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ABSTRACT OF THE DISSERTATION

Distributed Cooperation for Robust Estimation

by

Michael Ouimet

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2013

Professor Jorge Cortés, Chair

This dissertation contains work in novel algorithms which ensure robust

estimation of physical phenomena. In the context of cooperative control of multi-

agent networks, robustness refers to the fact that, despite the possibility of indi-

vidual agent failures and the presence of noisy measurements, we wish to be able

to characterize the network’s performance at solving a given task (estimation).

The contributions come from two problems of spatial estimation. The motivation

for the first problem comes from spatial estimation tasks executed with unreli-

able sensors. Specifically, consider a group of mobile robotic sensors taking point

measurements in an environment and relaying them back to a data fusion cen-

ter. Assume that due to limited bandwidth, it is known that only a fraction of

the data packets will arrive at the center, but it is not known which ones will.

xv



Previous work has considered how to optimally deploy the agents over the envi-

ronment to robustly estimate the random field which they are measuring. For

some problems, it has been shown that the optimal deployments correspond to

agents forming clusters of a certain size and then deploying the clusters optimally

assuming that one packet from each cluster reaches the center. Motivated by this

result, our major contribution in this problem is a distributed algorithmic solution

which exactly achieves those desirable network configurations. Beyond showing

that our algorithm works, we show its robustness to agent addition and subtrac-

tion as well as upper bound the completion time and required number of messages

exchanged. The second problem considers a group of robotic drifters whose ob-

jective is to estimate the physical parameters (like amplitude, wavenumber, and

temporal frequency) that determine the dynamics of ocean internal waves. Inter-

nal waves are important in oceanography because, as they travel, they are capable

of displacing small animals, such as plankton, larvae, and fish. While underwater,

individual drifters do not have access to absolute position information and only

rely on inter-vehicle measurements. Building on this data and the study of their

dynamics under the flow induced by the internal wave, we design strategies that

are able to characterize the internal wave. Because many wave models exist, we

separately consider the tasks of estimating a single linear internal wave and a single

nonlinear internal wave. Individually, we devise an algorithm which perfectly de-

termine the wave’s parameters under noiseless measurements. We also analyze the

robustness to measurements corrupted by error (e.g. random noise, non-random

modeling errors). Since many parameter estimates may be obtained at different

times, we also analyze a methodology for combining these estimates to decrease

the final error. Inspired by real data collected by scientists at Scripps Institute of

Oceanography, we extend the algorithms to allow for two waves. Current research

is in determining the internal waves present in the collected data.

xvi



Chapter 1

Introduction

Here, we begin with an introduction to cooperative control, the body of

work that this dissertation falls within. Then, we introduce the problems tackled

and relate them to the prior literature. After that, we detail the contributions

found in this work. We end with an outline which briefly describes the contains of

the remaining chapters.

1.1 Introduction and related literature

In this section we introduce the field of cooperative control, introduce the

problems which we consider, and compare them to the relevant literature.

1.1.1 Cooperative control

This dissertation sits in the field of cooperative control of multi-agent net-

works [12, 86, 46]. This area considers problems where a group of robots, equipped

with limited sensing/communication, computation capability, mobility, and con-

trol authority seek to cooperate to achieve a common, global task. Common

cooperative tasks, to name a few, are deployment over and shared surveillance

of a physical environment [17, 96, 40], data collection, estimation, and consen-

sus [62, 75, 59, 89, 25], and vehicle formation control [26, 61, 43]. In all of these

cases, each robotic agent senses its immediate environment, communicates with

1
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other agents, processes the information it sensed/received, and takes a local action

in response to its situation. A concrete multi-agent control problem is the not-so-

distant dream of a city full of self-driving cars. Experts believe that by 2040, up

to 75% of cars on the road will be self-driving [41]. In order for the network of cars

to work well, each car must be able to control itself safely in real-time. Thus, each

will need to have speed and position measurements and communicate its velocity

and direction changes to the cars in its vicinity. Together, the individual cars can

achieve the task of moving passengers to their destinations quickly and safely.

Whatever the specific problem, multiple robots performing a collaborative

task provides a number of inherent benefits. For instance, in problems where

more agents yields better solutions, there is an inherent robustness to individual

failures. Many agents spatially distributed and interacting locally can readily adapt

to a changing environment, making algorithms tolerant to uncertain or dynamic

environments. Finally, multiple agents working in unison may be able to achieve

tasks beyond any individual agents’ capabilities.

One can consider centralized or distributed approaches to cooperative, multi-

agent control. A centralized approach is one where an omniscient leader effectively

receives all the relevant information, solves the task, and communicates this to all

other agents. For many situations, this setup is valid. However, in scenarios where

the information is distributed over the network and transmitting and collecting the

data centrally is costly, insecure, or slow, a distributed solution might make more

sense. We say that an algorithm to solve a problem is distributed if the robotic

agents are able to solve the desired global problem each using only a subset of the

total data and communicating with their local neighboring agents [50, 74, 55, 91]

Another shortcoming of a centralized approach is that they are not robust to any

individual agent’s failure. Furthermore, the communication and processor burden

falls on one entity, so as the number of agents grow, the leader’s capability must

also increase. For these reasons, we focus on distributed approaches.

For example, suppose a group of agents are tasked with deploying them-

selves across an environment so that each agent is far away from all of the others.

This sort of deployment is useful when random events occur in the environment
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and the network of agents wish to minimize the time it takes for the closest agent

to reach the event. This, in turn, is analogous to the urban planning problem of

choosing hospital locations in a city so that no matter where someone gets hurt,

the closest hospital is not far [22]. In this situation, an agent cares little about

what the agents very far from it are doing; a good distributed strategy might be

to simply move away from the agent closest to it [16].

There are many other additional challenges to distributed, cooperative

problems. A desire for adaptive behavior means that designers must create feedback-

based strategies which compute control actions in real-time, rather than pre-

computing an open-loop strategy for a known/static setup. The interaction be-

tween many robotic agents requires a carefully defined information flow. Questions

such as which agents have access to what information, with which other agents can

they exchange information, how and when do these exchanges occur need to be

answered. Since the agents have motion capabilities, the answers to these ques-

tions may also be dynamically changing. Given that these algorithms are used in

unknown environments, where the events might be happening dynamically or the

task evolving is in time, reliability is of chief concern. Achieving robust, predictable

behavior in the presence of uncertainty is a worthwhile, but difficult challenge to

achieve. Furthermore, one might wish to know specifics about the algorithm’s

performance, such as how much communication is required, how long it takes to

achieve the objective, or how much processing is required of each agent. In the

presented approaches, we address all of these challenges.

Both of the problems considered here focus on robust estimation of spatial

phenomena. Here, we will be more specific about what we mean by robust esti-

mation. The first problem is motivated by a problem of deploying a mobile sensor

network for the purpose of estimating the environment. Because a certain, un-

known fraction of the sensors are assumed to be malfunctioning at any given time,

the cost function is designed to account for this. Thus, the optimal deployment,

which minimizes that cost function, is robust to these agent failures. Our work

provides an algorithmic method to reach these configurations, and so, it provides

deployment for robust estimation. In the second problem, the designed algorithm
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is also robust to individual agent failures. Furthermore, the algorithm, whose pur-

pose is to estimate model parameters, produces parameter estimates when given

data with error. It is in this sense that we say the solution is robust to measurement

error. We contrast the above ideas with the notion of robust estimation in signal

processing [97]. In that context, robustness deals with the deviation from distribu-

tional assumptions. For instance, many problems in engineering assume that data

is corrupted by additive, Gaussian errors. This structure makes building optimal

estimators more tractable, however, in practice this assumption is often not true.

A robust estimator is able to quantify the possible degradation in performance

stemming from similar distribution assumption deviations.

1.1.2 Coalition formation and deployment for optimal es-

timation

This dissertation contains work on two distinct but related problems in

distributed control: distributed coalition formation and deployment for optimal

spatial estimation and distributed estimation of ocean internal waves. The first

problem is motivated by optimal spatial sampling problems under possibly failing

communications. Consider a group of mobile robotic sensors that take point mea-

surements of a random field over an environment and relay them back to a data

fusion center. Assume that because of the features of the medium and the limited

agent communication capabilities, it is known that only a fraction of these packets

will arrive at the center, but it is not a priori known which ones will. Given that

some sensors are not working and their identity is unknown, a reasonable strategy

consists of grouping sensors together into clusters so that the likelihood of obtain-

ing a measurement from the position of each cluster is higher. The aim is to design

a distributed algorithm that makes the network autonomously create groups of a

desired size such that (i) members of each individual group become coincident, and

(ii) the groups deploy optimally with regards to the spatial estimation objective.

There is an increasing body of research that deals with spatial estimation

problems with possibly failing communications where packets are either received

without corruption or not received at all, see e.g., [88, 82, 35, 15]. In particular, [15]
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shows that, for the problem motivating our algorithm design, the clustering strat-

egy outlined above is optimal in some cases: the configurations that maximize the

expected information content of the measurements retrieved at the center corre-

spond to agents grouping into clusters, and the resulting clusters being deployed

optimally. Achieving such desirable configurations is challenging because of the

spatially distributed nature of the problem and the agent mobility. In this regard,

the notions of spatial coverage and agent clustering (the latter understood as phys-

ical co-location), as well as our proposed algorithmic solution, are different from

those in typical hierarchical clustering problems, see e.g. [93, 5], where sensors are

static and the objective is to minimize the cost incurred when relaying messages to

a data fusion center. Closer to our setup, [40] define clusters as groups of mobile

sensors in locations such that their density is above the expected average density.

Using a control law based on whether sensors are in a cluster or not, the network

minimizes the distance traveled by the sensors to deploy. Our technical approach

combines elements of spatial facility location [60], rendezvous and deployment of

multi-agent systems [12], and coalition formation games [10, 6]. From a game-

theoretic perspective, our analysis of the coalition formation dynamics is novel

because of the consideration of evolving and partial interaction topologies. From

a motion coordination perspective, the novelty relies on the coupled dynamics be-

tween the coalition formation, the clustering, and the network deployment. Other

works in cooperative control employ game-theoretic ideas to solve tasks such as

formation control, target assignment, self-organization for efficient communication,

consensus, and sensor coverage, see e.g. [34, 52, 3, 80, 85, 70]. Given the algorithmic

design choice of the agents’ utility function, our work has connections to weakly

acyclic games [53, 51]. Specifically, under a fixed, complete communication graph

where all agents can join any coalition they wish, our game can be cast as a weakly

acyclic game. However, in general, the limited information available to agents, the

dynamic interaction topology, and the dependence of the individual action sets on

this topology makes the framework of weakly acyclic games not directly applicable.

To characterize the performance of the algorithm, we upper bound the expected

completion time and required number of messages sent per timestep as a func-
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tion of the total network size by building on the well-established notions of time

and communication complexity in distributed algorithms [69, 50, 12]. Since in the

repeated coalition formation game agents take probabilistic actions, we consider

the expected time complexity. In principle, our algorithm can be described as a

Markov chain, where the coalition formation time can be exactly defined as the

first hitting time for the set of goal states [57, 47]. However, defining the proba-

bilistic transition function becomes difficult as the number of total agents grows.

Thus, we adopt a drift analysis approach [36] to provide an upper bound on the

time complexity.

1.1.3 Estimation of ocean internal waves

The second problem is concerned with estimating oceanic internal waves.

Internal waves are waves that propagate within a fluid, rather than on its sur-

face [8, 20, 63]. The type that we consider here corresponds to a moving oscillation

in the boundary surface between two layers of a stratified fluid. In the ocean, these

two layer fluids can occur at the mouth of large rivers where brackish (low salinity)

water sits above sea water, for instance. Also, a continuously stratified fluid can be

modeled as a two-layer fluid, where the interface, called pycnocline, is the surface

of constant density where the vertical rate of change in density is largest. Inter-

nal waves are associated with high concentrations of various types of planktonic

organisms and small fishes [94, 87], as well as an agent of larval transport [73].

This makes their study important to oceanographers, see e.g. [27, 48, 90, 14]. The

considered class of internal waves can be broadly categorized into linear and non-

linear. Linear waves have amplitudes small relative to the depth of the water

column. They are capable of moving around plankton, animal larvae, and other

organisms, as well as creating mixing between the upper and lower layers. In par-

ticular, striping of low/high densities in plankton can be well explained by small

amplitude, linear internal waves [27]. In contrast, nonlinear waves have larger am-

plitudes, allowing them to provide the advection required for larval transport [73].

Many models exist for nonlinear waves [37, 39] to account for the wide variety of

conditions and bathymetries found in the ocean.
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Traditional methods for studying internal waves have been satellite observa-

tions [4], radar imaging [76, 2], acoustic tomography [23], conductance-temperature-

depth (CTD) casts [63], and current meters on moorings [63]. However, these

methods lack the capability of real-time adaptability. Here, we tackle this problem

using a group of drogues capable of drifting underwater near the internal wave’s

interface to determine the physical parameters that define its motion. A drogue is

a robotic Lagrangian drifter able to actuate its depth by changing its buoyancy.

While underwater, drogues are subject to the flow induced by the motion of the

internal wave and do not have access to exact location information. The basic

premise is that the evolution of the inter-drogue distance and distance derivative

measurements contains enough information for the drogues to be able to fully char-

acterize the internal wave. To our knowledge, there is no algorithmic procedure

available in the literature to solve this problem. Scientists widely use drogues drift-

ing passively as monitoring platforms to gather relevant ocean data [71, 28, 38].

The use of autonomous underwater vehicles to detect and characterize internal

waves is a relatively new approach. Whereas previous works use ocean measure-

ments such as conductivity, temperature, pressure data [13, 72] or vertical flow

velocity [95] to detect and analyze internal waves, our approach is unique in using

inter-vehicles measurements. Recent work [44] explores the possibility of actively

selecting tidal currents so that drogues can autonomously reach a desired destina-

tion. An increasing body of work in the systems and control literature deals with

cooperative networks of agents estimating spatial natural phenomena, including

ocean [49, 68, 33], river [78], and hurricane sampling [21]. In the problem consid-

ered here, drogues are able to actuate their depth through buoyancy changes, but

are completely subject to the force of the internal wave in the flow-wise direction.

Because of this, the task of determining the wave parameters can be seen as a

data fitting problem [84, 83]. Due to the periodic nature of the inter-drogue dis-

tance trajectories, our problem has connections with least-squares spectral analysis

problems [18, 24]. In general, however, the fact that the wave parameters appear

nonlinearly makes the determination of the exact parameters challenging. Finally,

since the presented algorithm can generate many independent estimates of the pa-
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rameters. These parameter distributions are implicitly defined and non-Gaussian

so we adopt a mixture distribution approach to express the distribution as a sum

of simpler distributions [29].

Both problems focus on the ‘power of many’ mobile robotic sensors to co-

operatively achieve tasks impossible for one agent alone and are motivated by real-

world scientific/engineering problems. In particular, the presented internal wave

estimation algorithms were created in conjunction with the design, fabrication,

and deployment of Lagrangian drifters at Scripps Institute of Oceanography [42].

Recently, the drifters reached a state where they have begun taking measurements

which our algorithms can be tested with. The first experiment had design con-

straints (too few drifters ready, drifters spaced too far apart, too small ocean

stratification) which made our algorithms not applicable. However, by examining

the data, we were able to gain insight to extend our algorithms. The data indi-

cated that multiple dominant waves are a physical possibility, so we have worked

to extend the algorithms to handle the presence of two ocean internal waves. As of

writing this dissertation, a new set of experiments have been run, which are better

suited to test the proposed algorithms. However, we have not received or analyzed

the data yet. Ongoing work will be made in testing our algorithms against these

experiments and if necessary, further adapting the proposed algorithms to estimate

the internal waves found in the the experimental data.

1.2 Summary of results

Here, we briefly outline the contributions in this dissertation. The presen-

tation is split between the two problems considered on coalition formation and

deployment and robust estimation of ocean internal waves.

1.2.1 Coalition formation and deployment for optimal es-

timation

The main contribution in the problem is the design and analysis of the

Coalition Formation and Deployment Algorithm, which is a synchronous and
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distributed strategy to allow robotic agents to deploy to the optimizer of the spatial

estimation problem described above. Under the algorithm, agents autonomously

form groups of a given desired size while clustering together and deploying opti-

mally in the environment. The deployment objective is encoded through a loca-

tional optimization function whose optimizers correspond to circumcenter Voronoi

configurations. The algorithm design combines a repeated game component that

governs the dynamics of coalition formation with a spatial motion component that

determines how agents’ positions evolve. In the coalitional game, agents take prob-

abilistic actions and seek to join a neighboring coalition that most closely resembles

one with the desired size. According to the motion coordination law, agents not

yet in a well-formed coalition cluster together, while agents in a coalition of the de-

sired size also move towards the circumcenter of their Voronoi cell. Our main result

establishes that, for a large class of probabilistic coalition switching laws, the execu-

tions of the Coalition Formation and Deployment Algorithm converge in finite

time to a configuration where agents are coincident with their own coalition and all

coalitions are the desired size, and asymptotically converge to an optimal deploy-

ment configuration, each with probability 1. For a specific probabilistic coalition

switching law, termed Proportional-to-Number-of-Unmatched-Agents, where

the probability of switching coalitions is proportional to the number of agents not

in desired coalitions, we provide upper bounds on the expected coalition formation

time under arbitrary and complete communication topologies. For any switching

law, we also upper bound the total number of messages sent per timestep during

an execution on an arbitrary communication topology. The algorithm does not

require the agents to have a common reference frame, and is robust to agent addi-

tion and deletion. Finally, we illustrate the correctness, robustness, and time and

communication complexity results in simulation.

1.2.2 Estimation of ocean internal waves

Here, we consider the problem of estimating the physical parameters of an

internal wave that is propagating horizontally. A group of underwater drogues

with no absolute position information are subject to the flow induced by the in-
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ternal wave and can only measure inter-drogue distances and distance derivatives.

Because the drogues only have access to these relative measurements, they must

rely on the presence of other drogues to achieve their task. The benefit obtained

here by ‘the power of many’ in the estimation of the ocean flow field is an original

feature of this work. We consider separate cases of the presence of a linear and

nonlinear internal wave, beginning with the linear case. We also detail extensions

to the proposed algorithms which move towards testing our algorithms’ efficacy

when applied to real data taken in the ocean off the coast of La Jolla.

Estimating linear waves

For the estimation of linear internal waves, our first contribution is the es-

tablishment of an analytic expression for the dynamic evolution of the drogues.

This expression shows that the motion of each drogue corresponds to a sum of

a linear function (which is common to all) and a periodic function in time. In

particular, this result implies that the distance function between any two drogues

is periodic (with a different period than the internal wave). This analysis sets the

basis for our second contribution, which is the design of the Vanishing Distance

Derivative Detection Strategy. This algorithm builds on the expression for

the drogue dynamics and the fact that inter-drogue distance derivatives become

close to zero multiple times across a wavelength to estimate the physical param-

eters of the internal wave. To our knowledge, the proposed algorithm is the first

and only method capable of solving the problem formally defined in Chapter 4.

We establish the correctness of the Vanishing Distance Derivative Detection

Strategy in the case where the inter-drogue measurements are noiseless. Specif-

ically, we make precise the range of times along the period of the internal wave

when our method can determine exactly all the parameters. This allows us to give

a bound on the minimum required sampling rate. As a third contribution, we char-

acterize the robustness of our strategy by providing explicit bounds of the errors in

the parameter estimation as a function of the errors in the acquisition of the inter-

drogue measurements. Finally, we develop a general scheme for aggregating the

estimates of the parameters provided by our algorithm at different time instants
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under noisy measurements. Even though we assume the measurement noise to be

Gaussian, the highly nonlinear nature of the drogue motion induced by the internal

wave makes the distributions of parameters non-Gaussian and therefore, challeng-

ing to aggregate. Our aggregation scheme, termed pth-Order Parameter Fusion,

is based on determining a pth-order approximation of a parameter’s distribution.

Individual estimates are then fused together assuming the pth-order approxima-

tion is exact. The aggregation scheme results in smaller errors than the individual

estimates. Simulations illustrate our correctness and robustness guarantees.

Estimating nonlinear waves

In the nonlinear wave case, we build on the observation that when the

crest of the wave is exactly at the midpoint between two drogues, their inter-

drogue distance derivative becomes zero to aid in the design of the Parameter

Determination Strategy. This algorithm is run on the drogues using only rela-

tive measurements and is capable of determining all the wave parameters perfectly

in the case of noiseless inter-drogue measurements. We discuss the robustness

properties of the Parameter Determination Strategy to different sources of er-

ror such as noise in measurements, presence of multiple waves, and model un-

certainty, which arise in realistic implementations. Because many independent,

noisy parameter estimates are calculated by the algorithm, we consider a parame-

ter aggregation scheme to minimize the final parameter estimation error. Several

simulations illustrate the robustness performance to measurement noise of the

Parameter Determination Strategy, the effect of initial drogue locations on the

algorithm performance, and the ability of parameter estimate aggregation to min-

imize estimation error. We also adapt the Parameter Determination Strategy

method to handle the simultaneous estimation of two nonlinear internal waves,

as well as include an alternative method to determine the wavenumber parameter

which is based off determining an analytic expression for the change in inter-drogue

distance after the wave has completely passed.
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1.3 Outline

Here we present the organization of this dissertation, along with a brief

summary of each chapter’s contents.

Chapter 2: In this chapter we review preliminaries. It begins with notational

conventions and then contains notions in reference frames, derivative esti-

mation, optimal facility location, distributed algorithms, probability theory,

and game theory.

Chapter 3: This chapter introduces a distributed algorithmic solution to an op-

timal deployment problem. Its execution causes a network of mobile robotic

sensors to form into groups of a desired size while deploying themselves op-

timally across a spatial environment, leading to the minimization of a cost

function that takes into account sensor failures in the construction of optimal

estimators. We investigate the proposed algorithm’s correctness, time and

communication complexity, and robustness to individual failures. Simula-

tions illustrate the proven results.

Chapter 4: This chapter introduces an estimation problem where mobile under-

water robots use their inter-vehicle relative measurements to robustly esti-

mate the parameters which define an ocean linear internal wave. The pro-

posed algorithmic solution’s correctness and robustness properties are char-

acterized. Because many parameter estimates many be calculated as the

robots drift, we also define an estimate aggregation strategy to efficiently

fuse estimates. It concludes with simulations that demonstrate the proven

results.

Chapter 5: This chapter builds on the work in the previous chapter. It con-

tains a similar problem setup with the difference being the class of internal

wave being estimated. In this chapter, we focus on nonlinear internal waves.

Their structure requires a different method to produce estimates. Similarly,

we investigate our algorithm’s correctness, discuss robustness, and provide
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illustrative simulations. We also show that the method can be extended to

situations where two nonlinear waves are present.

Chapter 6: This chapter contains the concluding remarks and ideas for future

work.



Chapter 2

Introductory Material

This chapter contains introductory material on notation, reference frames,

derivative estimation, computational geometry

2.1 Notational Conventions

Here we present some basic concepts used in this dissertation, starting with

some notational conventions. Let R, R>0, R≥0, Z, and Z≥1, denote the sets of real,

positive real, non-negative real, integer, and positive integer numbers, respectively.

For x ∈ R, let ⌊x⌋ ∈ Z denote the largest integer satisfying ⌊x⌋ ≤ x. For a

continuously differentiable function f : Rd → R, For notational compactness in

some proofs, we let ∂kf denote the partial derivative with respect to the k-th

component. We refer to real-analytic functions simply as ‘analytic’. For a vector

v, we define the k-th component as cpntk(v). Finally, the Euclidean norm of vector

v is ‖v‖.

2.2 Reference Frames

A reference frame Σg in R
3 is composed of an origin pg ∈ R

3 and a set of

orthonormal vectors {exg , eyg , ezg} ⊂ R
3. A point q and a vector v can be uniquely

expressed with respect to the frame Σg and are denoted by qg and vg, respectively.

Next, let Σb = (pb, {exb , eyb , ezb}) be a reference frame fixed to a moving body.

14
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The origin of Σb is a point pb, denoted as pgb when expressed with respect to Σg.

The orientation of Σb is characterized by the rotation matrix Qg
b whose columns

are the vectors {exb , eyb , ezb} expressed with respect to Σg. With this notation, a

change of reference frame is given by qg = Qg
bq

b + pgb and vg = Qg
bv

b.

2.3 Derivative estimation from noisy data

Here, we consider estimating an analytic function f : R → R and its first

(time) derivative f ′ : R → R from n evenly sampled measurements in the sampling

window T , when the measurements are corrupted by additive Gaussian noise.

So that our method is causal, at any given time we only use the n most recent

measurements. Additionally, for computational reasons, at every timestep, we

relabel the current timestep as t = 0 and the times of all other measurements

accordingly, i.e., we have measurements for times {tζ = −ζ
n−1

T}ζ∈{0,...,n−1}. The

noisy measurement at tζ is

f̃(tζ) = f(tζ) + ǫ(tζ), ǫ ∼ N (0, σ2).

The method we use is a polynomial smoothing filter approach [81] because this

allows us to justify that the derivative estimates are unbiased Gaussian random

variables. For p ≪ n ∈ Z≥1, we construct a pth-order polynomial filter from n

evenly spaced noisy measurements over the sampling window T using the data

{(tζ , f̃(tζ))}ζ∈{0,...,n−1}. Consider the Taylor series expansion,
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+




ǫ0

ǫ1
...

ǫn−1




︸ ︷︷ ︸
ǫrandom

.

More compactly, this can be written as F̃ = VG+ǫbias+ǫrandom. The least-squares

estimates for f(t0) and f
′(t0) are given by

f̂(t0) = cpnt1((V
TV )−1V T F̃),

f̂ ′(t0) = cpnt2((V
TV )−1V T F̃).
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We ignore the bias which arises from considering only the pth-order expansion

of f because, for a fixed p, it can be made arbitrarily close to zero by choosing

the sampling window T small enough. With this observation in mind, the es-

timate of f ′(t0) is an (unbiased) Gaussian random variable with variance σ2
f ′ =

cpnt2,2((V
TV )−1)σ2.

2.4 Computational geometry

Here, we introduce some computational geometric definitions and results

that play an important role in the dissertation, beginning with some basic geomet-

ric notions.

2.4.1 Basic geometric notions

Given a set S ⊂ X, let F(S) denote the collection of finite subsets of S,

Sc = X \ S its complement, and |S| its cardinality. Let vr : Rd → R
d be defined

by vr(u) = u/‖u‖ for u ∈ R
d \ {0}, and vr(0) = 0. We let B(x, r) = {p ∈

R
d | ‖x− p‖ ≤ r}.

Definition 1 (Circumcenter and circumradius). The circumcenter of a set of

points P , denoted CC(P ), is the center of the ball of minimum radius, called the

circumradius and denoted CR(P ), which encloses all points in P .

2.4.2 Voronoi partitions and spatial optimization

Definition 2 (Voronoi partition). Given Q ⊂ R
d and a finite set of points P =

{p1, . . . , pN} ⊂ Q, the Voronoi partition V (P ) = {V1(P ), . . . , VN(P )} of Q is

defined by

Vi(P ) = {q ∈ Q | ‖ q − pi‖ ≤ ‖ q − pj‖, ∀ pj ∈ P}.

Note that Vi(P ), the Voronoi cell of pi, is the set of points in Q closer to pi

than to any of the other points in P . The points pi and pj are (Voronoi) neighbors

if the boundaries of their cells intersect. To compute the Voronoi cell of pi, all that
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is required is the location of its neighbors in P . [17] introduces a procedure, that

we term the Adjust radius strategy, which does the following: starting from

r = 0, it repeatedly grows r until all Voronoi neighbors of pi are guaranteed to be

contained in B(pi, r).

Given a partition {W1, . . . ,WN} of Q, the disk-covering function HDC,N is

defined by

HDC,N(p1, . . . , pN ,W1, . . . ,WN) = max
i∈{i,...,N}

max
q∈Wi

‖q − pi‖2.

The value of HDC,N solves the following problem: cover the whole environment

with balls centered at the points in P = {p1, . . . , pN} with minimum common

radius such that Wi ⊂ B(pi, r), for i ∈ {1, . . . , N}. For convenience, we set

HDC,N(p1, . . . , pN) = HDC,N(p1, . . . , pN , V1, . . . , VN ).

Two properties are worth noting [12]:

Proposition 2.4.1 (Optimal solutions of disk-covering function). For a fixed con-

figuration, the Voronoi partition is optimal among all partitions,

HDC,N(p1, . . . , pN , V1(P ), . . . , VN(P )) ≤ HDC,N(p1, . . . , pN ,W1, . . . ,WN).

For a fixed partition, the cells’ circumcenters are optimal:

HDC,N(CC(W1), . . . ,CC(WN),W1, . . . ,WN ) ≤ HDC,N(p1, . . . , pN ,W1, . . . ,WN).

Under certain technical conditions, see [32], optimizing HDC,N corresponds

to minimizing the maximum error variance in the estimation of a random spatial

field, whose model is briefly described in Section 2.6.3. Similarly, in the situation

of discrete events happening with equal likelihood everywhere in an environment,

placing sensors at an optimizer of HDC,N yields a configuration which minimizes

the worst-case distance (error) between an event and the nearest sensor. The

deployment objective function that motivates the problem in Chapter 3 is given

by

HN,g(p1, . . . , pN) =
1(
N
g

)
∑

{s1,...,sg}∈C(N,g)

HDC,g(ps1 , . . . , psg), (2.1)
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where C(N, g) denotes the set of unique g-sized combinations of elements in {1, . . . , N}.
This function corresponds to the expected disk-covering performance of a network

of N agents where only g of them are working and their identity is unknown. Op-

timizers of HN,g correspond to grouping agents into coincident clusters of a specific

size, say κ, that themselves are optimally deployed according to HDC,⌈N
κ
⌉, see [15].

The cluster size κ is a function of N , g, and Q. For instance, for the case where

Q is an interval, if only 1 agent is expected to be working correctly, all agents

should form one coalition of size N . If 2 agents are expected to function, the op-

timal coalition size is N/2. Finally, if N − 1 are expected to function, the optimal

coalition size is 2.

2.5 Distributed algorithms

Here we describe the notion of a distributed algorithm. Suppose a group of

spatially distributed sensing/computing robots are dispersed in an environment.

A centralized algorithm is a strategy implemented on each robot which solves a

given task using the data acquired from all of the robots. A distributed algorithm

is a strategy which solves the same task but uses only a subset of the total data.

We begin with some basic definitions about graphs.

Definition 3 (Directed graph). A directed graph or a digraph is a pair G = (V,E)

where V is the vertex set and E is the edge set such that E ⊂ V × V . A vertex

vi ∈ V is connected to vj ∈ V if (vi, vj) ∈ E.

Definition 4 (Undirected graph). An undirected graph is a digraph G = (V,E)

such that (vi, vj) ∈ E implies that (vj, vi) ∈ E as well.

Definition 5 (Neighbor set). The neighbor set of agent i in the graph G = (V,E)

is the set of agents Ni = {vj ∈ V | (vi, vj) ∈ E}.

A synchronous network is a group of processors that each possess a local

state, exchange messages along the edges of a digraph, and compute an update

to their local state based on the received messages. The processors alternate be-

tween the two tasks of exchanging messages with its neighboring processors and

performing a computation step. Next, we formalize the notion of a network.
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Definition 6 (Network). A synchronous network S represented by the digraph

(I, Ecomm), where:

• I = {1, . . . , n} is the set of unique identifiers and

• Ecomm is a set of directed edges over the vertices {1, . . . , n}, called the com-

munication links.

Next, we define the local state and algorithms that each processor possesses

and executes, respectively.

Definition 7 (Distributed algorithm). A distributed algorithm DA for a network

S consists of the sets:

• A, a set containing the Null element, called the communication alphabet -

elements of A are called messages,

• W [i], i ∈ I, called the processor state sets, and

• W
[i]
0 ⊆ W [i], i ∈ I, sets of allowable initial conditions

and of the maps

• msg[i] : W [i] × I → A, i ∈ I, called message-generating functions, and

• stf [i] : W [i] × An → W [i], i ∈ I, called the state-transition functions.

Each round of a distributed algorithm contains one execution of msg[i], one

transmission of the generated message to its recipients, the collection of messages

generated by other agents, and one execution of stf[i], for each i ∈ I. Let the

set of messages received by agent i at each round of the algorithm be defined as

Y [i] ∈ A
N .

Definition 8 (Distributed algorithm over a graph). An algorithm is distributed

over the graph G = (V,E) if the messages received at each round has the following

form for all i, j ∈ {1, . . . , N}, j 6∈ Ni implies that Y
[i]
j = Null.
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Remark 2.5.1 (Algorithm completion and correctness). In this work we define the

moment that an algorithm completes as the first instance in which the network-wide

task is achieved. Also, we define a correct algorithm as one that provably completes

the desired task. Because this work considers algorithms for estimating constant

parameters, we distiguish this definition from the definition of a correct estimator,

which is an unbiased estimator whose estimation variance asymptotically goes to

zero.

Having defined a distributed algorithm and our definition of algorithm com-

pletion, we are now ready to quantify measures of an algorithm’s performance. The

two which we consider are the time to completion (time complexity) and the num-

ber of messages sent per timestep (communication complexity). Intuitively, one

would like to design algorithms which solve a given task with a minimal complexity.

Definition 9 (Time complexity). The worst-case time complexity of an algorithm

DA is the maximum number of rounds required by the execution of DA among all

possible initial conditions until the algorithm completes.

Definition 10 (Communication complexity). The worst-case communication com-

plexity of an algorithm DA is the maximum number of messages required by the

execution of DA among all possible initial conditions until the algorithm completes.

In this work we consider non-deterministic algorithms, so that the network’s

evolution starting from a given initial condition is random and non-unique. Thus,

we are interested in the expected, worst-case complexity.

2.6 Probability notions

Here we gather a variety of probability notions which are needed in this

dissertation, beginning with two fundamental results: the Borel-Cantelli Lemma

and the Law of iterated expectations [77, 9].

Let X be a random variable that has outcomes {x1, x2, . . . } with probabil-

ities {p1, p2, . . . } ⊂ R≥0. An event E is a set of outcomes of X. For brevity, we

use P
(
E
)
= P

(
X ∈ E

)
.
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Definition 11 (Events occurring infinitely often and almost always). Given a

sequence of events {En}∞n=1, let

lim sup
n

En = {En i.o.} =
∞⋂

n=1

∞⋃

k=n

Ek,

lim inf
n

En = {En a.a.} =
∞⋃

n=1

∞⋂

k=n

Ek.

Here ‘i.o.’ stands for infinitely often, and ‘a.a.’ stands for almost always.

Note that {En i.o.}c = {Ec
n a.a.}.

Lemma 2.6.1 (Borel-Cantelli Lemma). Given a sequence of events {En}∞n=1 sat-

isfying
∑∞

n=1 P
(
En
)
<∞. Then P

(
lim supnEn

)
= 0.

Definition 12 (Integrable random variables). A random variable X is said to be

integrable if E[|X|] <∞.

Proposition 2.6.2 (Law of iterated expectations). For random variables X and

Y , if X is integrable, then

E[X] = EY [EX|Y [X|Y ]].

2.6.1 Aggregation and convergence of random variables

This section contains definitions on aggregation and convergence of random

variables.

Definition 13 (Optimal aggregation of random variables). Given independent

random variables x1 and x2 with mean E[x1] = E[x2] = µ and variances Var[x1] =

σ2
1, Var[x2] = σ2

2, define the optimal aggregating function OptAgg by

OptAgg(x1, σ
2
1, x2, σ

2
2) =

( x1
σ2
1

+ x2
σ2
2

1
σ2
1

+ 1
σ2
2

,
1

1
σ2
1

+ 1
σ2
2

)
.

Here, cpnt1(OptAgg) is the new random variables and cpnt2(OptAgg) is its

variance. This is the convex combination of x1 and x2 that results in the random

variable with the smallest variance.

Here, we define two notions used for the convergence of sequences of random

variables, beginning with convergence in probability.
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Definition 14 (Convergence in probability). A sequence of random variables {Xi}
converges in probability towards X if for all ǫ > 0, the following holds:

lim
n→∞

P
(
|Xn −X| ≥ ǫ

)
= 0.

Next, we define convergence with probability 1.

Definition 15 (Convergence with probability 1). A sequence of random variable

{Xi} converges with probability 1 towards X if the following holds:

lim
n→∞

P
(
Xn = X

)
= 1.

2.6.2 Markov chains

Here, we define a Markov chain and a useful definition [54, 56].

Definition 16 (Markov chain). A Markov chain is a sequence of random variables

{Xi} with the Markov property, namely that, given the present state, the future and

past states are independent. Formally,

P
(
Xi+1 = x|X1 = x1, X2 = x2, . . . , Xi = xi

)
= P

(
Xi+1 = x|Xn = xn

)
.

Definition 17 (Hitting time). Given a sequence of random variables {Xi(ω)}
generated from the randomization ω ∈ Ω and goal set A, we define the hitting time

of set A, τA as

τA(ω) = inf{i ∈ {1, 2, . . . }|Xi(ω) ∈ A}

and the expected hitting time of A as Eω[τA(ω)].

2.6.3 Spatial random fields

For completeness, we briefly recall the spatial random field model used

in [32], which, as explains in Section 2.4.2 is a motivation of our work. A more

complete exposition can be found in the literature of estimation of spatial processes,

see e.g., [19, 1].
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Definition 18 (Second-order stationary, isotropic random process). A random

process Z is second-order stationary and isotropic if it has constant mean, E[Z(s)] =

µ, and its covariance is of the form Cov[Z(p1), Z(p2)] = g(‖p1 − p2‖), for some

decreasing function g : R≥0 → R≥0.

The assumed model for the spatial random field Z is

Z(s) = µ(s) + δ(s), s ∈ D, (2.2)

with mean function µ known. Also, δ is a zero-mean second-order stationary

random process with a known decreasing isotropic covariance function, g.

2.7 Game theory

Here, we introduce some basic notions from game theory [58, 30, 7].

Definition 19 (N-player, simultaneous action game). A game is defined by G =

(I,A, u), where

• I = {1, . . . , N} is the set of N players,

• Ai is set of actions available to player i, and

• ui : A → R is the payoff function for player i.

In this game, all players have knowledge of G. They simultaneously choose

an action and receiving the payoff corresponding to the result of all players’ actions.

Each player wishes to choose its action to maximize its own payoff. The celebrated

Nash equilibrium provides an answer to this.

Definition 20 (Pure Nash equilibrium). A pure Nash equilibrium to the game

G = (I,A, u) is a joint action set (a∗1, . . . , a
∗
n) ∈ A such that

ui(a
′
i, a

∗
−i) ≤ ui(a

∗
i , a

∗
−i), ∀a′i ∈ Ai, ∀i ∈ I,

where a−i is the collection of all joint actions except ai.
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Note that all players choose an action corresponding to a Nash equilibrium

implies that no player can improve their payoff by playing a different action a′i.

Remark 2.7.1 (Existence of (mixed) Nash equilibria). In many games, pure Nash

equilibria are not guaranteed to exist. To aid with this, one can extend the notion

of players’ actions to include mixed strategies, where each player i chooses a prob-

ability distribution from which its action is chosen. In the case that the number

of actions for each player i, Ai is finite, there is guaranteed to exist at least one

mixed Nash equilibrium.

2.7.1 Coalition formation games

Hedonic coalition formation games [10] areN -player noncooperative games [30,

7] where players attempt to join/stay in preferable coalitions. Each player is he-

donic (non-cooperative) because the utility it assigns to a given network coalition

partitioning is only a function of its own coalition. Each player’s action set is finite:

it can stay in the current coalition or join another coalition.

Definition 21 (Coalition partition and coalitions). For a finite set of players

I = {1, . . . , N}, a finite coalition partition is a collection Π = {Sk}Kk=1, K ∈ Z≥1,

that partitions I. The subsets Sk are called coalitions. For player i and partition

Π, let SΠ(i) be the set Sk ∈ Π such that i ∈ Sk.

Definition 22 (Coalition formation game). A coalition formation game is defined

by G = (I,A,�),

• I = {1, . . . , N} is a finite set of players,

• Ai ⊂ Π ∪ {∅} are the coalitions agent i may join, and

• �i is agent i’s coalition preference ordering, defined over the set Si = {S ∈
F(I) | i ∈ S}.

Definition 23 (Nash stable partition). A coalition partition Π is called Nash stable

if, for each i ∈ I,

SΠ(i) �i Sk ∪ {i}, ∀Sk ∈ Π ∪ {∅}. (2.3)
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In coalition formation games, a player has full information about which

coalitions all other players are in and may join any of them. This is in contrast to

the work in this dissertation, where coalition information is only partial due to the

limited capabilities of individual agents. Let us introduce definitions which help

capture the spatially-limited nature of coalition information.

Definition 24 (Consistent coalition state). (S1, . . . , SN) is a consistent coalition

state if i ∈ Si and Sj = Si, for each j ∈ Si, for each i ∈ I.

Note that for a consistent coalition state, {S1, . . . , SN} reduces to a finite

coalition partition of I. Let τi ⊆ I denote the set of agents whose coalition

information i has access. Letting S0 = ∅, the function best-set defines the players

whose coalitions i most prefers to be a member of,

best-set(�i, {(k, Sk)}k∈τi) = {j ∈ τi ∪ {0} | Sj ∪ {i} �i Sk ∪ {i}, ∀ k ∈ τi ∪ {0}}.



Chapter 3

Hedonic coalition formation for

optimal deployment

This chapter is motivated by optimal spatial sampling problems under pos-

sibly failing communications. Consider a group of mobile robotic sensors that take

point measurements of a random field over an environment and relay them back

to a data fusion center. Assume that because of the features of the medium and

the limited agent communication capabilities, it is known that only a fraction of

these packets will arrive at the center, but it is not a priori known which ones

will. Given that some sensors are not working and their identity is unknown, a

reasonable strategy consists of grouping sensors together into clusters so that the

likelihood of obtaining a measurement from the position of each cluster is higher.

In this chapter, our aim is to design a distributed algorithm that makes the net-

work autonomously create groups of a desired size such that (i) members of each

individual group become coincident, and (ii) the groups deploy optimally with

regards to the spatial estimation objective.

Literature review: There is an increasing body of research that deals with

spatial estimation problems with possibly failing communications where packets

are either received without corruption or not received at all, see e.g., [88, 82, 35, 15].

In particular, [15] shows that, for the problem motivating our algorithm design,

the clustering strategy outlined above is optimal in some cases: the configurations

that maximize the expected information content of the measurements retrieved at

26
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the center correspond to agents grouping into clusters, and the resulting clusters

being deployed optimally. Achieving such desirable configurations is challenging

because of the spatially distributed nature of the problem and the agent mobility.

In this regard, the notions of spatial coverage and agent clustering (the latter

understood as physical co-location), as well as our proposed algorithmic solution,

are different from those in typical hierarchical clustering problems, see e.g. [93,

5], where sensors are static and the objective is to minimize the cost incurred

when relaying messages to a data fusion center. Closer to our setup, [40] define

clusters as groups of mobile sensors in locations such that their density is above

the expected average density. Using a control law based on whether sensors are

in a cluster or not, the network minimizes the distance traveled by the sensors to

deploy. Our technical approach combines elements of spatial facility location [60],

rendezvous and deployment of multi-agent systems [12], and coalition formation

games [10, 6]. From a game-theoretic perspective, our analysis of the coalition

formation dynamics is novel because of the consideration of evolving and partial

interaction topologies. From a motion coordination perspective, the novelty relies

on the coupled dynamics between the coalition formation, the clustering, and the

network deployment. Other works in cooperative control employ game-theoretic

ideas to solve tasks such as formation control, target assignment, self-organization

for efficient communication, consensus, and sensor coverage, see e.g. [34, 52, 3, 80].

Given the algorithmic design choice of the agents’ utility function, our work has

connections to weakly acyclic games [53, 51]. Specifically, under a fixed, complete

communication graph where all agents can join any coalition they wish, our game

can be cast as a weakly acyclic game. However, in general, the limited information

available to agents, the dynamic interaction topology, and the dependence of the

individual action sets on this topology makes the framework of weakly acyclic

games not directly applicable. We build on the well-established notions of time

and communication complexity in distributed algorithms [69, 50, 12] to characterize

the performance of our. Since in the repeated coalition formation game agents take

probabilistic actions, we consider the expected time complexity. In principle, our

algorithm can be described as a Markov chain, where the coalition formation time
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can be exactly defined as the first hitting time for the set of goal states [57, 47].

However, defining the probabilistic transition function becomes difficult as the

number of total agents grows. Thus, we adopt a drift analysis approach [36] to

provide an upper bound on the time complexity.

Organization: Section 3.1 states the problem setup, and Section 3.2 con-

tains the description of our algorithm. Section 3.3 analyzes its correctness and

Section 3.4 characterizes its complexity. Section 3.5 illustrates our results.

3.1 Problem statement

A group of robotic sensors with unique identifiers I = {1, . . . , N}moves in a

convex polygon Q ⊂ R
2. Let pi denote the location of agent i and P = (p1, . . . , pN)

denote the overall network configuration. We consider arbitrary agent dynamics,

assuming each agent can move up to a distance dmax ∈ R>0 within one timestep,

pi(ℓ+ 1) ∈ B(pi(ℓ), dmax), ℓ ∈ Z.

Through either sensing or communication, we assume each agent i can get the rel-

ative position and identity of agents within distance ri ∈ R>0. During the coalition

formation process, agents can interact with other agents within this radius. Agent

i can adjust ri but the cost of acquiring information is an increasing function of it.

Inter-agent communication occurs instantaneously.

Given the problem scenario described above, the network’s objective is dual.

On the one hand, agents want to cluster into groups of a predefined size κ, which

we assume is known a priori. Equivalently, the network wants to self-assemble into
⌊
N
κ

⌋
clusters of size κ, with possibly one additional cluster of size z, 0 ≤ z < κ,

with N =
⌊
N
κ

⌋
κ+z. On the other hand, the resulting clusters should be positioned

in the environment so as to minimize HDC,⌈N
κ
⌉. As discussed in Section 2.4, such

deployments correspond to optimizers of (2.1) for a class of spatial estimation

problems with unreliable sensors. For convenience, we define a partition to be

a goal coalition partition if the cardinality of m of its coalitions is κ, with the

cardinality of the remaining one equal to z, if it exists.
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A trivial solution to this problem would be to first elect ⌈N
κ
⌉ leaders and

have each leader recruit κ − 1 followers. Then each group could rendezvous, and

afterwards, the overall network would deploy. However, this method is neither dis-

tributed nor robust to agent failures. Our aim is to create a distributed algorithm

that accomplishes the dual network objective in a robust and efficient way.
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3.2 Coalition formation and deployment

Here, we solve the problem posed in Section 3.1 with the Coalition Formation

and Deployment Algorithm. This distributed, synchronous strategy specifies for

each agent the dynamics of coalition formation and spatial motion. Section 3.2.1

outlines the logic used by agents to determine which coalition to join as well as

the supporting inter-agent communication and Section 3.2.2 discusses how agents

decide to move depending on their coalition size and the deployment objective.

Before specifying the dynamics, we describe the required memory of each

agent and appropriate initializations. The memory Mi of agent i is composed of

• the coalition set Ci. Elements of this set are of the form (j, pj), i.e., identity

and position of the member. For convenience, we set (i, pi) ∈ Ci and C0 = ∅;

• the communication radius ri at which the agent interacts with other agents

not necessarily in its coalition;

• the neighboring set Ni corresponding to agents within distance ri, i.e., (j, pj) ∈
Ni iff pj ∈ B(pi, ri);

• the farthest-away radius ri, corresponding to the maximum distance to mem-

bers of its coalition set.

• the flag last, which indicates if an agent belongs to the single final coalition

not of size κ when ⌈N
κ
⌉ 6= N

κ
.

The operators id(·) and pos(·) extract identities and positions, respectively, from

sets with elements of the form (i, pi). Initialization requires a consistent coalition

state (id(C1), . . . , id(CN)), ri ∈ R≥0, and last = False.

The vocabulary all agents can recognize are

• an agent sends the word query to ask for the identities of another agent’s

current coalition;

• an agent sends a packet with the word leave/join along with an agent identity

to indicate that the agent is leaving/joining the recipient’s coalition.
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Remark 3.2.1. (Communication protocol) The communication radius ri should

be thought of as the distance at which agent i must interact with other agents not

necessarily in its coalition. We do not enter into the specifics of how this interaction

is actually implemented. This might be through direct, one-hop communication or,

if the radius is large, through indirect, multi-hop routing involving other network

agents. Lemma 3.2.3 below ensures the radius is kept, at each timestep, at the

smallest value that guarantees successful coalition formation. •

3.2.1 Coalition formation game

The formation of coalitions evolves according to a simultaneous-action he-

donic coalition game with partial information. Let us start with an informal de-

scription.

[Informal description]: The agents’ objective is to be in a κ-sized coali-
tion. There are two rounds of communication per timestep. In the first
one, each agent acquires information to determine if any neighboring
coalition is more attractive than its current one. In the second one,
the agents involved in a coalition change (either because they have de-
cided to switch or because someone else decided to join their coalition)
exchange information to update the coalition membership.

Next, we formally describe the hedonic coalition formation game. The agent

i’s preference ordering �i over Si is

{S ∈ Si | |S| = κ} ≻ {S ∈ Si | |S| = κ− 1} ≻ . . .

≻ {S ∈ Si | |S| = 1} ≻ {S ∈ Si | |S| = κ+ 1} ≻ . . .

≻ {S ∈ Si | |S| = N}. (3.1)

According to (3.1), agents most prefer to be in κ-sized coalitions. They also prefer

to be in a coalition of size 1 over any coalition of size larger than κ.

Next, we specify the two rounds of communication that take place per

timestep. Agents who already are in a coalition of size κ do not actively take part

in this process; they only respond to other agents’ messages. First, agents execute

the Best Neighbor Coalition Detection strategy described as Algorithm 3.1.
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Table 3.1: Best Neighbor Coalition Detection Algorithm

Executed by: agents i if |Ci| 6= κ

1: Acquire Ni (get location of neighbors)

2: Send (query, ri) at ri to id(Ni \ Ci)
3: Receive id(Cj) from all j ∈ id(Ni \ Ci) (request/receive coalition

sizes)

4: if i 6∈ best-set(�i, {k, id(Ck)}k∈id(Ni)) then

5: with probability p do

6: Set j∗ from best-set(�i, {k, id(Ck)}k∈id(Ni))

(identify best coalition to join)

7: if j∗ 6= 0 then ri := ‖pj∗ − pi‖
8: end if

9: end

10: end if

According to this strategy (cf. step 5), an agent that finds a neighboring coalition

better than its own will decide to join it with some probability of the form

p =




f(|C1|, . . . , |CN |, N, κ), if |Ci| 6= κ,

0, if |Ci| = κ,
(3.2)

where the function f takes values in the interval (0, 1) for all finite N . The form

of f affects the convergence rate of the algorithm, which we will investigate later.

Remark 3.2.2. (Justification and tradeoffs for probabilistic actions) The proba-

bilistic model for actions described in (3.2) helps avoid deadlock situations that

may result from the decentralized nature of the game. As an example, in a situ-

ation with two groups of size κ− 1, all agents will desire to join the other group.

In such case, a group of size κ would never form. Instead, under (3.2), there is a

positive probability that agents in only one of the groups act, breaking the dead-

lock. In contrast with a one-agent-acting-per-timestep policy, (3.2) allows multiple
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agents to switch coalitions at the same timestep. One tradeoff of probabilistic ac-

tions is that the identities of the agents in each coalition cannot be known a priori.

Another tradeoff is that, at times, agents do not make the most beneficial action

to achieve the ultimate objective given a specific configuration. However, as stated

above, it is precisely this occasional sub-optimality that helps eliminate deadlock

situations. •

Next, all agents run the Coalition Switching strategy found in Algo-

rithm 3.2. This strategy builds on the input j∗ provided to i by the Best Neighbor

Coalition Detection strategy. Agents with j∗ 6= i switch coalitions. If j∗ = 0, i

forms its own coalition. Otherwise, i interacts with agent j∗ to join its coalition.

After switching, agents update coalition memberships and the communication radii

required to determine the position of other members so that the coalition state re-

mains consistent.

3.2.2 Motion control law

Here, we describe how agents move at each timestep, beginning with an

informal description:

[Informal description]: At each timestep, agents adjust their commu-
nication radius and move. Both actions depend on the size of their
coalition. Agents not yet in a coalition of size κ increase their radius
to improve the chances of finding a better coalition and move towards
their coalition members. Agents in a coalition of size κ adjust their ra-
dius to ensure they can calculate their Voronoi cell and move towards
both their coalition members and the cell circumcenter.

Before formally defining the radius adjustment and motion algorithm, we

introduce the get-together-toward-goal function gttg : S×F(S)×S → S that

will help define the agents’ motion. It’s purpose is to get a set of points P closer

to each other while moving towards a goal q. Define gttg(p, P, q) = p + w1 + w2,

where we use the shorthand notation P0 = P ∪ {p},

w1 = min{‖CC(P0)− p‖, d1(r)} vr(CC(P0)− p),

w2 = min{‖q − (p+ w1)‖, d2(r)} vr(q − (p+ w1)),
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Table 3.2: Coalition Switching Algorithm

Executed by: all agents i

1: if j∗ 6= i then

2: Send (leave, i) at ri to id(Ci) (alert old coalition)

3: if j∗ 6= 0 then

4: Send (join, i, ri) at ri to j
∗ (alert new coalition)

5: end if

6: end if

7: M := {k ∈ I | i received join from k}
(agents relying on i to aid switching)

8: foreach m ∈M , send (join,m, rm) to id(Ci)

(alert coalition members of m via ri)

9: L := {k ∈ I | i received leave from k}
(agents leaving coalition)

10: J := {k ∈ I | an m ∈ id(Ci) got join from k}
(agents leaving/joining i’s coalition)

11: id(Ci) := (id(Ci) ∪ J) \ L and ri := ri +max{rj}j∈J
(update current coalition and radius)

12: foreach m ∈M , send (ri, id(Ci)) at rm to m

(update agents joining i’s coalition)

13: if j∗ 6= i then

14: if j∗ = 0 then

15: Ci = {(i, pi)} (form a new coalition)

16: else

17: id(Ci) := id(Cj∗) and ri := ‖pj∗ − pi‖+ rj∗

(update coalition and radius)

18: end if

19: end if

20: if J 6= ∅ ∨ j∗ 6= i then

21: Acquire Ni, pos(Ci)

22: j∗ := i (reset switching variable)

23: end if
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and r = CR(P0)
/
‖q − CC(P0)‖. Here, d1 : R≥0 → R≥0 is an increasing function,

continuous on R>0, satisfying

d1(0) = 0, lim
s→∞

d1(s) = dmax, lim
s→0+

d1(s) = dmin,

for dmax > dmin > 0, and d2 : R≥0 → R≥0 is defined by d2(s) = dmax − d1(s).

Figure 3.1 illustrates the definition of gttg.

p

p + w1

gttg(p, P, q)CC(P0)

q

Figure 3.1: Illustration of the action of the function gttg.

The Radius Adjustment and Motion strategy is formally described in Al-

gorithm 3.3. Its interaction with the coalition formation dynamics is described in

steps 10-16, which governs the set of agents that a robot not yet in a κ-sized coali-

tion interacts with. The next result ensures that agents’ communication radius are

kept at the smallest values that guarantee successful coalition formation.

Lemma 3.2.3. (Optimality property for communication radius law) For each i ∈ I
such that |Ci| 6= κ, let ki be the closest agent which is in a coalition different from

i’s with size different from κ. Let ri(P, (C1, . . . , CN)) = ‖pi − pki‖. For consistent

coalition states not corresponding to a goal coalition partition, such radii guarantee

that at least one agent has an incentive to switch coalitions. Moreover, if the radii of

these agents were set according to any other function r′i with r
′
i(P, (C1, . . . , CN)) <

ri(P, (C1, . . . , CN)) for some i and P , then this property is no longer guaranteed.

Proof. If there is at least one coalition of size greater than κ, all agents in this

coalition have an incentive to start their own coalition. Consider instead, the case

where all coalitions are of size at most κ. An agent i in the smallest coalition

has an incentive to join its neighbor ki and the claimed property follows. Next,
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Table 3.3: Radius Adjustment and Motion Algorithm

Executed by: all agents i

1: if |Ci| = κ ∨ last = True then

2: Update ri with Adjust radius strategy

3: Acquire Ni

4: Ai := ({CC(pos(Ci))} ∪ pos(Ni)) \ pos(Ci)
5: Vi := V1(Ai) (compute Voronoi cell)

6: goal = CC(Vi)

7: else

8: goal = CC(pos(Ci))

9: Ci := {j ∈ id(Ni) | | id(Ci)| = κ}
10: if id(Ni\Ci)\Ci 6= ∅ then

11: ri := mink∈id(Ni\Ci)\Ci
‖pk − pi‖+ 2dmax

(guarantees a neighbor after motion)

12: else if id(Ni) = I then

13: last := True (one non-κ coalition)

14: else

15: ri := ri + δ (increase radius)

16: end if

17: end if

18: foreach j ∈ id(Ci), set pj := gttg(pj, pos(Ci), goal)

(compute next position)

19: pos(Ci) := {pj}j∈id(Ci) (update positions)

20: ri := maxpj∈pos(Ci) ‖pj − pi‖ (recompute radius)
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we show the minimality property. It is enough to show that there is one non-goal

consistent coalition state for which a smaller radius assignment would not work.

Consider a consistent coalition state at configuration P where all coalitions but

one have been formed, and the remaining agents are in two coalitions, one with the

single agent, i, and the other one, C, with the rest. Since r′i(P, (C1, . . . , CN)) <

ri(P, (C1, . . . , CN)) = ‖pi − pki‖, agent i has no agents in Ni that it has incentive

to join. Furthermore, given the coalition state, agent i is the only one who could

have an incentive to switch coalitions, concluding the proof.

Steps 10-16 in Algorithm 3.3 implement the result of Lemma 3.2.3. If agent i

is not within ri of a non-coalition agent that is not in a κ-sized coalition, increase ri.

If agent i is within ri of such an agent, change ri to the distance between the two

agents plus a constant ensuring they remain within communication range after

moving.

Remark 3.2.4. (Voronoi cell computation) In the Voronoi cell computation of

step 5 in Algorithm 3.3, the coalition’s circumcenter replaces all the locations of

the individual agents which ensures that all coalition members compute the same

cell. However, this also implies that the collection of cells computed by the coalition

is not a partition of the environment. This issue gets resolved when the members

within each coalition are coincident and is treated in the proof of Theorem 3.3.1.

•

Remark 3.2.5. (Choice of parameter δ) In step 15 of Algorithm 3.3, δ describes

the amount that ri increases if i does not have any neighboring candidate agents

to join. Several choices are possible. For instance, when agents are roughly uni-

formly distributed, δ ∝ diam (Q)√
N

makes it likely that the agent discovers at least one

new agent. •

The Coalition Formation and Deployment Algorithm is composed of

Algorithms 3.1-3.3. This strategy does not require agents to share a common

reference frame.

Remark 3.2.6. (Robustness to addition and subtraction) The Coalition Formation

and Deployment Algorithm is robust to agents joining or leaving the network un-



38

der the following assumptions: (i) new agents alert the network of their presence

by sending a query message, (ii) when an agent fails, the other members of its

coalition detect this fact, and (iii) when agents receive a query message they set

last := False. •

3.3 Correctness analysis

This section analyzes the convergence properties of the strategy designed

in Section 3.2. Our main objective is to establish the following result.

Theorem 3.3.1 (Algorithm correctness). Consider a network of N agents execut-

ing the Coalition Formation and Deployment Algorithm. Then,

1. there exists a finite time after which the agents are in a goal coalition partition

and each is coincident with its coalition members, with probability 1;

2. the agents’ positions and the induced Voronoi partition asymptotically con-

verges toward the set of minimizers of HDC,⌈N
κ
⌉, with probability 1.

The proof of this result requires us to establish several intermediate results.

Theorem 3.3.1 states that, with probability 1, the network will not converge to a

coalition partition other than the desired one. Agents may stay for some time in

a different partition but in finite time they will reach the desired partition with

probability 1. This can be traced back to the fact that, in the simplified coalition

formation game where agents have both full information and action sets, only the

goal coalition partition is Nash stable (see Lemma 3.3.2 below). Theorem 3.3.1

implies that, even in the absence of global information, the Nash stable partitions

are the desired ones.

Lemma 3.3.2. (Nash stable partitions of preference ordering) In the N -agent

simultaneous-action game where agents have preference orderings satisfying (3.1),

complete knowledge of all other coalition memberships, and their action set is to

stay or join any other coalition, only the goal coalition partition is Nash stable.
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Proof. First, let us show that the goal coalition partition is Nash stable. All the

agents in coalitions of size κ receive maximal utility, so they satisfy (2.3). Nash

stability follows by noting that the agents in the coalition of size z do not prefer to

join either a coalition with size κ or start a new coalition. To show the uniqueness

result, we reason with a different arbitrary partition and show it is not Nash stable.

This arbitrary partition must have either at least one coalition with more than κ

agents or at least two coalitions with less than κ agents. In the first case, the agents

in a coalition with more than κ agents would benefit by joining any coalition with

size less than κ (if any exists), and if not, by forming a new coalition. In the

second case, the agents in the smallest coalition with less than κ agents would

benefit from joining the other. The same argument holds if coalitions are tied for

smallest. These two cases show the goal coalition partition is the only Nash stable

partition.

3.3.1 Analysis of coalition formation dynamics

We define the collection of actions of all agents at a given timestep as a

timestep-event. Our first result finds a strictly positive lower bound on the proba-

bility of any possible timestep-event happening. The result follows by noting that

all agents’ probabilistic actions are independent and the switching probabilities are

given by (3.2).

Lemma 3.3.3. (Bound on switching probability) Let E be a timestep-event with

P
(
E
)
> 0. Then P

(
E
)
≥ min{f(|C1|, . . . , |CN |, N, κ), (1−f(|C1|, . . . , |CN |, N, κ))}N .

For ǫ > 0, define

Ξǫ(C1, . . . , CN)=
∑

i∈I≤κ

(1 + ǫ)|Ci|

|Ci|
=

κ∑

j=1

aj(1 + ǫ)j, (3.3)

where aj are the number of coalitions of size j. Note that coalitions with size

strictly larger than κ do not contribute to Ξǫ. Additionally, Ξǫ is upper bounded

by⌈N/κ⌉(1 + ǫ)κ. The next result establishes that one agent joining a coalition of

at least its own current coalition’s size has positive effect on the overall network

reaching a goal coalition partition.
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Lemma 3.3.4 (Ξǫ increase for one switcher). For any ǫ > 0, when exactly one

agent joins a new coalition of at least its current coalition’s size, this action strictly

increases the function Ξǫ by at least min{1 + ǫ, ǫ2}.

Proof. Let i be the size of the coalition being left and j the size of the coalition

being joined. We must consider the cases of i < κ and i > κ separately, starting

with the former. Now, by the coalition preference ordering in (3.1), i ≤ j < κ.

After switching, Ξǫ has changed by

(1 + ǫ)i−1 − (1 + ǫ)i + (1 + ǫ)j+1 − (1 + ǫ)j

= ǫ((1 + ǫ)j − (1 + ǫ)i−1)

≥ ǫ((1 + ǫ)i − (1 + ǫ)i−1) ≥ ǫ2.

Now, considering the case where i > κ, one can see that in the worst case, the

agent forms its own coalition of size 1, increasing Ξǫ by 1+ ǫ, which completes the

result.

The next result shows that from any consistent coalition state, there is a

finite sequence of timestep-events, each with positive probability of occurring, that

leads to a goal coalition partition. Also, there exists an upper bound, independent

of the coalition state, on this sequence’s length.

Proposition 3.3.5. (A sequence of switching events leading to the goal coali-

tion partition) From any consistent coalition state, there exists a finite sequence of

timestep-events, each having a positive probability of occurring under the Coalition

Formation and Deployment Algorithm, leading to a goal coalition partition. Fur-

thermore, for any ǫ > 0, the length of this sequence is bounded by

L =
⌈N/κ+ 1⌉(1 + ǫ)κ

ǫ2
(
diam(Q)

δ
+ 1) +

⌊
N

κ

⌋
. (3.4)

Proof. Initially, if any coalitions are larger than size κ, let the first timestep-event

E1 be one where the correct number of agents leave one of these large coalitions and

all other agents do not switch, creating a coalition of size κ. From Lemma 3.3.3,

P
(
E1

)
is bounded away from zero. There can be at most

⌊
N
κ

⌋
− 1 more coalitions

larger than size κ, and so E2, . . . , E⌊N
κ ⌋ are defined similarly. From step 15 in
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Algorithm 3.3, within at most diam(Q)
δ

timesteps, each agent i will have a radius ri

satisfying Lemma 3.2.3, so at least one agent has an incentive to change coalitions.

In the timesteps in which no agents wish to change coalitions, the corresponding

timestep-events, E⌊N
κ ⌋+1, . . . , E⌊N

κ ⌋+α, α ≤ diam(Q)
δ

, occur with probability 1. De-

fine E⌊N
κ ⌋+α+1 to be a timestep-event where exactly one agent joins a coalition it

has an incentive to and all others do not switch. By Lemma 3.3.3, the probabil-

ity of this event is bounded away from zero. Additionally, because all coalitions

are at most size κ, the function Ξǫ increases by at least ǫ2 (c.f. Lemma 3.3.4).

If the configuration is not in a goal coalition partition, within at most diam(Q)
δ

timesteps, at least one agent will have an incentive to switch coalitions. Because

the upper-bounded function Ξǫ monotonically increases each time this sequence of

timestep-events occurs, the number of times this can occur is at most ⌈N/κ+1⌉(1+ǫ)κ
ǫ2

.

Therefore, within L timesteps (cf. (3.4)), the agents will be in a goal coalition par-

tition.

The next result uses the sequence constructed in Proposition 3.3.5 to show

that in finite time all agents are in a goal coalition partition, with probability 1.

Theorem 3.3.6. (Finite-time convergence to goal coalition partition) There exists

a finite time after which N agents using the Coalition Formation and Deployment

Algorithm are in a goal coalition partition with probability 1.

Proof. Lemma 3.3.3 asserts that the probability of a timestep-event occurring is

lower bounded by ρ = min{f(|C1|, . . . , |CN |, N, κ), (1− f(|C1|, . . . , |CN |, N, κ))}N .
Given an initial consistent coalition state,

Proposition 3.3.5 guarantees that there exists a finite sequence of timestep-

events, whose length is upper bounded by L (cf. (3.4)), leading to the goal coalition

partition. If the length of this sequence is smaller than L, this sequence can be

extended to one of exactly length L by considering additional timestep-events

where no agents wish to change coalitions. The latter occur with probability 1.

Therefore, the sequence of timestep-events leading to a goal coalition partition has

a probability of occurring of at least ρL, independent of the initial coalition state.

Define a sequence of events {A1, A2, . . . }, where An is the event that the

coalitions do not exist after nL timesteps. The probability of An occurring is at
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most (1− ρL)n. Now,

∞∑

n=1

An ≤
∞∑

n=1

(1− ρL)n <∞,

since it corresponds to a convergent geometric series. Thus, by the Borel-Cantelli

Lemma, cf. Lemma 2.6.1, P
(
{An i.o.}

)
= 0. This means P

(
{An i.o.}c

)
= 1 or,

equivalently, P
(
{Acn a.a.}

)
= 1. The result follows by noting that Acn is the event

that the coalitions occur at some point in nL timesteps and {Acn a.a.} is the event

that all but a finite number of events Acn occur.

Finally, we present two results concerning the agents’ motion according to

gttg. The next result states that if two agents move towards a common point,

their distance is non-increasing.

Lemma 3.3.7. For d > 0 and p1, p2, q ∈ R
n, let p+i = min{‖q − pi‖, d} vr(q −

pi) + pi, i ∈ {1, 2}. Then ‖p+1 − p+2 ‖ ≤ ‖p1 − p2‖.

Lemma 3.3.8 determines how much the circumradius of a coalition decreases

and how much they get closer to the goal point q after moving according to gttg.

Proposition 3.3.8. (Application of gttg decreases circumradius) Given P =

(p1, . . . , pk) and q ∈ Q, let P+ = (p+1 , . . . , p
+
k ) be given by p+i = gttg(pi, P, q),

i ∈ {1, . . . , n}. Then CR(P+) ≤ CR(P )− δ1 and

P+ ⊂ B(q, ‖CC(P )− q‖+ CR(P )− δ1 − δ2),

with δ1 = maxi∈{1,...,k} min{‖CC(P )−pi‖, d1(r)} and δ2 = min{‖q−CC(P )‖, d2(r)}.

Proof. Our strategy is to look independently at the effect of the two halves of the

motion defined in gttg. Define the intermediate positions P ∗ by p∗i = pi+w1,i, i ∈
{1, . . . , n}, where w1,i = min{‖CC(P )− pi‖, d1(r)} vr(CC(P )− pi). We show that

the circumradius decreases a finite amount while moving from P to P ∗ and does not

increase while moving from P ∗ to P+. First, according to the motion prescribed by

gttg, we have P ∗ ⊂ B(CC(P ),CR(P ) − δ1), which by definition of circumcenter,
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implies that CR(P ∗) ≤ CR(P ) − δ1. Second, to show CR(P+) ≤ CR(P ∗), let us

rewrite p+i as p+i = p∗i + w2,i, where w2,i = min{‖q − p∗i ‖, d2(r)} vr(q − p∗i ). Let

NC+ = CC(P ) + δ2 vr(q − CC(P )). (3.5)

By Lemma 3.3.7, for all i ∈ {1, . . . , n},

‖p+i −NC+‖ ≤ ‖p∗i − CC(P )‖ ≤ CR(P ∗),

where we have used the fact that CC(P ∗) = CC(P ). Finally,

CR(P+) ≤ max
i∈{1,...,k}

‖p+i −NC+‖,

which implies that CR(P+) ≤ CR(P ∗) and the result follows. Next, we study

how much closer the points are to q after the application of gttg. Initially, P ⊂
B(q, ‖q − CC(P ) + CR(P ))‖. After the application of w1, the configuration’s cir-

cumcenter has not moved and the circumradius has decreased by δ1, so P ∗ ⊂
B(q, ‖q − CC(P ) + CR(P )− δ1)‖. Then, after the application of w2,

P+ ⊂ B(q, ‖q −NC+ + CR(P )− δ1)‖.

Combined with (3.5), the result follows.

3.3.2 Proof of the main result

We are now ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. In statement (i), the fact that there exists, with proba-

bility 1, a finite time after which all agents are in a goal coalition partition follows

from Theorem 3.3.6. Proposition 3.3.8 allows us to upper bound the number of

timesteps it takes for the circumradius of one of these coalitions to vanish by

⌈diam(Q)
dmin

⌉. This implies the fact that in finite time agents become coincident with

its coalition members. Once coalitions form and all individual agents are coin-

cident with the members of their respective coalitions, the collection of Voronoi

cells that the agents compute correspond to a correct Voronoi partition with ⌈N
κ
⌉

generators. Statement (ii) then follows from [12, Theorem 5.5].
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3.4 Algorithm complexity analysis

This section investigates the time and communication complexity per timestep

of the Coalition Formation and Deployment Algorithm.

3.4.1 Time complexity analysis

After having established in Section 3.3 the correctness of the Coalition

Formation and Deployment Algorithm, here we analyze the expected comple-

tion time of the coalition formation dynamics. In general, this time depends on

the specific probability law chosen. In this section, we bound the expected com-

pletion time for a specific switching probability law that we term

Proportional-to-Number-of-Unmatched-Agents. Before specifying this law, let

us introduce some useful notation. Given the network state at a certain time, let

Nleft ≤ N denote the number of agents not in a group of size κ at that moment.

We assume that each agent i can estimate N i
left within a constant factor of Nleft,

i.e.,

Nleft ≤ N i
left ≤ cNleft (3.6)

uniformly in time, for some c ∈ R≥1. The

Proportional-to-Number-of-Unmatched-Agents law is defined as the switching

probability given by

p =
( 1

N i
left

)1+γ
, if |Ci| 6= κ, (3.7)

where γ > 0 is a design parameter.

Remark 3.4.1 (Determination of Nleft). In the forthcoming analysis, we do not

consider a specific way of estimating Nleft. There are a number of ways to im-

plement this. One possibility is for all agents to initially have an estimate of N .

If each time a coalition of size κ is formed, one of the agents pays the one-time

broadcast cost to send a message of this to all agents in the environment, all the

agents can update Nleft to Nleft − κ. •
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Our strategy to characterize the algorithm’s time complexity relies in mea-

suring the effect that agents switching coalitions has on the function Ξǫ, cf (3.3).

When one agent switches coalitions, this action increases Ξǫ. However, when mul-

tiple agents switch coalitions at the same time, it is possible that their joint actions

decrease Ξǫ. One example of this is when multiple agents join the same coalition,

making it larger than size κ. The next result provides an upper bound on how

much Ξǫ might decrease when more than one agent switches per timestep. Its

proof follows from over-approximating the decrease by removing two coalitions of

size κ− 1 (one for the coalition left and joined) for each agent that is switching.

Lemma 3.4.2. (Upper bound on decrease in Ξǫ due to multiple switchers) In a

non-goal coalition partition, if exactly φ > 1 switch coalitions, the function Ξǫ does

not decrease by more than 2φ(1 + ǫ)κ−1.

Given Nleft ≤ N agents not yet in a coalition of size κ, the next result shows

that the expected number of timesteps until all agents are in coalitions of size κ

can be upper bounded by a function of Nleft.

Lemma 3.4.3. (Convergence time for Nleft ≤ N agents) The expected number of

timesteps it takes Nleft ≤ N agents not yet in a coalition of size κ to all be in

κ-sized coalitions is upper bounded by Lleft(cNleft)
Nleft(1+γ)Lleft, with

Lleft =
⌈Nleft/κ+ 1⌉(1 + ǫ)κ

ǫ2
(
√
cNleft + 1) +

⌊
Nleft

κ

⌋
,

under the bound (3.6), when agents switch using the

Proportional-to-Number-of-Unmatched-Agents law, and each agent i’s com-

munication parameter is given by δi = diam(Q)/
√
N i

left.

Proof. Following Lemma 3.3.3, Proposition 3.3.5, and Theorem 3.3.6 for the

Proportional-to-Number-of-Unmatched-Agents switching law, one can define

ρleft = ( 1
cNleft

)Nleft(1+γ) and change (3.4) to Lleft to account for the estimate N i
left

and δi’s dependence on it. Then, the probability that all agents are in the goal

coalition after Lleft timesteps is at least ρLleft

left , independent of the network’s state.

Thus, the expected value of the first time the network is in the goal coalition is

upper bounded by Lleft

ρ
Lleft
left

, completing the result.
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The upper bound in Lemma 3.4.3 implies that for Nleft = O(1), the time

complexity is also O(1). We are now ready to upper bound the expected number of

timesteps for all coalitions to form under Coalition Formation and Deployment

Algorithm, executed over an arbitrary graph, when the switching probability is

defined by (3.7).

Proposition 3.4.4. (Time complexity on a generic graph) Under Coalition

Formation and Deployment Algorithm, the expected number of timesteps for

the network to enter the goal coalition partition is O(N
5

2
+γ) when agents switch

using the Proportional-to-Number-of-Unmatched-Agents law, and each agent

i’s communication parameter is given by δi = diam(Q)/
√
N i

left.

Proof. Let S be the number of agents who wish to switch at a given timestep and

s be the number of agents who actually do. Note that

P
(
s = φ |S = ϕ

)
=

(
ϕ

φ

)
pφ(1− p)ϕ−φ.

Then, using (3.7), one can bound

P
(
s = 1 |S = ϕ

)
≥ j

(cNleft)1+γ
(1− 1

21+γ
)2, (3.8a)

P
(
s = φ |S = ϕ

)
≤ 1

φ!
(

ϕ

N1+γ
left

)φ, ∀1 < φ ≤ N. (3.8b)

For ǫ > 0, using Lemmas 3.3.4 and 3.4.2, one can bound the expected change in

Ξǫ as a function of the number of agents that wish to switch by

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) = j] ≥

min{ǫ2, 1 + ǫ}P
(
s = 1 |S = ϕ

)
−

ϕ∑

φ=2

P
(
s = φ |S = ϕ

)
2φ(1 + ǫ)κ−1.

Combining this with (3.8), we get

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) = ϕ] ≥

min{ǫ2, 1 + ǫ}(1− 1

21+γ
)2

ϕ

(cNleft)1+γ
− 2(1 + ǫ)κ−1

ϕ∑

φ=2

1

(φ− 1)!
(

ϕ

N1+γ
left

)φ.
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Using
∑∞

φ=2
1

(φ−1)!
pφ = p(ep − 1), for all |p| < 1, one gets

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) = ϕ] ≥
ϕ

N1+γ
left

(min{ǫ2, 1 + ǫ}(1− 1
21+γ )

2

c1+γ
− 2(1 + ǫ)κ−1(e

j

N
1+γ
left − 1)

)
.

One can bound the expected change in Ξǫ if S > 0 by

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) ≥ 1] ≥
1

N1+γ
left

(min{ǫ2, 1 + ǫ}(1− 1
21+γ )

2

c1+γ
− 2(1 + ǫ)κ−1(e

1

N
γ
left − 1)

)
.

From this expression, one can see that, given A satisfying

0 < A <
min{ǫ2, 1 + ǫ}(1− 1

21+γ )
2

c1+γ
,

one can find Ncrit(ǫ, γ, c, A) such that for all Nleft ≥ Ncrit(ǫ, γ, c, A), the following

holds

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) ≥ 1] ≥ A

N1+γ
left

.

From (3.3), note that the largest that Ξǫ can be with Nleft ≥ Ncrit is

Ξǫ,crit =
N −Ncrit

κ
(1 + ǫ)κ +

Ncrit

κ− 1
(1 + ǫ)κ−1.

Furthermore, once Nleft ≤ Ncrit, it will be for all time after. From (3.7) and our

choice of δi, there are at most
√
cNleft timesteps between each time when at least

one agent desires to switch. Therefore, one can say that

E[Nleft(ℓ)] ≤ Ncrit, ∀ℓ ≥ ℓcrit = ⌈Ξǫ,crit
√
cNleft

N1+γ
left

A
⌉.

By the definition of the expected value for a non-negative random variable,

P
(
Nleft(ℓ) ≤ Ncrit

)
≥ 1

2
, for all ℓ ≥ ℓcrit. Defining Tcrit as the first time that

Nleft ≤ Ncrit, it is clear that E[Tcrit] ≤ ℓcrit + 1.

Finally, define T to be the first time that all agents are in a goal coalition

partition. By Lemma 3.4.3, E[|T |] is finite, for all finite N . With this condition
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satisfied, one can apply the law of total expectation [9] as well as Lemma 3.4.3

again and see that

E[T ]=E[E[T |Tcrit]]≤E[Lleft(cNcrit)
Ncrit(1+γ)Lleft+Tcrit]

≤ Lleft(cNcrit)
Ncrit(1+γ)Lleft + ℓcrit + 1.

Finally, given that Nleft ≤ N , noting the order of ℓcrit with respect to N finishes

the result.

Next, we show that the time complexity bound in Proposition 3.4.4 can be

improved for the complete graph.

Proposition 3.4.5. (Time complexity on the complete graph) Under the Coalition

Formation and Deployment Algorithm, the expected number of timesteps for

the network to enter the goal coalition partition is O(N1+γ) when agents switch

using the Proportional-to-Number-of-Unmatched-Agents law and each agent

can communicate with all other agents.

Proof. The proof strategy is the same as for Proposition 3.4.4, so we only provide a

sketch here. There are two differences between the generic case and the complete

graph case. The first difference is that in a timestep where at least one agent

wishes to switch coalitions, in the complete graph case, we can show that almost

all agents wish to switch. More precisely, agents in coalitions larger than size

κ have an incentive to at least form their own coalition. Of the coalitions less

than size κ, agents desire to join the largest one. If two coalitions have the same

cardinality and are both the largest coalition of size less than κ, they mutually

want to join each other. This means that at least Nleft − κ + 1 agents have an

incentive to switch coalitions. This affects the expected change in Ξǫ as follows,

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) ≥ 1] ≥
Nleft − κ+ 1

N1+γ
left

(min{ǫ2, 1 + ǫ}(1− 1
21+γ )

2

c1+γ
− 2(1 + ǫ)κ−1(e

1

N
γ
left − 1)

)
.

The second difference is that agents wish to switch at every timestep (instead of

once every
√
cNleft timesteps, as in Proposition 3.4.4, given the assumed δi and

the Proportional-to-Number-of-Unmatched-Agents switching law). The result

follows from propagating these changes through the proof of Proposition 3.4.4.
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3.4.2 Communication complexity per timestep

Here, we analyze the communication complexity per timestep of the Coalition

Formation and Deployment Algorithm. We begin by stating our conventions re-

garding how messages are counted along the algorithm execution. First, we make

the assumption that an identical message sent at a given moment by an agent to

one or more other agents located within some distance of it counts as one. For

instance, an omnidirectional communication model fits into this description.

Second, in several instances, the algorithm requires the location and iden-

tity of the neighbors of an agent. This information may be obtained via either

communication or sensing. We assume this service is efficiently carried out by the

network and do not count it toward the communication required per timestep.

Before stating our communication complexity characterization, we intro-

duce one slight modification to step 2 of the Best Neighbor Coalition Detection

that decreases the number of messages sent without affecting the overall algorithm

execution. According to this modification, an agent, instead of querying all neigh-

bors that are not in its coalition, will now query the closest neighbor who is not in

its current coalition and also not in a coalition of size κ. This modification requires

agents to know what nearby agents have already formed a coalition of the desired

size. This can be addressed in at least one of the following two ways. One way

is for agents to broadcast to the network that it and its coalition members are in

a complete group. The other way is that when agents query the coalition size of

other agents (as in step 2 of the Best Neighbor Coalition Detection), if the

queried agent is in a complete group, the querying agent notes the identities of all

agents already in that complete group, and never needs to ask again.

We refer to the algorithm with this modification as the Coalition Formation

and Deployment Algorithm∗. The modification does not affect the algorithm’s

correctness or time complexity bounds. The basic argument is that, even with

the modification, in any network configuration, one can still guarantee that within

diam(Q)/δ timesteps, at least one agent will have an incentive to join a more de-

sirable coalition. This observation allows to reproduce the technical proofs given

above to establish the same correctness and time complexity results. The next
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result characterizes the communication complexity per timestep of the algorithm.

Proposition 3.4.6. (Communication complexity per timestep) Under the Coalition

Formation and Deployment Algorithm∗, the network of agents sends at most

6Nleft messages per timestep and, hence, the communication complexity per timestep

is O(N).

Proof. We show the result by simply counting the number of messages sent per

timestep. In steps 2 and 3 of the modified version of the Best Neighbor Coalition

Detection, an agent not in a coalition of size κ sends one message to one neighbor

and receives one back. In steps 2 and 4 of the Coalition Switching, when an

agent switches coalitions it sends one broadcast message alerting its former coali-

tion it is leaving, as well as one message to tell one member of its new coalition

it is joining. This one member in the new coalition sends one broadcast mes-

sage alerting the rest of its coalition of the new member, as specified in step 8.

Finally, that member sends one message back to the joining member to alert it

of any other agents who happened to join/leave in the exact same timestep, as

specified in step 12. Thus, if an agent is joining another coalition, 4 messages

are required and if the agent is forming its own coalition of size 1, only 1 mes-

sage is required. The most messages would be sent if all agents switched at the

same timestep. Since agents in coalitions of size κ will never switch, executing one

timestep of the Coalition Formation and Deployment Algorithm∗ generates at

most 6Nleft messages, and the result follows.

Note that the upper bound in Proposition 3.4.6 is a function of the agents

not in a completed coalition and, thus, monotonically decreasing as the algorithm

evolves and completed coalitions form.

3.5 Simulations

This section presents several simulations of the Coalition Formation and

Deployment Algorithm. In all simulations where they are relevant, δ = dmax =
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.2√
2

diam(Q)√
N

. We use the function

φ(C1, . . . , CN) =
1

N(κ− 1)

∑

i∈I
||Ci| − κ|, (3.9)

to illustrate the coalition formation dynamics. This function measures the normal-

ized average absolute difference between the agents’ coalition size and the desired

size κ.

We begin by illustrating the correctness of the algorithm, i.e., convergence to

a desired goal coalition partition and the achievement of the deployment task. Fig-

ure 3.2(a)-(b) show an execution of the Coalition Formation and Deployment

Algorithm on 21 agents forming coalitions of size 2 with

Proportional-to-Coalition-Size switching law defined by

p =




1− (1− b)

1

|Ci| , if |Ci| 6= κ,

0, if |Ci| = κ,
(3.10)

for some b ∈ (0, 1). Note that this switching law satisfies (3.2). In this and other

simulations where b is constant, we chose b = 0.5. The appeal of this switching

law is that b is the probability that at least one agent in a coalition will switch,

given that all coalition members wish to switch. This switching law makes it

likely that several agents (most likely from different coalitions) will get the chance

to switch coalitions at each timestep. One can observe in Figure 3.2(b) that the

network converges to both correctly sized groups and coalitions optimally deployed

at their Voronoi cell’s circumcenters. From Theorem 3.3.1, the final configuration

optimizes HDC,11.

Figure 3.3(a) shows the number of coalition switches at each timestep for

the same run. Many switches happen early, but decrease in frequency as agents

form κ-sized coalitions. The evolution of φ depicted in Figure 3.3(b) confirms this

by showing how agents join more desirable coalitions over time. It also shows the

evolution of the objective function HN,N−1 that, in the language of Section 2.4,

corresponds to the situation where N−1 of the sensors are working. This choice of

function is motivated by the fact that, in one dimension, it is known that in such

a case, forming coalitions of size 2 is optimal [15]. The bumps in the evolution
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of H21,20 occur when an agent with no nearby coalitions to join must increase its

radius to join a group far away. H21,20 temporarily increases while these agents

get together.

Figure 3.2(c) and (d) illustrate the robustness of the Coalition Formation

and Deployment Algorithm. After agents have achieved the final optimal config-

uration seen in Figure 3.2(b), we let one agent fail and two new agents come into

the picture. The agents adapt to the new network composition and optimally

deploy according to the available resources.

Next, Figure 3.4 shows the average number of timesteps required for coali-

tion formation for 4 different probabilistic switching laws under a generic commu-

nication topology, cf. (a), and the complete communication topology, cf. (b). For

all network sizes, the desired coalition size is 4. Each point is the average of 50

runs, where the agents are initially randomly placed with uniform distribution in a

unit square. The time complexity upper bounds in Section 3.4.1 are corroborated

and the bound seems tight for the complete communication case.

Figure 3.5 illustrates the communication complexity analysis of Section 3.4.2.

(a) shows the number of messages sent per timestep for one execution of 21 agents

forming coalitions of size 3 with switching probability p = .9. As coalitions form,

fewer messages are sent per timestep. (b) depicts the average number of messages

sent per timestep as a function of the total network size for switching probability

p = .9 and desired coalition size of 4. The plot validates the O(N)-characterization

of the communication complexity per timestep stated in Proposition 3.4.6.

Finally, Figure 3.6 illustrates the dependency of the average coalition for-

mation time on κ and b for the Proportional-to-Coalition-Size switching law.

We focus on this law because it is the one that executes the fastest out of the

probability laws illustrated in Figure 3.4. Each point is the average of 200 runs,

where agents are initially uniformly randomly placed in a unit square. The error

bars correspond to plus and minus one standard deviation. Figure 3.6(a) shows

the average coalition formation convergence time for fixed N = 20 and varying

κ. This time is roughly equal for all desired coalition sizes, until nearly all agents

are joining one coalition, which takes less time on average. Figure 3.6(b) shows



53

the average coalition formation time for 20 agents forming coalitions of size 4 as a

function of b. For values of b far from 0 and 1, this time is roughly constant.

Chapter 3, in part, is a reprint of the material [65] as it appears in ‘Hedonic

coalition formation for optimal deployment’ by M. Ouimet and J. Cortés in Auto-

matica, to appear in 2013. The dissertation author was the primary investigator

and author of this paper.
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(d) New final configuration

Figure 3.2: Execution of the Coalition Formation and

Deployment Algorithm with 21 agents and κ = 2 using the
Proportional-to-Coalition-Size switching law (3.10). The network starts at
(a) and converges to the configuration in (b) where all agents are in correctly-sized
coalitions and these coalitions are optimally deployed. After this, (c) shows an
agent failing in the coalition marked as ’o’ and two agents, marked as ’x’, joining
the network. After the agent additions and subtractions, coalitions adapt and the
network re-converges to the optimal deployment configuration in (d).
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Figure 3.3: For the execution in Figure 3.2(a) and (b), (a) shows the number
of agents switching coalitions at each timestep, and (b) shows the evolution of φ
(solid line) as defined in (3.9) and H21,20 (dashed line) as defined in (2.1).
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Figure 3.4: Average coalition formation time for 4 different probabilistic switching
laws under (a) a generic communication topology and (b) the complete commu-
nication topology. Each point is the average of 50 runs, where the agents were
initially randomly placed with uniform distribution in a unit square. The time
complexity upper bounds in Section 3.4.1 are validated, and that the bound seems
tight for the complete communication case.
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(a)

(b)

Figure 3.5: (a) depicts the number of messages sent per timestep for a run of 21
agents forming coalitions of size 3. (b) illustrates the average number of messages
sent per timestep as a function of the network size. Both of these plots validate
that the algorithm has an O(N) message complexity per timestep result, as in
Proposition 3.4.6.
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Figure 3.6: Average coalition formation time for 20 agents with the
Proportional-to-Coalition-Size switching law (3.10) as a function of (a) the
desired coalition size κ and (b) the parameter b (with coalitions of size 4). Each
point is the average of 200 runs, where the agents were initially randomly placed
with uniform distribution in a unit square. The error bars correspond to plus and
minus one standard deviation.



Chapter 4

Estimation of linear internal

waves

Internal waves are waves that propagate within a fluid, rather than on its

surface. The type that we consider here corresponds to a moving oscillation in the

boundary surface between two layers of a stratified fluid. In the ocean, these two

layer fluids can occur at the mouth of large rivers where brackish (low salinity)

water sits above sea water, for instance. Also, a continuously stratified fluid can be

modeled as a two-layer fluid, where the interface, called pycnocline, is the surface

of constant density where the vertical rate of change in density is largest. This

class of internal waves can be broadly categorized into linear and nonlinear. Linear

waves have amplitudes small relative to the depth of the water column. They are

capable of moving around plankton, animal larvae, and other organisms, as well as

creating mixing between the upper and lower layers. In contrast, nonlinear waves

have larger amplitudes, allowing them to be an agent of transport of small oceanic

life. Here, we consider linear waves modeled as a sinusoid which propagates along

the pycnocline.

Traditional methods for studying internal waves have been satellite obser-

vations, acoustic tomography, conductance-temperature-depth (CTD) casts, and

current meters on moorings. However, these methods lack the capability of real-

time adaptability. Here, we tackle this problem using a group of drogues capable

of drifting underwater near the internal wave’s interface to determine the physical

59
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parameters that define its motion. A drogue is a robotic Lagrangian drifter able

to actuate its depth by changing its buoyancy. While underwater, drogues are

subject to the flow induced by the motion of the internal wave and do not have

access to exact location information. Figure 4.1 presents a pictorial illustration

of the problem setup. The basic premise of this chapter is that the evolution of

the inter-drogue distance and distance derivative measurements contains enough

information for the drogues to be able to fully characterize the internal wave. To

our knowledge, there is no algorithmic procedure available in the literature to solve

this problem.

pycnocline
ocean floor

ocean surface

drogues
internal wave

zl

zu

λ =
2π

k

a

(a) Schematic of drogues and internal

wave

(b) Plankton patchiness induced by

internal wave

Figure 4.1: For a horizontally propagating ocean internal wave, (a) shows its spa-
tial structure at a fixed instant of time whereas (b) shows its temporal structure at
a fixed horizontal location. In (a), one can see a vertical cross-section of the ocean
perpendicular to the wave propagation direction. A group of drogues float at a
constant depth (but not necessarily along a straight line) and do not have access
to exact location information. Our objective is to provide drogues with mecha-
nisms that rely only on the relative measurements between them to determine the
parameters that uniquely define the internal wave. In (b), one can see data at an
anchor station off Mission Beach, CA, taken on April 19, 1997. The plankton’s
chlorophyll fluorescence (color scale) is depicted as a function of depth and time.
Higher fluorescence corresponds to denser patches of plankton in the troughs of a
horizontally propagating internal wave. Figure courtesy of Peter Franks, see [48]
for additional information.

Internal waves are associated with high concentrations of various types

of planktonic organisms and small fishes [94, 87], as well as an agent of lar-
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val transport [73]. This makes their study important to oceanographers, see

e.g. [27, 48, 90, 14]. In particular, striping of low/high densities in plankton

can be well explained by small amplitude, linear internal waves [27]. Scientists

widely use drogues drifting passively as monitoring platforms to gather relevant

ocean data [71, 28, 38]. The use of autonomous underwater vehicles to detect and

characterize internal waves is a relatively new approach. Whereas previous works

use ocean measurements such as conductivity, temperature, pressure data [13, 72]

or vertical flow velocity [95] to detect and analyze internal waves, our approach

is unique in using inter-vehicles measurements. Recent work [44] explores the

possibility of actively selecting tidal currents so that drogues can autonomously

reach a desired destination. An increasing body of work in the systems and con-

trol literature deals with cooperative networks of agents estimating spatial natural

phenomena, including ocean [49, 68, 33], river [78], and hurricane sampling [21].

In the problem considered here, drogues are able to actuate their depth through

buoyancy changes, but are completely subject to the force of the internal wave in

the flow-wise direction. Because of this, the task of determining the wave parame-

ters can be seen as a data fitting problem [84, 83]. Due to the periodic nature of the

inter-drogue distance trajectories, our problem has connections with least-squares

spectral analysis problems [18, 24]. In general, however, the fact that the wave

parameters appear nonlinearly makes the determination of the exact parameters

challenging. Finally, since the presented algorithm can generate many indepen-

dent estimates of the parameters. These parameter distributions are implicitly

defined and non-Gaussian so we adopt a mixture distribution approach to express

the distribution as a sum of simpler distributions [29].

4.1 Problem statement

This section formulates the problem under study. We begin by presenting

the basic model for the motion of a linear internal wave. Then, we describe the

capabilities of the group of drogues and discuss the effect that the internal wave has

on their dynamics. With these ingredients in place, we formalize the distributed
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parameter estimation problem.

4.1.1 Internal wave model

Let Σg = (pg, {exg , eyg , ezg}) be a global reference frame defined as follows:

the origin pg corresponds to an arbitrary point at the surface of the water; the

vector exg corresponds to the direction of wave propagation, which is parallel to

the ocean bottom, and ezg is perpendicular to the ocean bottom, pointing from

bottom to surface. Note that, with this convention, there is no wave motion in the

eyg -direction. The coordinates induced by Σg are denoted by {x, y, z}.
As in Figure 4.1, an internal wave is a wave which travels beneath the surface

of the ocean, along a surface of constant water density called pycnocline. We

consider an internal wave with amplitude a, frequency ω, propagating horizontally

in the x-direction with horizontal wavenumber k, and at the mean depth −zu. The
wave depth zw as a function of x and t is

zw(t, x) = −zu − a sin(kx− ωt+ φ).

The parameter φ, termed initial phase of the wave, effectively shifts the wave

relative to the reference (x, t) = (0, 0). Because of our choice of reference frame,

there is no motion in the y-direction. The standard model [27, 48, 31] assumes that

vertical velocity varies linearly with depth. This, coupled with the conservation of

mass law for an incompressible fluid, gives rise to the following expressions for the

horizontal uu and vertical wu velocities of the upper layer,

uu(t, x) =
ωa

kzu
sin(kx− ωt+ φ), (4.1a)

wu(t, x, z) = −zaω
zu

cos(kx− ωt+ φ). (4.1b)

Likewise, the horizontal ul and vertical wl velocities of the lower layer are

ul(t, x) = −ωa
kzl

sin(kx− ωt+ φ),

wl(t, x, z) =
z + zu + zl

zl
aω cos(kx− ωt+ φ).
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Assumption 4.1.1 (Bounds on wave parameters). The linear internal wave model

is only accurate for 0 < a/zu ≤ (a/zu)max = 0.1. Additionally, the spatial wave-

lengths of internal waves range from hundreds of meters to tens of kilometers [90].

Since k is inversely proportional to the spatial wavelength, we assume that there

exists a bounded interval [kmin, kmax] that k is guaranteed to be in. Finally, since

the wave’s speed is the ratio ω
k
, which physically must be bounded, we assume that

there exists ωmax such that ω ≤ ωmax. •

4.1.2 Drogue model

A drogue is a submersible buoy which can drift in the ocean, unattached to

the ocean floor or a boat, and is able to change its depth in the water by controlling

its buoyancy. A drogue can measure the relative distance, the distance derivative,

and the orientation to other drogues, as well as depth through sensing (e.g., via

acoustic or optical sensors and an onboard compass). However, it does not have

access to absolute position because GPS is unavailable underwater.

We consider a group of N drogues. For each i ∈ {1, . . . , N}, let Σi =

(pi, {exi , eyi , ezi}) be a reference frame fixed to drogue i. The origin pi corre-

sponds to the location of the drogue. As in the global coordinate frame Σg, ezi is

perpendicular to the ocean bottom, pointing from bottom to surface. The vectors

exi and eyi are parallel to the ocean floor, but neither is necessarily oriented in the

direction of wave propagation. Thus, each drogue i must determine the angle be-

tween exi and ex, which we denote by θi. Drogues are able to measure inter-drogue

distances and distance derivatives. In our treatment, we deal separately with the

case of noiseless and noisy measurements. We assume drogues take measurements

at a sampling rate of fs. Thus, at time t ∈ R>0, drogue i has measurements

{(dij(tκ),d′
ij(tκ))}κ∈{0,...,⌊fst⌋} at times tκ = κ

fs
and for drogues j ∈ {j1, . . . , jM},

where these are the M drogues closest to i.

Consider the scenario where drogues move in the upper layer of the inter-

nal wave at a constant depth. There is no loss of generality in dealing with this

situation, since drogues can control their depth through buoyancy changes. We

make the simplifying assumption that the drogue dynamics under the linear in-
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ternal wave is Lagrangian. In other words, the dynamics of the drogue position

p = (px, py, pz) in the global reference frame is given by

p′ = (p′x, p′y, p′z) = (uu(t, p
x), 0, 0). (4.2)

The absence of motion in the z-direction in this equation is due to the drogue’s

buoyancy control, which we assume is capable of counteracting the vertical forcing

of the internal wave. Since the drogues can measure their depth, we assume there

exists an underlying controller which uses these measurements to regulate the

drogue at a desired depth. Figure 4.2 illustrates the time evolution of the x-

component of inter-drogue distances as a function of the initial wave phase.
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Figure 4.2: Inter-drogue distance evolution for drogues initially 40 meters apart,
with different initial wave phases.

Remark 4.1.2 (Kinematic versus dynamical model). The Lagrangian model for

motion under the internal wave, cf. (4.2), is a simplification of the second-order
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dynamic model, see e.g. [92],

mp′′x = −cd |p′x − uu(t, p
x)|(p′x − uu(t, p

x)), (4.3a)

p′y = 0, (4.3b)

mp′′z=−cd |p′z−wu(t, p
x, pz)|(p′z−wu(t, p

x, pz))+f, (4.3c)

where m denotes the combined drogue mass and inertial added mass [11], cd is the

drag parameter, and f is the buoyancy control input. From this equation, one can

derive

|uu(t, px(t))− p′x(t)| ≤
√
mu′max

cd
tanh(

√
cdu′max

m
t+ tanh−1(

√
cd

mu′max

umax)),

where umax =
ωa
kzu

and u′max =
ωa
kzu

(k ωa
kzu

+ ω) are bounds on the maximum velocity

and acceleration according to the model (4.1). Following [27, 38], reasonable values

for these quantities are umax = .02m
s
, u′max = .00014m

s2
,m = 1.5kg, and cd = 210Ns2

m2 .

For these values, the errors in the drogues’ velocities will asymptotically be at

most 5% of umax, leading us to favor the kinematic model over the dynamical

one. Furthermore, we can see that in the worst case, with p′x(0) = 0 when the

drogues are dropped in the water and uu(0, p
x(0)) = umax, after about 20 seconds,

the drogues’ velocities will be within 99% of their asymptotic behavior. Thus,

after the drogues have been in the water for this long, the drogues’ motion can be

reasonably well modeled by the kinematic model. This analysis is illustrated in

Figure 4.3. •

With our models now introduced, we are ready to state the problem of

interest.

Problem statement: A team of N drogues is deployed in the ocean and their

motion is governed by an internal wave. Since the drogues may control their depth,

assume all are located at the same depth and each one can measure the relative

distance, the distance derivative, and orientation to the closest M drogues in their

own coordinate frame. The objective is to design a provably correct strategy that

allows each drogue i to determine the parameters a
zu
, k, ω, and θi, defining the

motion of the internal wave with the limited information it possesses.
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,

ω = 2π
1000

1
s
, a
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= .1, m = 1.5 kg, and cd = 210Ns2

m2 .

4.2 Noise-free parameter estimation

We begin by noting that the dynamic evolution of a drogue under the linear

internal wave can be explicitly described in the global reference frame. However,

drogues cannot rely on this information as they do not have access to their global

coordinates. This motivates our design of methods to determine the wave propaga-

tion direction and the internal wave parameters using the distance measurements

available to the drogues. The following result shows that, remarkably, the drogue’s

dynamic evolution (4.2) can be described in an analytical way.

Proposition 4.2.1 (Drogue trajectory). The solution of (4.2) starting from p(0)
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is

px(t) =
ω

k

(
1−

√
1− (a/zu)

2
)
t+ Ξ(t)− φ

k
,

Ξ(t) =
2

k
tan−1

( a
zu

−
√

1−
( a
zu

)2
tan
(πt
T

+ Λ0

))

− 2π

k

⌊
t

T
+

Λ0

π
−
⌊
kpx(0) + φ+ π

2π

⌋
+

1

2

⌋
+

2π

kT
t,

with

T =
2π

ω
√
1− (a/zu)

2
, Λ0 = tan−1

(
1√

1− (a/zu)
2

(
a

zu
− tan

(
kpx(0) + φ

2

)))
.

Proof. Let ψ(t) = kpx(t) − ωt + φ be the relative phase between the wave and

drogue. Then (4.2) can be written as ψ′ = ω
(
a
zu
sinψ − 1

)
. Integrating, one gets

∫ ψ

ψ0

dς
a
zu
sin ς − 1

= ω

∫ t

0

dτ,

2√
1− (a/zu)

2
tan−1

(
a/zu − tan(ζ/2)√

1− (a/zu)
2

)∣∣∣
ψ

ψ0

= ωt,

where ψ0 = ψ(0) = kpx(0) + φ. Manipulating the last expression, we arrive at

ψ(t) = 2 tan−1

(
a

zu
−
√

1−
(
a

zu

)2

tan

(√
1− (a/zu)

2ωt

2
+ Λ0

))
, (4.4)

Λ0 = tan−1

(
1√

1− (a/zu)
2

(
a

zu
− tan

(
kpx(0) + φ

2

)))
.

Note that this function is discontinuous or, in other words, the expression for

ψ(t) above is only valid if the argument of the tangent function is in the interval

[−π
2
, π
2
]. A general expression for ψ(t) can be obtained as follows. Since the

period of the tangent function is π, we deduce that the fundamental period of

ψ is T = 2π

ω
√

1−(a/zu)
2
. Note that at t∗ = nπ−2Λ0

ω
√

1−(a/zu)
2
, with n ∈ Z odd, one has

that

√
1−(a/zu)

2

2
ωt∗ + Λ0 = nπ

2
, and hence (4.4) jumps from −π to π. To obtain

an expression of ψ(t) which is valid in general, we need to subtract 2π from (4.4)

every time t crosses one of the critical times (t∗) or, in other words, subtract the
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quantity

2π

⌊t− 1

ω
√

1−(a/zu)
2
(π − 2Λ0)

T
+ 1

⌋
= 2π

⌊
t

T
+

Λ0

π
+

1

2

⌋
.

Finally, note that the initial condition Λ0 jumps from −π
2
to π

2
at kpx(0)+φ = nπ

for n ∈ Z odd. Thus, in order to make Λ0 change continuously with the initial

conditions, we subtract away from Λ0 the quantity π
⌊
kpx(0)+φ+π

2π

⌋
. The result now

follows.

From Proposition 4.2.1, we see that the solution of (4.2) is the sum of a

linear function in t and a periodic function Ξ with fundamental period T . Since

the linear function does not depend on the initial condition, we deduce that the

time evolution of the distance dxij between any two drogues i and j is given by

(with ν =
√
1− (a/zu)2 for brevity)

dxij(t)=
2

k
tan−1

(
a

zu
−ν tan

(
νωt

2
+ Λ0,j

))
− 2π

k

⌊
t

T
+
Λ0,j

π
−
⌊
kpxj (0) + φ+ π

2π

⌋
+

1

2

⌋

− 2

k
tan−1

(
a

zu
−ν tan

(
νωt

2
+Λ0,i

))
+
2π

k

⌊
t

T
+

Λ0,i

π
−
⌊
kpxi (0) + φ+ π

2π

⌋
+

1

2

⌋
,

and is periodic with period T (as was numerically observed in Figure 4.2). How-

ever, from a drogue’s viewpoint, two facts make this expression impractical: first,

drogues do not have access to distances in the global reference frame and, second,

since absolute position is not available, they are also unaware of their phase with

respect to the internal wave. Even without these two hurdles, the highly nonlinear

dependence of this expression on the parameters makes the results for standard

least-squares data fitting methods [18, 24] not directly applicable.

These observations motivate the ensuing discussion describing a method to

determine the internal wave parameters in the absence of measurement noise. Our

treatment is presented for a generic drogue i ∈ {1, . . . , N} which requires inter-

drogue distance and distance derivative measurements from its nearest 4 neigh-

bors, denoted by {j1, j2, j3, j4}. Before getting into the details, we provide a brief

overview of the algorithm design.

[Informal description]: Section 4.2.1 describes a method to determine
the wave propagation direction. With this information available, drogues
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can project their inter-drogue measurements along the wave propaga-
tion direction. Section 4.2.2 uses relationships amongst the parameters
to simplify the problem to first estimating one parameter. Specifically,
it uses knowledge of the drogues’ dynamics to define a function of
the unknown horizontal wavenumber and the measurable inter-drogue
data. Using this function and the data, the algorithm can determine
the true value of the horizontal wavenumber. After this, Section 4.2.3
finds the amplitude ratio and frequency by solving equations derived
from the drogue dynamics.

Remark 4.2.2 (Parameter estimation methodology). The overall algorithm scheme

involves simplifying the problem of estimating multiple parameters appearing non-

linearly by employing parametric relationships to allow the drogues to solve for one

parameter first. The algorithm we propose here uses algebraic relationships to first

find the wavenumber k. However, one could also utilize relationships generated

from the data, for instance the drogue’s period (see Proposition 4.2.1), to generate

an algorithm which solves for the parameter in a different order. •

4.2.1 Wave propagation direction

Here we describe the method that drogues use to determine the wave prop-

agation direction in their own body coordinates. Recall that the drogues are at

the same depth but may be arbitrarily located in the x − y plane. Consider the

inter-drogue distance to the jth drogue, j ∈ {j1, . . . , j4}, as measured by i in its

own body coordinates,

dij = pj − pi = (dxiij , d
yi
ij , 0).

Figure 4.4 depicts the drogue i’s own body coordinates, inter-drogue distance mea-

surements, and the direction of wave propagation. For drogues undergoing motion

purely caused by an internal wave, inter-drogue distances in their own body refer-

ence frame can be projected onto the global reference frame dgij = Qg
idij via the

transformation matrix Qg
i ,

Qg
i =




cos θi − sin θi 0

sin θi cos θi 0

0 0 1


 .
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Figure 4.4: Drogue and wave orientations on the drogue’s reference frame.

The global coordinate frame is useful because the inter-drogue distance in the y-

direction is constant, i.e., dy′ij = dxi′ij sin θi + dyi′ij cos θi = 0. Since θi is constant, it

can easily be found using the measurements available: θi = tan−1
(−dyi′ij

d
xi′
ij

)
.

Since both θi and θi + π fit this relation, we assume the drogues can dif-

ferentiate the true θi. One way to accomplish this is to surface after at least one

wave period and use GPS to determine which way the drogue has drifted.

4.2.2 Horizontal wavenumber via vanishing derivative

Here we describe a method to determine the horizontal wavenumber of the

internal wave. Since the only dynamics are in the x-direction and each drogue i

has determined θi as described in Section 4.2.1, from now on, we simply denote dxij

by dij. Thus, for each i ∈ {1, . . . , N}, the following dynamics describe the drogues’

motion in the x-direction,

d′ij= 2
ωa

kzu
sin
(kdij

2

)
cos
(kdij

2
+ψi

)
, ∀j∈{j1, . . . , j4}, (4.5a)

ψ′
i = ω

( a
zu

sin(ψi)− 1
)
, (4.5b)

where ψi = kpxi −ωt+φ is the phase of the wave relative to drogue i, which is un-

measurable to it. We note that each inter-drogue distance equation (4.5a) contains

the unknowns ψi,
a
zu
, ω, and k. Our strategy proceeds by deriving an equation

which is only a function of measurement data and the horizontal wavenumber, and

then determining conditions under which the correct value can be obtained. We

later use this knowledge to determine the remaining parameters. In what follows,
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we make a notational distinction between k (the horizontal wavenumber inter-

preted as a variable) and k (the correct horizontal wavenumber that we seek to

determine).

First, we show a result about the evolution of inter-drogue distances. This

helps us formulate assumptions on the initial drogue locations to make the ensuing

strategy applicable.

Lemma 4.2.3 (Inter-drogue distance bound). If at time t0 the inter-drogue dis-

tance between i and j is bounded by 0 < |k
2
dij(t0)| < π

2
, then this bound holds for

all t ≥ t0.

Proof. We reason by contradiction. Assume there exists t∗ > t0 such that |k
2
dij(t∗)| ∈

{0, π
k
}. From (4.5a), we deduce that d′ij(t) = 0 for all t > t∗, i.e., the inter-drogue

distance stays constant. However, this contradicts the fact that the inter-drogue

distances are periodic with period T .

We present the assumptions on ordering of inter-drogue distances as well

as bounds on initial inter-drogue distances.

Assumption 4.2.4 (Inter-drogue distance assumptions). Without loss of general-

ity, we assume 0 < dxij1 < dxij2 < dxij3 < dxij4 . By Lemma 4.2.3, there exists an α > 0

such that each drogue is at least α away from all other drogues in the x-direction,

i.e.,

dxij(t) > α, ∀i ∈ {1, . . . , N}, ∀j ∈ {j1, j2, j3, j4}, ∀t ≥ t0

We assume that initially drogue i and its 4 nearest neighbors are within one spatial

wavelength of the internal wave, encapsulated by dxij4(t0) <
2π
kmax

, where k will be in

[kmin, kmax] by Assumption 4.1.1. Furthermore, by Lemma 4.2.3, this holds ∀t ≥ t0.

Similarly, we assume that initially

dxij2(t0) < π(
1

kmax

− 10

99kmin

)− α.

With the dynamics of (4.5a) and Assumption 4.1.1, this condition ensures that

drogue i and its two closest neighbors are always within half a spatial wavelength

minus α of each other. •
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Unmeasurable relative phase

We begin by showing that the unmeasurable relative phase ψi can be explic-

itly expressed in terms of any two inter-drogue distances, which we choose as dij1

and dij2 , the distance derivatives d
′
ij1

and d′ij2 , and k , as the sum of two functions:

ψi(k , dij1 , dij2 , d
′
ij1
, d′ij2) = ν(k , dij1 , dij2 , d

′
ij1
, d′ij2) + µ(k , dij1 , dij2 , d

′
ij1
, d′ij2). (4.6)

The function ν captures the basic structure of ψi; it is derived by taking the

quotient of two equations in the form of (4.5a) and solving for ψi. One loses

information of the sign of d′ij1 and d′ij2 when one takes the ratio of them. Thus,

{0,−π}-valued function µ determines which of the two solutions to tan(ψi) = C

is the physically meaningful one. Specifically,

ν(k , dij1 , dij2 , d
′
ij1
, d′ij2) = tan−1

(
d′ij1 sin(

k dij2
2

) cos(
k dij2
2

)− d′ij2 sin(
k dij1
2

) cos(
k dij1
2

)

d′ij1 sin
2(

k dij2
2

)− d′ij2 sin
2(

k dij1
2

)

)
,

µ(k , dij1 , dij2 , d
′
ij1
, d′ij2) =




0, F(k , dij2 , d

′
ij2
,ν) > 0 ∨ F(k , dij1 , d

′
ij1
,ν) > 0,

−π, F(k , dij2 , d
′
ij2
,ν) < 0 ∨ F(k , dij1 , d

′
ij1
,ν) < 0,

where

F(k , dij2 , d
′
ij2
,ν) =

d′ij2

cos(
k dij2
2

+ ν(k , dij1 , dij2 , d
′
ij1
, d′ij2))

.

Next, we present a result on the properties of ν, which are needed to de-

termine k.

Lemma 4.2.5 (Smoothness properties of the relative phase). Under Assump-

tion 4.2.4, the functions ν and ∂k ν are Lipschitz continuous with respect to
d′ij1
d′ij2

.

Proof. One can show that ν and ∂k ν are differentiable with respect to
d′ij1
d′ij2

if

0 <
kdij1
2

<
kdij2
2

<
π

2
. (4.7)

By Assumption 4.2.4, the drogues will be in a compact subset of (4.7), which shows

the result.
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We refer to the Lipschitz constants for ν and ∂k ν as L1(α) and L2(α),

respectively. In general, ψi is a complex trigonometric function of k . However,

there are specific time instants for which its expression simplifies considerably, as

the following result shows.

Lemma 4.2.6 (Simplifying expression of the relative phase). For time tcr, let

d′ij(tcrit) = 0. Assume that drogues i and j are placed so that 0 < |k
2
dij(tcr)| < π

2
.

Then ψi(tcr) = ±π
2
− k

2
dij(tcr).

Proof. The only thing that we need to justify is the existence of tcr. Once this

has been established, the explicit expression of ψi(tcr) readily follows from (4.5a).

From Proposition 4.2.1, recall that dij is bounded and periodic. From (4.5b), we

know that for any t ∈ R>0, ψ
′
i(t) ≤ −ω(1 − a

zu
) < 0, where we have used the fact

that a
zu

≤ .1. Therefore, looking at (4.5a), one can conclude the existence of tcr

within one period T when d′ij(tcrit) = 0.

Recall that Lemma 4.2.3 guarantees that the assumptions of Lemma 4.2.6

are not difficult to ensure.

Distance rate quotient

Next, we note that the ratio of inter-drogue distance equations of the

form (4.5a), say d′ij3/d
′
ij4
, eliminates ω and a/zu. These observations lead us to

define the distance rate quotient function as follows. Let

dr(k , ψi, dij) = sin
(k dij

2

)
cos
(k dij

2
+ ψi

)
.

Then, define drq(k ,D) as

drq(k ,D) =
sin(

k dij3
2

) cos(
k dij3
2

+ ψi(k , dij1 , dij2 , d
′
ij1
, d′ij2))

sin(
k dij4
2

) cos(
k dij4
2

+ ψi(k , dij1 , dij2 , d
′
ij1
, d′ij2))

− d′ij3
d′ij4

=
sin(

k dij3
2

) cos(
k dij3
2

+ ν(k , dij1 , dij2 , d
′
ij1
, d′ij2))

sin(
k dij4
2

) cos(
k dij4
2

+ ν(k , dij1 , dij2 , d
′
ij1
, d′ij2))

− d′ij3
d′ij4

=
dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij4)

− d′ij3
d′ij4

, (4.8)
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where D = (dij1 , dij2 , dij3 , dij4 , d
′
ij1
, d′ij2 , d

′
ij3
, d′ij4) is the collection of all 4 inter-

drogue distances and distance derivatives. The second equality comes from noting

that drq takes the same value for either value that the function µ takes. By

definition, k = k satisfies

drq(k,D) = 0. (4.9)

In principle, there could be additional roots to this equation. This is what we

investigate next.

Determining the horizontal wavenumber

Our goal now is to determine conditions that guarantee that only k is

a solution to (4.9). The following result precisely characterizes how small the

ratio d′ij1/d
′
ij2

should be in order to guarantee that k is the unique value that

satisfies (4.9).

Proposition 4.2.7. (Range of suitable derivative ratios for determining k) As-

suming internal wave parameters are within the bounds in Assumption 4.1.1, con-

sider noiseless inter-drogue distance and distance derivative measurements D sat-

isfying Assumption 4.2.4 and
∣∣d′ij1
d′ij2

∣∣ < δ(α, kmin), where

δ(α, kmin) = min
{
sin2

(kminα

2

)
, ǫmax(kminα, L1(α), L2(α))

}

is positive, and the function ǫmax is defined in (4.10). Then, only k satisfies (4.9).

The following auxiliary result is needed before we present the proof of

Proposition 4.2.7. We begin by defining ǫmax : R
3
>0 → R>0,

ǫmax(x, C1, C2) = max
γ∈[0,Γ(x)]

R(x, γ, C1, C2) > 0, (4.10)

with Γ(x) = x− sin(x) cos(x) and

R(x, γ, C1, C2) =




min

{ 1

2
arcsin(2(x−γ))−x

C1
, γ
C2

}
, π

4
> x− γ > 0,

x−γ− 1

2

C2
, 2π > x− γ > π

4
.
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Lemma 4.2.8. ∀x ∈ (0, 2π), C1, C2 ∈ R>0, ǫ ∈ (−ǫmax(x, C1, C2), ǫmax(x, C1, C2)),

1

2
sin(2(x+ C1ǫ))− x+ C2ǫ ≤ 0, (4.11)

Proof. Note that for any x > 0, γ ∈ (0,Γ(x)) and C1, C2 ∈ R>0, R(x, γ, C1, C2) >

0, ensuring that ǫmax(x, C1, C2) > 0 as well. For γ such that x − γ > π
4
, we know

that for any ǫ ∈ [−R(x, γ, C1, C2),R(x, γ, C1, C2)],

1

2
sin(2(x+ C1ǫ))− x+ C2ǫ ≤

1

2
− x+

C2(x− γ − 1
2
)

C2

= −γ ≤ 0.

For γ such that 0 < x−γ ≤ π
4
, note that for any ǫ ∈ [−R(x, γ, C1, C2),R(x, γ, C1, C2)],

1

2
sin(2(x+ C1ǫ))− x+ C2ǫ ≤

1

2
sin(2(x+ C1

1
2
arcsin(2(x− γ))− x

C1

))− x+ γ = 0,

which completes the result.

Proof of Proposition 4.2.7. The proof proceeds by establishing ∂k drq(k ,D) > 0,

for all k ∈ [kmin, kmax]. Once this is shown, it is easy to see that only k satisfies (4.9)

since drq is strictly increasing as a function of k . To prove this fact about drq, it

is enough to establish that

∂k dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

>
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij4)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij4)

,

as long as

sgn(dr(k,ν(k, dij1, dij2, d
′
ij1
, d′ij2), dij3))=sgn(dr(k,ν(k, dij1, dij2, d

′
ij1
, d′ij2), dij4)), (4.12)

which corresponds to

ν ∈
(−π

2
− k dij3

2
,
π

2
− k dij4

2

)⋃(π
2
− k dij3

2
,
3π

2
− k dij4

2

)
.

This set admits all
d′ij1
d′ij2

∈
(
−∞,

sin(
k dij1

2
) sin( k

2
(dij4

−dij1 ))

sin(
k d

ij2
2

) sin( k

2
(dij4

−dij2 ))

)
. By hypothesis,

d′ij1
d′ij2

is in

this range and hence (4.12) holds. Since dij3 < dij4 , its sufficient to show that

∂dij3

(
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

)
< 0.
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After some calculations, we obtain

∂dij3

(
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

)
=

sin
( k dij3

2

)
cos
( k dij3

2

)
− k dij3

2

2 sin2
( k dij3

2

) −

sin
( k dij3

2
+ ν

)
cos
( k dij3

2
+ ν

)
+ k

(dij3
2

+ ∂k ν

)

2 cos2
( k dij3

2
+ ν

) . (4.13)

From Lemma 4.2.6, when
d′ij1
d′ij2

= 0, then ν = π
2
− k dij1

2
and ∂k ν = −dij1

2
, and so

(4.13) becomes

∂dij3

(
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

)
=

sin
( k dij3

2

)
cos
( k dij3

2

)
− k dij3

2

2 sin2
( k dij3

2

) +

sin
( k (dij3

−dij1 )
2

)
cos
( k (dij3

−dij1 )
2

)
− k

(dij3
−dij1 )
2

2 sin2
( k (dij3

−dij1 )
2

) ,

where both summands of which are clearly negative ensuring the desired partial

derivative is negative. With this in mind, we write in general that ν = π
2
− k dij1

2
+ǫ1

and ∂k ν = −dij1
2

+ ǫ2. Similarly, we rewrite (4.13) as

∂dij3

(
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

)
=

sin
( k dij3

2

)
cos
( k dij3

2

)
− k dij3

2

2 sin2
( k dij3

2

)

+
sin
( k (dij3

−dij1 )
2

+ ǫ1
)
cos
( k (dij3

−dij1 )
2

+ ǫ1
)
−k

(dij3
−dij1 )
2

+ k ǫ2

2 sin2
( k (dij3

−dij1 )
2

+ ǫ1
) .

The unchanged, first summand is still negative. A sufficient condition for the whole

expression being negative is that the sum of the second and third summands is

negative too. Using Lemma 4.2.8, we can ensure that (4.13) is negative when∣∣∣d
′
ij1

d′ij2

∣∣∣ < ǫmax

(
k (dij3

−dij1 )
2

, L1, L2

)
, which completes the expression for δ. The fact

that δ > 0 is seen from the definition of ǫmax and the assumption that k ≤ 2π
dij4

.

Note that the conditions of Proposition 4.2.7 are satisfied by data obtained

at time tcr with d′ij1(tcr) = 0, as in Lemma 4.2.6. Now, the question is what

is the interval around tcr where the measured data still satisfies the conditions

of Proposition 4.2.7. Among other things, this issue is important in order to

determine acceptable sampling rates for the drogues. The next result answers this

question.
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Corollary 4.2.9 (Range of suitable times for determining k). Assuming inter-

nal wave parameters are within the bounds in Assumption 4.1.1, consider noise-

less inter-drogue distance and distance derivative measurements at tcr such that

d′ij1(tcr) = 0 and initial conditions satisfying Assumption 4.2.4. Then, k uniquely

satisfies (4.9) with data D(t), for all t ∈ (tcr − ∆, tcr + ∆), where ∆(δ, L3, L4) =

L4

L3

δ
1+δ

, δ is given in Proposition 4.2.7, L3 ≥ 2 ωa
kzu

(ωa
zu

+ω), and 0 < L4 ≤ |d′ij2(tcr)|.

Proof. The magnitude of the second time derivative of any inter-drogue distance

is bounded by 2 ωa
kzu

(ωa
zu

+ ω). Thus,

|d′ij1(t)− d′ij1(tcr)| ≤ L3|t− tcr|,
|d′ij2(t)− d′ij2(tcr)| ≤ L3|t− tcr|.

From the analysis in Proposition 4.2.7, for a set of inter-drogue measurements there

exists an open interval (−δ, δ) in d′ij1
d′ij2

containing 0 where drq is strictly increasing.

Thus, by the assumption that t ∈ (tcr −∆, tcr +∆), we have the following,

∣∣∣∣
d′ij1(t+ tcr)

d′ij2(t+ tcr)

∣∣∣∣ ≤
L3|t− tcr|

L4 − L3|t− tcr|
<

L4δ
1+δ

L4(1− δ
1+δ

)
= δ,

which proves the result.

Using Corollary 4.2.9 and the assumptions in Assumptions 4.1.1 and 4.2.4,

the following result gives a sufficient sampling rate to satisfy the conditions of

Corollary 4.2.9.

Lemma 4.2.10 (Minimum sampling rate). If internal wave parameters satisfy As-

sumption 4.1.1 and given α > 0 from Assumption 4.2.4, a bound on the minimum

sampling rate for Corollary 4.2.9 is

fs,min >
(1 + ( a

zu
)max)ωmax csc

2(kminα
2

)

min{sin2(kminα
2

), ǫmax(
kminα

2
, L1(α), L2(α))}

. (4.14)

4.2.3 Amplitude ratio and frequency via data fitting

In this section, we discuss how once the true horizontal wavenumber k is

known, the parameters a
zu

and ω can also be found as described in the following

result.
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Lemma 4.2.11 (Determination of a
zu

and ω). Assume k is known. For tξ1 < tξ2 <

tξ3 with tξ3 − tξ1 < T , compute noiseless measurements of ψi and ψ
′
i at these times

by evaluating (4.6) and using the method described in Section 2.3. Then, ω and a
zu

can be found from

[
β1

β2

]
=

[
sin(ψi(t̟)) 1

sin(ψi(tℵ)) 1

]−1 [
ψ′
i(t̟)

ψ′
i(tℵ)

]
(4.15a)

ω = −β2,
a

zu
=

−β1
β2

, (4.15b)

where ̟,ℵ ∈ {ξ1, ξ2, ξ3} so that sin(ψi(t̟)) 6= sin(ψi(tℵ)).

Proof. First, given that ψ′
i < 0 and ψi(t+T ) = ψi(t)−2π, sin(ψi(t̟)) 6= sin(ψi(tℵ))

for some t̟, tℵ ∈ {tξ1 , tξ2 , tξ3}. Using the values of ψi and ψ′
i at these two timesteps,

one can solve for a
zu

and ω using (4.5b) as described in (4.15).

Remark 4.2.12 (Minimum sampling rate). For Lemma 4.2.11 to hold, one needs

fs,min >
3
T
. Comparing this to Lemma 4.2.10, one can see that if (4.14) is enforced,

then the assumptions of both Corollary 4.2.9 and Lemma 4.2.11 hold. •

4.2.4 Vanishing Distance Derivative Detection Strategy

We gather the discussion above into Algorithm 4.1.

For Step 3, any root finder method can find k uniquely; one suitable

method, for instance, is gradient descent. The following result establishes the

correctness of this strategy, which follows from Corollary 4.2.9, Lemma 4.2.11, and

Remark 4.2.12.

Proposition 4.2.13 (Conditions for determining all parameters). Assuming that

fs ≥ fs,min, internal wave parameters are within bounds in Assumption 4.1.1,

and that the initial drogue locations satisfy Assumption 4.2.4, then drogue i can

uniquely determine the parameters θi,
a
zu
, ω, and k using the Vanishing Distance

Derivative Detection Strategy.
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Table 4.1: Vanishing Distance Derivative Detection Strategy

Assumptions: fs ≥ fs,min, initial distances satisfy Assumption 4.2.4 for some

α > 0, internal wave parameters within bounds in Assumption 4.1.1

run at time tκ =
κ
fs
, for some κ ∈ Z≥1

1: calculate wave propagation direction, θi = tan−1(−dyi′ij1(tκ)/d
xi′
ij1
(tκ))

2: if
∣∣∣d

′
ij1

(tκ)

d′ij2
(tκ)

∣∣∣ < min
{
sin2

(
kminα

2

)
, ǫmax(kminα, L1(α), L2(α))

}
then

3: find k by solving drq(k ,D(tκ)) = 0

4: compute ψi(tξ) (via (4.6)) and ψ′
i(tξ) (via Section 2.3), for ξ ∈ {κ−2, κ−

1, κ}
5: choose ̟,ℵ ∈ {κ − 2, κ− 1, κ} such that sin(ψi(̟)) 6= sin(ψi(ℵ)) and

solve [
β1

β2

]
=

[
sin(ψi(̟)) 1

sin(ψi(ℵ)) 1

]−1 [
ψ′
i(̟)

ψ′
i(ℵ)

]

6: set ω = −β2 and a
zu

= −β1
β2

7: end if
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4.3 Robustness of parameter estimation to error

Here, we consider the effect of error in measurements on the application of

the Vanishing Distance Derivative Detection Strategy. Section 4.3.1 de-

scribes some of the sources of error which occur during an ocean implementation

of the proposed algorithm. Section 4.3.2 shows that the Vanishing Distance

Derivative Detection Strategy is able to get a parameter estimates when the

data has sufficiently small errors. This motivates our results in Section 4.3.3, which

bound the errors in estimates of k, a
zu
, and ω as a function of the errors in the

measured quantities. Finally, in Section 4.3.4, we devise a method for aggregating

noisy parameter estimates from different timesteps.

4.3.1 Sources of error from algorithm implementation

Here, we describe some of the sources of error which occur in the algorithm’s

implementation.

Noise in measurements: In practice measurements collected by sensors contain

noise. We assume this noise is unbiased, Gaussian, and that the noise at

different time instances and for different measurements is uncorrelated.

Model uncertainty: The problem setup described in Section 4.1.2 assumes that

drogues are Lagrangian. However, as seen in Remark 4.1.2, drogues have

a finite mass and drag coefficient making them not perfectly Lagrangian,

leading to a difference between the actual drogue’s velocity and the ocean

velocity. One can treat this mismatch as an unknown but nonrandom error

in the measurements of inter-drogue distances and distance derivatives.

Drogues not maintaining depth: We assume that the drogues have a con-

troller that uses feedback on depth measurements to maintain a desired

depth. Due to noisy depth measurements and a desire to minimize actuation

cost, instead we assume that the drogues will be within an interval around

the desired depth. Although depth is not directly used by the proposed algo-

rithm, this inaccuracy affects inter-drogue distance measurements. As above,
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one can treat this as an unknown but nonrandom error in the inter-drogue

distance measurements.

4.3.2 Existence of parameter estimates under error

Here we show that the Vanishing Distance Derivative Detection

Strategy is able to estimate the parameters from measurements with sufficiently

small error. We begin our study with the horizontal wavenumber k because an

estimate of it is needed for estimates of the other parameters. The next result

establishes the analytic character of the function drq. The proof follows from

the known fact, see e.g., [45], that sums, products, and compositions of analytic

functions are analytic, and quotients of analytic functions are analytic provided

the denominator does not vanish.

Lemma 4.3.1 (drq is analytic). For any k ∈ [kmin, kmax], drq is analytic on the

set Daltc(k):

Daltc(k)={D | d′ij1sin2(
kdij2
2

)−d′ij2 sin2(
kdij1
2

) 6=0, d′ij4 6=0,

cos
(kdij4

2
+ψi(k, dij1 , dij2 , d

′
ij1
, d′ij2)

)
6=0, sin

(kdij4
2

)
6= 0}.

We now introduce two sets which help define the set of distances and dis-

tance derivativesD where estimates of k can be found in a neighborhood aroundD.

Let

Dreal(Φ) =
{
D | 0 < dij1 < dij2 < dij3 < dij4 <

2π

k
,

d′ij = 2
ωa

kzu
sin
(kdij

2

)
cos
(kdij

2
+ ψi(k, dij1 , dij2 , d

′
ij1
, d′ij2)

)
, j ∈ {j1, . . . , j4}

}
.

be the set of all inter-drogue measurementsD that can come from one instantiation

of Φ = ( a
zu
, ω, k). Let Ddiff(k) = {D | ∂k drq(k,D) 6= 0}. Combining Lemma 4.3.1

with the Analytic Implicit Function Theorem [45] yields the existence of the im-

plicit function for estimates of k.

Lemma 4.3.2. (Existence of estimates of horizontal wavenumber) For any D ∈
Dreal(Φ)∩Ddiff(k)∩Daltc(k), there is a neighborhood of D, ND(Φ) ⊂ R

8 for which
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there exists an analytic function kD : R8 → R which satisfies

drq(kD(D̃), D̃) = 0, for D̃ ∈ ND(Φ).

The existence of the function kD guarantees that k can be estimated from

inter-drogue measurements containing errors, when the errors are sufficiently small.

Remark 4.3.3. (Frequency and amplitude ratio estimates from measurements with

errors) From (4.6), given an estimate of k and measurements with errors, one can

get an estimate of ψi. Furthermore, using the method outlined in Section 2.3, one

can also estimate ψ′
i. Thus, using (4.15), estimates for ω and a

zu
exist as long as

sin(ψ̃i(t̟)) 6= sin(ψ̃i(tℵ)). •

4.3.3 Robustness to error

In this section we bound the error in estimates of the horizontal wavenumber

k, amplitude ratio a
zu
, and frequency ω as a function of the error in the measure-

ments.

Horizontal wavenumber

From the analysis in Section 4.3.2, for a fixed set of noiseless measurements

D ∈ Dreal(Φ)∩Ddiff(k)∩Daltc(k), the corresponding noisy estimate of k in a neigh-

borhood around D, ND(Φ), is given by the function kD. We wish to now restrict

ourselves to a set where changes in the function kD are bounded. Specifically, let

Ubnd-drv > 0 and define

Dderiv,Ubnd-drv
(Φ) = {D ∈ Dreal(Φ) ∩ Ddiff(k) ∩ Daltc(k) |

max
r∈{1,...,8}

|∂cpntr(D)kD(D)| < Ubnd-drv}.

For each D ∈ Dderiv,Ubnd-drv
(Φ), by the analyticity of kD, one can construct a

neighborhood ND,Ubnd-drv
(Φ) such that for maxr∈{1,...,8} |∂cpntr(D)kD(D̃)| < Ubnd-drv

for any D̃ ∈ ND,Ubnd-drv
(Φ). The set of measurements with small enough error are

D̃Ubnd-drv
(Φ) =

⋃
D∈Dderiv,Ubnd-drv

ND,Ubnd-drv
(Φ).
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The next result provides bounds on the error in estimating k by the error

in the measurements. The proof is a combination of the Mean Value Theorem and

the Cauchy-Schwartz inequality [79].

Lemma 4.3.4. (Bounds for errors in k as function of errors in measurements)

Given noisy measurements of inter-drogue distances and distance derivatives D̃ ∈
D̃Ubnd-drv

(Φ) for some Ubnd-drv > 0, then the error between the estimated k̂ pro-

duced by the Vanishing Distance Derivative Detection Strategy and k can

be bounded by

|k̂ − k| = |kD(D̃)− k| ≤
√
8Ubnd-drv||D̃−D||.

Amplitude ratio and frequency

As seen in Lemma 4.2.11, with noiseless measurements, two measurements

of ψi and ψ′
i are sufficient to exactly determine a

zu
and ω. However, with noisy

measurements, the question that naturally arises is whether there is a benefit to

using more than 2 measurements. This is what we explore next.

Given n noisy measurements of ψ′
i,

ψ̃′
i(tκq) = ψ′

i(tκq) + ǫψ′
i
(tκq), ∀q ∈ {1, . . . , n},

we construct estimates of a
zu

and ω using least-squares techniques on the ψi dy-

namics in (4.5b),




ψ′
i(tκ1)
...

ψ′
i(tκn)




︸ ︷︷ ︸
ψ′
i

=




sin(ψi(tκ1)) 1
...

sin(ψi(tκn)) 1




︸ ︷︷ ︸
W

[
β1

β2

]

︸ ︷︷ ︸
β

,

β1 =
ωa

zu
, β2 = −ω,

mimicking (4.15). The least-squares estimates are

β̂ = (W TW )−1W T ψ̃′
i = (W TW )−1W T (ψ′

i + ǫψ′
i
)

= βtrue + (W TW )−1W T ǫψ′
i︸ ︷︷ ︸

βerror

.
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Explicitly, βerror is given by

cpnt1(βerror) =

∑n
q=1 ǫq(

∑n
r=1 sin(ψi(tκq))− sin(ψi(tκr)))∑n

q=1 sin(ψi(tκq))(
∑n

r=1 sin(ψi(tκq))− sin(ψi(tκr)))
,

cpnt2(βerror) =

∑n
q=1 ǫq(

∑n
r=1 sin(ψi(tκr))(sin(ψi(tκr))− sin(ψi(tκq))))∑n

q=1 sin(ψi(tκq))(
∑n

r=1 sin(ψi(tκq))− sin(ψi(tκr)))
.

The error βerror is a complex function of the distribution of ψ′
i as well as the sam-

pling pattern (both spacing and the number of samples). Because the distribution

of ψ′
i is non-Gaussian and unknown, we consider the case that all errors in ψ′

i are

at most ǫ. Furthermore, we assume that the sampling pattern is uniform, meaning

that

sin(ψi(tκq)) =
q − 1

n− 1

(
sin(ψi(tκn))− sin(ψi(tκ1))

)
+

sin(ψi(tκ1)), ∀q ∈ {2, n− 1}. (4.16)

Let WLS be the Worst-case Least Squares error (for estimating ω) defined by,

WLS(n, sin(ψi(tκ1)), sin(ψi(tκn)), ǫ)

= ǫ

∑n
q=1 |(

∑n
r=1 sin(ψi(tκr))(sin(ψi(tκr))− sin(ψi(tκq))))|∑n

q=1 sin(ψi(tκq))(
∑n

r=1 sin(ψi(tκq))− sin(ψi(tκr)))
.

In the right-hand side, we use (4.16) to express {sin(ψi(tκq))}n−1
q=2 in terms of

sin(ψi(tκ1)) and sin(ψi(tκn)). Note that WLS is an upper bound of cpnt2(βerror).

Even though the asymptotic dependence of WLS on n is difficult to characterize,

the next result provides bounds that are sufficient to answer the question that

motivates this section.

Lemma 4.3.5. (Worst-case estimation error grows with number of measurements)

Consider any maximum error ǫ > 0, wave parameters a
zu
, ω ∈ R, number of mea-

surements n ∈ Z≥1, and range of measurements sin(ψi(tκ1)) < sin(ψi(tκn)) ∈
[−1, 1). If the set of measurements of ψi are distributed according to (4.16) and

the errors in ψ′
i are bounded by ǫ, i.e., |ψ̃′

i(tκq)−ψ′
i(tκq)| < ǫ, for all q ∈ {1, . . . , n},

then WLS can be bounded between two increasing functions of n as

ǫ
3max{| sin(ψi(tκ1))|, | sin(ψi(tκn))|}(n− 1)

(sin(ψi(tκn))− sin(ψi(tκ1)))n
≥

WLS(n, sin(ψi(tκ1)), sin(ψi(tκn)), ǫ) ≥ Bn,
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where Bn = ǫ if −1 < sin(ψi(tκ1)) ≤ 0 and

Bn = ǫmax
( 3 sin(ψi(tκ1))(n+ 3)(n− 2)

2(sin(ψi(tκn))− sin(ψi(tκ1)))n(n+ 1)
, 1
)
,

if 0 < sin(ψi(tκ1)) < 1.

Proof. To reduce the length of expressions in the proof, we rewrite the data with

the following notation,

ỹq = β1xq + β2 + ǫq, xq =
q − 1

n− 1
(xn − x1) + x1,

for q ∈ {1, . . . , n}, where

x1 = sin(ψi(tκ1)), xn = sin(ψi(tn)), xq = sin(ψi(tκq)),

ỹq = ψ̃′
i(tκq), ǫq = ψ̃′

i(tκq)− ψ′
i(tκq),

and β1 =
ωa
zu

and β2 = −ω. Then,

WLS(n, x1, xn, ǫ) = ǫ

∑n
q=1

∣∣xn−x1
n−1

∑n
r=1(

r−1
n−1

(xn − x1) + x1)(q − r)
∣∣

∑n
q=1

(
( q−1
n−1

(xn − x1) + x1)(
xn−x1
n−1

∑n
r=1(q − r))

)

≤
ǫxn−x1
n−1

max{|x1|, |xn|}
∑n

q=1

∑n
r=1

∣∣q − r
∣∣

1
12

(xn−x1)2
n−1

n2(n+ 1)

= ǫ
3max{|x1|, |xn|}(n− 1)

(xn − x1)n
,

which is strictly increasing in n because
∑n

q=1

∑n
r=1 |r− q| = n(n+1)(n−1)

3
. WLS can

be bounded below by

WLS(n, x1, xn, ǫ) ≥
ǫ|∑n

q=1(
∑n

r=1 xr(xr − xq))|∑n
q=1 xq(

∑n
r=1 xq − xr)

= ǫ
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for any x1 < xn ∈ [−1, 1). Also, for any 0 < x1 < xn < 1,

WLS(n, x1, xn, ǫ) = ǫ
xn−x1
n−1∑n

q=1

(
( q−1
n−1

(xn − x1) + x1)(
xn−x1
n−1

∑n
r=1(q − r))

) ·

·
( n∑

q=1

∣∣
q−1∑

r=1

(
r − 1

n− 1
(xn − x1) + x1)(q − r)+

n∑

r=q+1

(
r − 1

n− 1
(xn − x1) + x1)(q − r)

∣∣
)

≥ ǫ
xn−x1
n−1

∑n
2
−1

q=1

∣∣∑n
r=2q x1(q − r)

∣∣
∑n

q=1

(
( q−1
n−1

(xn − x1) + x1)(
xn−x1
n−1

∑n
r=1(q − r))

)

= ǫ
|x1|xn−x1n−1

n(n+3)(n−2)
8

1
12

(xn−x1)2
n−1

n2(n+ 1)
= ǫ

3|x1|(n+ 3)(n− 2)

2(xn − x1)n(n+ 1)
,

which completes the result.

Lemma 4.3.5 is validated by Figure 4.5, which shows that WLS is an in-

creasing function of n under uniformly distributed measurements. Given that the

drogues’ measurements are roughly uniformly distributed, that the distribution of

errors in ψ′
i is non-Gaussian and not necessarily unbiased, and Lemma 4.3.5, we

use two as the number of measurements to estimate ω and a
zu
.

4.3.4 Parameter estimate aggregation

In this section we consider the task of aggregating parameter estimates.

Before we can tackle this, we must define the distributions for measurements.

Here, we assume that the the non-random errors stemming from the dynamical

assumptions are small relative to the random sensor noise. As seen in Remark 4.1.2,

the mismatch in dynamical models rapidly becomes small. The error associated

with the depth mismatch can be made small by choosing a tighter depth-keeping

interval. Thus, given an inter-drogue distance d and distance derivative d′, we

let d̃, d̃′, denote the measurements of d and d′ by a drogue, with the following

Gaussian error model

d̃ = d+ ǫd, ǫd ∼ N (0, σ2
d), (4.17a)

d̃′ = d′ + ǫd′ , ǫd′ ∼ N (0, σ2
d′). (4.17b)
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Figure 4.5: In the uniformly distributed measurements case, the worst case error
factor (amount multiplying ǫ) is an increasing function of n.
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We assume that the variances are a function of the specific sensors used and are

known.

Within one period of the wave, the Vanishing Distance Derivative

Detection Strategy generates many estimates of the parameters (an estimate

is generated every time that the condition in Step 2 of Algorithm 4.1 is satis-

fied). Furthermore, drogues may be sampling over the course of several periods.

Therefore, it makes sense to improve the estimation by fusing together estimates

obtained at different timesteps. However, the synthesis of the appropriate fusion

mechanism is challenging because the distribution of estimates of the parameters

is non-Gaussian due to the nonlinearity of the dynamics and the operations within

the algorithm. This is the problem that we tackle next, beginning with an informal

description.

[Informal description]: Because the parameters’ distributions are only
implicitly defined and non-Gaussian, we create an approximation up
to a desired order p ∈ Z≥1. Using on the fact that measurements are
Gaussian, we compute the expectation and variance of this approximate
distribution and them to properly fuse parameter estimates.

Since kD is analytic on ND(Φ), we use Taylor series to generate approxi-

mations of arbitrary order. Formally, given an arbitrary analytic function prD :

R
8 → R with prD(D) = pr, the pth-order Taylor series expression around D is

prD(D̃) = pr+T pD(D̃) +Rp
D(D̃), (4.18)

where

T pD(D̃) =

p∑

q=1

1

q!
pr

(q)
D (D; D̃−D),

Rp
D(D̃) = pr

(p+1)
D (D∗; D̃−D),

for some D∗ ∈ [D̃,D] and parameter value pr, where

pr
(q)
D (D; D̃−D) =

8∑

r1=1

· · ·
8∑

rq=1

∂qprD(D̃)

∂cpntr1 (D) . . . ∂cpntrq (D)

·

(cpntr1(D̃)− cpntr1(D)) . . . (cpntrq(D̃)− cpntrq(D)).
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For prD = kD, equation (4.18) represents the noisy parameter calculated from a

set of noisy measurements D̃. Since Taylor’s Theorem provides existence of the

truncation term but no constructive way to determine it, we seek to investigate how

accurate the pth order approximation T pD(D̃) is. Specifically, the form of the func-

tion, along with knowing the Gaussian distribution of the measurements, allows

one to calculate the expectation and variance of this (approximate) distribution

of the parameter. In practice, one cannot quite calculate these quantities, because

they require partial derivatives which must be evaluated at the noiseless measure-

ments D, which are not available. However, by using D̃ one may approximately

determine these quantities.

Determining the expectation and variance of individual parameter estimates

with the method described above allows us to devise a strategy to fuse them to

get a more accurate approximation.

We are now ready to define the pth-Order Parameter Fusion procedure.

Given a sequence of noisy parameter estimates {(p̂rℓ, D̃ℓ) | ℓ ∈ Z≥1} determined

from noisy measurements, p̂rℓ = prDℓ
(D̃ℓ), this procedure generates a sequence of

estimates {p̂rpℓ | ℓ ∈ Z≥1} by means of the following iterative aggregation process

(p̂rpℓ+1,Var[p̂r
p
ℓ+1]) = OptAgg

(
p̂rpℓ ,Var[p̂r

p
ℓ ],

p̂rℓ+1 − E[T pDℓ+1
(D̃ℓ+1)],Var[T

p
Dℓ+1

(D̃ℓ+1)]
)
, (4.19)

where p̂rp1 = p̂r1 − E[T pD1
(D̃1)] and Var[p̂rp1] = Var[T pD1

(D̃1)]. According to this

procedure, the pth-order estimate p̂rp is sequentially updated by optimally com-

bining the previous aggregated value with the next parameter estimate (after the

expected bias has been removed). The next result establishes its convergence under

suitable conditions on the pth-order approximation of pr.

Proposition 4.3.6 (pth-order aggregation). For noisy inter-drogue measurements

{D̃ℓ | ℓ ∈ Z≥1} containing additive Gaussian noise according to (4.17), assume

there exist ǫE ≥ 0 and ǫV ≥ 0 such that the following bounds hold uniformly for all

ℓ ∈ Z≥1,

|E[prDℓ
(D̃ℓ)− T pDℓ

(D̃ℓ)]− pr | ≤ ǫE, Var[prDℓ
(D̃ℓ)] ≤ ǫV .
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Then, the iterates (4.19) generated by pth-Order Parameter Fusion satisfy

lim
ℓ→∞

Pr[|p̂rpℓ − pr | ≤ ǫE + ǫ] = 1, ∀ǫ > 0.

Proof. First, we note that p̂rpℓ+1 can be written in the following non-recursive way:

p̂rpℓ+1 =

∑ℓ+1
q=1

pr
Dq

(D̃q)−E[T p
Dq

(D̃q)]

Var[T p
Dq

(D̃q)]

∑ℓ+1
q=1

1
Var[T p

Dq
(D̃q)]

.

Thus, the variance of p̂rpℓ+1 is

Var[p̂rpℓ+1]=

∑ℓ+1
q=1

Var [prDq
(D̃q)−E[T p

Dq
(D̃q)]]

Var[T p
Dq

(D̃q)]2

(
∑ℓ+1

q=1
1

Var[T p
Dq

(D̃q)]
)2

=

∑ℓ+1
q=1

Var [pr
Dq

(D̃q)]

Var[T p
Dq

(D̃q)]2

(
∑ℓ+1

q=1
1

Var[T p
Dq

(D̃q)]
)2
≤
ǫV
∑ℓ+1

q=1
1

Var[T p
Dq

(D̃q)]2

(
∑ℓ+1

q=1
1

Var[T p
Dq

(D̃q)]
)2
.

From there, we notice that limℓ→∞ Var[p̂rpℓ ] = 0. Now we bound the expected value

of p̂rp − pr:

|E[p̂rpℓ+1 − pr]| =
∣∣∣∣∣E
[
ℓ+1∑

q=1

pr
Dℓ

(D̃q)−E(T p
Dq

(D̃q))

Var(T p
Dq

(D̃q))

∑ℓ+1
q=1

1
Var( ˜prDq

(D̃q))

− pr

]∣∣∣∣∣

≤
ℓ+1∑

q=1

|E[pr
Dℓ

(D̃q)−E(T p
Dq

(D̃q))−pr]|
Var[T p

Dq
(D̃q)]

∑ℓ+1
q=1

1
Var[ ˜pr

Dq
(D̃q)]

≤ ǫE,

implying ∀ǫ>0, limℓ→∞ Pr[|p̂rpℓ − E[p̂rpℓ ]| < ǫ] = 1. Also,

Pr[|p̂rpℓ − E[p̂rpℓ ]| < ǫ] ≤ Pr[|p̂rpℓ − E[p̂rpℓ |+ |E[p̂rpℓ − pr]|] < ǫ+ ǫE],

= Pr[|p̂rpℓ − E[p̂rpℓ |+ |E[p̂rpℓ ]− pr |] < ǫ+ ǫE],

≤ Pr[|p̂rpℓ − pr | < ǫ+ ǫE],

which shows the convergence result.

Note that for p = 1, one is estimating the distribution of the parame-

ter as a sum of Gaussian distributions because there are only first-order terms

in the function T 1 in (4.18). Similarly for p = 2, the distribution is the sum of

Gaussian distributions plus second-order Chi-squared distributions. Chi-squared
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distributions have non-zero expectation, and so, the Second-Order k Fusion out-

performs the First-Order k Fusion because it estimates what the distribution’s

bias is and subtracts this from individual parameter estimates before fusing them.

Figure 4.6(a) shows the evolution of pth-Order Parameter Fusion for

p = 1 and p = 2 for estimates of k generated by the Vanishing Distance

Derivative Detection Strategy. The x-axis corresponds to the number of esti-

mates of k fused together. Each k estimate is obtained at a different instant of time.

Note that both evolutions, after only a small number of fusions, have a smaller

error than the individual measurements, and that the evolution corresponding to

p = 2 has a smaller asymptotic error. Note that Proposition 4.3.6 is not directly

applicable to make guarantees on convergence because the implicit functions that

give estimates of k (cf. Lemma 4.3.2) and ω and a
zu

(cf. Remark 4.3.3) have do-

mains that are not all R8. This implies that the Gaussian noise may occasionally

be too large to produce estimates. However, as the standard deviation of the mea-

surement noise get smaller, the fraction of acceptable noisy measurements increases

and so the execution of the pth-Order Parameter Fusion more closely mirrors

Proposition 4.3.6. One can see that the simulations are in line with the result.

Figure 4.6(b) shows the absolute error of pth-Order Parameter Fusion for

p = 1 and p = 2, using k estimates from the Vanishing Distance Derivative

Detection Strategy, as a function of the standard deviation in inter-drogue dis-

tance and distance derivatives measurements, which depicts that p = 2 outperforms

p = 1.

Finally, Figure 4.7 compares an inter-drogue trajectory generated from true

wave parameters with the trajectory that would have occurred from estimated pa-

rameters. Specifically, the Vanishing Distance Derivative Detection Strategy

and the Second-Order k Fusion method are used to generate and fuse estimates

of k after which the other parameters are estimated. One can see that the trajec-

tory closely tracks the true trajectory.

Chapter 4, in part, is a reprint of the material [66] as it appears in ‘Robust,

distributed estimation of internal wave parameters via inter-drogue measurements’

by M. Ouimet and J. Cortés in IEEE Transactions on Control Systems Technology,
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to appear in 2013. The dissertation author was the primary investigator and author

of this paper.
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Figure 4.6: (a) shows pth-Order Parameter Fusion applied to estimates of
k from Vanishing Distance Derivative Detection Strategy, for p = 1 and
p = 2. After only a few estimates are fused, the error is already much smaller
than the individual estimates. Also, p = 2 converges to a smaller error than
p = 1. (b) shows the absolute error of pth-Order Parameter Fusion applied to
estimates of k from Vanishing Distance Derivative Detection Strategy as a
function of the standard deviations in measurement noise, highlighting how p = 2
outperforms p = 1. In both figures the parameter values, taken from [48], are
k = 2π

190
1
m
, a
zu

= 1
7
, and ω = 2π

960
1
s
. The drogues are in a line, initially 10m apart

from the closest drogues on either side. In (a), the standard deviations in distances
and distance derivatives are .01m and .0005m

s
, respectively. In (b) for each set of

standard deviations, 10, 000 estimates were fused.
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.01m and .0001m

s
, respectively. The estimated trajectory closely matches the true

trajectory.



Chapter 5

Estimation of nonlinear internal

waves

This chapter solves a problem very similar to the Chapter 4. The difference

is that in this chapter, we seek to estimate a nonlinear wave, rather than a linear

one. Linear waves have amplitudes small relative to the depth of the water column.

They are capable of moving around plankton, animal larvae, and other organisms,

as well as creating mixing between the upper and lower layers. In contrast, non-

linear waves have larger amplitudes, allowing them to be an agent of transport of

small oceanic life [73].Many models exist for nonlinear waves [37, 39] to account

for the wide variety of conditions and bathymetries found in the ocean. Here, we

consider nonlinear waves modeled as solitons, which are stable, solitary peaks (or

troughs) which propagate along the pycnocline.

As explained in Chapter 4, traditional methods for studying internal waves

have been satellite observations, acoustic tomography, conductance-temperature-

depth (CTD) casts, and current meters on moorings. However, these methods

lack the capability of real-time adaptability. Here, we tackle this problem using a

group of drogues capable of drifting underwater near the internal wave’s interface

to determine the physical parameters that define its motion. A drogue is a robotic

Lagrangian drifter able to actuate its depth by changing its buoyancy. While

underwater, drogues are subject to the flow induced by the motion of the internal

wave and do not have access to exact location information. Figure 5.1 presents a

95
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pictorial illustration of the problem setup. The basic premise is that the evolution

of the inter-drogue distance and distance derivative measurements contains enough

information for the drogues to be able to fully characterize the internal wave. The

method proposed here is inspired by the algorithm introduced in Chapter 4.

dist(t)

dist(t)

drogues

internal wave

depth

ocean surface

Time

dist(t)

dist(t)
D

is
ta

n
ce

A group of drifters underwater 

are driven by the dynamics 

induced by an internal wave.  

Collecting only relative motion 

measurements,  they can 

determine the wave's physical 

parameters.

Figure 5.1: For an ocean nonlinear internal wave, this figure show a vertical cross-
section of the ocean perpendicular to the wave propagation direction at a fixed
instant in time. A group of drogues float at constant depths (but not necessarily
along a straight line) and do not have access to exact location information. Our
objective is to provide drogues with mechanisms that rely only on the relative
measurements to determine the parameters that uniquely define the internal wave.

5.1 Problem statement

This section contains the nonlinear internal wave model used, the model for

the drogue drifters and their interaction with the internal wave, and a formalized

problem statement.
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5.1.1 Nonlinear internal wave model

Let Σg = (pg, {exg , eyg , ezg}) be a global reference frame defined as follows:

the origin pg corresponds to an arbitrary point at the ocean surface; the vector exg

corresponds to the direction of wave propagation, which is parallel to the ocean

bottom and assumed to be constant, and ezg is perpendicular to the ocean bottom,

pointing from bottom to surface. For convenience, the coordinates induced by Σg

are denoted by {x, y, z}.
As shown in Figure 5.1, an internal wave is a wave which travels beneath the

surface of the ocean, along a surface of constant water density called a pycnocline.

When the amplitude of the wave becomes a large enough fraction of the water

column, the wave begins to ‘feel’ the surface and bottom of the ocean and nonlinear

terms of the governing PDEmust be included. One classical equation used to model

weakly nonlinear long internal waves is the Korteweg-de Vries (KdV) equation, see

e.g., [39]:

∂η

∂t
− 3

2
c
hl − hu
huhl

η
∂η

∂x
+

1

6
chuhl

∂3η

∂x3
= 0, (5.1)

where η is the distance that the internal wave is displacing the pycnocline, c =√
g |ρl−ρu|

ρl

huhl
hu+hl

, ρu, hu and ρl, hl are the density and depth of the upper and lower

layers, respectively, and g is the acceleration due to gravity. In the absence of an

internal wave, the pycnocline is at depth hu. The stable soliton solution to (5.1)

is, cf. [37],

η(x, t)=−2Chuhl
hl − hu

sech2
(1
2

√
6C

chuhl
(x− Ct−χ0)

)
=A sech2

(
k(x−χ0)− ωt

)
, (5.2)

where

A = −2Chuhl
hl − hu

k =
1

2

√
6C

chuhl
, ω =

1

2

√
6C

chuhl
C,

are the amplitude, wavenumber, and temporal frequency, respectively, C = ω
k

is the celerity (speed) of the wave, and χ0 is the initial location of the center

of the wave. As the wave propagates, it induces motion in the nearby water.

The standard model assumes that the vertical velocity varies linearly with depth.

Coupled with the conservation of mass law for an incompressible fluid, one can
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derive the following expressions for the horizontal uu and vertical vu velocities of

the upper layer

uu(x, t) = −2CA

hu
sech2(k(x− χ0)− ωt),

vu(x, z, t) =
2ωAz

hu
sech2(k(x− χ0)− ωt) tanh(k(x− χ0)− ωt).

Likewise, the horizontal ul and vertical vl velocities of the lower layer are

ul(x, t) =
2CA

hl
sech2(k(x− χ0)− ωt),

vl(x, z, t) = 2ωA
hu + hl − z

hl
sech2(k(x− χ0)− ωt) tanh(k(x− χ0)− ωt).

For convenience, we define the upper and lower velocity amplitudes as Bu = −2CA
hu

and Bl =
2CA
hl

.

Remark 5.1.1. (Bounds on wave parameters) We assume that, for each wave

parameter, there exists a closed and bounded interval in R>0 that the parameter

is guaranteed to fall within. This is reasonable because natural parameters, such

as an object’s size or speed, cannot be arbitrarily small or large. We refer to a

parameter’s bounds with subscripts min and max. •

5.1.2 Drogue model

A drogue is a submersible buoy which can drift in the ocean, unattached

to the ocean floor or a boat, and is able to change its depth in the water by

controlling its buoyancy. While underwater, a drogue can measure the relative

distance, distance derivative, and orientation in space to other drogues through

sensing (e.g., via acoustic or optical sensors and an onboard compass). A drogue

can also measure its depth. However, it does not have access to absolute position

because GPS is unavailable underwater.

Consider a group of N drogues, each with a reference frame

Σi = (pi, {exi , eyi , ezi}), i ∈ {1, . . . , N},

attached to it. The origin pi corresponds to the location of the drogue. As in

the global coordinate frame Σg, ezi is perpendicular to the ocean bottom, pointing
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from bottom to surface. The vectors exi and eyi are parallel to the ocean floor, but

neither is necessarily oriented in the wave propagation direction. We assume here

for simplicity that this direction, θi, is known, so that each drogue may rotate its

own coordinates to the one aligned with the wave direction. Although not neces-

sary, this assumption simplifies the ensuing exposition considerably. Section 4.2.1

shows how each drogue i can determine θi using relative distance and distance

derivative measurements.

We make the simplifying assumption that the drogues’ dynamics are La-

grangian, i.e., the drogue’s velocity is equal to ocean’s velocity at its current lo-

cation. Furthermore, we assume that the drogues maintain the same prescribed

depth by means of buoyancy control. Thus, without loss of generality, the dynam-

ics of drogue i ∈ {1, . . . , N} in the upper layer is

ṗi = (ẋi, ẏi, żi) = (uu(x, t), 0, 0)

and can be similarly defined for drogues in the lower layer. Drogue i senses inter-

drogue measurements with the M closest drogue neighbors. For each neighbor j,

drogue i has access to

di,j = (dxi,j , d
y
i,j , 0) = xj − xj,

ḋi,j = (ḋxi,j , 0, 0) = ẋj − ẋj.

We assume the drogues have continuous access to these quantities. In Section 5.2,

we elaborate on the fact that a large enough, finite sampling rate will also produce

noiseless parameter estimates. Since the internal wave causes no motion in the

y-direction (due to choice of coordinates), we ease notation by letting di,j = dxi,j

and ḋi,j = ḋxi,j .

Remark 5.1.2. (Kinematic versus dynamical model) The Lagrangian dynamics

is a simplification of the second-order dynamical model, see e.g. [92],

mẍ = −cd |ẋ− uu(t, x)|(ẋ− uu(t, x)), (5.3a)

ẏ = 0, (5.3b)

mz̈ = −cd |ż − wu(t, x, z)|(ż − wu(t, x, z)) + f, (5.3c)
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where m denotes the combined drogue mass and inertial added mass [11], cd is the

drag parameter, and f is the buoyancy control input. Following [27, 38], reasonable

values for wave/ocean parameters are hu = 10 m, hl = 60 m, C = .1m
s
, and

|ρl−ρu|
ρl

= .002 and drogue parameters are m = 1.5kg, and cd = 210Ns2

m2 . Figure 5.2

depicts the position, inter-drogue distance, and velocity evolution for a pair of

drogues initially at rest 50 m and 55 m from the crest of the internal wave. In

these simulations, the spatial wavelength is about 250 m. In Figure 5.2(a), one

can see that the Lagrangian model approximates well the second-order one, with

the drogue’s position error on the order of .1 m. In Figure 5.2(b), one can see that

since drogues are close relative to the spatial wavelength, their position errors are

roughly the same, causing the errors in distance to be of the order .01 m. This

comparison provides a good justification for the use of the simpler Lagrangian

model. In Section 5.2, we revisit the effect of this approximation when discussing

the sources of errors present in realistic implementations. •

5.1.3 Problem description

A team of N drogues is deployed in the ocean and their motion is governed

by an internal wave. The drogues may control their depth through buoyancy

changes, and each one can measure the relative distance and orientation to the

closest M drogues in their own coordinate frame. Our objective is to design an

algorithm that allows the drogues to collectively determine the physical parameters

C, |ρu−ρl|
ρl

, hu, and hl which define the internal wave through (5.2).

5.2 Parameter Determination Strategy

In this section, we define a strategy, termed the Parameter Determination

Strategy, to estimate the nonlinear wave parameters. The following informal

rationale describes the basic idea behind its design.

[Rationale]: The strategy for determining the physical parameters which
define the internal wave are based on first determining the phase of the
wave relative to the drogues at some time. Our method leverages the
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fact that, when the crest of the wave is directly between two drogues,
their inter-drogue distance derivative momentarily becomes zero and
the drogues can then determine the phase. Using this insight, one can
create equations between inter-drogue measurements and the parameters
of interest. The crux of the analysis is to ensure that only the true set
of parameters solve the constructed set of equations.

The algorithm requires the capability for measuring both inter-drogue dis-

tance and its derivative. It is written in terms of drogue i using measured inter-

drogue data between itself and nearest neighbors with identities j1, j2, j3, j4, j5,

and j6. Before introducing the algorithm, we comment briefly on some assumptions

on drogue locations which make the presentation easier.

Remark 5.2.1. (Assumptions on drogue locations) For concreteness in the pre-

sentation of the algorithm, we make the assumption that drogues i, j1, j2, j3 j4

are in the same ocean layer. The algorithm also requires at least one drogue in

the lower layer and one in the upper layer, which for concreteness we assume are

drogues j5 and j6, respectively. •

5.2.1 Determination of the wavenumber

Because drogues do not have absolute measurements, we write their dy-

namics in terms of the inter-distance between them. To completely describe the

drogues evolution, we also need to add the state vi, which is the position of the

wave relative to drogue i,

vi = k(x− χ0)− ωt,

Thus, the dynamics are

ḋi,jm = B(sech2(kdi,jm + vi)−sech2(vi)), ∀m 6= i (5.4a)

v̇i = Bk sech2(vi)− ω. (5.4b)

The relative phase vi is unobservable, however, at times when inter-drogue distance

derivatives momentarily vanish, one can gain insight, as the following result shows.

Furthermore, at all other times, there exists an implicit function that describes the

relative phase.
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Lemma 5.2.2. (Relative wave position when distance derivative vanishes) For

three drogues i, j1 and j2 at initial positions xi(0) 6= xj1(0) 6= xj2(0), if xi(0),

xj(0) > χ0, then there exists time tcr > 0 when ḋi,j(tcr) = 0 and

vi(tcr) = −kdi,j1(tcr)
2

. (5.5)

Furthermore, for all times t > 0, there exists an implicit function for

vi(k, di,j1 , di,j2 , ḋi,j1 , ḋi,j2) determined by the equation

ḋi,j1

ḋi,j2
− sech2(kdi,j1 + vi)− sech2(vi)

sech2(kdi,j2 + vi)− sech2(vi)
= 0. (5.6)

From the Lagrangian drogue model (5.4), the dynamics of an inter-drogue

distance between drogues i and j in the wave propagation direction contain the

unknown parameters B and k, as well as unmeasurable state vi. However, using

Lemma 5.2.2 to write the ratio of two equations in (5.4a) for i,j3 and i,j4 specifically

at the tcr when ḋi,j1(tcr) = 0, one gets

ḋi,j3

ḋi,j4
− sech2(k(di,j3 −

di,j1
2
))− sech2(k

di,j1
2
)

sech2(k(di,j4 −
di,j1
2
))− sech2(k

di,j1
2
)
= 0,

and, more generally, for all times,

ḋi,j3

ḋi,j4
− sech2(kdi,j3 − vi)− sech2(vi)

sech2(kdi,j4 − vi)− sech2(vi)
= 0,

which is now only a function of the unknown parameter k (because

vi = vi(k, di,j1 , di,j2 , ḋi,j1 , ḋi,j2), as implicitly defined in Lemma 5.2.2). We now wish

to show that only the actual value of k satisfies this equation. With this in mind,

we define the function f as

f(k , di,j3 , di,j4 , ḋi,j3 , ḋi,j4 , vi(k , di,j1 , di,j2 , ḋi,j1 , ḋi,j2)) =

ḋi,j3

ḋi,j4
− sech2(kdi,j3 − vi)− sech2(vi)

sech2(kdi,j4 − vi)− sech2(vi)
(5.7)

and examine the number of roots in the next result.

Lemma 5.2.3. (Uniqueness of spatial wavenumber) Given noiseless measurements

of di,j(t) and ḋi,j(t), for j ∈ {j1, j2, j3, j4}, where t is sufficiently close to tcr, the

time when ḋi,j1(tcr) = 0. If di,j1(t) is sufficiently small, then k = k is the only root

to (5.7).
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Proof. One can take the derivative of f with respect to k . We consider the limiting

case when t = tcr (i.e. vi =
−k di,j1

2
) and di,j1 = 0. By taking the derivative of (5.6),

one can calculate the derivative of vi with respect to k . Note that it is 0 when

evaluated at the limiting case. Thus, for this limiting case,

∂ f

∂k
= tanh(k di,j3) sech

2(k di,j3) coth(k di,j4)·

csch2(k di,j4)(di,j3 sinh(2k di,j4)− di,j4 sinh(2k di,j3)),

Showing that ∂ f
∂k

is either strictly positive or strictly negative ensures that only

k = k is a root of (5.7). In fact, ∂ f
∂k

is strictly positive if di,j3 < di,j4 and strictly

negative if di,j3 > di,j4 , for all k > 0. This shows that k = k is the unique root of

(5.7) when t = tcr and di,j1(tcr) = 0. Furthermore, by continuity of ∂ f
∂k
, for t close

enough to tcr and di,j1(t) close enough to 0, ∂ f
∂k

is either strictly positive or strictly

negative (dependent on the sign of di,j2 − di,j3), which completes the result.

5.2.2 Correctness analysis

Once k has been determined, we wish to leverage it to calculate other pa-

rameters. This is what the Parameter Determination Strategy accomplishes

using the dynamics that defines the internal wave. The strategy is formally pre-

sented in Algorithm 5.1. We also refer back to Remark 5.2.1, which explains the

assumptions on drogue locations, which are needed to make the algorithm more

concrete.

The following result establishes the correctness of the algorithm. Its proof

follows from Lemma 5.2.3, as well as the form of the inter-drogue distance deriva-

tive equation, and algebraic relations between parameters in the nonlinear soliton

model in Section 5.1.1.

Proposition 5.2.4. (Correctness of Parameter Determination Strategy) At

times t sufficiently close to tcr when ḋi,j1 = 0 and if di,j1(t) is sufficiently small, then

given noiseless knowledge of di,jm(t) and ḋi,jm(t) for allm ∈ {j1, j2, j3, j4, j5, j6}, the
Parameter Determination Strategy, presented in Algorithm 5.1, can be used to

determine all of the internal wave physical parameters.
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Table 5.1: Parameter Determination Strategy

1: Set θi = tan−1 (−ḋyii,j1/ḋ
xi
i,j1

)

2: Set t such that ḋi,j1(t) sufficiently close to 0

3: k uniquely solves f(k ,di,j3 ,di,j4 ,ḋi,j3 ,ḋi,j4 ,vi(k ,di,j1 , di,j2 , ḋi,j1 , ḋi,j2))=0

4: Set vi(t) = vi(k , di,j1(t), di,j2(t), ḋi,j1(t), ḋi,j2(t))

5: Set Bl =
ḋi,j5 (t)

sech2(kdi,j5 (t)+vi(t))−sech2(vi(t))

6: Set Bu =
ḋi,j6 (t)+Bl sech

2(vi(t))

sech2(kdi,j6 (t)+vi(t))

7: Set t2 not equal to t

8: Set vi(t2) = vi(k , di,j1(t2), di,j2(t2), ḋi,j1(t2), ḋi,j2(t2))

9: Set ω =
k(di,j1 (t2)−di,j1 (t))−vi(t2)+vi(t)

t2−t

10: Set C = ω
k

11: Set hu =
hocean
1−Bu

Bl

12: Set hl = hocean − hu

13: Set c = 3C
2k2huhl

14: Set |ρl−ρu|
ρl

= c2hocean
ghuhl
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Note that Step 3 can be solved using a variety of root-finding methods. Since

f is a monotonic function in k, a gradient descent method would be sufficient, for

example.

Having established the correctness of the algorithm under perfect measure-

ments, let us briefly comment on its performance when errors are present. The fact

that all the functions that appear in the equations employed in Algorithms 5.1 have

a continuous dependence on the variables makes the Parameter Determination

Strategy naturally robust against errors, in the sense that the estimated param-

eters are still unique and remain close to the true parameters for small enough

errors. For completeness, we discuss the sources of error that arise in practical

implementations of the algorithm.

Noise in measurements: In practice one can expect noise in the measurements

collected from sensors. We assume that this noise is unbiased, additive,

and Gaussian with variance proportional to the measured quantities, and

that the noise at different time instances and for different measurements are

uncorrelated.

Groups of nonlinear waves: In reality, nonlinear internal waves travel in or-

dered groups by speed, with the larger amplitude, faster moving ones at the

front. As time goes on, the distance between the waves increases. Although

our model assumes only one wave is present, it is possible to instead consider

the case when the waves in the group are far enough apart that their relative

effect is negligible.

Model uncertainty: The problem setup described in Section 5.1.2 assumes that

drogues are Lagrangian. In practice, drogues have a finite mass and drag

coefficient making them not perfectly Lagrangian, leading to a difference

between the actual drogue’s velocity and the ocean velocity. One can treat

this mismatch as an unknown but nonrandom error in the measurements of

inter-drogue distances and distance derivatives.

Drogues not maintaining depth: We assume that the drogues have a con-

troller that uses feedback on depth measurements to maintain a desired
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depth. Due to noisy depth measurements and a desire to minimize actuation

cost, instead we assume that the drogues will be within an interval around

the desired depth. Although depth is not directly used by the proposed algo-

rithm, this inaccuracy affects inter-drogue distance measurements. As above,

one can treat this as an unknown but nonrandom error in the inter-drogue

distance measurements.

Figure 5.3 depicts an actual Lagrangian drogue trajectory along with trajec-

tories generated from the parameters estimated from the Parameter Determination

Strategy with measurement error of 1% and .1%. As the error in measurements

decreases, the algorithm estimates the wave parameters more accurately, which

produces trajectories closer to the true trajectory. The spatial wavelength 2π
k

in

this case is about 290 m, and therefore, the trajectory errors relative to the wave’s

scale are really small.

Remark 5.2.5 (Robustness against noise). Here we briefly comment on the algo-

rithm performance when errors are present, specifically noise in the sensor measure-

ments. We assume that this noise is unbiased, Gaussian, and that noise at different

time instances and for different measurements are uncorrelated. As stated above,

the fact that all of the functions that appear in the equations employed in Algo-

rithm 5.1 have a continuous dependence on the variables makes the Parameter

Determination Strategy naturally robust against errors, in the sense that the

estimated parameters are still unique and remain close to the true parameters for

small enough errors. Figure 5.4 illustrates the algorithm robustness for three dif-

ferent initial drogue configurations. Note that our method has a linear on a log-log

plot relationship between relative errors in measurements and relative errors in the

wavenumber. This figure also investigates the effect that the largest inter-drogue

distance has in the estimation of the wavenumber. Three drogues are located at 0,

1, and 2 meters and the fourth drogue’s position varies; in three trials it is located

at 10, 100, and 200 meters. One can see that as the largest inter-drogue distance

grows, the algorithm robustness improves. •
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5.3 Aggregation of estimates

The Parameter Determination Strategy can be executed at various in-

stants of times, as described in the previous section. Each execution gives rise to

an estimate of the parameters. Therefore, a natural question is whether drogues

could aggregate their individual estimates, as well as potentially use multiple sets

of data from many different waves, to improve estimates of the parameters. Since

the parameters are solutions to (implicit) nonlinear equations, even with the as-

sumption of Gaussian measurements, the resulting distributions of the parameters

are, in general, non-Gaussian and only implicitly defined. Therefore, we employ

a Mixture Distribution approach to represent each parameter’s distribution as a

truncated Taylor series expansion. For concreteness and simplicity, we define the

procedure for aggregating estimates of one parameter, the wavenumber k.

Using (5.7) and the implicit function theorem, one can guarantee that in a

neighborhood around true measurements, noisy measurements produce a unique

estimate of the wavenumber. Since this function is only implicitly defined, one can

resort to calculating successive terms of its Taylor series expansion. In this way,

we estimate the implicit distribution of the wavenumber as a function of the errors

in our measurements.

Letting D = (di,j1 , di,j2 , di,j3 , di,j4 , ḋi,j1 ḋi,j2 , ḋi,j3 , ḋi,j4), we substitute the im-

plicit function k(D) into (5.7) and differentiate with respect to D, which yields

∂k(D)

∂D
=

−∂ f(k,D)
∂D

∂ f(k,D)
∂k

Therefore, for a set of noisy measurements D̂, we have the following distribution

kD(D̂) = k +
∂k(D)

∂D
(D̂ −D) +O((D̂ −D)2).

Repeated differentiation of (5.7) can produce higher-order terms in this Taylor

series expansion. For simplicity, we consider only the first-order term. Then, our

approximation of this distribution is

k̂D(D̂) = k +
∂k(D)

∂D
(D̂ −D) = k + êD(D̂).
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By assumption, D̂−D is a zero-mean, Gaussian random variable with a diagonal

covariance matrix, making our approximation of the parameter’s distribution a

sum of Gaussian distributions. Given parameter estimates {kestℓ | ℓ ∈ Z≥1} and

measurements {D̂ℓ | ℓ ∈ Z≥1}, we define the following aggregation scheme:

(kaggℓ+1,Var[k
agg
ℓ+1]) = OptAgg

(
kaggℓ ,Var[kaggℓ ],

kestℓ+1 − E[êDℓ+1
(D̂ℓ+1)],Var[êDℓ+1

(D̂ℓ+1)]
)
, (5.8)

where kagg1 = kest1 − E[êD(D̂1)] and Var[kagg1 ] = Var[êD(D̂1)]. The following result

is now a consequence of Proposition 4.3.6.

Proposition 5.3.1 (Wavenumber aggregation). Given a sequence of noisy mea-

surements {D̂ℓ | ℓ ∈ Z≥1}, assume there exist ǫE ≥ 0 and ǫV ≥ 0 such that the

following bounds hold uniformly for all ℓ ∈ Z≥1

|E[kDℓ
(D̂ℓ)− êDℓ

(D̂ℓ)]− k| ≤ ǫE Var[kDℓ
(D̂ℓ)] ≤ ǫV .

Then, with the estimates {kestℓ | ℓ ∈ Z≥1} generated by the Parameter Determination

Strategy using {D̂ℓ}, the iterates {kaggℓ | ℓ ∈ Z≥1} of the aggregation scheme de-

fined in (5.8) satisfy the following:

lim
ℓ→∞

Pr[|kaggℓ − k| ≤ ǫE + ǫ] = 1 ∀ǫ > 0.

Figure 5.5 depicts the aggregation method discussed above. It plots the

relative error in estimates of the wavenumber, both for individual estimates and

the aggregated estimate. Note that the aggregated estimate converges to a relative

error significantly smaller than the individual estimates.

5.4 Extension to two nonlinear waves

In this section, we discuss how our previous algorithm design and analysis

can be extended to situations where two nonlinear internal waves are simultane-

ously present. The basic idea relies on choosing a coordinate system such that,

in one of the directions, the drogues only feel the effect of one of the two waves.
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One can apply the extended Parameter Determination Strategy in the direc-

tion where only one wave is felt to solve for the parameters of that wave. Once

that wave has been characterized, its effect can be removed from the drogue’s mea-

surements, allowing one to again apply the Parameter Determination Strategy

to determine the other wave’s parameters.

Consider the situation where a drogue is floating in the presence of two

nonlinear internal waves, each with its own set of wave parameters and propagation

directions. As before, assume that these propagation directions are known a priori.

Choosing a horizontal x − y coordinate system with the x-direction aligned with

wave 1’s direction makes θ1 = 0. Summing each wave’s individual effect yields the

following planar dynamics for drogue i,

ẋi =
2∑

n=1

−2CnAn
hu

sech2(kn(xi cos(θn) + yi sin(θn)− χ0n)− ωnt) cos(θn),

ẏi = −2C2A2

hu
sech2(k2(xi cos(θ2) + yi sin(θ2)− χ02)− ω2t) sin(θ2).

Note that in the y direction, the drogue only feels the effect of the second wave.

Writing the dynamics for the y direction in terms of inter-drogue distances

between drogue i and j as well as the relative phase vi gives

ḋyi,j1 = −2C2A2

hu
sin(θ2)·
(
sech2(k2(d

x
i,j cos(θ2) + dyi,j sin(θ2) + v2i )− ω2t)− sech2(v2i )

)
,

where v2i = k2(xi cos(θ2) + yi sin(θ2)− χ02)− ω2t.

Now, the Parameter Determination Strategy can be used to determine

the parameters of internal wave 2, which we state in the following result.

Proposition 5.4.1 (Determination of wave 2). At times t sufficiently close to tcr

when ḋyi,j1(tcr) = 0, if ‖di,j1(t)‖ is sufficiently small, then given noiseless knowledge

of dyi,jm(t) and ḋ
y
i,jm

(t) for allm ∈ {j1, j2, j3, j4, j5, j6}, the Parameter Determination

Strategy, presented in Algorithm 5.1, can be used to determine all of the internal

wave physical parameters of internal wave 2.
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With the internal wave 2’s parameters known, we define

˜̇dxi,j1 = ḋxi,j1 − ḋyi,j1 cot(θ)

= −2C1A1

hu

(
sech2(k1d

x
i,j + v1i )− sech2(v1i )

)
,

as the component of the distance derivative in the x-direction that is due to the

internal wave 1. Here, v1i = k1(xi − χ01)− ω1t.

Again, one can now apply the Parameter Determination Strategy to

show the following result.

Proposition 5.4.2 (Determination of wave 1). At times t2 sufficiently close to

tcr2 when ˜̇dxi,j1(tcr2) = 0, if ‖di,j1(t2)‖ is sufficiently small, then given noiseless

knowledge of dxi,jm(t2) and
˜̇dxi,jm(t2) for all m ∈ {j1, j2, j3, j4, j5, j6}, the Parameter

Determination Strategy, presented in Algorithm 5.1, can be used to determine

all of the internal wave physical parameters of internal wave 1.

The combination of Propositions 5.4.1 and 5.4.2 yields the following result.

Proposition 5.4.3 (Determination of both waves). At times t and t2 sufficiently

close to tcr when ḋ
y
i,j1

(tcr) = 0 and tcr2 when
˜̇dxi,j1(tcr2) = 0, respectively, if ‖di,j1(t)‖,

‖di,j1(t2)‖ are sufficiently small, then given noiseless knowledge of dyi,jm(t), ḋ
y
i,jm

(t),

dxi,jm(t2), and
˜̇dxi,jm(t2) for allm ∈ {j1, j2, j3, j4, j5, j6}, the Parameter Determination

Strategy, presented in Algorithm 5.1, can be used to determine all of the internal

wave physical parameters of both internal waves.

5.5 Alternate wavenumber determination method

In this section, we define an alternative method for determining the wavenum-

ber k, which is based on utilizing the analytic form of the change in inter-drogue

distance after the wave has completely passed. Thus, we begin with analyzing the

motion of a drifter under the presence of a nonlinear internal wave. After that we

introduce the proposed method.
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5.5.1 Analyzing the motion of the Lagrangian drifter

Here, we analyze the dynamics of a depth-maintaining drogue that moves

under the influence of an internal wave. We begin by defining the speed ratio

D =

√∣∣∣ B

B − C

∣∣∣,

which measures the ratio of the maximum water velocity to the difference between

the wave velocity and maximum water velocity. The following result describes the

drogue’s trajectory in implicit form.

Lemma 5.5.1. (Implicit expression of the drogue trajectory) Let B ∈ R, k, ω ∈
R>0, and t0 ∈ R≥0. The solution of

ẋ = B sech2(k(x− χ0)− ωt),

starting at time t0 can be implicitly described by

D
(
tan−1

(
D tanh(k(x(t)− χ0)− ωt)

)
− (5.9)

tan−1
(
D tanh(k(x(t0)− χ0)− ωt0)

))
=−k(x(t)− x(t0)),

if 0 < kB < ω and otherwise by

D
(
tanh−1

(
D tanh(k(x(t)− χ0)− ωt)

)
− (5.10)

tanh−1
(
D tanh(k(x(t0)− χ0)− ωt0)

))
= k(x(t)− x(t0)).

Proof. Let z = k(x − χ0) − ωt. In this new coordinate, the dynamics can be

expressed as

ż = kB sech2(z)− ω.

Integrating both sides,
∫ z

z0

dβ

kB sech2(β)− ω
=

∫ t

t0

dτ.

yields

D tanh−1
(
D tanh(z)

)
−D tanh−1

(
D tanh(z0)

)
+ z0 − z = ω(t− t0).

The second case follows from substituting the definition of z. From there, the first

case follows from the identity that
√
−1 tanh−1(

√
−1f(x)) = − tan−1(f(x)).
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From Section 5.1.1, note that the sign of B is different for the upper and

lower layer, and the sign that each takes is dependent on the relative ocean layer

thicknesses. Consequently the form of the drogue trajectory is dependent on

whether the drogue is in the upper or lower layer as well as on the sign of hu− hl.

For the rest of this section, we assume that the drogues are in the ocean layer

which makes B negative. Similar results hold in the opposite case which we omit

for the sake of clarity.

Since absolute position information is unavailable, the following result ex-

pands on Lemmas 5.5.1 and 5.2.2 to only use inter-drogue distance information.

Corollary 5.5.2. (Change in inter-drogue distance after wave passes) For any

drogues i, j and B < 0, the following holds

di,j(∞)−di,j(tcr)=−2D
k

tanh−1
(
D tanh(k

di,j(tcr)

2
)
)
. (5.11)

Proof. Note that for any xi(t0) finite, xi(∞) is finite, as well. Letting t0 = tcr,

t = ∞ in (5.10), and applying (5.5) one obtains the following equation for drogue

i:

D
(
tanh−1

(
−D

)
− tanh−1

(
D tanh(

−kdi,j(tcr)
2

)
))

= k(xi(∞)− xi(tcr)). (5.12)

One can create a similar equation to (5.12) for drogue j. Subtracting the two

yields the result.

5.5.2 Passing wave method

This section defines another method for determining the wave’s spatial

wavenumber and speed ratio. It requires inter-drogue distance measurements and

the ability to detect when a distance derivative is zero, but does not need distance

derivative values, unlike the Parameter Determination Strategy. It is written

in terms of drogue i using measured inter-drogue data between itself and drogues

j1 and j2.
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Building on (5.11), we define g as follows,

g(k ,D, di,j1(tcr), di,j1(∞)) = di,j1(∞)− di,j1(tcr)

+
2D

k
tanh−1

(
D tanh(k

di,j1(tcr)

2
)
)
. (5.13)

Equation (5.13) contains 2 unknowns: k and D. It is unclear how many

(k ,D) roots there are to two equations of that form. With this in mind, the next

result transforms those equations into a more easily analyzable form.

Lemma 5.5.3. (1-1 correspondence for change of variables) Let tcr,1 and tcr,2 be

the times when ḋi,j1(tcr,1) = 0 and ḋi,j2(tcr,2) = 0, respectively. For k ∈ R>0,

0 < D < 1 and measurements di,j1(tcr,1), di,j1(∞), di,j2(tcr,2), di,j2(∞), the (k,D)

pairs which solve

2D tanh−1
(
D tanh(k

di,j1(tcr,1)

2
)
)
+ k(di,j1(∞)− di,j1(tcr,1)) = 0, (5.14a)

2D tanh−1
(
D tanh(k

di,j2(tcr,2)

2
)
)
+ k(di,j2(∞)− di,j2(tcr,2)) = 0. (5.14b)

have a 1− 1 correspondence to the (X, Y ) roots of

X tanh(X)− Y R1 tanh(Y ) = 0, (5.15a)

X tanh(R2X)− Y R1 tanh(R3Y ) = 0, (5.15b)

where

R1 =
di,j1(tcr,1)

di,j1(tcr,1)− di,j1(∞)
, R2 =

di,j2(tcr,2)

di,j1(tcr,1)
, R3 =

di,j2(tcr,2)− di,j2(∞)

di,j1(tcr,1)− di,j1(∞)
.

The correspondence is defined by X = k
di,j1 (tcr,1)

2
and Y = k

2D
(di,j1(tcr,1)−di,j1(∞)).

Proof. We begin using trigonometric identities to put (5.14) into a more palatable

form. Noting that

tanh(A+B) =
tanh(A) + tanh(B)

1 + tanh(A) tanh(B)
,
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(5.14) is equivalent to the expressions

D tanh
(
k
di,j1 (tcr,1)

2

)
+tanh

(
k
2D

(di,j1(∞)−di,j1(tcr,1))
)

1+D tanh
(
k
di,j1 (tcr,1)

2

)
tanh

(
k
2D

(di,j1(∞)− di,j1(tcr,1))
) ,

D tanh
(
k
di,j2 (tcr,2)

2

)
+tanh

(
k
2D

(di,j2(∞)−di,j2(tcr,2))
)

1+D tanh
(
k
di,j2 (tcr,2)

2

)
tanh

(
k
2D

(di,j2(∞)− di,j2(tcr,2))
) ,

both vanishing. Since 0 < D < 1, the denominators of these equations are strictly

positive and hence its roots are the same as those of

D tanh
(
k
di,j1(tcr,1)

2

)
− tanh

( k

2D
(di,j1(tcr,1)− di,j1(∞))

)
= 0, (5.16a)

D tanh
(
k
di,j2(tcr,2)

2

)
− tanh

( k

2D
(di,j2(tcr,2)− di,j2(∞))

)
= 0. (5.16b)

The result follows by substituting for X and Y and noting that the (k,D) to (X, Y )

transformation is 1− 1 for k,D > 0.

The next result identifies conditions for when there exists one unique solu-

tion to (5.15).

Lemma 5.5.4. (Uniqueness for small Y ) For fixed R1 > 1, R3
3 > R2 > R3 > 1

and for a small enough interval in Y , there exists at most one pair (X, Y ) which

solves (5.15).

Proof. For each equation of (5.15), there exists a positive implicit function for X

as a function of Y , which we term X1 and X2. Since X1 and X2 are only implicitly

defined, we determine a Taylor series expansion around Y = 0. Given that X1

corresponds to X2 with R2 = R3 = 1, we consider the Taylor series approximation

of X2,

X2(Y ) = a1Y + a2Y
2 + a3Y

3 + a5Y
5 +O(Y 7), (5.17)

where

a1 =

√
R1R3

R2

, a2 = 0, a3 =
R3

6

√
R1R3

R2

(R1R2 −R3).
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Table 5.2: Passing Wave Method

1: Let tcr,1 such that ḋi,j1(tcr,1) = 0

2: Let tcr,2 such that ḋi,j2(tcr,2) = 0

3: Set R1 =
di,j1 (tcr,1)

di,j1 (tcr,1)−di,j1 (∞)
, R2 =

di,j2 (tcr,2)

di,j1 (tcr,1)
, and

R3 =
di,j2 (tcr,2)−di,j2 (∞)

di,j1 (tcr,1)−di,j1 (∞)

4: Solve for the unique (X, Y ) that satisfies

X tanh(X) + Y R1 tanh(Y ) = 0,

X tanh(R2X) + Y R1 tanh(R3Y ) = 0.

5: Set k = 2X
di,j1 (tcr,1)

6: Set D = k
2Y

(di,j1(tcr,1)− di,j1(∞))

A sufficient condition to guarantee the existence of at most one unique solution

pair (X, Y ) is that d2X2−X1

dY 2 > 0. Looking at the third order expansion of X2−X1,

X2(Y )−X1(Y ) =
(√R1R3

R2

−
√
R1

)
Y+

(R3

6

√
R1R3

R2

(R1R2 −R3)−
1

6

√
R1(R1 − 1)

)
Y 3,

one can see X2 −X1 is convex for small Y , given the assumptions on R1, R2, and

R3, which completes the result.

Based on the above discussion, we present formally the Passing Wave

Method as Algorithm 5.2. The following remark provides a justification for its

design rationale.

Remark 5.5.5. (Justification for Passing Wave Method) From Lemma 5.5.3,

given knowledge of di,j1(tcr,1)−di,j1(∞), one must only search for roots to (5.15) in

the Y interval of [0, kmax

Dmin
di,j1(tcr,1)−di,j1(∞)]. By controlling where the drogues are

deployed, one has approximate control over di,j1(tcr,1), and therefore di,j1(tcr,1) −
di,j1(∞). By Lemma 5.5.4, for small enough Y and fixed coefficients R1, R2, and R3

there exists a unique (X, Y ). Thus a reasonable to strategy is to choose di,j1(tcr,1)
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small so that the true (X, Y ) root is within the range where there is at most

one root. However, the coefficients R1, R2, and R3 are themselves functions of

di,j1(tcr,1), and so one cannot easily guarantee that the true root is in the range of

at most one root. Nevertheless, simulations appear to show that there is always

one unique root. •

Remark 5.5.6. The proposed algorithm requires knowledge of inter-drogue dis-

tances after the wave has completely passed by, i.e., nominally at t = ∞. However,

in practice one only needs to wait until the wave is sufficiently far away. For in-

stance, when the distance between the drogue and the crest of the wave is 5 spatial

wavelengths apart, the effect of the wave is reduced to .02% of its maximum. Not

waiting until t = ∞ induces a non-random error in the measurements. •

Chapter 5, in part, is a reprint of the material [64] as it appears in ‘Collec-

tive estimation of ocean nonlinear internal waves using robotic underwater drifters’

by M. Ouimet and J. Cortés in IEEE Access 1 in 2013 as well as the material [67]

titled ‘Robust estimation and aggregation of ocean internal wave parameters using

Lagrangian drifters’ by M. Ouimet and J. Cortés which was submitted for pub-

lication to the American Controls Conference 2014. The dissertation author was

the primary investigator and author of this paper and unpublished material.
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(b) Inter-drogue distance evolution
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(c) Velocity evolution

Figure 5.2: The plots show the position, inter-drogue distance, and velocity
evolution of drogues in the presence of a nonlinear internal wave for the Lagrangian
and second-order dynamical models. The closeness of the two models justifies the
use of the simpler Lagrangian model. The wave/ocean parameters are hu = 10 m,

hl = 60 m, C = .1m
s
, and |ρl−ρu|

ρl
= .002 (implying a spatial wavelength of about

250 m) and the drogue parameters are m = 1.5kg, and cd = 210Ns2

m2
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Figure 5.3: True Lagrangian drogue trajectory and two trajectories generated
from using the parameters estimated by the Parameter Determination Strategy

with 1% and .1% measurement error. As the measurement error decreases, the
trajectories more closely match the true one. The wave/ocean parameters used

are hu = 10 m, hl = 60 m, C = .05m
s
, and |ρl−ρu|

ρl
= .002.
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Figure 5.4: Plot of the relative error in estimates of the wavenumber as a func-
tion of the relative errors in the inter-drogue distance and its derivative measure-
ments for several different initial drogue locations. Specifically, it shows the effect
of changing the largest inter-drogue distance on the performance of Parameter

Determination Strategy. The true value of the wavenumber is k = .0065 1
m

and
the first three drogues were always located at 0, 1, 2 meters. The fourth drogue
was at 10, 100, and 200 meters. Here, each point is the average of 3000 runs. One
can see that as the largest inter-drogue distance grows, the robustness improves.
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Figure 5.5: This figure plots the relative error in estimates of the wavenumber,
both for individual estimates and the aggregated estimate. Note that the aggre-
gated estimate converges to a relative error significantly smaller than the individual
estimates. The true value for the wavenumber was .014 1

m
and the drogues were

located at 0, 1, 2, and 10 meters from the origin.



Chapter 6

Closing remarks

This chapter contains a review of the results of this dissertation, as well as

directions for future work.

6.1 Review of results

Here, we review the novel results for the three problems considered in this

work, beginning with the coalition formation and deployment problem.

6.1.1 Coalition formation and deployment for optimal es-

timation

Motivated by a spatial estimation problem, we have designed a synchronous,

distributed algorithm for a network of robotic agents to autonomously deploy in

groups over a given region. Our strategy allows agents to autonomously form

coalitions of a desired size, cluster together within finite time, and asymptoti-

cally reach an optimal deployment, each with probability 1. The algorithm design

is a combination of a hedonic coalition formation game where agents only have

partial information about other coalition memberships with motion coordination

strategies for group clustering and deployment. The proposed algorithmic solution,

termed Coalition Formation and Deployment Algorithm, is provably correct,

does not rely on a common reference frame and is robust to agents joining or

121
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leaving the environment. We have provided time complexity upper bounds for

algorithm executions with the Proportional-to-Number-of-Unmatched-Agents

switching law under arbitrary and complete communication topologies. We also

have upper bounded the communication complexity per timestep for algorithm

executions with arbitrary switching laws. Simulations illustrate the correctness,

robustness, and complexity results.

6.1.2 Estimation of linear internal waves

This work has considered the task of estimating the physical parameters of

a horizontally propagating ocean linear internal wave using a group of drogues. We

have established an explicit analytic description of the evolution of a drogue under

the flow induced by the linear internal wave. This result implies that inter-drogue

distances evolve in a purely periodic way. We have built on this knowledge to

design the Vanishing Distance Derivative Detection Strategy. This strat-

egy relies on the fact that inter-drogue distance derivatives become close to zero

multiple times during one period. Under noiseless measurements, we have es-

tablished that the algorithm exactly computes the internal wave parameters and

derived conditions on the minimal sampling rate for this to happen. Next, we

have characterized the robustness of our strategy. Under measurements with er-

ror, we have bounded the error in the parameter estimates as a function of the

errors in the measured quantities. For the case of measurements corrupted by ad-

ditive Gaussian noise, we have also developed a general scheme termed pth-Order

Parameter Fusion for aggregating parameter estimates based on determining the

pth-order approximation of their distribution. The method results in smaller errors

than the individual estimates generated by the Vanishing Distance Derivative

Detection Strategy.

6.1.3 Estimation of nonlinear internal waves

We have considered the problem of estimating the physical parameters of

a horizontally-propagating nonlinear internal wave. Because of the lack of ab-
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solute position information, a group of underwater drogues subject to the flow

induced by the internal wave only have access to relative measurements (inter-

drogue distances and distance derivatives) with respect to each other to achieve

their task. We designed the Parameter Determination Strategy to determine

all of the wave parameters. We analyzed its correctness and discussed the robust-

ness against several sources of error arising in realistic implementations. Because

many noisy parameter estimates are available, we detailed a method of param-

eter estimate aggregation. Several simulations have illustrated the algorithmic

performance under noisy measurements, investigated the effect of initial drogue lo-

cations, and showed the efficacy of aggregating parameter estimates to reduce the

final parameter estimation error. We also included two extensions to the proposed

algorithm. First, we outlined how the Parameter Determination Strategy may

be used to simultaneously estimate two nonlinear internal waves. Second, we in-

cluded an alternate method for determining the wavenumber k which is based on

the analytic expression for the change in inter-drogue distance after a nonlinear

wave has passed.

6.2 Future directions

We now outline how the limitations of our presented work can be adapted

in future directions.

6.2.1 Coalition formation and deployment for optimal es-

timation

Future work can be devoted to further characterizing the effects of different

probabilistic switching laws. Since our proposed algorithm may be implemented

with any switching law in a broad class, understanding which one optimizes the

speed of the coalition formation process is important because it defines the al-

gorithm’s expected completion time. Furthermore, our complexity results define

upper bounds for expected completion time and communications per timestep. Via

simulations, the algorithm seems to perform better than our guarantees. There-
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fore, further insight into how the algorithm performs could be gained from a proof

of tighter complexity guarantees.

6.2.2 Estimation of (linear and nonlinear) internal waves

Future work can be devoted to the extension of our algorithm in several

directions. One could to include information from the control actuation employed

to maintain the depth of the drogue. This additional information set’s structure

might lead to other ways to estimate the desired parameters. Additionally, we

assume that the drogues are perfectly Lagrangian. Due to their finite mass and

drag coefficients, this is not completely true. Thus, one might adapt the algorithm

to consider the more accurate, second-order drogue dynamics. While we can adapt

our method to situations with two internal waves present, another natural exten-

sion would be to consider the general case of N waves present. We are currently

exploring the practical implementation of our approaches to a network of drogues

under development at the UCSD Scripps Institute of Oceanography [42]. Using

their drogues, they have just begun to collect data for which our methods can be

tested. Although the preliminary results are positive, the extensions above would

make our algorithm even better suited for use with real data. Furthermore, one

might consider a model with spatially varying ocean depth and the possibility that

waves only occur over a finite domain. These added complexities would also yield

better internal wave modeling.

6.2.3 Other lines of research

More generally, there are many novel opportunities to utilize game-theoretic

notions in cooperative control problems. For instance, with the recent surge of

smart grids with many local decision makers producing and consuming electric-

ity, game theory can be used to model the utility functions and interactions of

these agents. A specific example could be a wind farm, where each turbine is an

independent decision maker, choosing its output generation, to maximize its own

utility, while satisfying a constraint that the whole farm has a certain production.
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Because sensors and actuators are distributed over the individual turbines and

adaptive, real-time solutions are desirable, a distributed approach would suit the

problem. However, the partial and evolving interactions proposed would lead to a

challenging, incomplete-information game. A possible solution to this could be in

the novel combination of a consensus algorithm and a game-theoretic utility func-

tion. Consensus algorithms provide a mechanism for agents to reach agreement in

a distributed way, which could be used to find the average power output, and help

ensure the agents collectively meet a desired production level. Coupling this with a

game-theoretic utility function, agents can selfishly deviate from the average power

amount if it benefits them. If designed properly, the consensus aspect ensures a

desired performance level, while the self-interested, game-theoretic aspect ensures

that the solution is optimal.

One can also imagine further applications of the Lagrangian drifters. For

instance, they can used to estimate many other time-varying, oceanic flow fields

such as tides, eddies, and currents. Given a parameterized model of the ocean’s

velocity fields, one can construct algorithms which harness the ’power of many’

drifters to estimate these phenomena. Another interesting potential line of research

is in motion planning. Suppose the drifters used the internal wave estimation

algorithms presented here to determine the velocity field of the ocean on-line. They

could harness the spatially and temporally varying flowfield to choose their depth

over time to drift to a desired location. Since it is envisioned that many drifters will

be deployed, they could all rendezvous to one location where they are all picked

up together, simplifying the recovery process. In general, motion planning in time

varying, nonlinear flowfields is challenging. However, the specific structure of an

internal wave makes the problem more tractable. Because the velocity fields above

and below the internal wave are in opposite directions, one can imagine a control

law which enforces that drifters repeatedly switch between being above and below

the wave to keep the drifter moving in the desired direction. As more internal

waves and other ocean flows, like current and tide, are introduced, the design of a

feasible controller becomes more complex.
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