.5(ii)).

We conclude this section by showing that the range space of the agents’ matrix iterates

93

contain the SSD subspace, i.e., the subspace identified by the SSD algorithm (cf. Algorithm 1)

when all the data is available at once at a single processor.

Proposition 4.2.8. (Inclusion of SSD Subspace by Agents’ Matrix Iterates). Let

CSSD = SSD
(
D(X), D(Y)

)
be the output of the SSD algorithm applied on D(X), D(Y).

Under the P-SSD algorithm and for any (possibly time-varying) digraph, at each iteration

k ∈ N0, it holds that R(CSSD) ⊆ R(Ci
k) for all i ∈ {1, . . . ,M}.

Proof. The case CSSD = 0 is trivial. Suppose that CSSD 6= 0. We prove the argument by

induction. Since Ci
0 = INd

for all i ∈ {1, . . . ,M}, we have

R(CSSD) ⊆ R(Ci
0) = RNd , ∀i ∈ {1, . . . ,M}.

Now, suppose that

R(CSSD) ⊆ R(Ci
k), ∀i ∈ {1, . . . ,M}, (4.7)

and let us prove the same inclusion for k+ 1. Based on Step 5 in Algorithm 5, one can write

R(Di
k+1) =

⋂
j∈{i}∪N k+1

in (i)

R(Cj
k), ∀i ∈ {1, . . . ,M}. (4.8)

Using (4.7) and (4.8), we get R(CSSD) ⊆ R(Di
k+1) for every i ∈ {1, . . . ,M}. Moreover, since

both Di
k+1 and CSSD have full column rank (the first, based on its definition and the second

based on Theorem 3.3.1(ii)), one can find matrices F i
k+1, i ∈ {1, . . . ,M} with full column

94

rank such that

CSSD = Di
k+1F

i
k+1, ∀i ∈ {1, . . . ,M}. (4.9)

From Theorem 3.3.1(ii), we have R(D(X)CSSD) = R(D(Y)CSSD). Hence, since

rows
(
[D(Xi), D(Yi)]

)
⊆ rows

(
[D(X), D(Y)]

)
for every i ∈ {1, . . . ,M}, we deduce

R(D(Xi)CSSD) = R(D(Yi)CSSD). (4.10)

Combining (4.9) and (4.10), we obtain

R(D(Xi)D
i
k+1F

i
k+1) = R(D(Yi)D

i
k+1F

i
k+1), (4.11)

for every i ∈ {1, . . . ,M}. Now, by Step 6 of Algorithm 5, for every i ∈ {1, . . . ,M},

Ei
k+1 = SSD(D(Xi)D

i
k+1, D(Yi)D

i
k+1).

Using Theorem 3.3.1(iii) with the dictionary D(·)Di
k+1 and data D(Xi), D(Yi), we deduce

R(F i
k+1) ⊆ R(Ei

k+1),∀i ∈ {1, . . . ,M}.

Combining this with Lemma 3.7.2 and (4.9), we get

R(CSSD) = R(Di
k+1F

i
k+1) ⊆ R(Di

k+1E
i
k+1), (4.12)

95

for every i ∈ {1, . . . ,M}. According to Algorithm 5, either Ci
k+1 = Ci

k (Step 11) or Ci
k+1 =

Di
k+1E

i
k+1 (Step 8). Using (4.7) in the former case and (4.12) in the latter, we conclude

R(CSSD) ⊆ R(Ci
k+1), for all i ∈ {1, . . . ,M}.

4.3 Equivalence of P-SSD and SSD

In this section, we study under what conditions on the digraph’s connectivity, the

P-SSD algorithm is equivalent to the SSD algorithm, i.e., it finds the maximal Koopman-

invariant subspace contained in the span of the original dictionary. We start by studying the

relationship between the matrix iterates and local data of the agents at the beginning and

end of a directed path in the digraph.

Proposition 4.3.1. (Relationship of Agents’ Matrices and Local Data Along Di-

rected Paths). Given an arbitrary constant digraph, let P be a directed path of length l

from node j to node i. Then, under the P-SSD algorithm, for each iteration k ∈ N and all

q ≥ k + l,

R(Ci
q) ⊆ R(Cj

k), (4.13a)

R(D(Xj)C
i
q) = R(D(Yj)C

i
q). (4.13b)

Proof. To prove (4.13a), we label each node on the path P by p1 through pl+1, with p1

corresponding to node j and pl+1 corresponding to node i (note that a node will have more

than one label if it appears more than once in the path, which does not affect the argument).

96

Based on Lemma 4.2.7, for all k ∈ N, one can write

R(C
pm+1

k+m) ⊆ R(Cpm
k+m−1), ∀m ∈ {1, . . . , l}.

Using this equation l times yields R(Ci
k+l) ⊆ R(Cj

k). Moreover, using Lemma 4.2.7 once

again for node i, we deduce R(Ci
q) ⊆ R(Ci

k+l) for every q ≥ k + l, and the proof follows.

Regarding (4.13b), the case Ci
q = 0 is trivial. Suppose then that Ci

q 6= 0, with full

column rank (cf. Theorem 4.2.5(i)). Using (4.13a) and Theorem 4.2.5(i), we deduce that Cj
k

also has full column rank. Therefore, there exists a full column rank matrix F such that

Ci
q = Cj

kF. (4.14)

From Theorem 4.2.5(iii), we have R(D(Xi)C
i
q) = R(D(Yi)C

i
q). Looking at this equation in

a row-wise manner and considering only the signature matrices, one can write

R(D(Xs)C
j
kF) = R(D(Ys)C

j
kF), (4.15)

where we have used (4.14). From Theorem 4.2.5(iii) for agent j,

R(D(Xj)C
j
k) = R(D(Yj)C

j
k).

Using this equation and given the fact that D(Xj), D(Yj), and Cj
k have full column rank,

97

there must exist a square nonsingular matrix K such that

D(Yj)C
j
k = D(Xj)C

j
kK. (4.16)

Looking at this equation in a row-wise manner and considering only the signature data

matrices,

D(Ys)C
j
k = D(Xs)C

j
kK. (4.17)

Using a similar argument for (4.15), one can deduce that there exists a nonsingular square

matrix K∗ such that

D(Ys)C
j
kF = D(Xs)C

j
kFK

∗. (4.18)

Multiplying both sides of (4.17) from the right by F and subtracting from (4.18) results in

D(Xs)C
j
k(FK

∗ −KF) = 0.

Since D(Xs)C
j
k has full column rank, we deduce FK∗ = KF . Now, by multiplying both

sides of (4.16) from the right by F and replacing KF by FK∗, we can write

D(Yj)C
i
q = D(Yj)C

j
kF = D(Xj)C

j
kFK

∗ = D(Xj)C
i
qK
∗,

where we have used (4.14) twice, which shows the result.

98

Next, we show that globally reachable nodes in the digraph determine the SSD sub-

space in a finite number of iterations.

Theorem 4.3.2. (Globally Reachable Nodes Find the SSD Subspace). Given

an arbitrary constant digraph, let i be a globally reachable node and define l =

maxj∈{1,...,M} dist(j, i). Then, under the P-SSD algorithm, R(Ci
k) = R(CSSD) for all k ≥ l+1.

Proof. If Ci
k = 0 for some k ∈ N, then based on Proposition 4.2.8 and Theorem 3.3.1(ii), we

have CSSD = 0 and consequently, R(Ci
k) = R(CSSD). Now, suppose that for all k ∈ N, Ci

k 6= 0

and has full column rank (cf. Theorem 4.2.5(i)). Since i is a globally reachable node, for

each node j ∈ {1, . . . ,M} \ {i}, there exists a directed path with length lj = dist(j, i) <∞

to node i. Using Proposition 4.3.1 for j ∈ {1, . . . ,M} \ {i} and Theorem 4.2.5(iii) for agent

i , we can write

R(D(Xj)C
i
l+1) = R(D(Yj)C

i
l+1), ∀j ∈ {1, . . . ,M}.

Moreover, since for all j ∈ {1, . . . ,M}, D(Xj), D(Yj), and Ci
l+1 have full column rank, there

exist nonsingular square matrices {Kj}Mj=1 such that

D(Yj)C
i
l+1 = D(Xj)C

i
l+1Kj, ∀j ∈ {1, . . . ,M}. (4.19)

Looking at (4.19) in a row-wise manner and only considering the signature data sets, one

99

can write

D(Ys)C
i
l+1 = D(Xs)C

i
l+1Kj, ∀j ∈ {1, . . . ,M}.

For any p 6= q ∈ {1, . . . ,M}, we subtract (4.19) evaluated at j = p and at j = q to

obtain D(Xs)C
i
l+1(Kq −Kp) = 0. Since D(Xs) and Ci

l+1 have full column rank, this implies

K := K1 = · · · = KM . Looking at (4.19) in a row-wise manner and considering the fact that

M⋃
j=1

rows
(
[D(Xj), D(Yj)]

)
= rows

(
[D(X), D(Y)]

)
,

we deduce D(X)Ci
l+1K = D(Y)Ci

l+1 and consequently

R(D(X)Ci
l+1) = R(D(Y)Ci

l+1).

This, together with Theorem 3.3.1(iii), implies R(Ci
l+1) ⊆ R(CSSD). This inclusion along

with Proposition 4.2.8 yields R(Ci
l+1) = R(CSSD). Finally, for every k ≥ l+ 1, Lemma 4.2.7

implies R(Ci
k) ⊆ R(Ci

l+1) = R(CSSD), which along with Proposition 4.2.8 yields R(Ci
k) =

R(CSSD).

Theorem 4.3.2 shows that the globally reachable nodes identify the SSD subspace.

Next, we use this fact to derive guarantees for agreement of the range space of all agents’

matrices on the SSD subspace over strongly connected networks (we refer to this as P-SSD

reaching consensus).

Theorem 4.3.3. (Consensus on SSD Subspace and Time Complexity of P-SSD

100

over Strongly Connected Digraphs). Given a strongly connected digraph with diameter

d,

(i) P-SSD reaches consensus in at most d+ 1 iterations: specifically, for all k ≥ d+ 1 and

all i ∈ {1, . . . ,M},

R(Ci
k) = R(CSSD),

R(D(X)Ci
k) = R(D(Y)Ci

k);

(ii) the P-SSD algorithm terminates after at most d+ 2 iterations, i.e, flagid+2 = 1 for each

i ∈ {1, . . . ,M}.

Proof. Regarding (i), the proof of consensus on the SSD subspace readily follows from The-

orem 4.3.2 by noting that any node is globally reachable from any other node through a

path with at most d edges. The rest of the statement is a corollary of this fact together with

Theorem 3.3.1(ii).

Regarding (ii), one needs to establish that not only the range space of the agents’

matrices remains the same but also that the P-SSD algorithm executes Steps 11-12, which

means the matrices themselves also remain the same and flags become 1. Note that using (i)

we deduce that R(Ci
d+1) = R(Ci

d+2) for all i ∈ {1, . . . ,M}. Hence, if Ci
d+1 = 0, then

Ci
d+2 = 0, and the P-SSD algorithm does not execute Steps 8-9 but executes Steps 11-12

instead. Consequently, flagid+2 = 1 for every agent i ∈ {1, . . . ,M}. Suppose then that

Ci
d+1 6= 0, with full column rank based on Theorem 4.2.5(i), and consequently CSSD 6= 0

(also with full column rank, cf. Theorem 3.3.1(ii)). Using (i), we then deduce that in Step 5

101

of the P-SSD algorithm for agent i at iteration d + 2, we have R(Di
d+2) = R(CSSD). Since

Di
d+2 has full column rank by definition,

R(D(X)Di
d+2) = R(D(Y)Di

d+2).

Looking at this equation in a row-wise manner and considering the fact that

rows
(
[D(Xi), D(Yi)]

)
⊆ rows

(
[D(X), D(Y)]

)
,

R(D(Xi)D
i
d+2I) = R(D(Yi)D

i
d+2I),

where I is the identity matrix with appropriate size. This fact, together with definition of

Ei
d+2 in Step 6 of the P-SSD algorithm, implies thatR(I) ⊆ R(Ei

d+2) (cf. Theorem 3.3.1(iii)).

Consequently, Ei
d+2 must be a nonsingular square matrix (cf. Theorem 3.3.1(ii)). Hence,

]cols(Di
d+2E

i
d+2) =]cols(Di

d+2) =]cols(CSSD) =]cols(Ci
d+1).

Consequently, the P-SSD algorithm executes Steps 11-12 and we have Ci
d+2 = Ci

d+1 and

flagid+2 = 1 for every agent i ∈ {1, . . . ,M}, concluding the proof.

In general, the P-SSD algorithm might terminate faster than the explicit upper bound

given in Theorem 4.3.3. The main reason for this is that each agent depends on performing

SSD on its own data and usually SSD can identify the maximal Koopman-invariant subspace

in the span of dictionary with a moderate amount of data. The next remark shows that the

floating point operation (FLOPs) complexity of the P-SSD algorithm is much lower for each

102

processor that the SSD algorithm and hence the P-SSD subspace search runs much faster

than SSD.

Remark 4.3.4. (Floating Point Operation (FLOP) Complexity of P-SSD). For

the (standard) case that N � Nd, let Ni be the number of data snapshots available to agent

i ∈ {1, . . . ,M}. Considering the fact that the most time consuming operation in Algorithm 5

is Step 6, one can use Remark 3.3.2 and deduce that each iteration of the P-SSD algorithm

takes O(NiN
3
d) FLOPs for agent i. Based on Theorem 4.3.3(ii), agent i performs at most

O(NiN
3
dd) to find the SSD subspace. In case the data is uniformly distributed among the

agents, for each i ∈ {1, . . . ,M},

Ni = O
(
]rows(Xs) +

N −]rows(Xs)

M

)
= O(N/M),

where in the last equality we have used]rows(Xs) = O(Nd) (in fact one can find signature

data with]rows(Xs) ≤ 2Nd as a consequence of Assumption 4.1.1). Hence, the FLOPs

complexity of each agent with data uniformly distributed across the agents is O(dNN3
d/M).

This gives a factor of d/M reduction when compared to the FLOP complexity O(NN3
d) of

SSD. If the processors are not homogeneous, then the uniform distribution of the data is

not optimal. In general, the optimal distribution minimizes the maximum time taken for

processors to complete one algorithm iteration, which means that faster processors should

get more data. In practice, our simulations show that P-SSD runs drastically faster than the

worst-case bound. �

Remark 4.3.5. (Communication Complexity of P-SSD). Given a strongly connected

103

digraph with M nodes and diameter d, agent i transmits |Nout(i)| matrices with maximum

size of Nd × Nd. Thus, considering the real numbers as basic messages, and using the fact

that the algorithm terminates after at most d+ 1 iterations, the communication complexity

of the P-SSD algorithm is

O(dN2
d

M∑
i=1

|Nout(i)|) = O(dN2
dE),

where E is the number of edges in the digraph. In most conventional parallel computing

units, the processors communicate through a shared bus. Hence, at iteration k of the P-SSD

algorithm, the ith agent only sends one message comprised of the matrix Ci
k to the bus.

Therefore, over such networks, the communication complexity reduces to O(dN2
dM). �

Remark 4.3.6. (Approximated P-SSD). The original dictionary might not contain non-

trivial Koopman-invariant subspaces. For such cases, one can look for approximate informa-

tive invariant subspaces by replacing Step 6 of P-SSD with the Approximated-SSD algorithm

(cf. Algorithm 4), which approximates Koopman-invariant subspaces given a tuning parame-

ter ε. This modification gives rise to the Approximated P-SSD algorithm for which a similar

set of results to the ones stated here for the P-SSD algorithm regarding equilibria, finite

termination and eventual agreement of the matrix iterates can be established (we omit them

for space reasons). The agents’ identified subspaces satisfy the accuracy bounds provided in

Section 3.5 based on their local data. �

104

4.4 Robustness Against Packet Drops and Time-

Varying Networks

The parallel nature of P-SSD enables the use of parallel and distributed processing

hardware, such as GPUs and clusters of processors. The communication between processors

required by such hardware is subject to packet drops or communication failures. Moreover,

there are instances when some processors are needed for other tasks or go offline temporarily,

resulting in time-varying networks. To address these issues, we investigate the robustness

of the P-SSD algorithm against packet drops in the communication network. To tackle this

problem, we model the network by a time-varying digraph where a dropped packet from

agent i to agent j at time k ∈ N corresponds to the absence of edge (i, j) from the digraph

at that time. The next result shows that if the digraph remains repeatedly jointly strongly

connected, the agents executing the P-SSD algorithm reach a consensus on the SSD subspace

in finite time.

Theorem 4.4.1. (Consensus on SSD Subspace and Finite-Time Convergence

of P-SSD over Repeatedly Jointly Strongly Connected Digraphs). Given a time-

varying repeatedly jointly strongly connected digraph {Gk = ({1, . . . ,M}, Ek)}∞k=1, the P-SSD

algorithm reaches a consensus equilibrium on the SSD subspace in finite time, i.e., there exists

l ∈ N such that for every iteration k ≥ l, Ci
k = Ci

l for all i ∈ {1, . . . ,M} with

R(C1
l) = R(C2

l) = · · · = R(CM
l) = R(CSSD).

105

Proof. The fact that the P-SSD algorithm reaches an equilibrium is a direct consequence of

Proposition 4.2.2, which states that there exists l ∈ N such that

Ci
k = Ci

l , ∀k ≥ l, ∀i ∈ {1, . . . ,M}. (4.20)

Hence, we only need to show that the range space of these matrices corresponds to the SSD

subspace. Since the digraph is repeatedly jointly strongly connected, there exists a closed

“temporal” path after time l that goes through every node of the digraph. By this we mean

that there exist L, time instants l < k1 < k2 < · · · < kL and node labels p1, . . . , pL covering

all of {1, . . . ,M} (note that some nodes might correspond to more that one label) such that

(pi, p(i mod L)+1) ∈ Eki , ∀i ∈ {1, . . . , L}.

Using (4.20), Lemma 4.2.7 at times {ki}Li=1, and the fact that the path is closed, we deduce

R(Cp1
l) ⊆ R(CpL

l) ⊆ · · · ⊆ R(Cp2
l) ⊆ R(Cp1

l).

Hence, R(Cp1
l) = · · · = R(CpL

l). Since the path goes through every node and (4.20) again,

we arrive at the consensus

R(C1
k) = · · · = R(CM

k), ∀k ≥ l. (4.21)

It remains to show that this consensus is achieved on the SSD subspace. The inclusion

106

R(CSSD) ⊆ R(Ci
k) for all i ∈ {1, . . . ,M} and k ≥ l follows from Proposition 4.2.8. To

show the other inclusion, first note that if Ci
k = 0 for some i ∈ {1, . . . ,M} and k ≥ l, then

CSSD = 0 and the proof follows. Suppose then that Ci
k’s are nonzero with full column rank

(cf. Theorem 4.2.5(i)) for k ≥ l. Based on Theorem 4.2.5(iii), for every i ∈ {1, . . . ,M} and

k ≥ l, we have R(D(Xi)C
i
k) = R(D(Yi)C

i
k). Moreover, using (4.21) and the fact that all

matrices Ci
k’s have full column rank, we have

R(D(Xi)C
j
k) = R(D(Yi)C

j
k), ∀i, j ∈ {1, . . . ,M},

for every k ≥ l. Using this equality for j = 1 and k = l,

R(D(Xi)C
1
l) = R(D(Yi)C

1
l), ∀i ∈ {1, . . . ,M}.

Hence, for every i ∈ {1, . . . ,M} there exists a nonsingular square matrix Ki such that

D(Xi)C
1
l Ki = D(Yi)C

1
l . (4.22)

Now, looking at (4.22) in a row-wise manner, one obtains for the signature dictionary snap-

shots, D(Xs)C
1
l Ki = D(Ys)C

1
l , for i ∈ {1, . . . ,M}, and hence

D(Xs)C
1
l (Ki −Kj) = 0, ∀i, j ∈ {1, . . . ,M}.

Since D(Xs) and C1
l have full column rank, we have K := K1 = · · · = KM . Replacing Ki

107

by K in (4.22) gives

D(Xi)C
1
l K = D(Yi)C

1
l , ∀i ∈ {1, . . . ,M}.

Looking at this equation in a row-wise manner and since

M⋃
i=1

rows([D(Xi), D(Yi)]) = rows([D(X), D(Y)]),

one can write D(X)C1
l K = D(Y)C1

l and consequently

R(D(X)C1
l) = R(D(Y)C1

l).

Using now Theorem 3.3.1(iii), we deduce R(C1
l) ⊆ R(CSSD). Using (4.20) and (4.21), we

obtain that R(Ci
k) = R(C1

k) = R(C1
l) ⊆ R(CSSD), for all i ∈ {1, . . . ,M} and k ≥ l, and this

concludes the proof.

An interesting interpretation of the result in Theorem 4.4.1 is that, for time-invariant

networks subject to failures in the communication links, as long as the agents re-connect at

least once within some uniform time period, the P-SSD algorithm identifies the SSD subspace

in a finite number of iterations.

Remark 4.4.2. (Using the Agents’ Matrix Iterates to Find Maximal Koopman-

Invariant Subspaces and Eigenfunctions). After the agents reach consensus on the

SSD subspace, they can use their computed matrix C instead of CSSD to find the dictionary

108

D̃(x) = D(x)C, for x ∈M. Any agent i ∈ {1, . . . ,M} can use its P-SSD matrix to find

KP-SSD = D̃(Xi)
†D̃(Yi) = D̃(Xs)

†D̃(Ys).

Note that this is also equal to the square matrix KSSD found by SSD, cf. (3.21). Importantly,

all the results for SSD subspaces in Chapter 3 are also valid for the new dictionary D̃. �

4.5 Simulation Results

Here, we provide four examples to demonstrate the properties and effectiveness of the

P-SSD algorithm3.

Example 4.5.1. (Unstable Nonlinear System). Consider the discrete-time system with

state x = [x1, x2],

x+
1 = 1.2x1 (4.23a)

x+
2 = 3

√
0.8x3

2 + 8x2
1 + 0.1 . (4.23b)

The system can be transformed into a discrete-time polyflow [JT19] by the nonlinear trans-

formation [x1, x2] 7→ [x1, x
3
2]. We aim to find the informative Koopman eigenfunctions and

invariant subspaces. we sample N = 106 data snapshots with initial conditions in the state

spaceM = [−3, 3]× [−3, 3]. We use the dictionary D with Nd = 15 comprised of all distinct

3We intentionally use low-dimensional systems with sparse eigenfunctions to facilitate a complete in-depth
presentation of the results. However, we should point out that the results are valid for high-dimensional
systems with no conditions on the sparsity of invariant subspaces.

109

monomials up to degree 4 of the form
∏4

i=1 yi, with yi ∈ {1, x1, x2} for i ∈ {1, . . . , 4}.

To identify the maximal Koopman-invariant subspace in span(D), we implement the

SSD algorithm, and the P-SSD algorithm with M ∈ {5, 20, 100} agents communicating

according to a directed ring graph with diameter d = M − 1. For the P-SSD strategy, we

use the first 15 data snapshots in our database as signature data snapshots and distribute

the rest of the data evenly among the agents. Both strategies are implemented on a single

computer using MATLAB®. We calculate the time elapsed for each iteration of P-SSD as

the maximum time taken by agents to execute the algorithm in that iteration using the tic

and toc commands. Since we use finite precision, we apply the approximation provided in

Remark 4.2.6 with ε∩ = 10−12.

For all M ∈ {5, 20, 100}, the P-SSD algorithm reaches the consensus equilibrium after

1 iteration and terminates (based on Remark 4.2.4) after 2 iterations, which is significantly

faster than the bounds provided in Theorem 4.3.3. We have also observed in simulations that

packet drops do not delay consensus. Both P-SSD and SSD algorithms correctly identify

the 7-dimensional subspace spanned by {1, x1, x
2
1, x

3
1, x

3
2, x

4
1, x1x

3
2} as the maximal Koopman-

invariant subspace in span(D). Table 4.1 shows the time employed by the algorithms to find

it. The P-SSD strategy with M = 5, M = 20, and M = 100, is 80%, 96%, and 99% faster

than SSD, resp.

Table 4.1: Time elapsed to identify the maximal Koopman-invariant subspace in span(D)
associated with the dynamics (4.23).

Method SSD P-SSD (5) P-SSD (20) P-SSD (100)

Time (ms) 2175 439 88 17

Using the output matrix of any of the agents, cf. Remark 4.4.2, we build the invariant

110

dictionary D̃ and matrix KP-SSD. Table 4.2 shows the Koopman eigenfunctions and their

corresponding eigenvalues calculated using the eigendecomposition of KP-SSD. One can verify

analytically using (4.23) that the eigenfunctions in Table 4.2 evolve linearly in time. Even

though the function x2 does not belong to the span of the Koopman-invariant subspace,

the Koopman eigenfunctions fully capture the behavior of the system since the functions x1

and x3
2 do belong. Hence, one can use (2.8) to predict the evolution of any function in the

identified subspace or one simply can use

D̃(x+) = D̃(x)KP-SSD, ∀x ∈M,

to describe the behavior of (4.23) in a linear way.

Table 4.2: Identified eigenfunctions and eigenvalues of the Koopman operator associated
with the dynamics (4.23).

Eigenfunction Eigenvalue

φ1(x) = 1 λ1 = 1

φ2(x) = x1 λ2 = 1.2

φ3(x) = x2
1 λ3 = 1.44

φ4(x) = x3
1 λ4 = 1.728

φ5(x) = 2 x3
2 − 25x2

1 − 1 λ5 = 0.8

φ6(x) = x4
1 λ6 = 2.0736

φ7(x) = 2 x1x
3
2 − 25x3

1 − x1 λ7 = 0.96

To demonstrate the effectiveness of our method in long-term predictions, following the

Extended Dynamic Mode Decomposition (EDMD) method [WKR15] and Remark 4.4.2, and

given an arbitrary dictionary D, we define its linear prediction matrix as K = D(X)†D(Y).

111

We also define the following relative and angle error functions on a trajectory {x(k)}Lk=0

Erelative(k) =

∥∥D(x(k))−D(x0)Kk
∥∥

2

‖D(x(k))‖2

× 100,

Eangle(k) = ∠
(
D(x(k)),D(x0)Kk

)
. (4.24)

We compare the prediction accuracy on the original dictionary D with the dictionary D̃

identified by P-SSD on 1000 trajectories with length L = 15. In order to make sure the

trajectories remain in the space on which we have trained our methods, we sample the initial

conditions from [−0.1, 0.1]× [−3, 3].

Figure 4.1 shows the median and range between the first and third quartiles of the

relative and angle prediction errors for D and D̃. The P-SSD method has zero prediction

error since it identifies and predicts the evolutions on Koopman-invariant subspaces. In

contrast, the prediction errors on the original dictionary are significantly large, even for

short time steps. �

As Example 4.5.1 illustrates, the P-SSD algorithm usually reaches an equilibrium fast

and consequently packet drops do not have the opportunity to significantly affect the time

to convergence. Also, P-SSD may find the maximal Koopman-invariant subspace even if the

agents do not share the signature snapshots. The next example is selected with three goals

in mind: (i) showing the importance of signature snapshots, (ii) confirming the tightness of

the bound for time complexity in Theorem 4.3.3, and (iii) illustrating the robustness of the

P-SSD algorithm against packet drops.

Example 4.5.2. (Piecewise Linear System with Packet Drops). Given the state

112

0 5 10 15

time step

0

200

400

600

800

1000

re
la

ti
v

e
er

ro
r

(%
)

E
relative

P-SSD

E
relative

Orig

0 5 10 15

time step

0

0.5

1

1.5

2

2.5

an
g

le
 (

ra
d

)

E
angle

P-SSD

E
angle

Orig

Figure 4.1: Median and range between first and third quartiles of relative (left) and angle
(right) prediction errors for the original dictionary and the dictionary identified by P-SSD
for system (4.23) on 1000 trajectories of length L = 15 with initial conditions randomly
selected from [−0.1, 0.1]× [−3, 3].

space M = [−1, 1]n, define the sets {Sk}nk=1 by

Sk = {x ∈M | (0 < xk ≤ 1) ∧ (−1 ≤ xj ≤ 0, j 6= k)},

where xi represents the ith element of x. Consider the n-dimensional system x+ = T (x),

where

T (x) =

{ (In + (k−1 − 1)eke
T
k

)
x if x ∈ Sk, k ∈ {1, . . . , n},

x if x ∈M \
⋃n
k=1 Sk.

Here, ek is the kth column of the identity matrix In. We take n = 10 and consider M =

10 agents connected according to a directed ring graph with diameter d = 9. We use

the dictionary D comprised of all Nd = 66 monomials of the form
∏2

i=1 yi, where yi ∈

{x1, . . . , x10} ∪ {1} for i ∈ {1, 2}.

To perform the simulations, we sample 100 data snapshots with initial conditions

113

in M \
⋃n
k=2 Sk as our signature snapshots. In addition, we upload additional 1000 data

snapshots sampled from Sk to the kth agent, for each k ∈ {1, . . . , 10}. To check robustness

against packet drops, we randomly drop each packet with P percent chance, where we employ

P ∈ {0, 10, . . . , 90}. In all cases, the P-SSD algorithm correctly identifies the maximal

Koopman-invariant subspace spanned by {1, x1, x
2
1}. Figure 4.2 shows the average number

of iterations (over 20 simulations) taken by P-SSD to achieve consensus. The plot shows

how P-SSD achieves consensus relatively fast even in the presence of 90% packet drops

in a directed ring network. The first column of Figure 4.2 indicates that when there is no

packet drop, P-SSD reaches consensus in 10 iterations, which is in agreement with the bound

provided in Theorem 4.3.3(i).

0 10 20 30 40 50 60 70 80 90

Packet Drop Percentage (%)

0

20

40

60

80

100

120

A
v

er
ag

e
It

er
at

io
n

s
to

 C
o

n
se

n
su

s

Figure 4.2: Average iterations taken for P-SSD to achieve consensus versus packet drop
percentage for Example 4.5.2.

To illustrate the importance of the signature data snapshots, we also perform the

114

simulations without them. In this case, the P-SSD algorithm fails, as it incorrectly identifies

the whole space spanned by dictionary D as a Koopman-invariant subspace. This happens

because span(D) is a Koopman-invariant subspace for the system with state space restricted

to any of the subsets Sk, k ∈ {1, . . . , 10}. Moreover, these different Koopman operators have

the same eigenfunctions. However, some of the corresponding eigenvalues are different for

different k’s. Hence, those eigenfunctions for restricted systems are not eigenfunctions of

the Koopman operator for the system defined on the whole state space M. The signature

snapshots enable the agents to detect such inconsistencies and prevent the failure of the

P-SSD algorithm. �

Example 4.5.3. (Van der Pol Oscillator). Here, we provide an example of the approx-

imation of Koopman eigenfunctions and invariant subspaces when the original dictionary

does not contain exact informative eigenfunctions. Consider the Van der Pol oscillator with

state x = [x1, x2]T ,

ẋ1 = x2

ẋ2 = −x1 + (1− x2
1)x2. (4.25)

To gather data, we run 103 simulations for 5s with initial conditions uniformly selected

from M = [−4, 4] × [−4, 4]. We sample the trajectory data with time step ∆t = 0.05s

resulting in N = 105 data snapshots. Moreover, we use the dictionary D with Nd = 45

comprised of all distinct monomials up to degree 8 of the form
∏8

i=1 yi, with yi ∈ {1, x1, x2}

for i ∈ {1, . . . , 8}. To avoid numerical problems caused by finite-precision errors, we form the

115

matrix [D(X)T , D(Y)T]T and scale each dictionary function such that the norm of columns

of the aforementioned matrix become equal. Note that this scaling does not change the

functional space spanned by the dictionary since each function in the dictionary is scaled

by a nonzero number in R. The communication network is modeled by a complete digraph

with M = 20 processors resembling a GPU. In addition, we use 1000 snapshots randomly

selected from our database as the signature data snapshots and distribute the rest of the

data evenly among the processors.

Note that the dictionary D only contains the trivial Koopman eigenfunction φ(x) ≡ 1

with eigenvalue λ = 1. Consequently, the P-SSD algorithm results in a one-dimensional

Koopman-invariant subspace providing exact prediction but no information about the dy-

namics. To address this issue, we use instead the Approximated P-SSD algorithm presented

in Remark 4.3.6 with ε = 0.005. Moreover, we set ε∩ = 0.005 following Remark 4.2.6.

This algorithm reaches a consensus equilibria after 4 iterations identifying a 4-dimensional

subspace. It is worth mentioning that we could not implement the Approximated SSD al-

gorithm, cf. Algorithm 4, on the same dataset since it performs SVD on the whole dataset

and requires a large memory that is beyond our computational resources (also, performing

SVD on such large datasets may result in large round-off errors and inaccurate results).

Using the output matrix of any of the agents, cf. Remark 4.4.2, we find the

dictionary D̃ with Ñd = 4 functions and create the approximated P-SSD matrix as

Kapprx
P-SSD = D̃(X)†D̃(Y). Moreover, we find the Koopman eigenfunctions approximated by

the eigendecomposition of Kapprx
P-SSD. Approximated P-SSD finds the only exact Koopman

eigenfunction (φ(x) ≡ 1 with eigenvalue λ = 1) in the span of the original dictionary cor-

116

rectly. Figure 4.3 shows the leading nontrivial approximated eigenfunction corresponding to

the largest eigenvalue, which captures the behavior of the Van der Pol oscillator.

-2 0 2

x
1

-2

0

2

x
2

0.05

0.1

0.15

0.2

0.25

-2 0 2

x
1

-2

0

2

x
2

-3

-2

-1

0

1

2

3

Figure 4.3: Absolute value (left) and angle (right) of the approximated eigenfunction cor-
responding to eigenvalue 0.9647 + 0.018j.

To show the advantage of our method in long-term prediction, we use the error

functions presented in (4.24) on 1000 trajectories with length L = 20 time steps and initial

conditions uniformly taken from [−4, 4]× [−4, 4]. Figure 4.4 shows the median and the range

0 5 10 15 20

time step

0

20

40

60

80

100

re
la

ti
v

e
er

ro
r

(%
)

E
relative

Orig

E
relative

P-SSD

0 5 10 15 20

time step

0

0.2

0.4

0.6

0.8

an
g

le
 (

ra
d

)

E
angle

Orig

E
angle

P-SSD

Figure 4.4: Median and range between first and third quartiles of relative (left) and angle
(right) errors for the original dictionary and the dictionary identified with Approximated P-
SSD for system (4.25) on 1000 trajectories of length L = 20 with initial conditions randomly
selected from M.

between the first and third quartiles of the predictions errors for the dictionary D̃ identified

117

by Approximated P-SSD and the original dictionary D over the aforementioned trajectories.

According to Figure 4.4, Approximated P-SSD has a clear advantage in long-term prediction.

After 20 time steps the median of the relative prediction errors for the original dictionary

is 60% while the same error for the dictionary identified with Approximated P-SSD is 5%.

Moreover, the median of the angle errors after 20 time steps are 0.5 and 0.05 radians for D

and D̃, resp. �

Example 4.5.4. (Chaotic Lorenz System). Consider the chaotic Lorenz system

ẋ = 10(y − x)

ẏ = x(28− z)− y

ż = xy − (8/3)z, (4.26)

with state s = [x, y, z]T belonging to state space M = [−20, 20] × [−30, 30] × [0, 50]. Our

strategy for sampling fromM, the number of samples and signature data, and the processor

network are similar to Example 4.5.3. We use the dictionary D with Nd = 84 comprised of all

distinct monomials up to degree 6 of the form
∏6

i=1 yi, with yi ∈ {1, x, y, z} for i ∈ {1, . . . , 6}.

To avoid numerical problems caused by round-off errors, we scale the dictionary elements

as in Example 4.5.3. Note that the dictionary D only contains the trivial Koopman eigen-

function φ(x) ≡ 1 with eigenvalue λ = 1. Consequently, the P-SSD algorithm results in

a one-dimensional Koopman-invariant subspace providing exact prediction but no informa-

tion about the dynamics. To address this issue, we use instead the Approximated P-SSD

algorithm presented in Remark 4.3.6 with ε = 0.001. Moreover, we set ε∩ = 0.001 following

118

Remark 4.2.6. This algorithm reaches a consensus equilibria after 3 iterations identifying a

2-dimensional subspace. It is worth mentioning that we could not implement the Approxi-

mated SSD algorithm, cf. Algorithm 4 on the same dataset because of its large computational

requirements..

Using the output matrix of any of the agents, cf. Remark 4.4.2, we find the dictionary

D̃ with Ñd = 2 and two approximated eigenfunctions in its span. Approximated P-SSD

finds the only exact Koopman eigenfunction (φ(x) ≡ 1 with eigenvalue λ = 1) in the span

of the original dictionary correctly. It also approximates another real-valued eigenfunction

with eigenvalue λ ≈ 0.46 which predicts that the trajectories converge to an approximated

invariant set since |λ| < 1.

To show the advantage of our method in long-term prediction, we use the error func-

tions presented in (4.24) on 1000 trajectories with length L = 20 time steps and initial

conditions uniformly taken from M = [−20, 20] × [−3, 30] × [0, 50] and compare the pre-

diction accuracy of the dictionary D̃ identified by Approximated P-SSD versus the original

dictionary D. Figure 4.5 shows the median and the range between the first and third quar-

tiles of the aforementioned predictions errors, indicating the advantage of P-SSD in long-term

prediction. �

119

0 5 10 15 20

time step

0

50

100

150

200

250

re
la

ti
v

e
er

ro
r

(%
)

E
relative

Orig

E
relative

P-SSD

0 10 20
0

0.2

0.4

0 5 10 15 20

time step

0

0.5

1

an
g

le
 (

ra
d

)

E
angle

Orig

E
angle

P-SSD

0 10 20
0

2

4
10

-3

Figure 4.5: Median and range between first and third quartiles of relative (left) and angle
(right) errors for dictionary D̃ identified by Approximated P-SSD and the original dictionary
D for system (4.26) on 1000 trajectories of length L = 20 with initial conditions randomly
selected from M.

Acknowledgements

This chapter, in part, is a reprint of the material [HC21b] as it appears in ‘Parallel

Learning of Koopman Eigenfunctions and Invariant Subspaces For Accurate Long-Term

Prediction’ by M. Haseli and J. Cortés, in IEEE Transactions on Control of Network Systems

2021. The dissertation author was the primary investigator and author of this paper. The

work in this chapter was partially supported by ONR Award N00014-18-1-2828.

120

Chapter 5

Balancing Accuracy and

Expressiveness in Koopman

Approximations

In Section 2.4 and Chapter 3, we discussed the Extended Dynamic Mode Decompo-

sition (EDMD) and Symmetric Subspace Decomposition (SSD) methods. These methods

can be seen as two extremes of the accuracy-expressiveness trade-off for finite-dimensional

Koopman models on subspaces of a particular dictionary’s span. Expressiveness corresponds

to the ability of the dictionary to describe the evolution of as many observables as possible

and accuracy corresponds to the ability to correctly predict their evolution. On the one

hand, EDMD provides prediction for all functions in the span of the dictionary leading to

maximum expressiveness but there is no guarantee for the accuracy of such predictions. On

the other hand, SSD prunes the dictionary’s span to find its maximal Koopman-invariant

121

subspace on which the prediction is exact leading to maximum accuracy. However, the prun-

ing by SSD can lead to loss in expressiveness. In this chapter, we aim to explore what is

between the two extreme cases of accuracy and expressiveness trade-off.

We first provide a data-driven measure to characterize the prediction accuracy of

Koopman-based models on a subspace. Based on the observation that Koopman-invariant

subspaces give rise to exact predictions, we reason that prediction accuracy is a function of

the degree of invariance of the subspace generated by the dictionary and provide a data-

driven measure to characterize invariance proximity. Then we propose an algorithm to

iteratively prune the initial functional space to identify a refined dictionary of functions that

satisfies the desired level of accuracy while retaining as much of the original expressiveness

as possible. We provide a full characterization of the algorithm properties and show that it

generalizes both EDMD and SSD methods.

5.1 Problem Statement

Consider 1 the following discrete-time system defined over the state space M⊆ Rn

x+ = T (x), (5.1)

and let K be its associated Koopman operator defined on a linear space F comprised of

functions mapping elements inM toM. Moreover, let X, Y ∈ RN×n be matrices comprised

1Some problem elements are similar to the elements used in the previous chapters. Here, we have repeated
those notions for the reader’s convenience.

122

of N data snapshots such that

yi = T (xi), i ∈ {1, . . . , N}, (5.2)

where xTi and yTi are ith rows of X and Y . In addition, let D :M→ R1×Nd be a dictionary

of Nd functions in F such that

D(·) = [d1(·), . . . , dNd
(·)]. (5.3)

Following Section 2.4, we define the EDMD optimization problem as

minimize
K

‖D(Y)−D(X)K‖F (5.4)

which has the closed-form solution

KEDMD = EDMD(D,X, Y) := D(X)†D(Y). (5.5)

Consequently, given a function f ∈ span(D) in the form of f(·) = D(·)vf for vf ∈ CNd , one

can define the predictor function for Kf as

PKf (·) = D(·)KEDMDvf . (5.6)

123

Moreover, given the eigenvector v ∈ CNd \ {0} of KEDMD with eigenvalue λ ∈ C, we define

the following approximated Koopman eigenfunction with eigenvalue λ as

φ(·) = D(·)v. (5.7)

Throughout this chapter, we rely on the following Assumption.

Assumption 5.1.1. (Full Rank Dictionary Matrices). D(X) and D(Y) have full

column rank. �

In this chapter, we aim to find dictionaries with elements in span(D) whose span are

close to being invariant (with tunable accuracy) under the Koopman operator. We start

by noting that one can view the Extended Dynamic Mode Decomposition (EDMD) and

Symmetric Subspace Decomposition (SSD) methods described in Sections 2.4 and 3 as the

two extreme cases in the trade-off between prediction accuracy and dictionary’s dimension

measuring the expressiveness of the identified subspace. Our goal is then to explore the

accuracy-expressiveness spectrum in-between the extreme cases of SSD and EDMD. To do

this, we seek to provide a formal data-driven characterization of how close a functional space

is to being invariant under the Koopman operator (something we refer to as invariance

proximity). Equipped with this notion, we also aim to develop computational methods that

can find finite-dimensional functional spaces that meet a desired level of invariance proximity.

We formalize this problem next.

Problem 5.1.2. (Characterizing Invariance Proximity of a Subspace and Ap-

propriate Dictionary Identification). Given the original dictionary D defined in (5.3),

124

data snapshots matrices X, Y gathered from the dynamical system (5.1) defined in (5.2), and

assuming that Assumption 5.1.1 holds, we seek to:

(i) provide a measure to quantify the invariance proximity of span of any dictionary D̃

with elements in span(D) solely based on available data X, Y ;

(ii) provide an algorithm that finds a dictionary D̃ with elements in span(D) that meets a

desired level of invariance proximity;

(iii) such that span(D̃) contains the maximal Koopman-invariant subspace in span(D). �

Requirement (iii) in Problem 5.1.2 ensures the correctness of the algorithmic solution

by ensuring the maximal Koopman-invariant subspace and all Koopman eigenfunctions in

span(D) are captured.

5.2 ε-Apart Spaces Measure Invariance Proximity

In this section we provide a quantifiable measure for invariance proximity of a sub-

space by studying the behavior of EDMD with respect to its dictionary. Since the true system

dynamics is unknown, this measure must be based on the available data matrices X and Y .

To gain a deeper understanding about the behavior of the data-dictionary pair, we offer the

following interpretation of the action of the solution KEDMD of the optimization (5.4) as a

projection from R(D(Y)) onto R(D(X)). To see this, let w ∈ R(D(Y)) be a vector of the

form of D(Y)v. Using (5.5),

D(X)KEDMDv = D(X)D(X)†D(Y)v = D(X)D(X)†w = PD(X)w,

125

where we have used that D(X)D(X)† is the projection operator on R(D(X)). Using this

projection viewpoint alongside (5.4) reveals that the residual error ‖D(Y)−D(X)KEDMD‖F

of EDMD, and consequently its accuracy on the available data, depends of how close the

subspaces R(D(X)) and R(D(Y)) are. In fact, note that

• If D spans a Koopman-invariant subspace, we have R(D(Y)) = R(D(X)) and the

residual error of EDMD is equal to zero independently of the data (as long as Assump-

tion 4.1.1 holds). In this case, EDMD captures complete dynamical information about

the evolution of the dictionary functions and the predictor (5.6) is exact;

• Instead, if R(D(X)) ⊥ R(D(Y)), one can deduce that under Assumption 4.1.1,

KEDMD = 0Nd×Nd
and EDMD captures no information about the dynamics. In par-

ticular, the residual error ‖D(Y) − KEDMDD(X)‖F = ‖D(Y)‖F amounts to 100%

prediction error for D(Y).

These observations suggests that the proximity of the vector spaces R(D(X)) and R(D(Y))

can be used as a quantifiable characterization for invariance proximity of span(D) and con-

sequently the prediction accuracy of EDMD. This motivates the following definition.

Definition 5.2.1. (ε-Apart Subspaces). Given ε ≥ 0, two vector spaces S1, S2 ⊆ Rp are

ε-apart if ‖PS1v − PS2v‖2 ≤ ε‖v‖2, for all v ∈ S1 ∪ S2. �

According to this definition2, the norm of the error induced by projecting a vector

v belonging to one of the subspaces is smaller than ε‖v‖2. Next, we show that this notion

fully characterizes equality of spaces with the case ε = 0.

2Note that, unlike Grassmannians, e.g. [AMS09], there is no restriction on the dimension of the subspaces
in Definition 5.2.1.

126

Lemma 5.2.2. (0-apart Subspaces are Equal). Vector spaces S1, S2 ⊆ Rp are 0-apart

if and only if S1 = S2.

Proof. (⇒): Let v ∈ S1. By definition, ‖PS1v − PS2v‖2 = ‖v − PS2v‖2 = 0, and hence

v = PS2v. Consequently, v ∈ S2, showing S1 ⊆ S2. The inclusion S2 ⊆ S1 can be proved

analogously, and we conclude S1 = S2.

(⇐): Since S1 = S2, for all v ∈ S1 = S2, we have PS1v = PS2v = v. Hence,

‖PS1v − PS2v‖2 = 0, for all v ∈ S1 ∪ S2, and the result follows.

The next result shows that all subspaces are 1-apart.

Lemma 5.2.3. (Any Two Subspaces are 1-apart). Any two vector spaces S1, S2 ⊆ Rp

are 1-apart.

Proof. For any v ∈ S1, one can write

‖PS1v − PS2v‖2 = ‖v − PS2v‖2 = ‖(I − PS2)v‖2 ≤ ‖v‖2,

where in the last equality we have used the fact that (I − PS2) is the projection operator

on the orthogonal complement of S2. One can write a similar argument for v ∈ S2, which

completes the proof.

Lemmas 5.2.2-5.2.3 together imply that the range [0, 1] for the parameter ε fully

characterizes the proximity of any two subspaces. This enables us to use the concept of

ε-apart subspaces on D(X) and D(Y) as a way to quantify the invariance proximity of

127

span(D) under the Koopman operator associated with the system (5.1). Equipped with

this, we reformulate Problem 5.1.2(ii)-(iii) next.

Problem 5.2.4. (Balancing Prediction Accuracy and expressiveness).Given the

parameter ε ∈ [0, 1], find a dictionary D̃ with elements in span(D) such that

(ii) R(D̃(X)) and R(D̃(Y)) are ε-apart;

(iii) span(D̃) contains the maximal Koopman-invariant subspace in span(D). �

It is worth mentioning that

ε∗ = min{ε ∈ [0, 1] | R(D(X)),R(D(Y)) are ε-apart}

captures the invariance proximity, and consequently the prediction accuracy, of D. As a

result, if we choose ε < ε∗ in Problem 5.2.4, the new dictionary would be smaller than D,

leading to a decrease of the expressiveness of the resulting dictionary. Hence, the choice of

parameter ε strikes a balance between prediction accuracy and expressiveness of the dictio-

nary.

5.3 Tunable Symmetric Subspace Decomposition

In this section, we design and analyze an algorithm, termed Tunable Symmetric

Subspace Decomposition (T-SSD), to address Problem 5.2.4.

128

5.3.1 The T-SSD Algorithm

Given the dictionary D and data snapshots X, Y , the problem of finding a dictionary

D̃ such that R(D̃(X)) and R(D̃(Y)) are ε-apart can be tackled by pruning D. We next

describe informally the procedure and then formalize it in Algorithm 6.

[Informal description:] The pruning consists of identifying the functions that violate

the desired invariance proximity condition and remove them from the dictionary’s span. To

identify such functions, we define the projection difference matrix (Step 6 in Algorithm 6)

G = PD(X) − PD(Y) = D(X)D(X)† −D(Y)D(Y)†,

which is a symmetric matrix with mutually orthogonal eigenvectors spanning RN (with

corresponding real-valued eigenvalues). Interestingly, if all eigenvalues of G belong to [−ε, ε],

then D(X) and D(Y) are ε-apart. Otherwise, we focus our attention on the smaller subspace

of RN defined by

Wε := span{v ∈ RN | Gv = λv, |λ| ≤ ε},

corresponding to the span of eigenvectors of G with eigenvalues in [−ε, ε]. For practical

reasons, we work with a basis for Wε (Step 7 in Algorithm 6). Next, we find the largest

dictionary D̃ with elements in span(D) such that R(D̃(X)),R(D̃(Y)) ⊆ Wε (Steps 8-9 in

Algorithm 6). There are two possible outcomes:

(i) dim D̃ = dimD;

129

(ii) dim D̃ < dimD.

Scenario (i) indicates that the dictionary D does not need pruning and R(D(X)),R(D(Y))

are ε-apart (Steps 15-17 in Algorithm 6). On the other hand, scenario (ii) leads to a dictionary

of lower dimension. However, it is not guaranteed that R(D̃(X)) and R(D̃(Y)) are ε-apart

since D̃ is a different dictionary than D. Consequently, we re-run the process, starting with

the definition of G, for the new dictionary D̃. This leads to an iterative implementation

that stops when the dictionary cannot be reduced anymore (yielding the desired ε-apart

subspaces).

The formalization of this procedure yields the Tunable Symmetric Subspace Decom-

position (T-SSD)3 in Algorithm 6. We make the following additional observations regading

the use of notation to provide intuition about the algorithm pseudode: (i) we index the

internal matrix variables based on the iteration number (this facilitates later the in-depth

algebraic analysis); (ii) noting that, at each iteration, the dictionary elements are linear

combinations of the elements of the original dictionary, we represent the dictionary at iter-

ation i simply by a matrix Ci, which corresponds to the dictionary D(·)Ci; (iii) using the

representation in (ii), we do not need to form the dictionary and apply it on the the data

matrices X and Y . Instead, the effect of the dictionary at iteration i on the data can be

represented as Ai = D(X)Ci and Bi = D(Y)Ci.

Algorithm 7 describes the Symmetric-Intersection function in Step 8 of T-SSD: this

strategy corresponds to the computation described above of the largest dictionary D̃ such

that R(D̃(X)) and R(D̃(Y)) belong to the reduced subspace Wε. Similarly to Algorithm 2,

3In Algorithms 6-7, the outputs of null(A) and basis(A) are matrices whose columns form orthonormal
bases for the null space of A and R(A), respectively.

130

Algorithm 6 Tunable Symmetric Subspace Decomposition

Inputs: D(X), D(Y) ∈ RN×Nd , ε ∈ [0, 1]

1: Procedure T-SSD(D(X), D(Y), ε)
2: Initialization
3: i← 0, A0 ← D(X), B0 ← D(Y), C0 ← INd

4: while 1 do
5: i← i+ 1
6: Gi ← Ai−1A

†
i−1 −Bi−1B

†
i−1 . projection difference

7: Vi ← basis(span{v ∈ RN | Giv = λv, |λ| ≤ ε})
. eigenpairs corresponding to small eigenvalues

8: Ei ← Symmetric-Intersection(Vi, Ai−1, Bi−1)
. Find largest dictionary matrices in Vi (Algorithm 7)

9: Ci ← Ci−1Ei . reduce subspace
10: Ai ← Ai−1Ei, Bi ← Bi−1Ei . calculate new dictionary matrices
11: if Ei = 0 then
12: return 0 . ubspace does not exist, returning scalar 0
13: break
14: end if
15: if]rows(Ei) ≤]cols(Ei) then
16: return Ci . procedure is complete
17: break
18: end if
19: end while

instead of actually forming the reduced dictionary, Algorithm 3 uses the matrix-based rep-

resentation of the dictionary. Next, we explain the steps of the algorithm and the reason

behind its naming. Given input matrices V , A, and B, Step 6 in Algorithm 7 identifies WA

such that R(AWA) = R(V)∩R(A) (see Lemma 3.7.1). Then, again in Step 13 the algorithm

(by virtue of Lemma 3.7.1) finds the matrix ZB such that R(BWAZB) = R(V) ∩R(BWA).

The output matrix E := basis(WAZB) (cf. Step 13) then specifies the largest subspaces

R(AE), R(BE) both belonging to R(V). Note the symmetry in this specification: if a

linear combination of the columns of A is in R(V), then the same linear combination of

columns of B belongs to R(V). Moreover, Algorithm 7 breaks and returns 0 if any of the

131

aforementioned intersections only contain the zero vector (Steps 2-4 and Steps 7-9).

Algorithm 7 Symmetric Intersection

Inputs: V ∈ Rn×m and A,B ∈ Rn×p

1: Procedure Symmetric-Intersection(V,A,B)
2: if null([V,A]) = ∅ then
3: return 0
4: break
5: else

6:

[
WV

WA

]
← null([V,A]) .]cols(V) =]rows(WV),]cols(A) =]rows(WA)

7: if null([V,BWA]) = ∅ then
8: return 0
9: break

10: end if

11:

[
ZV
ZB

]
← null([V,BWA]) .]cols(V) =]rows(ZV),]cols(BWA) =]rows(ZB)

12: end if
13: return basis(WAZB) . returning an orthogonal basis

Remark 5.3.1. (Implementation of Algorithm 7 on Finite-Precision Comput-

ers). The accuracy of the implementation of Algorithm 7 depends on the calculation of the

null space of several matrices, which might be sensitive to round-off errors. To circumvent

this issue, one can set sufficiently small (according to a desired accuracy level) singular values

of the matrices to zero. �

5.3.2 Basic Properties of T-SSD

Our end goal now is to show that the T-SSD algorithm solves Problem 5.2.4 and

unveil its relationship with the EDMD and SSD methods. In order to do so, we establish

here several basic algorithm properties.

Proposition 5.3.2. (Properties of Symmetric-Intersection). Let matrices V,A,B have

132

full column rank and E = Symmetric-Intersection(V,A,B). Then,

(i) E = 0 or ETE = I;

(ii) R(AE),R(BE) ⊆ R(V);

(iii) E is maximal, i.e., any nonzero matrix F such that R(AF),R(BF) ⊆ R(V) satisfies

R(F) ⊆ R(E).

Proof. (i) There are three ways for Algorithm 7 to terminate. If the algorithm executes

Steps 2-4 or Steps 7-9, we have E = 0 by definition. Otherwise, the algorithm executes

Step 13. Hence, noting that WA and ZB exist and the basis function returns an orthonormal

basis for WAZB, one can conclude ETE = I.

(ii) The case E = 0 is trivial. Suppose that E 6= 0 and hence has full column rank

according to part (i). By definition, R(E) = R(WAZB). Consequently, based on Step 11 of

the algorithm and using Lemma 3.7.1, we deduce

R(BE) = R(BWAZB) = R(BWA) ∩R(V) ⊆ R(V), (5.8)

where in the first equality, we used Lemma 3.7.2. Moreover, from the definition of E, one

can deduce that R(E) ⊆ R(WA). In addition, based on Lemma 3.7.2, we have R(AE) ⊆

R(AWA). Using the previous inequality in conjunction with Lemma 3.7.1 applied to Step 6

of the algorithm, one can write

R(AE) ⊆ R(AWA) = R(A) ∩R(V) ⊆ R(V), (5.9)

133

which in conjunction with (5.8) concludes the proof of (ii).

(iii) Without loss of generality, we assume that F has full column rank (if that is not

the case, one can consider another matrix F̄ with full column rank such that R(F) = R(F̄)).

Since R(AF) ⊆ R(V), we have R(AF) ⊆ R(A)∩R(V), which leads to R(AF) ⊆ R(AWA)

based on (5.9). Moreover, one can use Lemma 3.7.2 to deduce that R(F) ⊆ R(WA). Since

F and WA both have full column rank, there exists FW with full column rank such that

F = WAFW . (5.10)

Considering that R(BF) ⊆ R(V) and R(BWAFW) ⊆ R(BWA) in combination with (5.10),

we deduceR(BF) = R(BWAFW) ⊆ R(BWA)∩R(V) = R(BWAZB), where the last equality

follows from (5.8). Based on Lemma 3.7.2, we deduce R(F) ⊆ R(WAZB) = R(E).

Next, we show that T-SSD terminates after a finite number of iterations.

Proposition 5.3.3. (Finite-time Termination of T-SSD Algorithm). The T-SSD

algorithm terminates after at most Nd iterations.

Proof. We reason by contradiction. Suppose that the algorithm does not terminate before

iteration Nd + 1. Hence, the algorithm does not execute Steps 12-13 or Steps 16-17 in the

first Nd iterations. Therefore, the conditions in Steps 11 and 15 do not hold. Consequently,

using Proposition 5.3.2(i), one can write

]rows(Ei) >]rows(Ei)− 1 ≥]cols(Ei), (5.11)

134

for all i ∈ {1, . . . , Nd}. In addition, based on the definition of the Ei’s, one can deduce

]cols(Ei) =]rows(Ei+1), for all i ∈ {1, . . . , Nd}. Combining this with (5.11) leads to

]rows(E1) ≥]cols(ENd
) + Nd. This fact together with]rows(E1) = Nd and]cols(ENd

) =

]cols(CNd
) (cf. Step 9) implies that]cols(CNd

) ≤ 0, contradicting]cols(CNd
) ≥ 1.

Next, we study basic properties of the internal matrices of the T-SSD algorithm.

Lemma 5.3.4. (Properties of T-SSD Matrices). Let the T-SSD algorithm terminate

in L time steps. Then,

(i) ∀i ∈ {0, . . . , L− 1}, R(Ci+1) ⊆ R(Ci);

(ii) ∀i ∈ {0, . . . , L− 1}, CT
i Ci = I;

(iii) CL = 0 or CT
LCL = I,

where Ci denotes T-SSD’s ith internal matrix, cf. Algorithm 6.

Proof. (i) According to Step 9 of the algorithm, Ci+1 = CiEi+1. Hence, R(Ci+1) =

R(CiEi+1) ⊆ R(Ci).

(ii) For i = 0, the result holds by definition. Moreover, since the algorithm does

not terminate until iteration L, it does not execute Steps 12-13 in iterations {1, . . . , L− 1}.

Hence, Ei 6= 0 and based on Proposition 5.3.2(i), we have

ET
i Ei = I, ∀i ∈ {1, . . . , L− 1}. (5.12)

Moreover, from Step 9, Ci = C0E1E2 · · ·Ei, ∀i ∈ {1, . . . , L − 1}. This in conjunction

with (5.12) and C0 = INd
, implies CT

i Ci = I for all i ∈ {1, . . . , L− 1}, as claimed.

135

(iii) Note that CL = CL−1EL. Based on Proposition 5.3.2(i), either EL = 0 or ET
LEL =

I. In the former case, we have CL = 0. In the latter case, CT
LCL = CT

L−1E
T
LELCL−1 =

CT
L−1CL−1 = I, where in the last equality we used (ii).

For convenience, let

CT-SSD := T-SSD(D(X), D(Y), ε), (5.13)

denote the output of the T-SSD algorithm. This leads to the definition of the T-SSD dictio-

nary

DT-SSD(·) := D(·)CT-SSD. (5.14)

To extract the dynamical information associated with the Koopman operator on

span(DT-SSD), we use EDMD. According to (5.5), we find the T-SSD prediction matrix

as

KT-SSD := EDMD(DT-SSD, X, Y) = DT-SSD(X)†DT-SSD(Y). (5.15)

We can also define approximated Koopman eigenfunctions according to (5.7) using the eigen-

decomposition of KT-SSD and the dictionary DT-SSD. In addition, following (5.6), given any

function f ∈ span(DT-SSD) described by f(·) = DT-SSD(·)w, we can define the T-SSD predic-

136

tor of Kf on span(DT-SSD) as

PT-SSD
Kf (·) = DT-SSD(·)KT-SSDw. (5.16)

Remark 5.3.5. (Computational Complexity of T-SSD). Given N data snapshots and

Nd dictionary functions, and considering the complexity of scalar operations as O(1), the

most time-consuming step of Algorithm 6 is Step 7, which requires the eigendecomposition

of an N ×N matrix and takes O(N3) operations. Based on Proposition 5.3.3, the algorithm

terminates after at most Nd iterations, resulting in a total complexity of O(N3Nd). �

5.4 T-SSD Balances Accuracy and Expressiveness

In this section we show that the output of T-SSD balances prediction accuracy and

expressiveness as prescribed by the design parameter ε ∈ [0, 1].

5.4.1 T-SSD Identifies ε-Apart Subspaces

Here, we show that T-SSD solves Problem 5.2.4(ii).

Theorem 5.4.1. (T-SSD Output Subspaces are ε-Apart). R(DT-SSD(X)) and

R(DT-SSD(Y)) are ε-apart.

Proof. Let L ≤ Nd be the number of iterations for convergence of the T-SSD algorithm (cf.

Proposition 5.3.3). Based on Proposition 5.3.2(i), we have EL = 0 or ET
LEL = I. With the

notation of Algorithm 6, in the former case, the algorithm executes Steps 12-13 at iteration

137

L and consequently CT-SSD = 0. Therefore,

R(DT-SSD(X)) = R(DT-SSD(Y)) = {0N×1},

and the result holds trivially. Now, suppose that ET
LEL = I. Hence, EL has full column rank

and consequently]rows(EL) ≥]cols(EL). However, since the algorithm executes Steps 16-

17, the condition in Step 15 holds and one can write]rows(EL) =]cols(EL). Therefore,

since EL has full column rank, it is a nonsingular square matrix and

R(CL) = R(CL−1EL) = R(CL−1), (5.17a)

R(AL) = R(AL−1EL) = R(AL−1), (5.17b)

R(BL) = R(BL−1EL) = R(BL−1). (5.17c)

At iteration L, one can use Steps 6 and 7 in conjunction with the fact that the eigenvectors

of GL are mutually orthogonal to write

‖GLv‖2 = ‖AL−1A
†
L−1v −BL−1B

†
L−1v‖2

= ‖PAL−1
v − PBL−1

v‖2 ≤ ε‖v‖2, (5.18)

for all v ∈ R(VL). Moreover, based on definition of EL and Proposition 5.3.2(ii),

R(AL−1EL),R(BL−1EL) ⊆ R(VL). (5.19)

138

Consequently, using AL = D(X)CL and BL = D(Y)CL, and equations (5.17)-(5.19), we

deduce

‖PD(X)CL
v − PD(Y)CL

v‖2 = ‖PAL
v − PBL

v‖2

= ‖PAL−1
v − PBL−1

v‖2 ≤ ε‖v‖2,

for all v ∈ R(D(X)CL) ∪ R(D(Y)CL). Since CL = CT-SSD, and given the definition (5.14)

of the T-SSD dictionary, this can be rewritten as ‖PDT-SSD(X)v − PDT-SSD(Y)v‖2 ≤ ε‖v‖2,

for all v ∈ R(DT-SSD(X)) ∪ R(DT-SSD(Y)). Hence, R(DT-SSD(X)) and R(DT-SSD(Y)) are

ε-apart.

We next build on Theorem 5.4.1 to characterize the accuracy of predictions (5.16) for

any function in span(DT-SSD) on the available data.

Theorem 5.4.2. (Relative Root Mean Square Error (RRMSE) of Koopman Pre-

dictions by T-SSD are Bounded by ε). For any function f ∈ span(DT-SSD),

√
1
N

∑N
i=1 |Kf(xi)−PT-SSD

Kf (xi)|2√
1
N

∑N
i=1 |Kf(xi)|2

≤ ε (5.20)

where xTi is the ith row of X and PT-SSD
Kf is defined in (5.16).

Proof. For convenience, we use the compact notation D̃ to refer to DT-SSD throughout the

proof. We first prove the statement for real-valued functions in span(D̃). Let f(·) = D̃(·)w

with w ∈ R]cols(CT-SSD). From Theorem 5.4.1, one can write ‖(PD̃(Y) − PD̃(X))v‖2 ≤ ε‖v‖2,

139

for all v ∈ R(D̃(X)) ∪R(D̃(Y)). One can rewrite this equation as

‖(D̃(Y)D̃(Y)† − D̃(X)D̃(X)†)v‖2 ≤ ε‖v‖2, (5.21)

for all v ∈ R(D̃(X))∪R(D̃(Y)). In addition, using equations (5.15) and (5.16), and the fact

that Kf(xi) = f ◦ T (xi) = f(yi) for all i ∈ {1, . . . , N}, one can write

√√√√ N∑
i=1

∣∣Kf(xi)−PT-SSD
Kf (xi)

∣∣2 = ‖(D̃(Y)− D̃(X)KT-SSD)w‖2

= ‖(D̃(Y)− D̃(X)D̃(X)†D̃(Y))w‖2

= ‖
(
D̃(Y)D̃(Y)† − D̃(X)D̃(X)†

)
D̃(Y)w‖2,

where we have used D̃(Y) = D̃(Y)D̃(Y)†D̃(Y) in the last equality. Moreover, since D̃(Y)w ∈

R(D̃(X)) ∪R(D̃(Y)), one can use this equation in conjunction with (5.21) to write

√√√√ N∑
i=1

∣∣Kf(xi)−PT-SSD
Kf (xi)

∣∣2 ≤ ε‖D̃(Y)w‖2

= ε

√√√√ N∑
i=1

|Kf(xi)|2.

Scaling both sides by N−
1
2 yields (5.20) for real-valued functions in span(D̃).

For the complex-valued case, let f(·) = D̃(·)w with w = wRe + jwIm, wRe, wIm ∈

R]cols(CT-SSD) and wIm 6= 0.

Consider the decompositions of f and PT-SSD
Kf as f(·) = fRe(·) + jfIm(·) and

140

PT-SSD
Kf (·) = PT-SSD

KfRe
(·) + jPT-SSD

KfIm (·), where

fRe(·) = D̃(·)wRe, fIm(·) = D̃(·)wIm,

PT-SSD
KfRe

(·) = D̃(·)KT-SSDwRe, PT-SSD
KfIm (·) = D̃(·)KT-SSDwIm. (5.22)

Using (5.20) for the real-valued functions in (5.22),

N∑
i=1

|KfRe(xi)−PT-SSD
KfRe

(xi)|2 ≤ ε2
N∑
i=1

|KfRe(xi)|2,

N∑
i=1

|KfIm(xi)−PT-SSD
KfIm (xi)|2 ≤ ε2

N∑
i=1

|KfIm(xi)|2.

By adding these two inequalities, using (5.22), and noting that |g|2 = |gRe|2 + |gIm|2 for

g = gRe + jgIm, one can write

N∑
i=1

|Kf(xi)−PT-SSD
Kf (xi)|2 ≤ ε2

N∑
i=1

|Kf(xi)|2,

and (5.20) follows.

Theorem 5.4.2 ensures that each member of the vector space of functions identified

by T-SSD has prediction error bounded by the accuracy parameter ε.

Remark 5.4.3. (T-SSD Bounds the Relative L2-norm Error of Koopman Pre-

dictions under Empirical Measure by ε). Given the functions in span(D) and their

composition with T are measurable, consider the empirical measure µ = 1
N

∑N
k=1 δxk where

141

δxk is the Dirac measure at the kth row of X. Then Theorem 5.4.2 can be interpreted as

‖Kf −PT-SSD
Kf ‖L2

‖Kf‖L2

≤ ε, ∀f ∈ span(DT-SSD),

where the L2-norm is calculated based on the empirical measure µ. �

5.4.2 T-SSD Captures Maximal Koopman-Invariant Subspace

Here, we show that T-SSD also solves Problem 5.2.4(iii). To do this, we study the

relationship of the algorithm with Koopman eigenfunctions and invariant subspaces. We

first show that the T-SSD matrices capture the maximal Koopman-invariant subspaces in

the span of the original dictionary D.

Theorem 5.4.4. (T-SSD Matrices Capture the Maximal Koopman-Invariant

Subspace). Let Imax denote the maximal Koopman-invariant subspace in span(D) and

let Cmax be a full-column rank matrix such that D(·)Cmax spans Imax (if Imax = {0}, we set

Cmax = 0). Then, for any ε ∈ [0, 1],

R(Cmax) ⊆ R(Ci), ∀i ∈ {0, . . . , L},

where L and Ci denote, respectively, the termination step and the ith internal matrix of

T-SSD.

Proof. The result holds trivially if Imax = {0}. For the case Imax 6= {0}, we reason by

induction. For i = 0, columns of C0 span the whole space. Hence, R(Cmax) ⊆ R(C0). Next,

142

assume R(Cmax) ⊆ R(Ci) for i ∈ {0, 1, . . . , L − 1} and let us prove R(Cmax) ⊆ R(Ci+1).

The invariance of Imax implies that R(D(X)Cmax) = R(D(Y)Cmax). Using the definition of

matrices A0, B0 in Algorithm 6, this can be equivalently written asR(A0Cmax) = R(B0Cmax).

Since R(Cmax) ⊆ R(Ci), using Lemma 3.7.2, we deduce

R(A0Cmax) ⊆ R(A0Ci), R(B0Cmax) ⊆ R(B0Ci).

Hence, PA0Ci
w = w = PB0Ci

w, for all w ∈ R(A0Cmax) = R(B0Cmax), or equivalently,

‖PA0Ci
w − PB0Ci

w‖2 = 0, ∀w ∈ R(A0Cmax) = R(B0Cmax). (5.23)

Now, noting that Ai = A0Ci and Bi = B0Ci, one can use Step 6 of Algorithm 6 and write

Gi+1v = PA0Ci
v − PB0Ci

v, for all v ∈ RN . This, combined with (5.23), yields R(A0Cmax) =

R(B0Cmax) ⊆ null(Gi+1). Therefore, since the eigenvectors of Gi+1 with zero eigenvalue span

null(Gi+1), we deduce from Step 7,

R(A0Cmax) = R(B0Cmax) ⊆ R(Vi+1). (5.24)

Based on the induction hypothesis R(Cmax) ⊂ R(Ci), and noting that Cmax and Ci have

full column rank (Cmax by definition and Ci from Lemma 5.3.4(ii)), there exits a full-column

rank matrix Fi such that

Cmax = CiFi. (5.25)

143

Now, using (5.24)-(5.25), in conjunction with Proposition 5.3.2(iii), we deduce R(Fi) ⊆

R(Ei+1). Consequently, one can use Lemma 3.7.2 and write R(Cmax) = R(CiFi) ⊆

R(CiEi+1) = R(Ci+1), concluding the proof.

Theorem 5.4.4 implies that the subspace identified by T-SSD contains the maximal

Koopman-invariant subspace in span(D).

Corollary 5.4.5. (T-SSD Subspace Contains the Maximal Koopman-Invariant

Subspace). Let Imax be the maximal Koopman-invariant subspace in span(D). Given ε ∈

[0, 1], let CT-SSD and DT-SSD be the output and dictionary identified by T-SSD according

to (5.13)-(5.14). Then, Imax ⊆ span(DT-SSD).

The next result shows that the eigendecomposition of KT-SSD captures all Koopman

eigenfunctions (and corresponding eigenvalues) in the span of the original dictionary.

Proposition 5.4.6. (KT-SSD Captures All Koopman Eigenfunctions in span(D)).

Let φ be a Koopman eigenfunction in span(D) with eigenvalue λ. For ε ∈ [0, 1], let KT-SSD

in (5.15) be the T-SSD predictor matrix. Then, φ ∈ span(DT-SSD) and there exists w with

KT-SSDw = λw such that φ(·) = DT-SSD(·)w.

Proof. Note that φ must belong to the maximal Koopman-invariant subspace Imax in

span(D) which, from Corollary 5.4.5, is included in span(DT-SSD) = span(D(·)CT-SSD).

Therefore, there exists a complex vector w of appropriate size such that φ(·) = DT-SSD(·)w.

Using now the interpretation of KT-SSD as the EDMD solution with dictionary DT-SSD and

data X, Y , it follows from Lemma 3.2.1(ii) that KT-SSDw = λw, as claimed.

144

Proposition 5.4.6 states that all eigenfunctions in the span of the original dictionary

D belong to the set of approximated eigenfunctions calculated with the dictionary DT-SSD

defined by T-SSD.

Remark 5.4.7. (Monotonicity of T-SSD Subspaces). In general, the output of the

T-SSD algorithm is not monotonic as a function of the design parameter ε, i.e., it might be

the case that span(Dε1
T-SSD) 6⊂ span(Dε2

T-SSD) for ε1 < ε2. In case monotonicity is desirable for

a specific application, one can modify Step 7 of Algorithm 6 to remove only the eigenvector

with the largest eigenvalue (in magnitude) that exceeds the desired accuracy level. This

modification ensures monotonicity in ε at the cost of requiring the modified algorithm more

iterations to terminate. All the results remain valid for the modified version of the algorithm.

�

5.5 EDMD and SSD are Special Cases of T-SSD

Consistent with our assertion that T-SSD balances accuracy and expressiveness, here

we show that EDMD on the original dictionary (maximum expressiveness) corresponds to

T-SSD with ε = 1 and that SSD (maximum accuracy) corresponds to T-SSD with ε = 04.

We start by showing an important property of EDMD.

Lemma 5.5.1. (Linear Transformations Do not Change the Information Ex-

tracted by EDMD). Let D1 and D2 be two dictionaries such that D1(·) = D2(·)R, with

R invertible. Let Assumption 4.1.1 hold for both dictionaries given data matrices X and Y .

4We refer to KSSD and KT-SSD as SSD and T-SSD Koopman approximations, which can be calculated
by applying EDMD on dictionaries identified by SSD and T-SSD respectively.

145

Define

K1
EDMD = EDMD(D1, X, Y) = D1(X)†D1(Y),

K2
EDMD = EDMD(D2, X, Y) = D2(X)†D2(Y).

Then, K1
EDMD = R−1K2

EDMDR. Therefore, (λ, v) is an eigenpair of K1
EDMD if and only if

(λ,Rv) is an eigenpair of K2
EDMD.

Proof. Based on Assumption 4.1.1, we have K1
EDMD =

(
D1(X)TD1(X)

)−1
D1(X)TD1(Y).

Using D1(·) = D2(·)R,

K1
EDMD =

(
RTD2(X)TD2(X)R

)−1
RTD2(X)TD2(Y)R

= R−1
(
D2(X)TD2(X)

)−1
D2(X)TD2(Y)R

= R−1D2(X)†D2(Y)R = R−1K2
EDMDR.

The rest follows from the properties of similarity transformations.

Lemma 5.5.1 states that the dynamical information captured by the EDMD algorithm

remains the same under linear transformation of the dictionary. Note that the result does

not require the dictionaries to span a Koopman-invariant subspace. We are ready to show

that EDMD applied to the original dictionary is a special case of T-SSD.

Theorem 5.5.2. (EDMD is a Special Case of T-SSD with ε = 1). For ε = 1, let

DT-SSD be the dictionary identified by T-SSD, cf. (5.14). Then, span(DT-SSD) = span(D),

and KT-SSD = EDMD(DT-SSD, X, Y) and KEDMD = EDMD(D,X, Y) are similar and capture

146

the same dynamical information.

Proof. In the first iteration of Algorithm 6, one can use Step 6 and the definition of A0 and

B0 to write

G1 = A0A
†
0 −B0B

†
0 = PD(X) − PD(Y).

Since G1 is symmetric, its eigenvalues are real. Moreover, they belong to [−1, 1], see

e.g. [AHT85, Lemma 1]. Therefore, since ε = 1, using Step 7, one can deduce that the

columns of V1 span RN . As a result,

R(D(X)) = R(A0) = R(A0INd
) ⊆ R(V1) = RN ,

R(D(Y)) = R(B0) = R(B0INd
) ⊆ R(V1) = RN .

This, combined with the maximality of E1 defined in Step 8, cf. Proposition 5.3.2(iii), implies

R(INd
) ⊆ R(E1). Hence, E1 is nonzero and has full column rank (cf. Proposition 5.3.2(i)).

As a result, nothing that]rows(E1) = Nd , we deduce that E1 is a nonsingular square matrix.

Therefore, R(C1) = R(C0E1) = RNd . This and the fact that E1 is square mean that the

condition in Step 15 is met and the algorithm executes Steps 16-17. Consequently, CT-SSD =

C1 is a nonsingular square matrix and span(DT-SSD(·)) = span(D(·)CT-SSD) = span(D(·)),

so DT-SSD is a (potentially different) basis for the space spanned by D. The rest of the

statement follows from Lemma 5.5.1.

The SSD algorithm is also a special case of T-SSD.

147

Theorem 5.5.3. (SSD is a Special Case of T-SSD with ε = 0). Let DSSD =

SSD(D(X), D(Y)) be the dictionary identified by SSD algorithm (cf. Algorithm 1), and, for

ε = 0, let DT-SSD be the dictionary identified by T-SSD, cf. (5.14). Then, span(DT-SSD) =

span(DSSD), and KT-SSD = EDMD(DT-SSD, X, Y) and KSSD = EDMD(DSSD, X, Y) are sim-

ilar and capture the same dynamical information.

Proof. Since ε = 0, Theorem 5.4.1 implies that R(D(X)CT-SSD) and R(D(Y)CT-SSD) are

0-apart. Therefore, from Lemma 5.2.2, R(D(X)CT-SSD) = R(D(X)CT-SSD). This, together

with Theorem 3.3.1(iii), implies

R(CT-SSD) ⊆ R(CSSD). (5.26)

If CSSD = 0, then CT-SSD = 0, and the proof is complete. Suppose instead that CSSD 6= 0, with

full column rank, cf. Theorem 3.3.1(i). We use induction to prove that R(CSSD) ⊆ R(Ci),

where Ci is the internal matrix of the T-SSD algorithm for i ∈ {0, . . . , L} and L is the

iteration at which it terminates. When i = 0, the columns of C0 = INd
span RNd and,

therefore, R(CSSD) ⊆ R(C0). Assume then that R(CSSD) ⊆ R(Ci) for i ∈ {0, . . . , L − 1},

and let us prove that R(CSSD) ⊆ R(Ci+1).

Based on Theorem 3.3.1(ii), we have R(D(X)CSSD) = R(D(Y)CSSD). This, together

the definition of matrices A0, B0 in Algorithm 6 and the fact that R(CSSD) ⊆ R(Ci), yields

PA0Ci
w = PB0Ci

w = w, (5.27)

for all w ∈ R(A0CSSD) = R(B0CSSD). Now, since Ai = A0Ci and Bi = B0Ci at iteration

148

i + 1 of the T-SSD algorithm, Gi+1v = PA0Ci
v − PB0Ci

v, for all v ∈ RN . This, together

with (5.27), implies that R(A0CSSD) = R(B0CSSD) ⊆ null(Gi+1). Since ε = 0, from Step 7

we know that Vi+1 is a basis for null(Gi+1), and therefore

R(A0CSSD) = R(B0CSSD) ⊆ R(Vi+1). (5.28)

By the induction hypothesis R(CSSD) ⊆ R(Ci). This, together with the fact that CSSD and

Ci have full column rank (the latter because of Lemma 5.3.4(ii)), implies that there exists a

matrix Fi with full column rank such that

CSSD = CiFi. (5.29)

Using now (5.28)-(5.29) together with the fact that Ai = A0Ci, Bi = B0Ci, one can invoke

Proposition 5.3.2(iii) to deduce that R(Fi) ⊆ R(Ei+1). Consequently,

R(CSSD) = R(CiFi) ⊆ R(CiEi+1) = R(Ci+1).

Hence, the induction is complete and

R(CSSD) ⊆ R(Ci), ∀i ∈ {1, . . . , L}. (5.30)

Since CSSD is nonzero and has full column rank, one can deduce that CL is nonzero and

has full column rank as a result of Lemma 5.3.4(iii). Consequently, the T-SSD algorithm

149

terminates by executing Steps 16-17. Therefore, CT-SSD = CL and using (5.26) and (5.30),

we have R(CT-SSD) = R(CSSD) and consequently span(DT-SSD) = span(DSSD). The rest of

the statement follows from Lemma 5.5.1.

It is worth mentioning that, when implementing T-SSD for ε = 0, we have found

it useful to set ε to be a small positive number (instead of zero) to avoid complications

by round-off errors. Given Theorem 5.5.3, the subspace identified by T-SSD for ε = 0

enjoys important dynamical properties, cf. Chapter 3: under reasonable conditions on data

sampling, the identified subspace is the maximal Koopman-invariant subspace in the span

of the dictionary almost surely. Moreover, the eigenfunctions and predictors identified by

T-SSD are almost surely exact.

5.6 Efficient Implementation of T-SSD

Here, we propose a modification to the implementation of the T-SSD algorithm on dig-

ital computers to increase efficiency. This is based on the following observation: a close look

at the form of the matrix Gi ∈ RN×N in Step 6 of Algorithm 6 as a difference of projections

reveals that its eigenvectors are either in or orthogonal to the subspace R(Ai−1) +R(Bi−1),

see e.g., [AHT85]. However, in Step 8, the matrix Ei satisfiesR(Ai−1Ei),R(Bi−1Ei) ⊆ R(Vi).

Hence, the Symmetric-Intersection function filters out all eigenvectors of Gi that are orthog-

onal to R(Ai−1) +R(Bi−1), i.e., these eigenvectors are never used. This is despite the fact

that, since generally N � Nd, such eigenvectors form a majority of eigenvectors of Gi (at

least N − 2Nd out of N).

150

This motivates us to seek a method that bypasses the calculation of the unused

eigenvectors of Gi. To achieve this goal, let Hi be a matrix such that

R(Hi) := R([Ai−1, Bi−1]), HT
i Hi = I]cols(Hi). (5.31)

The columns of Hi form an orthonormal basis ofR(Ai−1)+R(Bi−1). One can calculate Hi by

applying the Gram–Schmidt process, or other closely related orthogonal factorization method

such as QR decomposition (see e.g. [TB97]), on [Ai−1, Bi−1]. The next result shows that the

eigendecomposition of the matrix HT
i GiHi completely captures the eigendecomposition of

Gi on R(Ai−1) +R(Bi−1).

Proposition 5.6.1. (Eigenvectors of HT
i GiHi Characterize All Eigenvectors of Gi

in R(Ai−1)+R(Bi−1)). Let Gi as defined in Step 6 of Algorithm 6, and let Hi satisfy (5.31).

Then, w ∈ CNd \ {0} is an eigenvector of HT
i GiHi with eigenvalue λ if and only if v = Hiw

is an eigenvector of Gi with eigenvalue λ.

Proof. (⇐) By hypothesis, GiHiw = λHiw. Hence, HT
i GiHiw = λHT

i Hiw = λw (where we

have used (5.31)).

(⇒) By hypothesis, HT
i GiHiw = λw. Using (5.31), this can be rewritten as

HT
i (GiHiw − λHiw) = 0. (5.32)

By definition of Gi, we can write GiHiw = PAi−1
(Hiw) − PBi−1

(Hiw). From (5.31), we

have R(Ai−1),R(Bi−1) ⊆ R(Hi). Since PAi−1
(Hiw) ∈ R(Ai−1) and PBi−1

(Hiw) ∈ R(Bi−1),

151

we deduce that GiHiw ∈ R(Hi), and consequently, GiHiw − λHiw ∈ R(Hi). However,

from (5.32), (GiHiw − λHiw) ∈ null(HT
i). Therefore, since R(Hi) ⊥ null(HT

i), we conclude

GiHiw − λHiw = 0, as claimed.

Based on Proposition 5.6.1, we modify T-SSD to achieve higher computational effi-

ciency. Formally, the Efficient T-SSD algorithm replaces Steps 6 and 8 of Algorithm 6

by

6.a: Hi ← basis([Ai, Bi])

6.b: Gi ← HT
i (Ai−1A

†
i−1 −Bi−1B

†
i−1)Hi

8: Ei ← Symmetric-Intersection(HiVi, Ai−1, Bi−1)

These steps bypass the computation of the (unused) eigenvectors of Gi that are orthogonal

to R(Ai−1) +R(Bi−1) in the original T-SSD implementation.

Remark 5.6.2. (Computational Complexity of Efficient T-SSD). Given N data

snapshots and Nd dictionary functions, and considering the complexity of scalar operations as

O(1), the most time-consuming steps of Efficient T-SSD are calculating Hi in (5.31) and the

null space calculations in the function Symmetric-Intersection, which can be done in O(NN2
d)

operations. Since the algorithm terminates after at most Nd iterations, cf. Proposition 5.3.3,

the overall complexity is O(NN3
d). Compared to T-SSD, cf. Remark 5.3.5, the efficient T-

SSD algorithm provides a reduction of O(N2N−2
d), leading to a drastic reduction in run time

for typical situations, where N � Nd. �

152

5.7 Simulation Results

Here, we illustrate the effectiveness of our proposed methods using three examples.

Example 5.7.1. (Hopf Normal Form). Consider the system [BPK16,MM12] on M =

[−2, 2]2,

ẋ1 = x1 + 2x2 − x1(x2
1 + x2

2),

ẋ2 = −2x1 + x2 − x2(x2
1 + x2

2), (5.33)

with state x = [x1, x2]T , which admits an attractive periodic orbit. We consider the dis-

cretized version of (5.33) with time step ∆t = 0.01s and gather N = 104 data snapshots

in matrices X and Y , with initial conditions uniformly selected from M. We consider the

space of all polynomials up to degree 10 spanned by all the Nd = 66 distinct monomials in

the form of
∏10

i=1 αi, with αi ∈ {1, x1, x2} for i ∈ {1, . . . , 10}. To ensure resilience against

machine precision errors and providing informative representations, we choose a dictionary

D with Nd = 66 functions such that the columns of D(X) are orthonormal5.

We implement the Efficient T-SSD algorithm, cf. Section 5.6, with ε ∈

{0.02, 0.05, 0.1, 0.15, 0.2}. Table 5.1 shows the dimension of the identified dictionary, DT-SSD,

versus the value of the design parameter ε. For ε = 0.2, T-SSD identifies the original dic-

tionary, certifying that the range spaces of D(X) and D(Y) are 0.2-apart. On the other

hand, the one-dimensional subspace identified by ε = 0.02 is in fact the maximal Koopman-

5This dictionary can be found by first forming a dictionary comprised of the monomials and then perform-
ing a linear transformation on the dictionary to make the columns orthonormal. The linear transformation
does not impact the captured dynamical information (cf. Lemma 5.5.1).

153

invariant subspace of span(D), spanned by the trivial eigenfunction φ(x) ≡ 1 with eigenvalue

λ = 1.

Table 5.1: Dimension of subspace identified by Efficient T-SSD vs ε for (5.33).

ε 0.02 0.05 0.10 0.15 0.20

dimDT-SSD 1 6 8 16 66

To demonstrate the effectiveness of the T-SSD algorithm in approximating Koopman

eigenfunctions and invariant subspaces, we focus on the subspace identified with ε = 0.05.

In accordance with Proposition 5.4.6, T-SSD identifies the trivial eigenfunction φ(x) ≡ 1

spanning the maximal Koopman-invariant subspace of span(D). T-SSD also approximates

another real-valued eigenfunction with eigenvalue λ = 0.9066, whose absolute value is illus-

trated in Figure 5.1(right). Given that |0.9066| < 1, this eigenfunction predicts the existence

of a forward invariant set (the periodic orbit in Figure 5.1(left)) at its zero-level set.

-2 0 2

x
1

-2

0

2

x
2

-2 0 2

x
1

-2

0

2

x
2

1

2

3

Figure 5.1: Vector field and limit cycle of system (5.33) (left) and the absolute value of
eigenfunction with eigenvalue λ = 0.9066 (right).

In addition, T-SSD also identifies two pairs of complex eigenfunctions. For space

reasons, we only show in Figure 5.2 one eigenfunction with eigenvalue λ = 0.9938 + 0.0195j

154

(the one closest to the unit circle). Its phase characterizes the oscillation of the trajectories

in the state space.

-2 0 2

x
1

-2

0

2

x
2

0.5

1

1.5

2

-2 0 2

x
1

-2

0

2

x
2

-2

0

2

Figure 5.2: Absolute value (left) and phase (right) of the eigenfunction with eigenvalue
λ = 0.9938 + 0.0195j for (5.33).

To illustrate the efficacy of our algorithm regarding the prediction accuracy of the

dictionary, we consider the relative linear prediction error associated with a dictionary D at

point x given data snapshot matrices X and Y defined by

Erelative(x) :=
‖D ◦ T (x)−D(x)K‖2

‖D ◦ T (x)‖2

× 100, (5.34)

where K = EDMD(D, X, Y). Figure 5.3 compares this error on the state space M for the

dictionary DT-SSD identified by T-SSD with ε = 0.05 and for the original dictionary D. This

error is evaluated at points other than the training data X and clearly shows the advantage

of DT-SSD over the original dictionary both in prediction errors and capturing the radial

symmetry of the vector field.

Noting that the error in (5.34) depends on the dictionary and does not provide in-

formation about the subspace it spans (or the individual members of the subspace), we also

155

<2% 2%-4% 4%-6% 6%-8% 8%-10% 10%<

Figure 5.3: Relative linear prediction error for dictionary identified by T-SSD (ε = 0.05)
(left) and the original dictionary (right) for (5.33).

consider the latter. For this reason, we use the data sampling strategy used earlier to build

a test data set denoted by snapshot matrices Xtest and Ytest with Ntest = 104 samples. Given

a dictionary D, we evaluate the invariance proximity of span(D) as the smallest ε such that

R(D(Xtest)) and R(D(Ytest)) are ε-apart. This data-driven measure is equivalent to the

maximum relative root mean square error for a function in the span of a given dictionary D

on the test data defined as

RRMSEmax(D, Xtest, Ytest) = max
f∈span(D)

√
1
Nt

∑Nt

i=1 |Kf(xi)−PT-SSD
Kf |2√

1
Nt

∑Nt

i=1 |Kf(xi)|2
, (5.35)

where xTi and yTi correspond to the ith rows of Xtest and Ytest respectively, yi = T (xi), and

T is the map defining the dynamics (5.33). The predictor PT-SSD
Kf is defined in (5.16) and

calculated based on the test data. It is important to note that the evaluation of the error

in (5.35) goes beyond the assumptions of Theorem 5.4.2, since the dictionary is identified

156

with the original data X, Y , but the error is evaluated on the test data Xtest, Ytest (instead,

the guarantee of Theorem 5.4.2 are only valid when the error is evaluated on the original

data). Following the reasoning in the proof of Theorem 5.4.2 and Definition 5.2.1, one can

analytically show that

RRMSEmax(D, Xtest, Ytest) = λmax(PD(Xtest) − PD(Ytest)),

where λmax denotes the largest eigenvalue of the argument. Table 5.2 shows the maximum

relative root mean square error for the subspaces identified by T-SSD given different values

of ε. According to Table 5.2, despite the fact that we have used different data for identification

and evaluation, the error on the test data satisfies the upper bound accuracy requirement

enforced by the accuracy parameter ε .

Table 5.2: Maximum Relative Root Mean Square Error vs ε for (5.33).

ε 0.02 0.05 0.10 0.15 0.20

RRMSEmax ∼ 0 0.037 0.100 0.115 0.185

Example 5.7.2. (Duffing System). Consider the Duffing system [WKR15] on M =

[−2, 2]2,

ẋ1 = x2,

ẋ2 = −0.5x2 + x1(1− x2
1), (5.36)

with state x = [x1, x2]T , which has an unstable equilibrium at the origin and two asymptoti-

cally stable equilibria at (−1, 0) and (1, 0). We consider the discretized version of (5.36) with

157

time step ∆t = 0.02s and gather N = 104 data snapshots in matrices X and Y from 5000

trajectories with length equal to two time steps and initial conditions uniformly selected

from M. Similarly to the previous example, we use a dictionary D with Nd = 66 elements

spanning the space of all polynomials up to degree 10 such that the columns of D(X) are

orthonormal.

We apply the Efficient T-SSD algorithm, cf. Section 5.6, with ε ∈

{0.01, 0.02, 0.08, 0.14, 0.2, 0.26}. Table 5.3 shows the dimension of the identified dictionary,

DT-SSD, versus the value of the design parameter ε. For ε = 0.26, T-SSD identifies the

original dictionary, certifying that the range spaces of D(X) and D(Y) are 0.26-apart. On

the other hand, the one-dimensional subspace identified by ε = 0.01 is in fact the maximal

Koopman-invariant subspace of span(D), spanned by the trivial eigenfunction φ(x) ≡ 1 with

eigenvalue λ = 1.

Table 5.3: Dimension of subspace identified by Efficient T-SSD vs ε for (5.36).

ε 0.01 0.02 0.08 0.14 0.20 0.26

dimDT-SSD 1 2 20 44 58 66

To demonstrate the effectiveness of the T-SSD algorithm in approximating Koopman

eigenfunctions and invariant subspaces, we focus on the subspace identified with ε = 0.02.

Consistent with Proposition 5.4.6, T-SSD identifies the trivial eigenfunction φ(x) ≡ 1 span-

ning the maximal Koopman-invariant subspace of span(D). T-SSD also approximates an-

other real-valued eigenfunction with eigenvalue λ = 0.9839 depicted in Figure 5.4(right),

which clearly captures the attractiveness of the asymptotically stable equilibria and the

general behavior of the vector field depicted in Figure 5.4(left).

158

-2 0 2

x
1

-2

0

2

x
2

-2 0 2

x
1

-2

-1

0

1

2

x
2

0

2

4

6

Figure 5.4: Vector field (left) and eigenfunction with eigenvalue λ = 0.9839 (right)
for (5.36).

To illustrate the efficacy of our algorithm regarding the prediction accuracy of the dic-

tionary, Figure 5.5 compares the relative linear prediction error (5.34) on the state spaceM

for the dictionary DT-SSD identified by T-SSD with ε = 0.02 and for the original dictionary D

evaluated at out-of-sample points other than X. Figure 5.5 clearly shows the effectiveness

of the T-SSD algorithm in improving the prediction accuracy.

<0.5% 0.5%-1% 1%-3% 3%-5% 5%-7% 7%<

Figure 5.5: Relative linear prediction error for dictionary identified by T-SSD (ε = 0.02)
(left) and the original dictionary (right) for (5.36).

159

To analyze the error for individual functions in the identified subspaces by T-SSD,

we form a random test data set Xtest, Ytest gathered with the same number of elements

and sampling strategy used for X and Y . Table 5.4 shows the maximum relative root mean

square error defined in (5.35) for the subspaces identified by T-SSD given different values of ε.

Despite the fact that we use different data for identification and evaluation, Table 5.4 shows

the effectiveness of the T-SSD algorithm for identifying subspaces on which all functions

have prediction errors characterized by the accuracy parameter ε.

Table 5.4: Maximum Relative Root Mean Square Error vs ε for (5.36).

ε 0.01 0.02 0.08 0.14 0.20 0.26

RRMSEmax ∼ 0 0.004 0.054 0.123 0.190 0.236

Example 5.7.3. (Consensus on Harmonic Mean). Given Na agents with state

x = [x1, . . . , xNa]T communicating through a graph with adjacency matrix A, consider the

dynamics

ẋi = Na x
2
i Υ(x)−2

Na∑
j=1

aij(xj − xi), i ∈ {1, . . . , Na}, (5.37)

where aij is the element of A on row i and column j and Υ(x) is the harmonic mean of the

state elements defined as

Υ(x) = Na

(Na∑
k=1

x−1
k

)−1

.

For any initial condition x0, all the state elements converge to the harmonic mean of the

initial condition Υ(x0) [Cor08, Proposition 10], i.e., the agents achieve consensus on Υ(x0).

160

For the purpose of this example, we consider Na = 5 agents communicating through an

undirected ring graph and states belonging to the state space M = [1, 5]5. We consider

the discretized version of (5.37) with time step ∆t = 0.01s and gather N = 4 × 104 data

snapshots in matrices X and Y from 2 × 104 trajectories with length equal to two time

steps and initial conditions uniformly selected from M. For our dictionary, we consider the

space of all polynomials up to degree 6 and choose a dictionary D with Nd = 462 functions

spanning the space such that the columns of D(X) are orthonormal.

We apply the Efficient T-SSD algorithm, cf. Section 5.6, with ε ∈

{0.05, 0.15, 0.3, 0.55, 0.8}. Table 5.5 shows the dimension of the identified dictionary, DT-SSD,

versus the value of the design parameter ε. For ε = 0.8, T-SSD identifies the original sub-

space, certifying that the range spaces of D(X) and D(Y) are 0.8-apart. On the other

hand, the one-dimensional subspace identified by ε = 0.05 is in fact the maximal Koopman-

invariant subspace of span(D), spanned by the trivial eigenfunction φ(x) ≡ 1 with eigenvalue

λ = 1.

Table 5.5: Dimension of subspace identified by Efficient T-SSD vs ε for (5.37).

ε 0.05 0.15 0.30 0.55 0.80

dimDT-SSD 1 14 64 272 462

To illustrate the efficacy of T-SSD algorithm regarding prediction accuracy, we first

form a test data set comprised of snapshots matrices Xtest and Ytest sampled with the same

sampling strategy and number of samples as X and Y . Figure 5.6 provides histogram plots

comparing the relative prediction error defined in (5.34) of the dictionary identified by T-

SSD with ε = 0.15 and the original dictionary applied on the test data. In Figure 5.6 the

161

horizontal axis denotes the prediction error while the vertical axis shows the percentage of

test data per interval. Figure 5.6 clearly shows the effectiveness of the T-SSD algorithm in

improving the prediction accuracy.

Figure 5.6: Relative linear prediction error on test data for the dictionary identified with
T-SSD (ε = 0.15) and the original dictionary.

We also consider the prediction accuracy for the individual functions. Table 5.6 shows

the maximum relative root mean square error defined in (5.35) for the subspaces identified

by T-SSD given different values of ε. According to Table 5.6, despite using different data for

identification and evaluation, the error on the test data satisfies the upper bound accuracy

requirement enforced by the accuracy parameter ε.

162

Table 5.6: Maximum Relative Root Mean Square Error vs ε for (5.37).

ε 0.05 0.15 0.30 0.55 0.8

RRMSEmax ∼ 0 0.144 0.295 0.549 0.769

Acknowledgements

This chapter is taken, in part, from the work [HC21a] which has been submitted

for publication as ‘Generalizing dynamic mode decomposition: balancing accuracy and ex-

pressiveness in Koopman approximations’ by M. Haseli and J. Cortés, in Automatica. The

dissertation author was the primary investigator and author of this paper. The work in

this chapter was partially supported by ONR Award N00014-18-1-2828 and NSF Award

IIS-2007141.

163

Chapter 6

Assessing the Prediction Accuracy

and Dictionary Quality of EDMD

In the previous chapters, we observed that the quality of the prediction by Extended

Dynamic Mode Decomposition (EDMD) algorithm directly depends on the quality of the

particular dictionary’s span, specifically on how close it is to being invariant under the Koop-

man operator. While in the previous chapters, we provided algebraic algorithms to identify

Koopman-invariant subspaces, in many applications neural networks and other optimization

algorithms are used to find an appropriate subspace. In those methods, the residual error of

EDMD is typically used as an objective function. In this chapter, we examine the residual

error and show that it does not encode the quality of the function space and is sensitive to

the choice of basis. Motivated by this observation, we introduce the novel concept of consis-

tency index. We show that this measure, based on using EDMD forward and backward in

time, enjoys a number of desirable qualities that make it suitable for data-driven modeling

164

of dynamical systems: it measures the quality of the function space, it is invariant under

the choice of basis, can be computed in closed form from the data, and provides a tight

upper-bound for the relative root mean square error of all function predictions on the entire

span of the dictionary.

6.1 Motivation: Residual Error of EDMD Does Not

Characterize the Dictionary’s Quality

As mentioned in Section 2.4 and observed in Chapters 3-5, the quality of the dictionary

used for the EDMD method directly impacts its accuracy. Since in general the system is

unknown, in many applications, the residual error of EDMD, ‖D(Y) − D(X)KEDMD‖F , is

commonly used as an objective function in optimization and neural network-based dictionary

learning schemes. However, it is important to note that even though a high quality subspace

(close to Koopman-invariant) leads to small residual error, the converse is not true, i.e., a

dictionary D with small (but nonzero) residual error does not necessarily mean that EDMD’s

prediction is accurate on span(D). We illustrate this next.

Example 6.1.1. (Residual Error is not Invariant under Linear Transformation

of Dictionary). Consider the linear system x+ = 0.5x and the vector space of functions

S = span{x, x3 − x2}. To apply EDMD, we gather N = 1000 data snapshots from trajec-

tories of the system with length of two time steps and initial conditions uniformly selected

from [−2, 2], and form data matrices X, Y ∈ RN×1. We consider a family of dictionaries

165

parameterized by α ∈ R \ {0} in the form of

Dα(x) = [x, x+ α(x3 − x2)].

Note that each Dα is a basis for S, and all the dictionaries are related by nonsingular linear

transformations. We also define two notions of prediction accuracy: the residual error E of

EDMD and its normalized version Erel,

E(α) = ‖Dα(Y)−Dα(X)Kα‖F , Erel(α) =
E(α)

‖Dα(Y)‖F
,

where Kα = EDMD(Dα, X, Y).

10
-2

10
0

10
2

0

100

200

300

400

E

10
-2

10
0

10
2

0

0.05

0.1

0.15

0.2

0.25

E
re

l

Figure 6.1: Residual error (left) and relative residual error (right) of EDMD for α ∈
[0.01, 100].

Figure 6.1 shows the aforementioned notions of error versus the value of α ∈

[0.01, 100]. Figure 6.1 clearly demonstrates the sensitivity of errors to the choice of basis

for S despite the invariance of spec(KEDMD,α) under the choice of basis (cf. Lemma 5.5.1).

In fact, by tuning the value of α, one can make both errors arbitrarily close to zero. As

166

a result, using the residual error as a measure to assess the quality of the space or as an

objective function in optimization or neural network-based dictionary learning schemes can

lead to erroneous results. �

The observations in Example 6.1.1 prompts us to search for a better measure of the

dictionary’s quality and therefore the EDMD’s prediction accuracy as we explain next.

6.2 Problem Statement

Consider 1 the following discrete-time system defined over the state space M⊆ Rn

x+ = T (x), (6.1)

and let K be its associated Koopman operator defined on the linear space F comprised of

functions mapping elements inM toM. Moreover, let X, Y ∈ RN×n be matrices comprised

of N data snapshots such that

yi = T (xi), i ∈ {1, . . . , N}, (6.2)

where xTi and yTi are ith rows of X and Y . In addition, let D :M→ R1×Nd be a dictionary

of Nd functions in F such that D(·) = [d1(·), . . . , dNd
(·)] where {di}Nd

i=1 ⊂ F , leading to the

1Some problem elements are similar to the elements used in the previous chapters. Here, we have repeated
those notions for the reader’s convenience.

167

EDMD optimization problem (cf. Section 2.4)

minimize
K

‖D(Y)−D(X)K‖F (6.3)

which has the closed-form solution

KEDMD = EDMD(D,X, Y) := D(X)†D(Y). (6.4)

Consequently, given a function f ∈ span(D) in the form of f(·) = D(·)vf for vf ∈ CNd , one

can define the predictor function for Kf as

PKf (·) = D(·)KEDMDvf . (6.5)

Throughout this chapter, we rely on the following Assumption.

Assumption 6.2.1. (Full Rank Dictionary Matrices). D(X) and D(Y) have full

column rank. �

Assumption 6.2.1 implies that the functions in D are linearly independent, i.e., they

form a basis for span(D) and the data are diverse enough to distinguish between the elements

of D. Moreover, Assumption 6.2.1 ensures that the optimization problem in (6.3) has a

unique solution. In this chapter, we aim to address the following problem.

Problem 6.2.2. (Characterization of EDMD’s Prediction Accuracy and the Dic-

tionary’s Quality). Given a dictionary D and data matrices X and Y , under Assump-

168

tion 6.2.1, we aim to provide a data-driven measure of the EDMD’s accuracy and the dic-

tionary’s quality that

(i) only depends on span(D), X, and Y , and is therefore invariant under the choice of

basis for span(D), i.e., given D′ as an alternative basis for span(D), the accuracy

measures calculated based on D and D′ are equal;

(ii) provides a data-driven bound on the distance between Kf and its EDMD prediction

PKf for all functions f ∈ span(D);

(iii) can be computed using a closed-form formula (for implementation in optimization

solvers). �

6.3 Forward-Backward Temporal Consistency

Here, we take the first step towards finding an appropriate measure for EDMD’s

prediction accuracy by comparing the solutions of EDMD forward and backward in time2.

Throughout this chapter, we use the following notation for forward and backward EDMD

matrices

KF = EDMD(D,X, Y) = D(X)†D(Y),

KB = EDMD(D, Y,X) = D(Y)†D(X). (6.6)

2The idea of looking forward and backward in time has been considered in the literature for different
purposes, such as improving DMD to deal with noisy data [DHWR16,AYB19] and identifying exact Koopman
eigenfunctions in Chapter 3 and [HC22a] but, to the best of our knowledge, not for formally characterizing
EDMD’s prediction accuracy.

169

We particularly rely on the observation that if the dictionary spans a Koopman-invariant

subspace, then KFKB = I. Otherwise, the forward and backward EDMD matrices will not

be the inverse of each other. This motivates the definition of the consistency matrix.

Definition 6.3.1. (Consistency Matrix and Index). Given dictionary D and data

matrices X and Y , the consistency matrix is MC(D,X, Y) = I−KFKB and the consistency

index is IC(D,X, Y) = sprad
(
MC(D,X, Y)

)
. �

For convenience, we refer to MC(D,X, Y) and IC(D,X, Y) as MC and IC when the

context is clear. Next, we show that the eigenvalues of the consistency matrix are invariant

under linear transformations of the dictionary.

Proposition 6.3.2. (Consistency Matrix’s Spectrum is Invariant under Lin-

ear Transformation of Dictionary). Let D and D̃ be two dictionaries such that

D̃(·) = D(·)R, where R is an invertible matrix. Moreover, given data matrices X and

Y let Assumption 6.2.1 hold. Then,

(i) MC(D̃,X, Y) = R−1MC(D,X, Y)R;

(ii) spec
(
MC(D,X, Y)

)
= spec

(
MC(D̃,X, Y)

)
.

Proof. Note that part (ii) directly follows from part (i) and the fact that similarity transfor-

mations preserve the eigenvalues. To show part (i), define for convenience,

KF = D(X)†D(Y), KB = D(Y)†D(X),

K̃F = D̃(X)†D̃(Y), K̃B = D̃(Y)†D̃(X).

170

We start by showing that KFKB and K̃F K̃B are similar. By definition, one can write

K̃F K̃B = D̃(X)†D̃(Y)D̃(Y)†D̃(X). (6.7)

Moreover, given Assumption 6.2.1 and the definition of D̃, one can write

D̃(X)† =
(
D̃(X)T D̃(X)

)−1
D̃(X)T =

(
RTD(X)TD(X)R

)−1
RTD(X)T = R−1D(X)†. (6.8)

Equations (6.7)-(6.8), in conjunction with the fact that D̃(Y)†D̃(Y) = D(Y)†D(Y) (cf.

Lemma 6.5.1 in the appendix), imply K̃F K̃B = R−1KFKBR directly leading to the required

identity following Definition 6.3.1.

According to Proposition 6.3.2, the spectrum of the consistency matrix is a property

of the data and the vector space spanned by the dictionary, as opposed to the dictionary

itself. This property is consistent with the requirement in Problem 6.2.2(i). Next, we further

investigate the eigendecomposition of the consistency matrix to extract useful information

for our analysis.

Theorem 6.3.3. (Consistency Matrix’s Properties). Given Assumption 6.2.1, the

consistency matrix MC(D,X, Y) has the following properties:

(i) it is similar to a symmetric matrix;

(ii) it is diagonalizable with a complete set of eigenvectors;

(iii) spec
(
MC(D,X, Y)

)
⊂ [0, 1].

171

Proof. (i) Given Assumption 6.2.1, there exists an invertible matrix R such that the columns

of D(X)R are orthonormal. Define the dictionary D̃(·) = D(·)R. Note that D̃(X)T D̃(X) =

INd
and hence D̃(X)† =

(
D̃(X)T D̃(X)

)−1
D̃(X)T = D̃(X)T . Using now the definition of the

consistency matrix, we have

MC(D̃,X, Y) = I − D̃(X)T D̃(Y)D̃(Y)†D̃(X).

Noting that D̃(Y)D̃(Y)† is symmetric, we deduce that MC(D̃,X, Y) is symmetric. Then (i)

directly follows by the definition of R and Proposition 6.3.2(i).

(ii) The proof directly follows from part (i) and the fact that symmetric matrices are

diagonalizable and have a complete set of eigenvectors.

(iii) From part (i), we deduce that MC(D,X, Y) has real eigenvalues. Since

MC(D,X, Y) = I −D(X)†D(Y)D(Y)†D(X), we only need to show

spec
(
D(X)†D(Y)D(Y)†D(X)

)
⊂ [0, 1]. (6.9)

Consider an eigenvector v ∈ RNd \ {0} with eigenvalue µ, i.e., D(X)†D(Y)D(Y)†D(X)v =

µv. Multiplying both sides from the left by D(X) and defining w = D(X)v leads to

D(X)D(X)†D(Y)D(Y)†w = µw. Next, by multiplying this equation from the left by wT we

have

wTD(X)D(X)†D(Y)D(Y)†w = µ‖w‖2
2. (6.10)

172

Now, the fact that D(X)D(X)† is symmetric and represents the orthogonal projection oper-

ator on R(D(X)), in conjunction with w ∈ R(D(X)), allows us to write wTD(X)D(X)† =

wT . This identity combined with (6.10) leads to

µ =
wTD(Y)D(Y)†w

‖w‖2
2

.

Hence, λmin(D(Y)D(Y)†) ≤ µ ≤ λmax(D(Y)D(Y)†). However, since D(Y)D(Y)† is an

orthogonal projection operator, we have spec(D(Y)D(Y)†) ⊂ [0, 1]. Consequently, µ ∈ [0, 1],

leading to (6.9) and concluding the proof.

As a consequence of Theorem 6.3.3, the consistency matrix is similar to a positive

semidefinite matrix. The larger the eigenvalues of MC , the more inconsistent the forward

and backward EDMD models get. Also, from Theorem 6.3.3, IC = λmax(MC) ∈ [0, 1].

Intuitively, the consistency index determines the quality of the subspace spanned by the

dictionary and the prediction accuracy of EDMD on it. This is what we formalize in the

next section.

6.4 Consistency Index Determines EDMD’s Predic-

tion Accuracy on Data

Our main result states that the square root of the consistency index is a tight upper

bound for the relative root mean square prediction error of EDMD.

Theorem 6.4.1. (
√
IC Bounds the Relative Root Mean Square Error (RRMSE)

173

of EDMD). For dictionary D and data matrices X, Y , under Assumption 6.2.1,

RRMSEmax := max
f∈span(D)

√
1
N

∑N
i=1 |Kf(xi)−PKf (xi)|2√

1
N

∑N
i=1 |Kf(xi)|2

=
√
IC(D,X, Y).

where the predictor PKf is defined in (6.5). �

Note that the combination of Definition 6.3.1 and Theorems 6.3.3 and 6.4.1 mean that√
IC(D,X, Y) satisfies all the requirements in Problem 6.2.2. Before proving the result, we

first remark its importance regarding function predictions.

Remark 6.4.2. (
√
IC Determines the Relative L2-norm Error of EDMD’s Pre-

diction under Empirical Measure). Given that the elements of span(D) and their

composition with T are measurable and considering the empirical measure µX = 1
N

∑N
i=1 δxi ,

where δxi is the Dirac measure defined based on the ith row of X, one can rewrite RRMSEmax

as

RRMSEmax = max
f∈span(D)

‖Kf −PKf‖L2(µX)

‖Kf‖L2(µX)

=
√
IC . �

To prove Theorem 6.4.1, we first provide the following alternative expression of the

consistency index.

Theorem 6.4.3. (Consistency Index and Difference of Projections). Given As-

174

sumption 6.2.1,

√
IC(D,X, Y) = sprad

(
D(Y)D(Y)† −D(X)D(X)†

)
.

Proof. From Theorem 6.3.3, we have IC = λmax(MC). We use the following notation

throughout the proof,

λmax = IC , PD(X) = D(X)D(X)†, PD(Y) = D(Y)D(Y)†.

Note that PD(X) and PD(Y) are projection operators onR(D(X)) andR(D(Y)), respectively.

By Definition 6.3.1, given an eigenvalue λ ∈ [0, 1] of MC with eigenvector v 6= 0,

MCv = λv ⇔ KFKBv = (1− λ)v. (6.11)

We consider the cases (i) λmax = 0, (ii) λmax = 1, and (iii) λmax ∈ (0, 1) separately.

Case (i): λmax = 0. In this case, from Theorem 6.3.3, we deduce MC = 0. Conse-

quently, KFKB = I. By multiplying both sides from the left by D(X) and collecting the

terms, we have PD(X)PD(Y)D(X) = D(X). Hence, one can write

PD(X)PD(Y)z = z, ∀z ∈ R(D(X)). (6.12)

175

Moreover, based on the analysis in [AHT85], one can deduce that

PD(X)PD(Y)w = w ⇔ w ∈ R(D(X)) ∩R(D(Y)). (6.13)

Using (6.12)-(6.13), one can write R(D(X)) ⊆ R(D(X)) ∩ R(D(Y)) and consequently

R(D(X)) ⊆ R(D(Y)). By a similar argument as above and swapping KF with KB and

D(X) with D(Y), one can also deduceR(D(Y)) ⊆ R(D(X)). Hence,R(D(X)) = R(D(Y)).

Moreover, since the orthogonal projection on a subspace is unique, we have PD(Y)−PD(X) =

0, concluding the proof for this part.

Case (ii): λmax = 1. By setting λ = λmax in (6.11), multiplying both sides from the

left by D(X), defining w := D(X)v, we have

PD(X)PD(Y)w = 0. (6.14)

Hence, noting that w 6= 0 (based on Assumption 6.2.1 and the fact that v 6= 0), we can

deduce it is an eigenvector of PD(X)PD(Y) with eigenvalue 0. We show next that w ∈

R(D(X)) ∩ R(D(Y))⊥. One can uniquely decompose w ∈ R(D(X)) as w = wD(Y) +

wD(Y)⊥ , where wD(Y) ∈ R(D(X)) ∩R(D(Y)) and wD(Y)⊥ ∈ R(D(X)) ∩R(D(Y))⊥. Noting

that PD(Y)wD(Y)⊥ = 0 and PD(Y)wD(Y) = wD(Y), we get from (6.14) that PD(X)PD(Y)w =

PD(X)wD(Y) = 0. Since wD(Y) ∈ R(D(X)), we deduce wD(Y) = 0 and consequently,

w = wD(Y)⊥ ∈ R(D(X)) ∩R(D(Y))⊥.

176

Therefore, (PD(Y) − PD(X))w = −w and, given that w 6= 0, we deduce that PD(Y) − PD(X)

has an eigenvalue equal to −1. Since spec(PD(Y)−PD(X)) ⊂ [−1, 1], cf. [AHT85, Lemma 1],

we conclude sprad(PD(Y) −PD(X)) = 1. The proof concludes by noting that IC = λmax = 1.

Case (iii): λmax ∈ (0, 1). Using Lemma 6.5.2 and the closed-form expressions of KF ,

KB, PD(X), and PD(Y),

spec 6=0(KFKB) = spec6=0(PD(X)PD(Y)). (6.15)

Given µ ∈ (0, 1), from [AHT85, Theorems 1-2], we have µ ∈ spec 6=0(PD(X)PD(Y)) if and only

if {±
√

1− µ} ⊂ spec 6=0

(
PD(Y) − PD(X)

)
. By setting µ = 1− λ, λ ∈ (0, 1), one can use this

identity in conjunction with (6.11) and (6.15) to write

λ ∈ spec 6=0(MC)⇔ {±
√
λ} ⊂ spec 6=0

(
PD(Y) − PD(X)

)
.

This, in conjunction with [AHT85, Theorem 1] and the fact that sprad
(
PD(Y)−PD(X)

)
≤ 1

(cf. [AHT85, Lemma 1]), shows that if sprad
(
PD(Y)−PD(X)

)
< 1, then the result holds. To

conclude the proof, we just need to show that sprad
(
PD(Y)−PD(X)

)
= 1 cannot hold, which

we show by contradiction. Suppose this is the case, then at least one of the following holds:

(i) ∃w1 ∈ RN \ {0};
(
PD(Y) − PD(X)

)
w1 = −w1,

(ii) ∃w2 ∈ RN \ {0};
(
PD(Y) − PD(X)

)
w2 = w2.

177

For case (i), note that based on the analysis in [AHT85], we have

w1 ∈ R(D(X)) ∩R(D(Y))⊥.

Now, consider the vector p1 6= 0 with w1 = D(X)p1. Consequently, one can write KFKBp1 =

D(X)†PD(Y)w1 = 0, where in the last equality we have used w1 ⊥ R(D(Y)). However, this

implies that MCp1 = p1, contradicting the fact that λmax ∈ (0, 1).

For case (ii), note that w2 ∈ R(D(Y)) ∩ R(D(X))⊥ (see e.g., [AHT85]). Consider

the vector space S = R(D(Y)) ∩ R(w2)⊥. Clearly dimS < dimR(D(Y)) = dimR(D(X)).

Consequently, there exists a non-zero vector w∗ ∈ R(D(X)) such that w∗ ⊥ S. Also,

w∗ ⊥ R(w2) since w2 ⊥ R(D(X)). Hence, by noting that R(D(Y)) is the direct sum of

S and R(w2), one can conclude w∗ ∈ R(D(X)) ∩ R(D(Y))⊥ and, as a result, we have(
PD(Y) − PD(X)

)
w∗ = −w∗. Since w∗ satisfies the identity in case (i), the proof follows by

replacing w1 with w∗ in the proof of case (i).

We are finally ready to prove Theorem 6.4.1.

Proof. (Theorem 6.4.1). We use the following notation throughout the proof: PD(X) =

D(X)D(X)†, PD(Y) = D(Y)D(Y)†, and s = sprad(PD(Y) − PD(X)). Note that, from Theo-

rem 6.4.3, s =
√
IC(D,X, Y). Given an arbitrary function f(·) = D(·)vf ∈ span(D), with

vf ∈ CNd , one can use (2.3), the predictor (6.5) with KF = KEDMD = EDMD(D,X, Y), and

178

the relationship between the rows of X and Y in (6.2) to write

RRMSEf :=

√∑N
i=1 |D(yi)vf −D(xi)KFvf |2√∑N

i=1 |D(yi)vf |2

=
‖D(Y)vf −D(X)KFvf‖2

‖D(Y)vf‖2

(6.16)

Noting that D(Y) = PD(Y)D(Y), one can write

‖D(Y)vf −D(X)KFvf‖2 = ‖(PD(Y) − PD(X))D(Y)vf‖2

≤ s‖D(Y)vf‖2, (6.17)

where the last inequality holds since the matrix PD(Y)−PD(X) is symmetric and therefore its

spectral radius is equal to its induced 2-norm. Based on (6.16)-(6.17), we have RRMSEf ≤ s.

Hence, by definition of RRMSEmax in the statement of the result, we have

RRMSEmax = max
f∈span(D)

RRMSEf ≤ s (6.18)

Now, we prove that the equality in (6.18) holds. We consider three cases: (i) s = 0 (ii) s = 1

or (iii) s ∈ (0, 1).

Case (i): Since RRMSEmax ≥ 0 by definition, in this case RRMSEmax = 0 follows

directly.

Case (ii): In this case, there exists a vector3 p∗ ∈ R(D(Y))∩R(D(X))⊥. Let v∗ be

3The argument for the existence of p∗ is similar (by swapping D(X) and D(Y)) to the argument used
for the existence of vectors w1 and w∗ in the proof of Theorem 6.4.3 (Case (iii)). We omit this argument for
space reasons.

179

such that p∗ = D(Y)v∗. Using (6.17) for v∗ instead of vf , and the properties of p∗, one can

write ‖D(Y)v∗ − D(X)KFv
∗‖2 = ‖PD(Y)D(Y)v∗‖2 = ‖D(Y)v∗‖2. Hence, for the function

f ∗(·) = D(·)v∗ ∈ span(D), one can use (6.16) to see that RRMSEf∗ = 1 = s. Hence, equality

holds in (6.18).

Case (iii): In this case s ∈ (0, 1) and based on [AHT85, Theorem 1], the matrix

PD(Y)−PD(X) has two eigenvalues ±s with corresponding orthogonal eigenvectors v+s, v−s ∈

RNd . Moreover, based on [AHT85, Theorem 1(a)], PD(Y)v+s ∈ span{v+s, v−s}. Hence, for

some α, β ∈ R, we have

q∗ := PD(Y)v+s = αv+s + βv−s.

Let r∗ be such that q∗ = D(Y)r∗. Now, based on the first part of (6.17) for r∗ instead of vf ,

we have

‖D(Y)r∗ −D(X)KF r
∗‖2 = ‖(PD(Y) − PD(X))D(Y)r∗‖2

= ‖(PD(Y) − PD(X))(αv+s + βv−s)‖2 = s‖αv+s − βv−s‖2

= s‖αv+s + βv−s‖2 = s‖D(Y)r∗‖2, (6.19)

where in the third and fourth equalities we have used the definition of v+s and v−s and their

orthogonality. Now, for the function g∗(·) = D(·)r∗ ∈ span(D), one can use (6.16) to see

that RRMSEg∗ = s. Hence, the equality in (6.18) holds, and this concludes the proof.

Remark 6.4.4. (Working with Consistency Matrix is More Efficient than the

180

Difference of Projections). According to Theorems 6.4.1 and 6.4.3, one can use the con-

sistency matrix MC ∈ RNd×Nd or the difference of projections D(Y)D(Y)† −D(X)D(X)† ∈

RN×N interchangeably to compute the relative root mean square error. However, note that

the size of the consistency matrix depends on the dictionary Nd, while the size of the differ-

ence of projections depends on the size of data N . In most practical settings N � Nd, and

consequently, working with the consistency matrix is more efficient. In fact, given moder-

ate to large data sets, even saving the difference of projections matrix in the memory may

be infeasible. The calculation of the consistency matrix requires solving two least-squares

problems, which can be done recursively for large data sets. �

6.5 Chapter Appendix

Here, we recall two results that are used in the proofs.

Lemma 6.5.1. Let B1, B2 ∈ Rm×n be matrices such that R(B1) = R(B2). Then B1B
†
1 =

B2B
†
2. �

The proof of follows from the uniqueness of the orthogonal projection operator on a

subspace.

Lemma 6.5.2. ([Ber09, Proposition 4.4.10]). Let A ∈ Rm×n and B ∈ Rn×m. Then,

spec 6=0(AB) = spec6=0(BA). �

181

Acknowledgements

This chapter is taken, in part, from the work [HC22b] which has been submitted for

publication as ‘Temporal Forward-Backward Consistency, Not Residual Error, Measures the

Prediction Accuracy of Extended Dynamic Mode Decomposition’ by M. Haseli and J. Cortés,

in IEEE Control Systems Letters. The dissertation author was the primary investigator and

author of this paper. The work in this chapter was partially supported by ONR Award

N00014-18-1-2828.

182

Chapter 7

Conclusions

The central theme of this dissertation is using the Koopman operators associated with

nonlinear systems to extract meaningful information from data. We have provided several

algebraic methods to efficiently identify Koopman eigenfunctions and invariant subspaces

containing important information about the system’s behavior. Prompted by practical chal-

lenges such as the need for fast and real-time computations as well as memory limitations, we

have provided methods suitable for parallel processing and algorithms that can handle large

and streaming data sets. For many nonlinear systems, capturing complete information on

finite-dimensional Koopman-invariant subspaces might not be possible. To address this is-

sue, we have provided methods to tune the balance between the accuracy and expressiveness

of models. Finally, even though our main focus has been on algebraic methods as opposed to

optimization algorithms, we have provided a data-driven measure for the subspace quality,

which can be used as an effective cost function in optimization-based algorithms.

183

7.1 Summary

Chapter 3 studies the characterization of Koopman-invariant subspaces and Koopman

eigenfunctions associated to a dynamical system by means of data-driven methods. We

have shown that the application of Extended Dynamic Mode Decomposition algorithm over

a given dictionary forward and backward in time fully characterizes whether a function

evolves linearly in time according to the available data. Building on this result, and under

dense sampling, we have established that functions satisfying this condition are Koopman

eigenfunctions almost surely. We have developed the Symmetric Subspace Decomposition

algorithm to identify the maximal Koopman-invariant subspace in the span of the given

dictionary and formally characterized its correctness. Finally, we have developed extensions

to scenarios with large and streaming data sets, where the algorithm refines its output as

new data becomes available, and to scenarios where the original dictionary does not contain

sufficient informative eigenfunctions, in which case the algorithm obtains approximations of

the Koopman eigenfunctions and invariant subspaces.

In Chapter 4, we have proposed a parallel counterpart for the Symmetric Subspace

Decomposition algorithm presented in Chapter 3. Our strategy termed Parallel Symmetric

Subspace Decomposition (P-SSD) runs in parallel over a network of processors that commu-

nicate over a digraph. We have characterized the algorithm’s convergence and complexity

properties. We have identified conditions on the network connectivity that ensure that the

algorithm’s output coincides with that of Symmetric Subspace Decomposition when run over

the whole set of data snapshots. The parallel nature of P-SSD makes it run significantly

faster than its centralized counterpart. We have also established the robustness of P-SSD

184

against communication failures and packet drops.

In Chapter 5, we have presented the Tunable Symmetric Subspace Decomposition

(T-SSD) algorithm, a data-driven strategy that employs data snapshots from an unknown

dynamical system to refine a given dictionary of functions, yielding a subspace close to

being invariant under the Koopman operator. A design parameter allows to balance the

prediction accuracy and expressiveness of the algorithms’ output, which always contains

the maximal Koopman-invariant subspace and all Koopman eigenfunctions in the span of

the original dictionary. The proposed algorithm generalizes both the Extended Dynamic

Mode Decomposition method as well as the Symmetric Subspace Decomposition algorithm

presented in Chapter 3.

Chapter 6 considers the problem of assessing a subspace’s quality for Koopman ap-

proximations. We have investigated the residual error of Extended Dynamic Mode Decom-

position which is generally used for subspace assessment and reached the conclusion that it

is not an effective tool due to its sensitivity to the choice of the basis for the subspace. As

a remedy, we have introduced the concept of consistency index, a data-driven measure that

quantifies the accuracy of the Extended Dynamic Mode Decomposition method on a finite-

dimensional functional space generated by a dictionary of functions. The consistency index

is calculated based on comparing the solutions of Extended Dynamic Mode Decomposition

ran forward and backward in time. The consistency index is invariant under the choice of

basis of the functional space, is computable in closed form, and provides a bound for the

relative root mean squared error of all functions predictions in the subspace.

185

7.2 Future Work

This dissertation has laid the groundwork for many research possibilities which we

will pursue in the future. Here, we discuss our short-term goals and long-term vision.

The algebraic algorithms proposed in Chapters 3-5 open up exciting research avenues

to explore. Our future research will investigate the integration of our algorithms with ma-

chine learning techniques to streamline the subspace identification process while providing

accuracy and convergence guarantees for the outputs. Moreover, we aim to extend our meth-

ods to use known information about the system which can speed up the subspace learning

process and lead to more accurate models.

Another interesting research direction focuses on distributed algorithms to learn

Koopman eigenfunctions and invariant subspaces. Such schemes can be fully distributed

and asynchronous. We have already explored parallel algorithms in Chapter 4. Our future

work will employ other distributed strategies for the agents to sample data independently

and search through different subspaces. Moreover, other techniques such as event-trigger

methods can be employed to reduce the computational cost.

Exploring potential applications is an important future direction for our research.

Our work has been focused on identifying Koopman eigenfunctions and invariant subspaces.

However, one can make several connections between Koopman eigenfunctions and practical

control problems. The literature has briefly explored the connection between Koopman

eigenfunctions and the stability properties of attractors. In particular, there are instances

where Koopman eigenfunction lead to construction of Lyapunov functions. We aim to build

on such results in the literature and design data-driven Koopman-based methods to construct

186

Lyapunov functions and provide stability guarantees. Another interesting direction would

be to use our work to design controllers. There are several Koopman-based methods in the

literature for control application. The general theme among them is the lack of performance

guarantees which is a direct result of the lack of guarantees in Koopman operator modeling.

Given that our algorithms provide accuracy and convergence guarantees, it is natural to think

about using them to do control tasks in a principled manner accompanied by convergence

and stability certification.

187

Bibliography

[AdlTM17] I. Abraham, G. de la Torre, and T. Murphey. Model-based control using Koop-
man operators. In Robotics: Science and Systems, Cambridge, Massachusetts,
July 2017.

[AHT85] W. N. Anderson Jr, E. J. Harner, and G. E. Trapp. Eigenvalues of the difference
and product of projections. Linear and Multilinear Algebra, 17(3-4):295–299,
1985.

[AK17] A. Alla and J. N. Kutz. Nonlinear model order reduction via dynamic mode
decomposition. SIAM Journal on Scientific Computing, 39(5):B778–B796, 2017.

[AM19] S. Anantharamu and K. Mahesh. A parallel and streaming dynamic mode de-
composition algorithm with finite precision error analysis for large data. Journal
of Computational Physics, 380:355–377, 2019.

[AMS09] P. A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix
manifolds. Princeton University Press, 2009.

[AYB19] O. Azencot, W. Yin, and A. Bertozzi. Consistent dynamic mode decomposition.
SIAM Journal on Applied Dynamical Systems, 18(3):1565–1585, 2019.

[BBK+21] P. Bevanda, M. Beier, S. Kerz, A. Lederer, S. Sosnowski, and S. Hirche. Koop-
manizingflows: Diffeomorphically learning stable Koopman operators. arXiv
preprint arXiv:2112.04085, 2021.

[BBPK16] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz. Koopman invariant
subspaces and finite linear representations of nonlinear dynamical systems for
control. PLOS One, 11(2):1–19, 2016.

[BCM09] F. Bullo, J. Cortés, and S. Martinez. Distributed Control of Robotic Networks.
Applied Mathematics Series. Princeton University Press, 2009.

[Ber09] D. S. Bernstein. Matrix Mathematics. Princeton University Press, 2 edition,
2009.

188

[BMM12] M. Budǐsić, R. Mohr, and I. Mezić. Applied Koopmanism. Chaos, 22(4):047510,
2012.

[BPK16] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings
of the National Academy of Sciences, 113(15):3932–3937, 2016.

[BRV19] D. Bruder, C. D. Remy, and R. Vasudevan. Nonlinear system identification of
soft robot dynamics using Koopman operator theory. In IEEE Int. Conf. on
Robotics and Automation, pages 6244–6250, Montreal, Canada, May 2019.

[Cor08] J. Cortés. Distributed algorithms for reaching consensus on general functions.
Automatica, 44(3):726–737, 2008.

[CTR12] K. K. Chen, J. H. Tu, and C. W. Rowley. Variants of dynamic mode decomposi-
tion: boundary condition, Koopman, and Fourier analyses. Journal of Nonlinear
Science, 22(6):887–915, 2012.

[CV17] S. Le Clainche and J. M. Vega. Higher-order dynamic mode decomposition.
SIAM Journal on Applied Dynamical Systems, 16(2):882–925, 2017.

[DHWR16] S. T. M. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley. Char-
acterizing and correcting for the effect of sensor noise in the dynamic mode
decomposition. Experiments in Fluids, 57(3):42, 2016.

[EY36] C. Eckart and G. Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1(3):211–218, 1936.

[FCAB20] C. Folkestad, Y. Chen, A. D. Ames, and J. W. Burdick. Data-driven safety-
critical control: Synthesizing control barrier functions with Koopman operators.
IEEE Control Systems Letters, 5(6):2012–2017, 2020.

[Fol99] G. B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley,
New York, 2nd edition, 1999.

[FYR+21] F. Fan, B. Yi, D. Rye, G. Shi, and I.R. Manchester. Learning stable Koopman
embeddings. arXiv preprint arXiv:2110.06509, 2021.

[GP21] D. Goswami and D. A. Paley. Bilinearization, reachability, and optimal con-
trol of control-affine nonlinear systems: A Koopman spectral approach. IEEE
Transactions on Automatic Control, 2021. To appear.

[HC19a] M. Haseli and J. Cortés. Approximating the Koopman operator using noisy data:
noise-resilient extended dynamic mode decomposition. In American Control
Conference, pages 5499–5504, Philadelphia, PA, July 2019.

[HC19b] M. Haseli and J. Cortés. Efficient identification of linear evolutions in nonlinear
vector fields: Koopman invariant subspaces. In IEEE Conf. on Decision and
Control, pages 1746–1751, Nice, France, December 2019.

189

[HC21a] M. Haseli and J. Cortés. Generalizing dynamic mode decomposition: balancing
accuracy and expressiveness in Koopman approximations. Automatica, 2021.
Submitted.

[HC21b] M. Haseli and J. Cortés. Parallel learning of Koopman eigenfunctions and invari-
ant subspaces for accurate long-term prediction. IEEE Transactions on Control
of Network Systems, 8(4):1833–1845, 2021.

[HC22a] M. Haseli and J. Cortés. Learning Koopman eigenfunctions and invariant sub-
spaces from data: Symmetric Subspace Decomposition. IEEE Transactions on
Automatic Control, 67(7):3442–3457, 2022.

[HC22b] M. Haseli and J. Cortés. Temporal forward-backward consistency, not residual
error, measures the prediction accuracy of extended dynamic mode decomposi-
tion. IEEE Control Systems Letters, 2022.

[HMV18] B. Huang, X. Ma, and U. Vaidya. Feedback stabilization using Koopman oper-
ator. In IEEE Conf. on Decision and Control, pages 6434–6439, Miami Beach,
FL, December 2018.

[HRDC17] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta. De-biasing the
dynamic mode decomposition for applied Koopman spectral analysis of noisy
datasets. Theoretical and Computational Fluid Dynamics, 31(4):349–368, 2017.

[HWR14] M. S. Hemati, M. O. Williams, and C. W. Rowley. Dynamic mode decomposition
for large and streaming datasets. Physics of Fluids, 26(11):111701, 2014.

[JSN14] M. R. Jovanović, P. J. Schmid, and J. W. Nichols. Sparsity-promoting dynamic
mode decomposition. Physics of Fluids, 26(2):024103, 2014.

[JT19] R. M. Jungers and P. Tabuada. Non-local linearization of nonlinear differential
equations via polyflows. In American Control Conference, pages 1906–1911,
Philadelphia, PA, 2019.

[JY18] C. A. Johnson and E. Yeung. A class of logistic functions for approximating
state-inclusive Koopman operators. In American Control Conference, pages
4803–4810, Milwaukee, WI, June 2018. IEEE.

[KGB+17] B. Kramer, P. Grover, P. Boufounos, S. Nabi, and M. Benosman. Sparse sensing
and DMD-based identification of flow regimes and bifurcations in complex flows.
SIAM Journal on Applied Dynamical Systems, 16(2):1164–1196, 2017.

[KKB21] E. Kaiser, J. N. Kutz, and S. L. Brunton. Data-driven discovery of Koop-
man eigenfunctions for control. Machine Learning: Science and Technology,
2(3):035023, 2021.

190

[KM18a] M. Korda and I. Mezić. Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica, 93:149–160,
2018.

[KM18b] M. Korda and I. Mezić. On convergence of extended dynamic mode decompo-
sition to the Koopman operator. Journal of Nonlinear Science, 28(2):687–710,
2018.

[KM20] M. Korda and I. Mezic. Optimal construction of Koopman eigenfunctions for
prediction and control. IEEE Transactions on Automatic Control, 65(12):5114–
5129, 2020.

[KN32] B. O. Koopman and J. V. Neumann. Dynamical systems of continuous spectra.
Proceedings of the National Academy of Sciences, 18(3):255–263, 1932.

[KNK+18] S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte, and F. Noé.
Data-driven model reduction and transfer operator approximation. Journal of
Nonlinear Science, 28(3):985–1010, 2018.

[KNP+20] S. Klus, F. Nüske, S. Peitz, J. H. Niemann, C. Clementi, and C. Schütte. Data-
driven approximation of the Koopman generator: Model reduction, system iden-
tification, and control. Physica D: Nonlinear Phenomena, 406:132416, 2020.

[Koo31] B. O. Koopman. Hamiltonian systems and transformation in Hilbert space.
Proceedings of the National Academy of Sciences, 17(5):315–318, 1931.

[LDBK17] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis. Extended dynamic mode
decomposition with dictionary learning: A data-driven adaptive spectral decom-
position of the Koopman operator. Chaos, 27(10):103111, 2017.

[LKB18] B. Lusch, J. N. Kutz, and S. L. Brunton. Deep learning for universal linear
embeddings of nonlinear dynamics. Nature Communications, 9(1):1–10, 2018.

[LM13] Y. Lan and I. Mezić. Linearization in the large of nonlinear systems and Koop-
man operator spectrum. Physica D: Nonlinear Phenomena, 242(1):42–53, 2013.

[LMNB17] J. Liu, A. S. Morse, A. Nedić, and T. Başar. Exponential convergence of a
distributed algorithm for solving linear algebraic equations. Automatica, 83:37–
46, 2017.

[LT20] H. Lu and D. M. Tartakovsky. Prediction accuracy of dynamic mode decompo-
sition. SIAM Journal on Scientific Computing, 42(3):A1639–A1662, 2020.

[LWC19] X. Li, S. Wang, and Y. Cai. Tutorial: Complexity analysis of singular value
decomposition and its variants. arXiv preprint arXiv:1906.12085, 2019.

[LWJ21] Y. Lian, R. Wang, and C. N. Jones. Koopman based data-driven predictive
control. arXiv preprint arXiv:2102.05122, 2021.

191

[Lyn97] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997.

[MCTM21] G. Mamakoukas, M. L. Castano, X. Tan, and T. D. Murphey. Derivative-based
Koopman operators for real-time control of robotic systems. IEEE Transactions
on Robotics, 2021.

[Mez05] I. Mezić. Spectral properties of dynamical systems, model reduction and decom-
positions. Nonlinear Dynamics, 41(1-3):309–325, 2005.

[MG16] A. Mauroy and J. Goncalves. Linear identification of nonlinear systems: A
lifting technique based on the Koopman operator. In IEEE Conf. on Decision
and Control, pages 6500–6505, Las Vegas, NV, December 2016.

[MG19] A. Mauroy and J. Goncalves. Koopman-based lifting techniques for nonlinear
systems identification. IEEE Transactions on Automatic Control, 2019. To
appear.

[MH07] I. Markovsky and S. Van Huffel. Overview of total least-squares methods. Signal
processing, 87(10):2283–2302, 2007.

[Mir60] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. The Quar-
terly Journal of Mathematics, 11(1):50–59, 1960.

[MM12] J. E. Marsden and M. McCracken. The Hopf bifurcation and its applications,
volume 19. Springer Science & Business Media, 2012.

[MM16] A. Mauroy and I. Mezić. Global stability analysis using the eigenfunctions of
the Koopman operator. IEEE Transactions on Automatic Control, 61(11):3356–
3369, 2016.

[MMM13] A. Mauroy, I. Mezić, and J. Moehlis. Isostables, isochrons, and Koopman spec-
trum for the action-angle representation of stable fixed point dynamics. Physica
D: Nonlinear Phenomena, 261:19–30, 2013.

[NM18] M. Netto and L. Mili. A robust data-driven Koopman Kalman filter for power
systems dynamic state estimation. IEEE Transactions on Power Systems,
33(6):7228–7237, 2018.

[NPP+21] F. Nüske, S. Peitz, F. Philipp, M. Schaller, and K. Worthmann. Finite-
data error bounds for Koopman-based prediction and control. arXiv preprint
arXiv:2108.07102, 2021.

[Pel00] D. Peleg. Distributed Computing. A Locality-Sensitive Approach. Monographs
on Discrete Mathematics and Applications. SIAM, 2000.

[PK19] S. Peitz and S. Klus. Koopman operator-based model reduction for switched-
system control of PDEs. Automatica, 106:184–191, 2019.

192

[RMB+09] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson. Spectral
analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127, 2009.

[Sch10] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of Fluid Mechanics, 656:5–28, 2010.

[SE17] A. Sootla and D. Ernst. Pulse-based control using Koopman operator under
parametric uncertainty. IEEE Transactions on Automatic Control, 63(3):791–
796, 2017.

[SK21] L. Shi and K. Karydis. Enhancement for robustness of Koopman operator-based
data-driven mobile robotic systems. arXiv preprint arXiv:2103.00812, 2021.

[SVR16] S. Sinha, U. Vaidya, and R. Rajaram. Operator theoretic framework for opti-
mal placement of sensors and actuators for control of nonequilibrium dynamics.
Journal of Mathematical Analysis and Applications, 440(2):750–772, 2016.

[SWMB17] A. Surana, M. O. Williams, M. Morari, and A. Banaszuk. Koopman operator
framework for constrained state estimation. In IEEE Conf. on Decision and
Control, pages 94–101, Melbourne, Australia, 2017.

[TB97] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia,
PA, 1997.

[TKY17] N. Takeishi, Y. Kawahara, and T. Yairi. Learning Koopman invariant sub-
spaces for dynamic mode decomposition. In Conference on Neural Information
Processing Systems, pages 1130–1140, 2017.

[TRL+14] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz.
On dynamic mode decomposition: theory and applications. Journal of Compu-
tational Dynamics, 1(2):391–421, 2014.

[WKR15] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A data-driven approx-
imation of the Koopman operator: Extending dynamic mode decomposition.
Journal of Nonlinear Science, 25(6):1307–1346, 2015.

[YKH19] E. Yeung, S. Kundu, and N. Hodas. Learning deep neural network represen-
tations for Koopman operators of nonlinear dynamical systems. In American
Control Conference, pages 4832–4839, Philadelphia, PA, July 2019.

[ZB22a] V. Zinage and E. Bakolas. Koopman operator based modeling for quadrotor
control on SE(3). IEEE Control Systems Letters, 6:752–757, 2022.

[ZB22b] V. Zinage and E. Bakolas. Neural Koopman Lyapunov control. arXiv preprint
arXiv:2201.05098, 2022.

[ZRDC19] H. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta. Online dynamic
mode decomposition for time-varying systems. SIAM Journal on Applied Dy-
namical Systems, 18(3):1586–1609, 2019.

193

[ZZ21] C. Zhang and E. Zuazua. A quantitative analysis of Koopman operator methods
for system identification and predictions. https://hal.archives-ouvertes.fr/hal-
03278445, 2021.

194

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Literature Review
	Projection-based Learning Methods
	Invariant Subspace Methods

	Statement of Contributions

	Preliminaries
	Notations
	Sets and Functions
	Number Systems, Vectors, and Matrices
	Vector Spaces

	Graph Theory
	Koopman Operator
	Discrete-Time Systems
	Continuous-Time Systems

	Extended Dynamic Mode Decomposition

	Data-driven Identification of Koopman Eigenfunctions and Invariant Subspaces
	Problem Statement
	Identifying Koopman Eigenfunctions by Forward and Backward Extended Dynamic Mode Decomposition
	Identifying Koopman-Invariant Subspaces via Symmetric Subspace Decomposition
	Convergence Analysis of the SSD Algorithm
	Identification of Linear Evolutions and Koopman Eigenfunctions with the SSD Algorithm

	Streaming Symmetric Subspace Decomposition
	Approximating Koopman-Invariant Subspaces
	Simulation Results
	Chapter Appendix

	Parallel Identification of Koopman Eigenfunctions and Invariant Subspaces
	Problem Statement
	Parallel Symmetric Subspace Decomposition
	Equilibria and Termination of P-SSD
	Properties of Agents' Matrix Iterates along P-SSD

	Equivalence of P-SSD and SSD
	Robustness Against Packet Drops and Time-Varying Networks
	Simulation Results

	Balancing Accuracy and Expressiveness in Koopman Approximations
	Problem Statement
	-Apart Spaces Measure Invariance Proximity
	Tunable Symmetric Subspace Decomposition
	The T-SSD Algorithm
	Basic Properties of T-SSD

	T-SSD Balances Accuracy and Expressiveness
	T-SSD Identifies -Apart Subspaces
	T-SSD Captures Maximal Koopman-Invariant Subspace

	EDMD and SSD are Special Cases of T-SSD
	Efficient Implementation of T-SSD
	Simulation Results

	Assessing the Prediction Accuracy and Dictionary Quality of EDMD
	Motivation: Residual Error of EDMD Does Not Characterize the Dictionary's Quality
	Problem Statement
	Forward-Backward Temporal Consistency
	Consistency Index Determines EDMD's Prediction Accuracy on Data
	Chapter Appendix

	Conclusions
	Summary
	Future Work

	Bibliography

