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Abstract

Controlling Global Network Connectivity of Robot Swarms with Local Interactions

by

Michael D. Schuresko

It is common for distributed mobile robot control algorithms to operate under the constraint that

individual robots communicate over a wireless network, where communication links are determined

by spatial proximity among mobile agents. Many of these control algorithms make no guarantee that

the robots will move in such a way as to maintain network connectivity. We perform research into

developing robust efficient distributed algorithms to solve this and related problems and show progress

on current work towards this end.
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Chapter 1

Introduction

Recently the controls community has witnessed an explosion of distributed coordination algo-

rithms that operate on swarms of robots.

Colloquially speaking, a swarm of robots is some number of mobile robots that each move

independently, while using some form of communication to coordinate their motions. Usually the

amount of communication allowed is somehow limited, both in terms of which robots can directly

communicate, and how much data can be sent per unit time. A thorough survey of the general area

of distributed control of robot swarms is [7]. Images of physical implementations of such swarms are

shown in Figure 1.1 (courtesy [60]) and Figure 1.2 (courtesy [9]).

Much of the inspiration for research in mobile robot swarm research comes from biological

systems [48, 6]. Schools of fish and flocks of birds appear to exhibit coherent behavior despite being

comprised of many independent agents. Work by Craig Reynolds [48] first popularized and convincingly

demonstrated the idea that artificial agents could exhibit qualitatively similar behavior to flocking birds

or schooling fish. Ants colonies [6] and bee swarms [47] also exhibit interesting group behavior which

can inspire algorithmic research in analogous swarms of mobile robots. Work on designing robot swarm

2



Figure 1.1: Robot swarm developed at MIT. Image courtesy [60], see also [61]

Figure 1.2: Robot swarm developed at EPFL (Lausanne, Switzerland). Image courtesy [9], see also [10,
8]

3



control algorithms has, in turn, fed back into the biological literature, particularly [29], which studies

the collective motion of bacterial colonies.

Many of the inspirations for swarming research come from systems in which many agents

interacting with simple rules give rise to a global emergent behavior. In some sense the task of design-

ing control algorithms for swarms is the inverse problem to the common scientific task of predicting

collective behavior from atomic rules of individual agents [3] (for instance how the actions of individual

neurons give rise to the behavior of the brain, how individual consumers interact to create macroeco-

nomic behavior, how organisms give rise to ecosystems). Instead of seeking models that predict which

global behaviors will arise from local rules, we seek to engineer local rules to give rise to desired global

behaviors.

One might hope, therefore, that work in this area may help shed light on the related scientific

problem of understanding complex interactions in multi-agent systems, and help better design the sorts

of engineered systems like cities and networks that mirror the sprawling many-agent nature of the

systems (populations, ecosystems, markets) with which they interact.

On a more immediate level, potential applications for such work include environmental mon-

itoring [32, 46, 49], urban search and rescue [52], but could also be extended to related areas of ad-hoc

networks [38, 31, 50] and claytronics [1] (the use of swarms of tiny robots to form granular programmable

materials). The proposed NASA Terrestrial Planet Finder [28], shown in Figure 1.3, would use coordi-

nation among automous robotic spacecraft to create a virtual astronomical instrument.

Work on this topic often draws on existing techniques from control theory and distributed

algorithms [33] to solve a wide range of motion coordination problems for swarms of robots. Of partic-

ular interest to us are systems in which the set of robots with which a given robot can communicate

are based on proximity.

4



Figure 1.3: Artist’s conception of the NASA Terrestrial Planet Finder (TPF). Image courtesy [40], see
also [27]

Examples of algorithms to control distributed swarms of mobile agents include flocking [48,

65, 23], shown in Figure 1.4 and deployment [14], shown in Figure 1.5.

Figure 1.4: Simulation of flocking algorithm presented in [65]. Light lines are placed between robots
which can communicate.

Many algorithms for the coordinated control of a swarm of robots make no guarantee that the

swarm will remain connected, and not “shatter” into two or more disjoint swarms. If the network over

which the robots communicate is based on proximity, such an event could cause the communication

5



Figure 1.5: Simulation of deployment algorithm presented in [14]. Robots are maximizing the integral
over the union of their sensor coverage disks (large circles) of the density field indicated by the contour
lines. Also shown are agent start positions (small circles) and paths between initial and final positions
(centers of large circles).

network to become disconnected. Obviously a split of this nature could cause performance degradation

for many distributed motion coordination algorithms.

There are several notions of what it means for a swarm of robots to be “connected.” Most of

these notions have to do with the connectivity of some sort of graph induced by wireless inter-robot

communication, or inter-robot sensing. It turns out that certain common robotic motion coordination

tasks, such as flocking [23], [65], consensus [63], [43] and rendezvous [13], [36], [2], have performances

which are characterized by measures of this communication graph connectivity.

As of yet, the existing literature for algorithms to control the connectivity of robot swarms

through constraining robot motion is fairly sparse. In this work, we engage in a course of research

into the possibility of richer, more flexible, efficient motion coordination algorithms to control the

connectivity of robot swarms.

This thesis includes work from four published conference papers, one [54] discussing the mate-

6



rial in Section 4, two [55, 58] discussing the material in Section 5 and the third [56] discussing material in

Section 6. This work also reflects two journal papers, the first [57] provides further details on Section 6,

while the second [59] elaborates on recent developments to Section 5 first discussed in [58].
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Chapter 2

Background and preliminaries

In Section 2.1 we will discuss the robotic network model we use as a framework for reasoning

about distributed motion coordination algorithms. In Section 2.2 we discuss an extension of this model

which is useful for formulating connectivity problems.

In Section 2.3 we review notions from algebraic graph theory which will be at the heart of one

of our approaches to connectivity problems later in Section 6.

Finally Section 2.7 goes into detail on a series of connectivity tasks and what it means to solve

them.

2.1 Robotic network model

We will present our algorithms within the framework introduced in [37] for synchronous robotic

networks. For completeness, we present a brief account of the model here.

We start with our definition of a “Robotic Network.”

[Informal description] First (in Definition 2.1.1) we describe our abstraction of the under-
lying physics of a swarm of robots i.e. how the robots are capable of moving and under
which conditions they are capable of communicating.
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Then (in Definition 2.1.2) we specify how we denote motion coordination algorithms. Each
robot runs a discrete time algorithm, which can send messages to the robots neighbors in
the communication graph at specified time instants. Each robot also has a continuous-
time control system to control its trajectory which can read the state of the discrete time
algorithm, but not directly communicate with neighboring robots.

Finally, after these definitions, we will introduce the natural notion of the “evolution” of a
robotic network.

Definition 2.1.1 (Robotic network). A robotic network S is a tuple (I,A, Ecmm) consisting of

(i) I = {0, . . . , n− 1}; I is called the set of unique identifiers (UIDs);

(ii) A = {A[i]}i∈I , with A[i] = (X [i], U [i], X
[i]
0 , f), is a set of control systems; where X [i] is the state-

space of the ith control system and U [i] is the control space of the ith control system; this set is

called the set of physical agents;

(iii) Ecmm is a map from
∏

i∈I X [i] to the subsets of I × I \ diag(I × I); this map is called the com-

munication edge map.

If A[i] = (X, U, X0, f) for all i ∈ I, then the robotic network is called uniform.

Definition 2.1.2. A (synchronous, static, uniform, feedback) control and communication law CC for

S consists of the sets:

(i) T = {tℓ}ℓ∈N0 ⊂ R≥0 is an increasing sequence of time instants, called communication schedule;

(ii) L is a set containing the null element, called the communication language; elements of L are

called messages;

(iii) W [i] = W , i ∈ I, are sets of values of some logic variables w[i], i ∈ I;

(iv) W
[i]
0 ⊆W , i ∈ I, are subsets of allowable initial values;

and of the maps:
9



(i) msg : T×X ×W × I → L is called the message-generation function;

(ii) stf : T×W × Ln →W , is called the state-transition function;

(iii) ctl : R̄+ ×X ×X ×W × Ln → U , i ∈ I, is called the control function.

When we refer to an “evolution” of a robotic network, we mean the behavior of the network

starting from a valid initial state. The execution of a control and communications law can be roughly

described as follows: at each communication round, each agents sends messages to its neighbors ac-

cording to the evaluation of msg. With the messages received, each agent updates the value of its logic

variables using stf. In between communication rounds, the motion of each agent motion is governed by

ctl. A precise description of an execution can be found in [37].

2.1.1 Concrete Example

As a contrete example of a robotic network and a control and communication law, we will

present the “Agree and Pursue Law” from [37] and its associated network. It should be noted that

our presentation of this example is taken almost verbatim from [37] and does not constitute an original

contribution of this work.

Let S
1 be the unit circle, and measure positions on S

1 counterclockwise from the positive

horizontal axis. For x, y ∈ S
1, we let dist(x, y) = min{distc(x, y), distcc(x, y)}. Here, distc(x, y) =

(x − y) (mod 2π) is the clockwise distance, that is, the path length from x to y traveling clockwise.

Similarly, distcc(x, y) = (y − x) (mod 2π) is the counterclockwise distance. Here x (mod 2π) is the

remainder of the division of x by 2π.

Example 2.1.3. (Locally-connected first-order agents on the circle) For r ∈ R+, consider the

uniform robotic network Scircle = (I,A, Er-disk) composed of identical agents of the form (S1, (0, esph)).

10



Here esph is the vector field on S
1 describing unit-speed counterclockwise rotation. We define the r-disk

proximity edge map Er-disk on the circle by setting (i, j) ∈ Er-disk(θ
[1], . . . , θ[N ]) if and only if

dist(θ[i], θ[j]) ≤ r ,

where dist(x, y) is the geodesic distance between the two points x, y on the circle. •

We now define the agree-and-pursue law, denoted by CCagr-pursuit, as the uniform and time-

independent law loosely described as follows:

[Informal description] The dynamic variables are drctn taking values in {c, cc} and prior

taking values in I. At each communication round, each agent transmits its position and
its dynamic variables and sets its dynamic variables to those of the incoming message
with the largest value of prior. Between communication rounds, each agent moves in the
counterclockwise or clockwise direction depending on whether its dynamic variable drctn

is cc or c. For kprop ∈]0, 1
2 [, each agent moves kprop times the distance to the immediately

next neighbor in the chosen direction, or, if no neighbors are detected, kprop times the
communication range r.

Next, we define the law formally. Each agent has logic variables w = (drctn, prior), where

w1 = drctn ∈ {cc, c}, with arbitrary initial value, and w2 = prior ∈ I, with initial value equal to

the agent’s identifier i. In other words, we define W = {cc, c} × I, and we set W
[i]
0 = {cc, c} × {i}.

Each agent i ∈ I operates with the standard message-generation function, i.e., we set L = S
1 ×W and

msg[i] = msgstd, where msgstd(θ, w, j) = (θ, w). The state-transition function is defined by

stf(w, y) = argmax{z2 : z ∈ (πL(y))2 ∪ {w}}.

For kprop ∈ R+, the control function is
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ctl(θ, θstrt, w, y) = kprop






min{r} ∪ {distcc(θstrt, θrcvd) : θrcvd ∈ (πL(y))1}, if drctn = cc,

−min{r} ∪ {distc(θstrt, θrcvd) : θrcvd ∈ (πL(y))1}, if drctn = c.

Finally, we sketch the control and communication in equivalent pseudocode language. This is

possible for this example, and necessary for more complicated ones. For example, the state-transition

function is written as:

function stf ((drctn, prior), y)

for each non-null message

(θrcvd, (drctnrcvd, priorrcvd)) in y:

if (priorrcvd > prior), then

drctn := drctnrcvd

prior := priorrcvd

endif

endfor

return (drctn,prior)

Similarly, the control function ctl is written as:

12



function ctl (θ, θstrt, (drctn, prior), y)

dtmp := r

for each non-null message

(θrcvd, (drctnrcvd, priorrcvd)) in y:

if (drctn = cc) AND (distcc(θstrt, θrcvd) < dtmp),

then dtmp := distcc(θstrt, θrcvd)

elseif (drctn = c) AND (distc(θstrt, θrcvd) < dtmp),

then dtmp := distc(θstrt, θrcvd)

endif

endfor

if (drctn = cc), then return kpropdtmp,

else return −kpropdtmp endif

An implementation of this control and communication law is shown in Fig. 2.1. Note that, along the

evolution, all agents agree upon a common direction of motion and, after suitable time, they reach a

uniform distribution. Finally, we remark that this law is related to leader election algorithms, e.g.,

see [33], and to cyclic pursuit algorithms, e.g., see [35, 62]. •

Figure 2.1: The agree-and-pursue control and communication law in Section 2.1.1 with N = 45,
r = 2π/40, and kprop = 1/4. Disks and circles correspond to agents moving counterclockwise and
clockwise, respectively. The initial positions and the initial directions of motion are randomly generated.
The five pictures depict the network state at times 0, 12, 37, 100, 400. From [37]
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2.2 Input-Output control and communication laws

To facilitate the development of reusable components which can be composed to form valid

control and communication laws, we introduce here the concept of an input-output control and com-

munication law.

[Purpose for this construction] An “input-out control and communication law” is like a
“control and communication law” (see Definition 2.1.2) with extensions which allow it to
interact with another “control and communication law” running on the same robotic net-
work. This construction allows control and communication laws to be constructed which
place some essential sub-task behind a level of abstraction, allowing the mechanism that
solves the sub-task to be any control and communication law following some core set of
properties.

Definition 2.2.1. A (synchronous, static, uniform, feedback) input-output control and communication

law CC for a uniform network S consists of the sets:

(i) T = {tℓ}ℓ∈N0 ⊂ R≥0, a communication schedule;

(ii) L, a communication language;

(iii) (W, Win, Wout), sets of values of logic variables, input logic variables, and output logic variables,

i ∈ I, respectively;

(iv) W
[i]
0 ⊆W , i ∈ I, subsets of allowable initial values;

(v) Win,0
[i] ⊆Win, subsets of allowable initial input values;

and of the maps:

(i) msg : X ×W ×Win × Zn → L, the message-generation function;

(ii) stfio : W ×Win × Ln →W ×Wout the (input-output) state-transition function;

(iii) ctl : X ×X ×W ×Win → U , the control function.
14



Without loss of generality, unless otherwise stated, we consider T = Z≥0. For notational

convenience, we often write an input-output state-transition function stfio as the pair (stfio−slf, stfio-out),

where stfio−slf computes values in W and stfio-out in Wout. We refer to stfio-out as the output state

transition function.

Note that a control and communication law is an input-output control and communication

law with Win = ∅ = Wout.

Remark 2.2.2. We note that the algorithms presented in this paper work equally well if the slight

modification is made that the control function ctl, which defines the instantaneous motion of the robot

in continuous time, is replaced with a waypoint generation function, defining the goal position that

a given robot should be at during the next communication round. Such a function can be defined

like waypt : X ×W ×Win × Ln → X. In particular, this observation implies that we can consider

arbitrary agent dynamics so long as the requirements imposed by the waypoint generation function can

be satisfied by the dynamics. •

While it may look strange to combine control and communication laws by summing the control

components of each law, it should be noted that each input-output control and communication law has

the freedom to set its control function to zero between any two communication rounds based on its

logic variables.

A composition of two input-output laws is the natural result of substituting a subset of each

law’s output for a subset of the other law’s input. We detail this next.

Definition 2.2.3 (Composition of input-output laws). The composition of two input-output control
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and communication laws, CC1 and CC2, that satisfy

CC1Win = X × Y, CC1Win0 = X0 × Y0, CC1Wout = B × C,

CC2Win = A×B, CC2Win0 = A0 ×B0, CC2Wout = Y × Z,

for some sets X, Y, Z, A, B, C, with A0 ⊂ A, B0 ⊂ B, X0 ⊂ X, and Y0 ⊂ Y , is the input-output control

and communications law, CC1 ⊗ CC2, with sets

(CC1 ⊗ CC2)[L] = CC1L× CC2L, (CC1 ⊗ CC2)[Wout] = Z × C,

(CC1 ⊗ CC2)[W ] = CC1W × CC2W × Y ×B, (CC1 ⊗ CC2)[Win] = X ×A,

(CC1 ⊗ CC2)[W0] = CC1W0 × CC2W0 × Y0 ×B0, (CC1 ⊗ CC2)[Win0] = X0 ×A0,

and functions

msg(x, w, win) = (CC1msg(x, CC1w, CC1win), CC2msg(x, CC2w, CC2win)),

stfio−slf(w, win, l) = (CC1stfio−slf(CC1w, CC1win, CC1l),

CC2stfio−slf(CC2w, CC2win, CC1l), πB(CC1stfio-out(CC1w, CC1win)),

πY (CC2stfio-out(CC2w, CC2win))),

stfio-out(w, win, l) = (πZ(CC2stfio-out(CC2w, CC2win), CC2l),

πC(CC1stfio-out(CC1w, CC1win), CC1l)),

ctl(xtℓ , x, w[i], win
[i])=CC1ctl(xtℓ , x, CC1w, CC1win)+CC2ctl(xtℓ , x, CC2w, CC2win).
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2.3 The graph Laplacian and its spectrum

An (undirected) graph G = (V, E) consists of a vertex set V and an edge set E ⊂ V × V of

unordered pairs of vertexes, i.e., (i, j) ∈ E implies that (j, i) ∈ E . A weighted graph is an undirected

graph where each edge (i, j) ∈ E has an associated weight wi,j ∈ R≥0. For a weighted graph G = (V, E),

the (weighted) adjacency A(G) ∈ R
n×n and the Laplacian L(G) ∈ R

n×n are given by

A(G)i,j = wi,j

L(G)i,j =






∑
k 6=i wi,k i = j,

−wi,j i 6= j.

When the specific graph is clear from the context, we simply use A and L. Note that both matrices

are symmetric. For convenience, we denote by Λ : Sym(n) → Sym(n) the linear map that transforms

an adjacency matrix A into the Laplacian L defined by

Λ(A) = diag(A1)−A = L.

Properties of the Laplacian matrix include [19]: the vector 1 ∈ R
n is an eigenvector with

eigenvalue 0; L(G) is positive semidefinite; and the dimensionality of the null space of L(G) is equal to

the number of connected components of G. As a consequence of these properties, an undirected graph

is connected if and only if the second smallest eigenvalue of its Laplacian is greater than zero. Another

convenient property of Laplacians is that adding weight to an edge is guaranteed not to decrease any

of its eigenvalues [66].
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2.4 Proximity graphs and proximity functions

We use proximity graphs as an abstraction of network connectivity among spatially distributed

robots. A proximity graph is an association of a set of positions with a weighted graph. Let P =

(p1, . . . , pn) ∈ (Rd)n be a vector of n robot positions, where each robot evolves in R
d. Let G(n) be the

set of weighted graphs whose vertex set is the set of integers between 1 and n (denoted by {{1, . . . , n}}).

Then, we have the following definition [24, 13].

Definition 2.4.1. A proximity graph G : (Rd)n → G(n) associates to P ∈ (Rd)n a graph with vertex

set {1, . . . , n}, edge set EG(P), where EG : (Rd)n → {1, . . . , n} × {1, . . . , n}, and weights wi,j ∈ R>0 for

all (i, j) ∈ EG(x). A proximity graph must satisfy that G(pσ(1), . . . , pσ(n)) is isomorphic to G(p1, . . . , pn)

for any n-permutation σ and (p1, . . . , pn) ∈ (Rd)n. •

For a given proximity graph, we often use the associated proximity function (Rd)n → Sym(n)

that maps a tuple P ∈ (Rd)n to the adjacency matrix A(G(P)) ∈ Sym(n). Note that a proximity graph

can be alternatively defined by specifying a proximity function.

Remark 2.4.2. Examples of proximity functions include the following:

(i) the r-disk proximity function,

fr-disk(p1, . . . , pn)i,j =






1, ‖pi − pj‖ ≤ r,

0, otherwise,

(ii) the exponentially-decaying proximity function,

fexp(p1, . . . , pn)i,j = exp(−‖pi − pj‖),
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(iii) the approximate r-disk graph, for a sharpness value k ∈ R,

fr-disk-cont(p1, . . . , pn)i,j =
1

1 + exp(k(‖pi − pj‖ − r))
.

(iv) the spline graph, with 0 < rmin < rmax, an approximation of fr-disk, with r ∈ [rmin, rmax]. The

(i, j) entry fspline(p1, . . . , pn)i,j is given by






0, ‖pi − pj‖ < rmin,

1− 3(
‖pi−pj‖−rmin

rmax−rmin
)2 + 2(

‖pi−pj‖−rmin

rmax−rmin
)3, rmin ≤ ‖pi − pj‖ ≤ rmax,

1, s = ‖pi − pj‖ > rmax,

These examples are particular classes of a larger class of proximity functions defined by

f(p1, . . . , pn)i,j = gwgt(‖pi− pj‖), with gwgt : R≥0 → R. For this paper we consider proximity functions

of this form. The algorithm discussed in Chapter 6 requires the added restrictions that gwgt is C2 and

monotonically decreasing, like in examples (ii)-(iv). Some properties of the algorithms proposed in

Chapter 6 will also require that the second derivative of gwgt is bounded and gwgt has zero derivative

at 0, like in example (iv).

2.5 Elements of nonsmooth analysis

It is possible to define a notion of gradient for locally Lipschitz functions [11]. Let f : R
d → R

be locally Lipschitz at x ∈ R
d. For any v ∈ R

d, the generalized directional derivative of f at x in the
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direction v, denoted f◦(x; v), is

f◦(x; v) = lim sup
y→x,t↓0

f(y + tv)− f(y)

t
.

In contrast, the one-sided directional derivative, of f at x in the direction v, denoted f ′(x; v), is

f ′(x; v) = lim
t→0

f(y + tv)− f(y)

t
.

The generalized directional derivative has the property of always being well-defined, whereas the one-

sided directional derivative might not exist in some cases. The generalized gradient of f at x ∈ X,

denoted ∂f(x), is the subset

∂f(x) = {ξ ∈ X : f◦(x; v) ≥ ξT v for all v in X}.

If f is continuously differentiable at x, then ∂f(x) = {∇f(x)}.

2.6 Nonsmooth analysis of the algebraic connectivity function

Here we specify our scalar measure of network connectivity. Denote the (not necessarily

distinct) eigenvalues of M ∈ Sym(n) by λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M). We denote by fλi
: Sym(n)→

R the function that maps the matrix M to λi(M). Given a proximity function f : (Rd)n → Sym(n),

we let

fi−conn = fλi
◦ Λ ◦ f : (Rd)n → R. (2.1)
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We refer to f2−conn as the algebraic connectivity function.

Next, we analyze the smoothness properties of the functions fi−conn, for i ∈ {1, . . . , n}. We

are particularly interested in f2−conn, but the same results are valid for any fi−conn, and therefore we

present them in general. We start by establishing that each fλi
is globally Lipschitz.

Lemma 2.6.1. For i ∈ {1, . . . , n}, the function fλi
is globally Lipschitz with Lipschitz constant 1. •

Since the composition of Lipschitz functions is also Lipschitz, we have the following corollary.

Corollary 2.6.2. For i ∈ {1, . . . , n} and a locally Lipschitz proximity function f , the connectivity

function fi−conn is also locally Lipschitz.

The following result [30] gives gradients of functions fλi
.

Theorem 2.6.3. For i ∈ {1, . . . , n}, the generalized directional derivative (in the direction X ∈

Sym(n)) and the generalized gradient of fλi
at M ∈ Sym(n) are given by

f◦
λi

(M ; X) = max
{v∈Sn : Mv=λiv}

vvT •X,

∂fλi
(M) = co{v∈Sn : Mv=λiv}{vvT }. •

The next result is a consequence of (2.1) and the nonsmooth chain rule [11, Theorem 2.3.10].

Theorem 2.6.4. Given a continuously differentiable proximity function, f : (Rd)n → Sym(n), we have

at P ∈ (Rd)n, and L = Λ(f(P)),

∂fi−conn(P) ⊆ (vec(∂fλi
(L)))T (∇vec(L)). •
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2.7 A taxonomy of connectivity problems

Given our current notions of connectivity, we can pose a series of problems.

• Given n robots communicating over a proximity graph, how do we move the robots so as to

maximize fconn, subject to some position constraints?

• Given n robots and some control objective, f , how do we move the robots so as to maximize f ,

subject to the constraint that the communication graph remains connected?

• Given n robots, a connectivity threshold c and some control objective, f , how do we move the

robots so as to maximize f subject to fconn never going below c?

Kim and Mesbahi [26] and solve problem 1, although none of the existing solutions work in a distributed

manner. Zavlanos and Pappas [68] solution to 2 is not distributed, but allows for a general range of

motion, which we would like out of a distributed algorithm for 2. Notarstefano et. al. [41] solve problem

2 in a distributed way, but for fixed network topology. De Gennaro et. al. [16] provide a distributed

solution to problem 3, but the communication complexity of their solution exceeds that of exchanging

the full state of the system and running a centralized algorithm.
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Chapter 3

Structure of this work

There are two main thrusts to our research.

Part III discusses the primary direction of our work. Our recent research fits almost entirely

into this chapter. In it, we focus on proximity graphs induced by inter-robot distances (see the discussion

on proximity functions in Section 2.4). Given proximity graphs from this family, and a measure of

connectivity we seek to maintain, we create distributed algorithms to control the motions of individual

robots to make guarantees about the appropriate measure of connectivity. We develop two approaches

of this form, and compare them with one another and with the established research in the field.

Section 6.5.1 of Chapter 6 compares one of our algorithms with closely related algorithms from the

literature.

Part II introduces an earlier piece of research, discussing connectivity in a radically different

setting. We hope the juxtaposition of this work with the two approaches discussed in Part III serves

to provide a broader picture of multi-robot coordination and control of spatially-induced connectivity.

In Part II we develop connectivity algorithms based on the assumptions used in [45] to develop similar

algorithms. The motivation of this set of assumptions was partly due to an actual spacecraft design
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being proposed at the Jet Propulsion Laboratory. The setup differs from that in Part III in the following

ways

(i) Robots live in 3 dimensions

(ii) Robots have directional sensors.

(a) Edges exist between any two robots with line-of-sight between their directional sensors.

(b) Symbolic information can be communicated between any pair of robots at any time

(c) Relative position information can only be exchanged over edges in the communication graph

(d) Robots control directionality of their sensors. Robot position follows dynamics induced by

uncontrolled drift.

(iii) We are concerned with the connectivity of the union of all graphs induced by robot positions and

orientations over a finite time window. Unlike our approach in Part III, we are not concerned

about connectivity of the communication graph at any particular instant in time.

In Part IV we attempt to summarize our findings in a unified discussion of connectivity among

coordinated robotic agents.
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Part II

Connectivity of union of line of sight

graphs
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Chapter 4

Weak spacecraft connectivity

4.1 Formation initialization work

Deploying large structures in space requires multiple spacecraft to coordinate their activities,

due, in part, to the limited payload capabilities of launch vehicles. One application that requires such

coordination is the deployment of large-baseline interferometers for science imaging missions. Key

aspects of spacecraft coordination which are likely to be used in a broad variety of contexts include: (i)

formation initialization, i.e., the establishment and maintenance of relative dynamic state information

and/or on-board inter-spacecraft communication; (ii) formation acquisition, i.e., making the group of

spacecraft attain a desired geometry; and (iii) formation regulation and tracking, i.e., maintaining

fixed inter-spacecraft range, bearing, and inertial attitudes with high accuracy along the execution of

a desired trajectory.

In this Section, we focus our attention on the formation initialization problem. This problem

is especially important for spacecraft operating in deep space, where conventional Earth-based GPS

does not provide sufficiently accurate position information. Here, we consider a spacecraft model

motivated, in part, by the design possibilities of NASA’s “Terrestrial Planet Finder” mission. Our
26



spacecraft model is similar to the one proposed in [45]. The spacecraft have laser-based directional

relative position sensors, like the kind described in [20], which require two sensors to lock on to each

other before getting a position measurement. Each of the spacecraft has a sun-shield which must be

oriented so as to protect sensitive astronomical instruments from solar radiation. The spacecraft are

assumed to be in deep space, far from the effects of gravitational curvature.

4.1.1 Preliminaries

Each spacecraft consists of a rigid body containing instruments on one side, which need to be

shielded from the sun (see Fig. 4.1). To serve this purpose, a sun shield is mounted to the spacecraft

~nSUN(S)

~vsensor(S)

Sun shield

Θfov

Figure 4.1: Configuration of spacecraft geometry, and body frame definition, as in [20, 45].

body on the side opposite the instruments. The sun shield normal vector, ~nSUN(S), indicates the

direction of the sun shield of spacecraft S. We make the approximation that the sun is an infinite

distance away, and therefore the vector to the sun, ~vSUN, is the same for each feasible spacecraft

position. In order to operate without damaging the instrumentation, each spacecraft must maintain

the constraint ~nSUN(S) · ~vSUN ≥ cos(Θsun) for some pre-specified Θsun at all times. Relative position
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and velocity measurements between two spacecraft are made through the metrology sensors of the two

craft. The metrology sensor of spacecraft S senses within a conical region (CS) with a half angle of

Θfov (assumed here to be greater then π
4 unless otherwise stated). The sensor cone centerline of S

is an infinite ray down the axis of rotational symmetry of the sensor cone defined by the unit vector

~vSENSOR(S). Accurate orientation information is available for all spacecraft through measurements of

reference stars. Thus we only have to worry about obtaining relative position and velocity information

for each spacecraft. The spacecraft are placed such that the curvature of earth’s gravitational field

has a negligible effect (for instance a Lagrange point). We therefore assume that if no spacecraft

undergo translational acceleration, then the spacecraft move with constant (initially unknown) velocity

in straight lines relative to each other.

Definition 4.1.1. The global frame of reference is an arbitrary orthonormal frame, GF = {Xg, Yg, Zg},

where Xg = ~vSUN. For a spacecraft S, PS denotes the position of the center of mass of S in the frame

GF . The center of mass frame of S, CMF (S), corresponds to translating the global frame GF to PS.

The body frame of S, BF (S) = {X̂S , ŶS , ẐS} is defined by X̂S = ~nSUN(S), ẐS = ~vSENSOR(S) and

ŶS = ẐS × X̂S. In this frame, {0, 0, 0} is at the center of mass of S.

The state of each spacecraft S ∈ {S1, · · · , Sn} can be described by (PS , MS) ∈ R
3×SO(3).MS

transforms BF (S) onto CMF (S) and PS defines the translation between CMF (S) and GF . The

spacecraft are fully actuated.

The sensor cone CS : R
3 × SO(3)→ 2R3

of S is

CS(PS , MS) = {~x ∈ R
3 :

[0, 0, 1]T MS(~x− PS)

‖~x− PS‖
≤ cos(Θfov)}. (4.1)

When it is clear from the context, we will use the simpler notation CS . In order to get a relative position
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reading between two spacecraft, S1 and S2, S1’s metrology sensor must point at S2. This condition is

called sensor lock. Formally, two spacecraft, S1 and S2, achieve sensor lock if and only if PS1 ∈ CS2

and PS2 ∈ CS1 .

The algorithms we present all require the n spacecraft performing the algorithm to be split

into two disjoint groups, G1 and G2 such that G1 ∪G2 = {S1, ..., Sn}. This can either be done a priori

before launch or (preferably) with a distributed algorithm prior to running formation initialization

(see [33]).

Two spacecraft, S1 and S2, are said to be maintaining the Opposing Sensor Constraint if

~vSENSOR(S1) = −~vSENSOR(S2).While this constraint is not strictly necessary for a correct solution to

the formation initialization problem, we will show in Section 4.1.7 that it is a convenient constraint to

work with. Note that this does not fully constrain the relative orientation of S1 with respect to S2.

When specifying an algorithm requiring the Opposing Sensor Constraint, we will often specify the

more restrictive constraint

M−1
S1

MS2 = Mopp = diag(1,−1,−1).

We call this constraint the Opposing Frame Constraint. In addition to maintaining the Opposing

Sensor Constraint, the Opposing Frame Constraint also guarantees that if spacecraft S1 verifies

the sun-angle constraint, then S2 also verifies it.

4.1.2 Algorithm definition

Our definition of “algorithm” here differs in some ways from the one we use elsewhere in this

paper. In what follows, Dmsg denotes the set of possible messages a spacecraft can communicate at any

instant, and Dsensor = (Z2 × R
3 × R

3)n the set of possible sensor cone readings for a spacecraft.
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Definition 4.1.2 (Algorithm notion). An algorithm is a tuple AS = (STATES,0, FS , GS , δtstep), where

STATES,0 ∈ DSTATE, the initial internal state of S, contains no information about the location of the

other spacecraft and FS is a map of the form

FS : R× SO(3)×DSTATE → R
3

(t, MS ,STATES) 7→ ωS ,

and GS is a map of the form

GS : R× SO(3)×DSTATE ×Dn−1
msg ×Dsensor → DSTATE ×Dmsg

(t, MS ,STATES ,MSGS,in,SENSORS) 7→ (STATES ,MSGS,out).

Definition 4.1.3. (Execution of an algorithm): An execution by a spacecraft S of an algorithm AS =

(STATES , FS , GS , δtstep) during the time interval [t0, tf ] is given by t ∈ [t0, tf ] → (PS(t), MS(t)) ∈

R
3 × SO(3) and STATES : [t0, tf ]→ DSTATE defined as follows:

• ṖS(t) = VS, for some constant VS ∈ R
3;

• ṀS(t) = F̂S(t,STATES(t))MS(t), t ∈ [t0, tf ], where ω̂ is the matrix operator for the cross product

with ω ∈ R
3;

• STATES is the piecewise constant function defined by

STATES(ti+1) =

GS((ti, MS(ti),STATES(ti),MSGS,in(ti),SENSORS)(ti)),
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for i = 0, . . . , m − 1, with t0, t1, . . . , tm ∈ [t0, tf ] a finite increasing sequence, where ti = k δtstep

for some k ∈ N or ti corresponds to the time instant when a change occurs in the value of the

sensor cone readings. The initial value of STATES(t0) is STATES,0.

The lack of concrete specification of Dmsg and DSTATE reflects our intent to provide lower

bounds on algorithmic performance for spacecraft with a wide range of computational and commu-

nication capabilities. In practice, the working algorithms we present in Section 4.1.8 require basic

computational capabilities on the part of each spacecraft.

4.1.3 Prior work

A fairly extensive bibliography of missions which plan to use spacecraft formation flying can

be found in [64]. These include Terrestrial Planet Finder [28], EO-1 [4], TechSat-21 [15] and Orion-

Emerald [21]. A driving motivation behind formation flying research is that of large aperture adaptive

optics in space, e.g. [28]. Optical devices such as the ones described in [17] could combine the advantages

of multi-mirror adaptive optics with those of space telescopes. A good overview on current research on

formation flying for optical missions is contained in [20]. Most of the work on control algorithm design

has focused on formation acquisition and tracking. A survey of algorithms is given in [51]. Leader-

following approaches, e.g. [25, 39], and virtual structures approaches, e.g. [5], prescribe the overall group

behavior by specifying the behavior of a single leading agent, either real or virtual. Motion planning

and optimal control problems are analyzed in [22]. The only work known to us that has dealt in detail

with formation initialization is [45].

31



4.1.4 Total angle traversed and solid angle covered

Here, we present the notions of total angle traversed and solid angle covered during the

execution of an algorithm.

In 3-D, recall that MS = [mx, my, mz] is an orthonormal basis matrix representing the orien-

tation of spacecraft S. From Equation 8.6.5 of [34], we have ω̂ = ṀSM−1
S . , where ω̂ is the matrix

operator for “cross product with ω.”

The total angle traversed during the execution of an algorithm in 3-D is therefore

∫ tf

t0

√
ω̂2

1,2 + ω̂2
1,3 + ω̂2

2,3dt.

One can think of the 2-D problem as the 3-D problem with rotations confined to the {Y, Z}

plane. Under this constraint, the previous expression reduces to

∫ tf

t0

|ω̂2,3|dt.

It will be useful to compute the total solid angle covered by the sensor cone CS of a spacecraft

performing a formation initialization algorithm in 3-D. If a spacecraft, S, with sensor cone field of view

Θfov rotates by an angle of π about an axis l where l · ~vSENSOR(S) = cos(Θ), Θ > Θfov, the new solid

angle covered in this sweepcan be found by tracing a band about the unit sphere and calculating its

area. See Figure 4.2 for an illustration.

Recall that the solid angle of a cap of half angle α is
∫ α

0 2π sin(t)dt. The area of this band

can be found by subtracting caps of half angles Θ − Θfov and π − Θ − Θfov from the unit sphere and
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Θ

S
~vSENSOR(S)

Figure 4.2: Method to compute rate of change of solid angle swept.

dividing by 2. , giving a result of

4π − 2π(1− cos(π −Θ−Θfov))− 2π(1− cos(Θ−Θfov))

2
.

Dividing by π gives a rate of change of coverage of solid angle for this operation , when performed at

angular velocity ω, as 2‖ω‖ sin(Θ) sin(Θfov). A similar argument gives the expression for when Θ ≤ Θfov

as ‖ω‖(1 + sin(Θ) sin(Θfov)− cos(Θ) cos(Θfov))

The total solid angle covered by a spacecraft S executing an algorithm, A, between times t0

and t is then

Fsld(t) =

∫ t

t0

fsld(ω(τ))dτ,

where fsld(ω) : R
3 → R is defined by fsld(ω) = 2‖ω × ~vSENSOR(S) sin(Θfov)‖ for arccos(ω ·

~vSENSOR(S)/‖ω‖) > Θfov, and fsld(ω) = ‖ω × ~vSENSOR(S) sin(Θfov)‖ + ‖ω‖ − |ω · ~vSENSOR(S)|

otherwise. For us, the total solid angle covered by S during the course of the algorithm to be

Fsld(tf )+α0 where tf is the earliest time at which formation initialization is guaranteed to be complete

and α0 = 2π(1− cos(Θfov) is the solid angle contained in CS(t0) at time t0.
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Remark 4.1.4. Note that 0 ≤ fsld(ω) ≤ 2‖ω‖ sin(Θfov). •

Analogously, the total angle covered by a spacecraft S performing an algorithm A in 2-D

between times t0 and t is

Fangle(t) =

∫ t

t0

|ω|dt.

4.1.5 Formation initialization problem

Formation initialization solutions entail establishing communication and/or relative position

information. Frequently they also involve moving the spacecraft to an initial formation from which

another formation control algorithm can take over. Here we restrict ourselves to the establishment

of relative position and velocity information between each pair of spacecraft. We assume that this

information can come from any combination of direct sensor readings, odometry and communication

with other spacecraft.

Definition 4.1.5. Let [ts, tf ] be the duration of time during which a formation initialization algorithm

runs. Define G(t) to be the relative position connectivity network at time t, defined by G(T ) =

(V, E) where v(Si) ∈ V correspond to the spacecraft Si, and the edge (v(Si), v(Sj)) is in E if and only

if spacecraft Si and Sj are in a state of sensor lock. A solution to the formation initialization problem

is one that guarantees that the graph ∪t∈[ts,tf ]G(t) is connected, so long as no two spacecraft collide by

tf .

4.1.6 Details of prior work

The multi-spacecraft algorithm proposed in [45] to solve formation initialization is briefly

described in Table 4.1. We discuss its correctness in Theorem 4.1.7.
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Figure 4.3: Stages of the algorithm described in Table 4.1.
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Name: Formation Initialization Algorithm
Assumes: Spacecraft model in Section 4.1.1.

1: if Si ∈ G1 then
2: Rotate to align MSi

with I3

3: else
4: Rotate to align MSi

with Mopp

5: end if
6: Wait for common start time ts
7: Rotate by 3π about XSi

.
8: Rotate −Θtilt (in this case 25 degrees) about YSi

.
9: Rotate 2Θtilt about YSi

.
10: Rotate by π about XSi

.
11: Rotate 2Θtilt about YSi

.
{This is the end of the rotational component of the algorithm}

12: Rotate −Θtilt about YSi
.

13: Wait for some time tnear field > 0
14: if Si ∈ G1 then
15: Begin translating along ZSi

with speed vmax, where vmax is the maximum relative velocity
between any two craft.

16: end if

Table 4.1: Formation Initialization algorithm proposed in [45].

4.1.7 Correctness and optimality of formation initialization algorithms

We start this section by providing a necessary condition for the correctness of any formation

initialization algorithm. Then, we proceed to use this condition as the basis for a series of optimality

bounds. We also present optimality results which justify the Opposing Sensor Constraint and allow

us to more easily reason about the n spacecraft case (where n > 2).

Theorem 4.1.6. Let S be executing a correct formation initialization algorithm in d dimensions, with

d ∈ {2, 3}. For every v ∈ R
d, let tv be the first time such that v ∈ CS(tv) = CS(PS(tv), MS(tv)). Then,

there must exist t∗ > tv such that −v ∈ CS(t∗).

Proof. For simplicity, let vers(u) = u/‖u‖, for u ∈ R
d. Consider two spacecraft, S1 and S2. S2 travels in

the plane defined by it’s velocity (VS2), and pcl(S1, S2), where pcl(S1, S2) is the point of closest approach

between S1 and S2 in CMF (S1). At time t S2 makes an angle with pcl(S1, S2) of arctan(
‖VS2

‖
‖pcl(S1,S2)‖ t+t0)
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for some t0. S2’s initial conditions can be chosen to match any arbitrary VS2 , pcl(S1, S2) and t0. Because

of this, given an ǫ and times, t1 and t2, vers(PS2) can be made to stay within an angle of ǫ of − vers(VS2)

until time t1, and move to within an angle of ǫ of vers(VS2) by t2. Let t1 be the first time at which

the minimum angle between any ray in CS1(t1) and vers(−VS2) is less then or equal to ǫ and t2 be the

first time at which CS1(t2) includes vers(−VS2). In order to ensure S1 finds S2, CS1(t
∗) must include

vers(VS2) at some time t∗ > t1. Since ǫ was picked arbitrarily and the sensor cone is always closed,

CS1(t
∗) must include vers(VS2) at some time t∗ > t2.

Theorem 4.1.7. The algorithm stages described in Steps 1-12 of Table 4.1 are not, by themselves,

sufficient to solve the formation initialization problem.

Proof. Let S ∈ G1 perform this algorithm. By Theorem 4.1.6, for any vector v, CS(t) must contain −v

at least once before the last time CS(t) contains v. But each v ∈ Rdown is last in CS(t) during Step 9,

and no v ∈ {u ∈ CMF (S) : −u ∈ Rdown} is in CS(t) before Step 10. Thus Rdown(S) does not satisfy

this condition.

For our purposes, we will consider the algorithm which minimizes the maximum worst-case

total angle traversed of any spacecraft Si to be the optimal algorithm. Other reasonable options would

include the algorithm which minimizes the worst-case sum over all spacecraft Si of the total angle

traversed.

Let is now justify that Opposing Sensor Constraint is optimal.

Theorem 4.1.8. (Justification of the Opposing Sensor Constraint): Let S1 and S2 be two space-

craft. The most optimal algorithm to guarantee that S1 and S2 attain sensor lock is one which uses the

Opposing Sensor Constraint.
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Proof. Imagine there is some algorithm A which achieves sensor lock between S1 and S2 in time tlock.

Create a new algorithm A∗ in which S1 implements A, but S2 maintains the Opposing Sensor

Constraint with S1. If S2 had been following A, the apex of CS2(tlock) would be in CS1(tlock) at time

tlock. Since S1 is following A in algorithm A∗, the apex of CS2(tlock) is in CS1(tlock) when both craft

follow A∗. By symmetry properties of the Opposing Sensor Constraint, the apex of CS1(tlock) is

in CS2(tlock), thus guaranteeing sensor lock at or before time tlock. This means that for any algorithm,

A, which guarantees sensor lock, a modified algorithm (A∗) which maintains the Opposing Sensor

Constraint can be constructed such that A∗ guarantees sensor lock in at most as much worst-case

rotation as A.

The next result shows an equivalence between worst-case bounds for 2 spacecraft and worst-

case bounds for any number n > 2 of spacecraft.

Theorem 4.1.9 (Extending worst-cases to n Spacecraft). Given a spacecraft Sn with sensor cone

half-angle Θfov, and any ǫ > 0, the worst-case total angle traversed by Sn while performing a correct

algorithm with n− 1 other spacecraft is identical to the worst-case total angle traversed by a spacecraft

with sensor cone half-angle Θfov + ǫ performing a correct algorithm with one other spacecraft.

Proof. Let tworst be the worst-case time for 2 spacecraft to find each other given a maximum angular

velocity of ωmax. Clearly the worst-case time for n craft is no worse then this. Pick the initial conditions

of the first n− 1 spacecraft arbitrarily. Let C be the set of communications the first n− 1 craft would

send if they start from these conditions and fail to achieve sensor lock with Sn by time tworst. Let T

be the trajectory Sn would take given communications C. Let At be the algorithm for two spacecraft,

S1 and S2, under which each S1 blindly follows T and S2 maintains the opposing sensor constraint

with respect to S1. Let Pworst and vworst be the initial position and velocity of S1 with respect to S2

that achieves the worst-case total angle traversed for S1 under At. In the n spacecraft case, pick some
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spacecraft Si. Set the initial position and velocity of Sn with respect to Si to be λPworst and λvworst for

λ such that mint∈[0,tworst](‖Pworst + vworstt‖)λ > rworst
sin (ǫ) . Since S1, · · · , Sn−1 never get more then rworst

apart, these spacecraft are contained within a ball of radius rworst centered at Si. By construction of

λ, these craft stay within an angular ball of ǫ from Sn’s point of view, and thus none of these craft

achieve sensor lock with Sn before time tworst.

Theorem 4.1.9 allows the result from Theorem 4.1.8 to be generalized to any number of

spacecraft. In addition, we will use Theorem 4.1.9 throughout the remainder of the paper to allow us

to analyze worst-case total angle bounds by considering the 2 spacecraft case.

4.1.8 Provably correct formation initialization algorithms

Having given lower bounds on what is necessary for a correct formation initialization solution,

in this section we set out to answer whether the problem as we pose it has a solution. Section 4.1.9

describes an algorithm from the literature for a 2-D variant of this problem. Section 4.1.10 presents

a purely rotational algorithm for formation initialization in 3-D and Theorem 4.1.14 gives a proof of

its correctness. Section 4.1.11 provides an algorithm which comes closer to the optimality bounds

presented in Section 4.1.7 at the expense of other practical considerations. This algorithm is presented

as a demonstration of the tightness of the optimality bounds.

4.1.9 Formation initialization in two dimensions

To prove the correctness of the algorithm in 3-D, we will need a simpler algorithm for the 2-D

case, which we term “in-plane search”. This algorithm, described in Table 4.2, solves the formation

initialization problem for a group of spacecraft residing in a plane, see [45]

Proposition 4.1.10 ([45]). With the spacecraft model in Section 4.1.1, the Planar spacecraft

39



Name: Planar spacecraft localization algorithm

Goal: Solve the Formation Initialization problem in 2-D
Assumes: Spacecraft model in Section 4.1.1

1: if Si ∈ G1 then
2: Turn to common reference orientation Θstart

3: else
4: Turn to Θstart + π

5: end if
6: At synchronized start time ts, begin rotating with constant angular velocity ω > 0. Continue this

rotation for 3π radians.

Table 4.2: The Planar spacecraft localization algorithm.

localization algorithm achieves formation initialization.

Note that the Planar spacecraft localization algorithm achieves the lower bound

from Theorem 4.1.6.

4.1.10 Spatial spacecraft localization algorithm

Both the description of the full 3-D algorithm and its proof of correctness require some addi-

tional specific definitions, that we briefly expose next.

For the purpose of this algorithm, we will define Θtilt = min{Θsun, Θfov} and assume Θfov ≥ π
4 .

Definition 4.1.11. Let S be a spacecraft. Define

• R1(S) = {~u ∈ CMF (S) : ~u ·XS ≤ 0};

• R2(S) = CMF (S) \R1(S).

Remark 4.1.12. Let Θtilt be an angle such that π
2 − Θfov < Θtilt < Θfov. R1(S) is chosen so as

to be included within the region swept out by spacecraft S’s sensor cone while it is tilted by an angle

Θtilt towards the sun axis and performing a 3π rotation about the sun axis. R2(S) is chosen so as to be

included within the region swept out by spacecraft S’s sensor cone while it is tilted π
2−Θfov < Θtilt < Θfov
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away from the sun axis and performing a 3π rotation about the sun axis. Also, note that in the frame

CMF (S), R1(S) ∪R2(S) = R
3. •

The full 3-D algorithm will invoke the subroutine described in Table 4.3.

Name: 3-D region sweep algorithm

Goal: Scan a region for use as a subroutine by Spatial spacecraft localization

algorithm
Inputs: (i) A spacecraft, Si

(ii) An integer, n ∈ {1, 2}, indicating the region to be swept

Assumes: (i) Spacecraft model in Section 4.1.1.
(ii) Θfov ≥ π

4 and Θfov + Θsun ≥ π
2 .

Require: At the start of this subroutine, there exist matrices M1, M2 ∈ SO(3) such that for all
Si ∈ G1, MSi

= M1, for all Sj ∈ G2, MSj
= M2, M1[1, 0, 0]T = M2[1, 0, 0]T and M1[0, 0, 1]T =

−M2[0, 0, 1]T .
Require: At the start of this subroutine, [0, 0, 1]M1[0, 1, 0]T = 0.
1: Set Θrot = [0, 0, 1]MS [0, 0, 1]T (−1n) ·Θtilt

2: Rotate by Θrot about YSi

3: Begin rotating about XSi
by a constant angular velocity ω. Continue this rotation for 3π radians

and then stop.
4: Rotate by Θrot about YSi

Table 4.3: The 3-D region sweep algorithm.

At the end of the execution of the 3-D region sweep algorithm, if Si is in G1, then Rn(Si)

has been swept, otherwise Si has maintained an orientation such that for all Sj in G1 MSi
[0, 0, 1]T =

−MSj
[0, 0, 1]T . With these ingredients, we can now define the Spatial spacecraft localization

algorithm in Table 4.4.

Let us discuss the correctness of the Spatial spacecraft localization algorithm. As in

Section 4.1.9, we reduce the problem to that of two spacecraft finding each other. Call these spacecraft

S1 ∈ G1 and S2 ∈ G2. Recall that S2’s motion in CMF (S1) is along a straight line with constant

velocity. Consider then the two half-spaces defined by the {Y, Z} plane in CMF (S1). Because S2

moves with constant velocity with respect to S1, it can cross from one half-space to the other at most

once. The paths it can take are as follows. S2 can begin in R1(S1) and cross to R2(S1) at most once.
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Name: Spatial spacecraft localization algorithm

Goal: Solve the Formation Initialization problem in 3-D
Assumes: (i) Spacecraft model in Section 4.1.1.

(ii) Θfov ≥ π
4 and Θfov + Θsun ≥ π

2 .

1: if Si ∈ G1 then
2: Rotate to align MSi

with I3

3: else
4: Rotate to align MSi

with Mopp

5: end if
6: Wait for common start time ts
7: Call 3-D region sweep algorithm on Si and R1(Si)
8: Call 3-D region sweep algorithm on Si and R2(Si)
9: Call 3-D region sweep algorithm on Si and R1(Si)

Table 4.4: The Spatial spacecraft localization algorithm.

Likewise S2 can begin in R2(S1) and cross into R1(S1) at most once.

Because we make no assumptions about the speed at which these spacecraft take these paths,

or at which part of the path they start, handling these cases will automatically handle the cases for

paths that fail to cross the {Y, Z} plane.

Lemma 4.1.13 (Partial reduction to in-plane search). Doing a 3π sweep (turning about the sun line)

through Rn(S), n ∈ {1, 2}, S ∈ G1, finds all spacecraft in G2 that stay in Rn(S) during the entire

duration of the 3π rotation.

Proof. Projecting the centerline of the cone and the spacecraft path onto the {Y, Z} plane in CMF (S)

reduces this to the 2-D algorithm. In the cases where Rn(S) contains points which project directly onto

(0, 0) there can be a collision in the 2-D projection which does not correspond to a collision of the craft

in 3-D. In these cases, the sensor cone of S1 always contains all such points, and any colliding craft are

found.

Finally, we are in a position to establish the correctness of the full 3-D algorithm.
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Theorem 4.1.14. With the spacecraft model in Section 4.1.1, the Spatial spacecraft localization

algorithm solves the formation initialization problem.

Proof. Consider two spacecraft, S1 and S2. Let S2 start in Rbegin(S1) and end in Rend(S1). If

Rbegin(S1) = Rend(S1) we are done. Otherwise S1 must scan Rend(S1) at least once after the first

scan of Rbegin(S1). If the scan of Rbegin(S1) did not find S2, then S2 must be in Rend(S1)

If S2 never crosses the {Y, Z} plane, either the scan of R1(S1) or the scan of R2(S1) must find

it. Otherwise, S2 starts in one region and ends in the other. The sequence of region sweeps performed

by S1 guarantee that S1 will scan the region S2 starts in at least once before scanning the region S2

ends in. If S2 is not found when S1 first performs a sweep of the region in which S2 begins (call this

Rbegin(S1)), then S2 must be in the remaining region (Rend(S1)) by the end of the sweep. Since this was

the first sweep of Rbegin(S1), S1 must scan at Rend(S1) at least once after this point and find S2.

Remark 4.1.15. The Spatial spacecraft localization algorithm sweeps a total solid angle of

9π + 5Θtilt

sin Θfov
and performs rotations totaling 9π + 5Θtilt, where Θtilt = min (π

2 −Θfov, Θsun). •

4.1.11 Wait and check algorithm

As pointed out in Remark 4.1.15, the provably correct Spatial spacecraft localization

algorithm is far from optimal both in terms of total angle traversed and solid angle covered. In what

follows, we introduce the Wait and check algorithm (cf. Table 4.5). This algorithm has a much

better performance with regards to solid angle covered, at the expense of a longer execution time. After

establishing its correctness in Theorem 4.1.17, we show how to modify it to achieve an optimal total

rotation given its solid angle covered (cf. Remark 4.1.18).

The next lemma will be used in establishing the correctness of the Wait and check algo-

rithm.
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Name: Wait and check algorithm

Goal: Solve the formation initialization problem using near-optimal solid angle cov-
erage.

Assumes: (i) Spacecraft model in Section 4.1.1.
(ii) Θfov > π

4 .

1: Define Θǫ = Θfov − π
4

2: if Si ∈ G1 then
3: Rotate to align MSi

with I3

4: else
5: Rotate to align MSi

with Mopp

6: end if
7: Wait for common start time ts

8: Rotate by π
4 about YSi

{Call the time at the end of this step t1}
9: Rotate about XSi

by 2π with angular velocity ω{Call this time t2}
10: Wait

tan ( π
2
−Θǫ)

Θǫ
(t2 − t1){Call this time t3}

11: Rotate about YSi
by −π

2 {Call this time t4}
12: Rotate about XSi

by 3π with angular velocity ω{Call this time t5}
13: Rotate about YSi

by −π
2 {Call this time t6}

14: Wait
tan ( π

2
−Θǫ)

Θǫ
(t5 − t1){Call this time t1}

15: Rotate about XSi
by 2π with angular velocity ω{Call this time t7}

Table 4.5: The Wait and check algorithm.
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Lemma 4.1.16. Consider a spacecraft S2 traveling in a path with respect to S1 with velocity VS2

and point of closest approach pcl(S1, S2). Let Π1,2 be the plane in CMF (S1) spanned by the vec-

tors pcl(S1, S2) and VS2. Define a parametrization of vectors in Π1,2 by the function Θscan(P ) =

arctan (pcl(S1, S2) · P,−VS2 · P ). For any angles Θ ∈ [0, π] and ǫ ∈ [0, Θ], if S1 first verifies that

Θscan(PS2) < Θ − ǫ at time t1 and then verifies that Θscan(PS2) > Θ + ǫ at time t2, then by time

t2 +
tan ( π

2
−ǫ)

ǫ
(t2 − t1), S2 will be within ǫ of its final angle.

Proof. Since Θscan(PS2(t2))−Θscan(PS2(t1)) > 2ǫ,
‖VS2

‖
‖pcl(S1,S2)‖ is at least 2ǫ

t2−t1
. Θscan(PS2(

tan ( π
2
−ǫ)

ǫ
(t2−

t1))) ≥ arctan (tan (Θ + ǫ) + 2ǫ
t2−t1

tan ( π
2
−ǫ)

ǫ
(t2 − t1)) ≥ π − ǫ.

Next, we characterize the correctness of the Wait and check algorithm.

Theorem 4.1.17. The Wait and check algorithm correctly solves the formation initialization

problem.

Proof. Consider a spacecraft, S1. Any other spacecraft whose X position is less than zero at time t1

must either be found, cross the {Y, Z} plane, or cross the {X, Z} plane before t2. If S2 crossed the

{X, Z} plane between t1 and t2 and was not found, then it must have been moving with sufficient

velocity to have moved to within Θǫ of its final angle by time t3. By this logic, by t3, any craft with a

final angle corresponding to a positive X component of position must have been found by time t2, or be

on the +X side of the {Y, Z} plane by time t3. Between t4 and t5 all such craft are found, along with

any craft that started on the +X side of the {Y, Z} plane and have not left it by t5 (by Lemma 4.1.16).

Any craft which have left the +X side of the {Y, Z} plane by t5 but were not found during the sweep

of the −X half of the {Y, Z} plane must have been moving with sufficient angular velocity as to be

within Θǫ of their final angles (on the −X half of the {Y, Z} plane) by t6 (cf. Lemma 4.1.16). For this

reason, the final sweep of the −X side of the {Y, Z} plane need only be a 2π sweep.
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Remark 4.1.18 (Angle-optimal region sweeps). The Wait and check algorithm covers a solid

angle of 7π+ 5Θtilt

sin (Θtilt)
. Clearly, the ratio of total angle traversed to solid angle covered in the Wait and

check algorithm is not at the optimal 1
2 sin(Θfov)

. The algorithm can be modified to traverse a total

angle of 7π sin(Θtilt)+5Θtilt, where Θtilt = min (π/2−Θfov, Θsun, Θfov), at the expense of not respecting

the sun-angle constraint. We describe how next. The optimal ratio of total angle traversed to solid

angle covered is achievable for any rotational trajectory of ~vSENSOR(S) over time. While a rotational

velocity, ω, specifies the instantaneous rotation of the entire body frame of S, the instantaneous motion

of ~vSENSOR(S) only fixes two degrees of freedom of this rotation. By choosing ω to lie along ~vSENSOR(S)×

d
dt

~vSENSOR(S), we can always achieve the maximum instantaneous fsld(ω)/‖ω‖.

Let us suppose that ~vSENSOR(S) is within an angle of π
2 − α of the sun line, and we wish for

~vSENSOR(S) to sweep out the arc defined by Cα = {~v ∈ R
3 : ‖~v‖ = 1 ∧ arccos (~v · ~vSUN) = π

2 − α}.

At any instant during which ~vSENSOR(S) ∈ Cα, the optimal axis of rotation, ω, is both perpendicular

to ~vSENSOR(S) and guarantees ~vSENSOR(S) remains in Cα. One such ω always lies on a cone which

we will define as Ctumble = {~v ∈ R
3 : ‖~v‖ = 1 ∧ arccos (~v · ~vSUN) = α}, see Figure 4.4. Note that the

body frame, BF (S) does not move with respect to CMF (S) at any point along the axis ω. When the

sweeps about the sun line of the Wait and check algorithm are executed as we just described, the

algorithm requires a total angular rotation of 7π√
2

+ 5Θtilt. •
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ωCMF(S)
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Figure 4.4: Performing a sweep of 2π with less then 2π rotation

47



Part III

Instantaneous connectivity of graphs

induced by inter-agent distance
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Chapter 5

Connectivity maintenance solution

5.1 The Connectivity Maintenance Algorithm

This section introduces the Connectivity Maintenance (abbreviated CM) Algorithm.

By itself, the algorithm does not invoke either physical agents or their mobility, and fits within common

frameworks of distributed algorithms.

5.1.1 Algorithm description

Given a coordination task and a motion coordination algorithm to achieve it, maintaining a

fixed set spanning tree throughout the evolution will guarantee connectivity preservation but, in general,

will interfere in the optimal achievement of the task. The Connectivity Maintenance Algorithm

is a procedure that, coupled with individual motion control strategies of the network agents, maintains

an evolving spanning tree of the communication graph. The underlying idea is that if the motion of

the robots is constrained to not break any links of the spanning tree, the communication graph will

remain connected as well. Let us begin by describing the algorithm informally.

[Informal description:] Each robot maintains a reference to its parent in the spanning tree.
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At pre-arranged times, each robot is allowed to change its parent, in accordance with a
set of preferences specified in suitable way (normally, by a motion coordination algorithm).
Connectivity is then preserved as follows. Each robot keeps an estimate of its depth, i.e.,
the distance to the root in the spanning tree. If no robot picks a robot of greater depth
than its parent’s, then no robot will pick one of its current descendants as a parent node.
To allow robots to attach to potential parents of the same depth estimate, a tie-breaking
algorithm based on UIDs is used to prevent the formation of cycles, thus maintaining the
spanning tree property.

5.1.1.1 Formal definition

Next, we provide a formal definition using the formalism described in Section 2.1. Given a

network S with communication links determined by proximity graph G, the Connectivity Main-

tenance Algorithm is an input-output control and communication law CC for S consisting of the

sets:

(i) L = W ;

(ii) W = N× Z4 × Z
3
n × Zn ∪ {∅} × Z2, are sets of values of the variables

w[i] = (dpth
[i]
est, phase[i], f

[i]
p , g

[i]
p , n

[i]
root, n

[i]
dep-targ, I

[i]
par-less),

for i ∈ Zn.

The meaning of the components of w[i] is as follows. dpth
[i]
est is a depth estimate. phase[i] is a

round counter indicating the current mode of the algorithm. f
[i]
p is a parent identifier. g

[i]
p is a proposed

next parent. n
[i]
root indicates the UID of the root of the tree containing agent i. n

[i]
dep-targ is the UID of

an agent which i would like to attach to as a parent. It is the most preferred parent among those which

the algorithms coupled with CM Algorithm allow (more details are provided below when we discuss

Win
[i]). Note that i may not be allowed by the algorithm to propose that n

[i]
dep-targ be its next parent,

for which reason g
[i]
p might not equal n

[i]
dep-targ. Finally, I

[i]
par-less is a Boolean indicator denoting whether

i’s parent f
[i]
p had a strictly smaller depth estimate than i as of the most recent communication round.
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If n
[i]
root is different from 0 for some agent i, then the tree needs to be repaired. n

[i]
dep-targ is also used as

an output logic variable, signaling that robot i wishes to increase dpth
[i]
est with the goal of attaching to

n
[i]
dep-targ;

(iii) W
[i]
0 = {(0, 0, i, i, i, ∅, false)} ⊆ W , i ∈ Zn. Note that f

[i]
p = i and dpth

[i]
est = 0 for i ∈ Zn. Also

note that the tree is initially in need of repair;

(iv) Win, are sets of values of input variables, win
[i], i ∈ Zn, given by

win
[i] =(I

[i]
incr-dep, n

[i]
incr-sgnl, R

[i]
pref, f

[i]
allow) ∈

Z2 × Zn ∪ {∅} ×R(Zn, Zn)× F(Zn; {true, false}).

The meaning of the components of win is as follows. I
[i]
incr-dep is a Boolean variable that

determines whether the agent’s depth estimate update is in a special mode to allow for more flexible

re-arrangements. n
[i]
incr-sgnl is the identity of an agent which is in the special mode indicated by I

[·]
incr-dep.

R
[i]
pref is a strict order relation ranking the order in which node i would prefer to attach to each other

node as its parent: (j, k) ∈ R
[i]
pref means node i would prefer to attach to j over k. We stipulate that

each R
[i]
pref must satisfy (j, i) ∈ R

[i]
pref for all j ∈ {0, . . . , n − 1} \ {i} and that n

[j]
root < n

[k]
root implies

(j, k) ∈ R
[i]
pref. R

[i]
pref can be thought of as a symbol string representing computation to be performed to

evaluate whether (j, k) ∈ R
[i]
pref. Finally, f

[i]
allow : Zn → {true, false} is a function which maps a node j to

true if and only if the algorithm supplying f
[i]
allow will allow dpth

[i]
est to increase in order for i to attach

to j under the CM Algorithm;

(v) Win,0
[i] = {(false, ∅, Ri−init, f

[i]
allow)}, where (j, k) ∈ Ri−init if n

[j]
root < n

[k]
root or n

[j]
root =

n
[k]
root and ((k = i and j 6= i) or j < k), and f

[i]
allow ≡ false;
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(vi) Wout = Zn × F(Zn)× F(Zn)× Zn ∪ {∅} are sets of values of output variables

wout
[i] = (f

[i]
p , S

[i]
constraints, S

[i]
children, n

[i]
dep-targ),

for i ∈ Zn.

The meaning of the components of Wout is as follows. f
[i]
p (taken from W [i]) specifies the parent

of agent i to the motion control algorithm. S
[i]
constraints = {j ∈ Zn : n

[j]
root 6= n

[i]
root} is the set of agents

whose estimate of their root nodes are different from those of i and S
[i]
children = {j ∈ Zn : f

[j]
p = i}

are the children of i in the constraint tree. If every i maintains connectivity with each agent in

{f [i]
p } ∪ S

[i]
constraints ∪ S

[i]
children, then the communication graph remains connected. n

[i]
dep-targ ∈ Zn ∪ {∅} is

copied from W and used to signal which agents i wants to increase depth to connect to;

and of the maps:

(i) function msg(x, w, win, j) = w;

(ii) function stfio−slf(w, win, l) =

1: if n
[id]
root = id then

2: Set nmax ← id(n + 1)

3: else

4: Set nmax ← n
[id]
root(n + 1) + n

5: end if{If proposed parent has same depth as id, is trying to change its parent, and idis greater

than my proposed parent’s UID and the UIDs of any nodes that have proposed attaching to

me as a parent, then keep current parent. Otherwise choose proposed parent}

6: if phase[id] = 0 then

7: if g
[g

[id]
p ]

p 6= f
[g

[id]
p ]

p , dpth
[g

[id]
p ]

est = dpth
[id]
est and id > max {j : g

[j]
p = id ∨ j = g

[id]
p } then
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8: Set g
[id]
p ← f

[id]
p

9: else

10: Set f
[id]
p ← g

[id]
p {We call this the “re-attach” step}

11: end if

12: end if

13: if phase[id] = 1 {Update depth estimate} then

14: if I
[i]
incr-dep = false then

15: Set dpth
[id]
est ← min(dpth

[f
[id]
p ]

est + 1, nmax)

16: else

17: Set dpth
[id]
est ← min(dpth

[id]
est + 1, nmax)

18: end if

19: end if

20: if phase[id] = 2 then

21: Set I
[id]
par-less ← false

22: if dpth
[f

[id]
p ]

est < dpth
[id]
est then

23: Set I
[id]
par-less ← true

24: end if

25: end if{As a worst-case solution, consider attaching to yourself. By definition of R
[i]
pref, this

does not happen unless there are no other options}

26: if phase[id] = 3 {Here we pick g
[i]
p and n

[i]
dep-targ according to R

[i]
pref among the appropriate sets

of allowable values} then

27: Let S< = {j ∈ N (id) : dpth
[j]
est < dpth

[id]
est or f

[j]
p = f

[id]
p or dpth

[j]
est = dpth

[id]
est and I

[j]
par-less =

true or j = i}
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28: Let g
[id]
p ← some element of {j ∈ S< : 6 ∃k, (k, j) ∈ R

[id]
pref, k ∈ S<}

29: if {j ∈ S< : 6 ∃k, (k, j) ∈ R
[id]
pref, k ∈ S<} = {f [id]

p } then

30: Let Ssgnl ← {j ∈ N (id) : f
[i]
allow(j) = true}

31: Let n
[id]
dep-targ ← {j ∈ Ssgnl : 6 ∃k ∈ Ssgnl, (k, j) ∈ R

[id]
pref}

32: if n
[id]
dep-targ = id or n

[id]
dep-targ = f

[id]
p then

33: n
[id]
dep-targ ← some element of {j ∈ N (id) : 6 ∃k ∈ N (id), (k, j) ∈ R

[id]
pref}

34: end if

35: else

36: n
[id]
dep-targ ← ∅

37: end if

38: end if

39: if f
[id]
p = id then

40: Set n
[id]
root ← id

41: else

42: Set n
[id]
root ← n

[f
[id]
p ]

root

43: end if

44: Set phase[id] ← (phase[id] + 1)mod 4

45: return (dpth
[id]
est , phase[id], f

[id]
p , g

[id]
p , n

[id]
root, n

[id]
dep-targ, I

[id]
par-less)

In the update step of phase[id] = 2, there are two possible depth update steps, one on line 12: and

the other on line 14:. Line 12: is an update rule which, if universally followed, causes each agent’s

depth estimate, dpth
[·]
est, to converge on its actual depth in the tree. Line 14: is used when one

agent wants to deliberately increase its depth estimate above its actual depth in order to attach

to another desired agent. Usage of line14: will be discussed in more detail in Section 5.4.1. Note
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that 9: is labelled as the “re-attach” step. We will use this nomenclature throughout the paper;

(iii) function stfio-out(w, win, l) = (f
[id]
p , {j ∈ N (i) : n

[j]
root 6= n

[i]
root}, {j ∈ N (i) : f

[j]
p = i}, n[i]

dep-targ).

(iv) ctl(xtℓ , x, w, win) = 0.

5.1.2 Depth-compatible and motion-compatible algorithms

We intend for the Connectivity Maintenance Algorithm to be coupled with two classes

of input-output laws. The first class of algorithms, that we term depth-compatible, specify the update

depth rule to be used by the Connectivity Maintenance Algorithm by setting the value of the

variable I
[i]
incr-dep for each agent after receiving the value of n

[i]
dep-targ. The second class of algorithms,

that we term motion-compatible, specify the dynamics of the network agents subject to connectivity

constraints and specifies the set of preferences R
[i]
pref for each agent.

We begin by formalizing the notion of depth-compatible algorithm.

Definition 5.1.1. An input-output control and communication law CCd is depth compatible with CM

if the following hold:

• Win = Zn ∪ {∅} are sets of values of input logic variables win
[i] = n

[i]
dep-targ for i ∈ I;

• Wout, are sets of values of output logic variables, (I
[i]
incr-dep, n

[i]
incr-sgnl, f

[i]
allow) ∈ Z2 × Zn ∪ {∅} ×

F(ZN ; {true, false});

• The composition with CM Algorithm guarantees that the maximum depth estimate dpth
[·]
est that

any agent i having n
[i]
root = 0 holds for more than 4 rounds is bounded from above by a function of

the number of agents n.

Combining an algorithm which is depth compatible with CM yields a new input-output control

and communication law. The simplest algorithm which is depth compatible with CM, and the one
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we assume unless otherwise stated, is Null Depth Increment Algorithm. Essentially, the only

variables that Null Depth Increment Algorithm specifies are I
[i]
incr-dep = false and f

[i]
allow ≡ false

for all i ∈ Zn. A formal definition of Null Depth Increment Algorithm can be given in the form

of an input-output control and communication law as in Definition 2.2.1, but we omit it for brevity.

Note that we cap the depth estimate of any given node at a number (denoted by the temporary

variable nmax within the description of CM) determined by the number of agents. We show that this

does not affect the operation under Null Depth Increment Algorithm in the next result.

Theorem 5.1.2. If I
[i]
incr-dep = false and n

[i]
root = 0 for all i ∈ Zn, the following invariant is maintained:

at most n− k nodes have depth estimates greater than or equal to k at any time.

Proof. Assume the result holds for round t. To show the invariant holds at round t + 1, we induct

on the depth estimate, using as the base case the fact that at most n nodes have depth estimate 0.

Let any k nodes, ii, . . . , ik each increase depth (i.e., dpth
[ij ]
est (t + 1) > dpth

[ij ]
est (t) for all j ∈ {1, . . . , k})

according to dpth
[ij ]
est (t + 1) ← dpth

[f
[ij ]
p ]

est (t) + 1, j ∈ {1, . . . , k} (nmax does not appear, as it is greater

than the maximum value of dpth
[·]
est of any agent we are considering). To have greater depth at t + 1

than on round t, each ij must have had a parent, f
[ij ]
p , having dpth

[f
[ij ]
p ]

est (t) = dpth
[ij ]
est (t). Without loss

of generality, let i1 be the agent with the least depth at round t. By our induction hypothesis, there

were at most n−dpth
[i1]
est (t) nodes at depth dpth

[i1]
est (t) or greater on round t. Thus, there were at most

n−dpth
[i1]
est (t)−k−1 already at depth estimates ≥ dpth

[i1]
est (t), since k must have been at depth estimate

dpth
[i1]
est to increase at round t+1, and at least one node must have been at depth dpth

[f
[i1]
p ]

est . This gives

us at most n− dpth
[i1]
est (t)− k − 1 + k nodes at depth dpth

[i1]
est (t) + 1 or greater at time t + 1.

The operation of CM Algorithm composed with Null Depth Increment Algorithm is

illustrated in Figure 5.1.
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id = 4
dpth

[·]
est = 1

id = 5

dpth
[·]
est = 1dpth

[·]
est = 1

id = 3

(a)

id = 4
dpth

[·]
est = 1

id = 5

dpth
[·]
est = 1dpth

[·]
est = 1

id = 3

(b)

dpth
[·]
est = 1

id = 5

dpth
[·]
est = 2dpth

[·]
est = 2

id = 3id = 4

(c)

Figure 5.1: Illustration of CM Algorithm combined with Null Depth Increment Algorithm.

Frame (a) indicates connections of the form (i, f
[i]
p ) as solid arrows and (i, g

[i]
p ) as dashed arrows. Frame

(b) illustrates the constraint tree after steps 5: through 9: of CM Algorithm. Frame (c) shows the
result of the depth update in lines 10: through 14:.

We end this section by formalizing the notion of motion-compatible algorithms. As we will see

later, certain properties of the dynamics of the communication graph need to hold for the correctness

properties of CM Algorithm to hold, and these are captured in the following notion.

Definition 5.1.3. An input-output control and communication law CCd is motion compatible with

CM if the following hold:

• Win = Zn × F(Zn)× F(Zn)× Zn ∪ {∅}, win
[i] = (f

[i]
p , S

[i]
constraints, S

[i]
children, n

[i]
dep-targ) for i ∈ I;

• Wout = R(Zn, Zn), wout
[i] = R

[i]
pref, for i ∈ I;

• When combined with CM Algorithm, the following hold: the time schedule, output state transi-

tion function, and control function of CCd are such that the control function is guaranteed never

to induce a motion which causes (i, g
[i]
p ) or (i, f

[i]
p ) to cease to be an edge of the underlying prox-

imity graph. We require that these also guarantee that no edge, (i, j), of the underlying graph,

having n
[i]
root 6= n

[j]
root, ever be broken. Note that S

[i]
constraints is exactly {j ∈ N (i) : n

[j]
root 6= n

[i]
root}.
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5.2 Correctness analysis

In this section, we analyze the correctness of Connectivity Maintenance Algorithm

when combined with any algorithm which is motion compatible with CM and any algorithm which

is depth compatible with CM. We show that connectivity is preserved throughout the execution of

the algorithm and also analyze its tree repair properties. We start by characterizing the topological

properties of the constraint tree under Connectivity Maintenance Algorithm.

For convenience, in the forthcoming analysis, we let rnd(t) ∈ N be the number of times the

assignment phase[i] ← 2 has been made at time t. We denote the value of, say dpth
[i]
est at iteration

rnd(t), by dpth
[i]
est(rnd(t)).

Theorem 5.2.1. The execution of the CM Algorithm verifies that

(i) dpth
[i]
est(rnd(t)) ≤ dpth

[i]
est(rnd(t)− 1) + 1,

(ii) dpth
[i]
est(rnd(t)) ≥ dpth

[f
[i]
p ]

est (rnd(t)),

for i ∈ Zn, where for convenience, dpth
[i]
est(r) = dpth

[i]
T (t0) for all rounds r ≤ 0. Thus, at any time

t ≥ 0, if k is an ancestor of i, then dpth
[i]
est(rnd(t)) ≥ dpth

[k]
est(rnd(t)).

Proof. Note that either lines 12: or 14: of stfio−slf for CM Algorithm, cf. Section 5.1.1.1, are the

only steps where the value of dpth
[i]
est is modified. We refer to either of these steps as the update

rule. Step 14: trivially maintains (i). To show 12: also maintains (i), we induct on the current

round, rnd(t). Let j be f
[i]
p at iteration rnd(t). This can only happen because either (a) j became

i’s parent due to a re-attach or (b) j was i’s parent at rnd(t) − 1. In case (a), the re-attach requires

dpth
[j]
est(rnd(t)−1) ≤ dpth

[i]
est(rnd(t)−1), and this implies that dpth

[i]
est(rnd(t)) ≤ dpth

[i]
est(rnd(t)−1)+1.

In case (b), dpth
[i]
est(rnd(t) − 1) = dpth

[j]
est(rnd(t) − 2) + 1. The induction hypothesis implies that
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dpth
[j]
est(rnd(t) − 1) ≤ dpth

[j]
est(rnd(t) − 2) + 1, and therefore dpth

[i]
est(rnd(t)) ≤ dpth

[i]
est(rnd(t) − 1) + 1.

To prove (ii), we note that either i has attached to f
[i]
p more recently than dpth

[f
[i]
p ]

est has changed, or,

by the update rule, dpth
[i]
est(rnd(t)) ≥ dpth

[f
[i]
p ]

est (rnd(t) − 1) + 1, from which we get dpth
[i]
est(rnd(t)) ≥

dpth
[f

[i]
p ]

est (rnd(t), which concludes the result.

The above result is key in showing that if the constraint tree begins with k connected com-

ponents, then, under certain technical conditions, the CM Algorithm is guaranteed to preserve their

connectivity. In particular, if the constraint tree begins connected, k = 1, then it will remain connected

throughout the execution of the algorithm,

Theorem 5.2.2. Assume the graph induced by (i, f
[i]
p ), i ∈ Zn starts with k disjoint connected compo-

nents. Then, at all times during the execution of CM Algorithm, the graph induced by the parent

relation among the agents contains no cycles other than those it started with (and, having n edges,

retains at most k disjoint connected components), so long as no edge of the form (i, f
[i]
p ) or (i, g

[i]
p )

disappears from the underlying graph.

Proof. Obviously the removal of an edge of the form (i, f
[i]
p ) causes the algorithm to set f

[i]
p ← i,

potentially introducing a new cycle. Barring this possibility, let us proceed with the rest of the proof.

We assume the introduction of a new cycle and proceed by contradiction. Any cycle in the graph must

consist entirely of agents having the same depth estimate (this follows from dpth
[i]
est ≥ dpth

[f
[i]
p ]

est from

Theorem 5.2.1 and the fact that for a cycle C, we have
∑

i∈C dpth
[i]
est − dpth

[f
[i]
p ]

est = 0). During the four

communication rounds, cf. Section 5.1.1.1, leading up to the creation of any cycle, all agents involved

in the cycle must have the same depth estimate as well, otherwise there exists either an agent i ∈ C

having dpth
[f

[i]
p ]

est > dpth
[i]
est, which violates Theorem 5.2.1, or an agent i ∈ C having dpth

[g
[i]
p ]

est > dpth
[i]
est,

a choice which is prohibited by step 20: of the CM Algorithm. When a cycle first appears, it must

appear due to some agent i connecting to a new parent j with the same depth estimate. However, this
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new parent must, in turn, attach to an agent of the same depth estimate. It cannot have had a parent

of the same depth estimate before the cycle was created, as that would have set I
[j]
par-less = false and

prevented i from connecting to j. This argument can be carried all the way around the cycle, C, and we

can conclude that for each agent k ∈ C, k attached to a new parent at the time the cycle was formed.

Here we invoke the UID-based tie-breaking scheme of step 6:, and note that some agent i in this cycle

must have been greater than either of its neighbors in C, which explicitly triggers the execution of step

7:, preventing i from attaching to g
[i]
p and thus preventing the formation of a cycle.

The above result is the basis for our study in Section 5.3 of the repair properties of the CM

Algorithm. The following result is a direct consequence.

Corollary 5.2.3. Since no node i with n
[i]
root = 0 prefers to attach to a node j with n

[j]
root 6= 0, if no

edges of the form (i, f
[i]
p ) or (i, g

[i]
p ) are removed, the graph of (i, f

[i]
p ) for i having n

[i]
root = 0 remains

connected and never decreases in size.

5.3 Tree repair properties

We begin this section by showing that it is impossible to make a repair algorithm which allows

links to break while at the same time handling all possible agent failures. This justifies our ensuing

study of the link repair properties of CM Algorithm.

We divide our analysis in three parts. In Section 5.3.1, we show that repair works under the

CM Algorithm if the underlying network remains connected. The agents’ mobility might break the

connectivity of the underlying network. In Section 5.3.2, we introduce the restricted graph on k, for

k ∈ Zn, which is a key notion for establishing the repair properties in the dynamic case. Section 5.3.3

establishes the repair properties of CM Algorithm. Theorem 5.3.8 shows that any network config-
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uration belonging to a wide class of configurations result in the network remaining connected for all

time. Corollary 5.3.9 and Theorem 5.3.11 show that this class of configurations represent encompass

situations where the network starts from an initially disconnected tree and becomes connected O(n)

rounds after the initial failure.

Let us begin with the impossibility result mentioned above.

Theorem 5.3.1. There is no distributed repair algorithm which can allow links to break and, at the

same time, recover from all possible underlying hardware failures which leave the communication graph

connected.

Proof. Consider an edge between agents i and j which can safely be broken at time t in the absence of

underlying hardware failures. Let there be a cut of the graph which includes (i, j) and no other links

sharing nodes i and j. The remaining edges in the cut could be severed by hardware failure immediately

after the algorithm informs i and j that their link is safe to break, and the information would require

at least one round to reach i and j.

5.3.1 Repair properties when the underlying graph is connected

Here, we study the repair properties when the underlying graph remains connected.

Lemma 5.3.2. For any node i ∈ Zn, if n
[i]
root stays constant for k ≤ n

[i]
root(n+1) iterations, and no link

failures happen in the intervening time, then, at the end of these iterations, dpth
[i]
est ≥ k.

Proof. We induct on the number of iterations. At iteration 0 each node, i, satisfies dpth
[i]
est ≥ 0. By the

update rule, dpth
[i]
est at iteration k gets 1 more than the depth estimate of f

[i]
p at iteration k − 1. Since

no node ever attaches to a parent with greater n
[·]
root, n

[f
[i]
p ]

root must have been greater than or equal to
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n
[i]
root for all k − 1 previous iterations, and, by induction, dpth

[f
[i]
p ]

est must have been at least k − 1. This

makes dpth
[i]
est at least 1 + (k − 1) = k at the end of the kth iteration.

The next result shows that this algorithm can repair breaks in the spanning tree whenever

the underlying graph remains connected.

Theorem 5.3.3. Let the communication graph of some component, K, of the network remain connected

and not connect to any other components. Assume the (not necessarily connected) constraint tree is

such that the only cycles are self-loops (i.e., i = f
[i]
p ). Let idK be the smallest UID of any node in the

connected component, and denote the number of agents in the component by nK . Within idK(n + 1) +

n + nK iterations of CM Algorithm, every node, i ∈ K, will have n
[i]
root = idK .

Proof. By Lemma 5.3.2 within (idK + 1)(n+1) rounds each node i with n
[i]
root > idK will have dpth

[i]
est ≥

(idK + 1)(n + 1) > idK(n + 1). Since the underlying graph remains connected at all times, there is

some node i having n
[i]
root 6= idK with an edge (in the underlying graph) between itself and some j

having n
[j]
root = idK . Agent i will prefer to attach to nodes {j ∈ Zn : n

[j]
root = idK} over all other nodes

(the preference function is constrained so that i prefers to attach to nodes with smaller n
[·]
root, and the

smallest n
[·]
root available is idK). Each of these nodes has dpth

[j]
est ≤ idK(n + 1) + n, so the attach is

allowed. This can happen for at most n iterations before every node i satisfies n
[i]
root = idK .

The above analysis does not work if the underlying graph does not remain connected. Dis-

connection can occur as a result of graph dynamics induced by robot motion. In the next section, we

introduce a useful notion to analyze this more complex situation.
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5.3.2 Restricted graph on k and its properties

Here, we show that motion compatible with CM algorithms enforce connectivity in situations

in which the constraint tree is not fully connected. To do so, we will find it useful to introduce the

following notion.

Definition 5.3.4. The restricted graph on k, denoted Grestr(k), is the graph consisting of all nodes i

having n
[i]
root ≤ k and edges (i, j), where either j = f

[i]
p , i = f

[j]
p , or n

[i]
root 6= n

[j]
root.

Next, proceed to show that n
[·]
root remains monotonically non-increasing along paths from

parent to child whenever the network starts in a state with n
[·]
root monotonically non-increasing along

paths from parent to child.

Lemma 5.3.5. If no edge of the form (i, f
[i]
p ) breaks, CM Algorithm maintains the invariant that

n
[·]
root is monotonically non-increasing along edges from child to parent. As a corollary, the value of

n
[i]
root for any given i is monotonically non-increasing over time, given the first invariant (that n

[·]
root is

monotonically non-increasing along edges from child to parent).

Proof. n
[i]
root can only change by taking on n

[f
[i]
p ]

root , which does not affect the invariant. The value of n
[·]
root

along the path from child to parent can change when a node re-attaches, but each node can only attach

to nodes with n
[·]
root less than or equal to its own value of n

[·]
root.

We next show that any network converges, in a finite number of rounds, to a configuration

where the property required in Lemma 5.3.5 is satisfied.

Lemma 5.3.6. Given any starting condition, any motion compatible with CM algorithm guarantees

that the CM algorithm within n rounds, each agent i will have the property that n
[i]
root ≥ n

[f
[i]
p ]

root .
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Proof. Let S = {i ∈ Zn : n
[f

[i]
p ]

root > n
[i]
root} and S> = {j ∈ Zn : ∃i ∈ S, n

[j]
root ≥ n

[i]
root}. Note that, since

each i ∈ S satisfies that n
[i]
root ≥ n

[j]
root for some j ∈ S (namely j = i), we deduce that S ⊂ S>. We

argue that |S>| decreases by at least one every round. No node, k, will increase n
[k]
root unless its parent

connection is severed (prohibited by motion compatible with CM) or its parent had previously satisfied

n
[f

[k]
p ]

root > n
[k]
root, thus putting k ∈ S>. Thus no node gets added to S>. Let l = argmaxi∈S{n

[f
[i]
p ]

root } and

note that n
[f

[l]
p ]

root > n
[i]
root for all i ∈ S. Since the update rule, n

[l]
root ← n

[f
[l]
p ]

root applies to l, at least one node

must be removed from S> every round. When |S>| = 0, we conclude that S = ∅.

The next result is the crux of our connectivity argument for partially disconnected constraint

trees. Proposition 5.3.7 forms the basis for our arguments linking the repair properties of CM Algo-

rithm to the guarantees provided by any motion compatible with CM algorithm.

Proposition 5.3.7. Given a network which starts with the invariant from Lemma 5.3.5, the following

property is also an invariant of the CM Algorithm when combined with any motion compatible with

CM algorithm: for any two robots i and j having n
[i]
root = n

[j]
root = k, there is a path between i and j in

Grestr(k).

Proof. We will proceed by induction on k. For k = 0, the result follows from Corollary 5.2.3. Assume

the result holds for κ < k. Let the property hold for k on round t− 1. To show it holds for k on round

t, consider the ways in which an edge can be removed from Grestr(k) on round t:

• An edge, (i, j), in Grestr(k) having j 6= f
[i]
p and i 6= f

[j]
p can disappear when n

[i]
root becomes equal

to n
[j]
root.

In this case, either n
[i]
root or n

[j]
root must have been less than k at round t− 1. By Lemma 5.3.5, the value

of n
[i]
root and n

[j]
root can only decrease, making each of these less than k at round t. By the induction
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hypothesis, there must be a path between the two at round t in G
restr(n

[i]
root)

which is also a path in

Grestr(k).

• Node i, having f
[i]
p = h at round t− 1, can change f

[i]
p .

(i) to a new node, j, having n
[j]
root < k.

In this case, either n
[h]
root 6= n

[i]
root, leaving the two connected, or n

[h]
root = n

[i]
root, but since n

[i]
root is the value

n
[j]
root had at round t − 1, n

[i]
root and n

[j]
root must both be less than k, leaving the two connected, by the

induction hypothesis; or

(ii) to a new node, j, having n
[j]
root = k.

If n
[h]
root 6= k at round t, i and h are still connected in Grestr(k). Otherwise, since n

[h]
root never decreases,

we have n
[h]
root = n

[j]
root = n

[i]
root = k at round t − 1 meaning all three of i, j, h had paths between one

another in Grestr(k) at round t − 1. We show that this sort of attach operation does not break the

property we are trying to establish by ordering the attach and update operations in the following way.

First we perform, in (an arbitrary) sequence, all parent re-attach operations from an old parent to

a new parent with n
[·]
root = k. Since this operation does not change the value of n

[·]
root for the node

switching parents, we do not worry about the n
[·]
root update for this kind of event. After showing that

none of these operations individually break the connectivity among agents with n
[·]
root = k in Grestr(k),

we then proceed with the remainder of attach and update operations in the synchronous order in which

they occur in the algorithm, relying on the correctness properties already established to show these

operations correct. First, to show none of the n
[i]
root = n

[j]
root = n

[h]
root = k operations break connectivity

we note, as shown above, that at round t − 1 there is a path between any pair of i, j and h before

the attach. After changing f
[i]
p from h to j, there is still a path from h to j in Grestr(k), meaning there

are paths between i and j (trivially) and between i and h (through path composition) after the event.
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Since all three affected nodes are still interconnected after the event, the connectivity of any pair of

nodes in Grestr(k) is not affected by the re-attach, and we can use the same line of reasoning for the

next re-attach in our sequence.

Finally we note that when a new node, i, sets n
[i]
root = k for the first time, it is entering

Grestr(k) for the first time. It is doing so by attaching (or staying attached) to a node, j, which had

n
[j]
root = k at round t− 1, and thus j was connected to all nodes having n

[·]
root = k at round t− 1. If we

order the sequence of updates again, putting these attaches and n
[·]
root updates before the ones we have

already considered, we show that they also do not break the connectivity among nodes with n
[·]
root = k

in Grestr(k).

5.3.3 Repair properties under dynamic graph conditions

In this section, we study the repair properties of the CM Algorithm when the connectivity of

the underlying graph is evolving. We begin by showing that the algorithm maintains the connectivity

of any network which starts with Grestr(k) connected for k ∈ {0, . . . , n}, provided n
[·]
root is initially

monotonically non-increasing along links from child to parent.

Theorem 5.3.8. Consider the composition of CM Algorithm with a motion compatible with CM

algorithm. Assume the network starts in a configuration where

(i) the restricted graph on n is connected,

(ii) any two agents, i, j ∈ Zn, having n
[i]
root = n

[j]
root = k are connected in Grestr(k), and

(iii) along each path from child node to parent node, the value of n
[·]
root is monotonically non-increasing.

Then, the network remains connected for all time.
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Proof. Consider the links of the graph between rounds t − 1 and t. Each link in the graph is either

between a pair of nodes with the same value of n
[·]
root or between a pair of nodes with different values of

n
[·]
root. By Proposition 5.3.7, any pair of nodes having n

[·]
root = k are connected in Grestr(k) (and thus are

connected in Grestr(n)) at all times for any such starting configuration. Any pair of nodes, i, j, having

n
[i]
root 6= n

[j]
root will be preserved during the motion phase (by properties of motion compatible with CM).

During the computation phase, either n
[i]
root and n

[j]
root will become the same, which guarantees a path

exists between the two in G
restr(n

[i]
root)

and thus in Grestr(n), or n
[i]
root and n

[j]
root will remain different,

in which case the edge will remain in Grestr(n). Since any link , (i, j), either remains in Grestr(n) or

disappears, but provably maintains a path between i and j in Grestr(n), any nodes starting connected

in Grestr(n) will remain so for all time.

Showing that the constraints guaranteed by the notion of motion compatible with CM al-

gorithm achieve Grestr(·)-connectivity is not sufficient to show that failed links are repaired along the

execution. We now proceed to show that connectivity of the underlying graph holds under a more

flexible set of conditions than those proposed in Theorem 5.3.8.

First, let us show that the constraints imposed by the notion of motion compatible with CM

algorithm suffice to guarantee connectivity in the case where we use the repair properties of CM

Algorithm to build our initial spanning tree from the default start state of the algorithm.

Corollary 5.3.9. When CM Algorithm is coupled with a motion compatible with CM algorithm

the following holds: if the network starts in a state where ever node i has f
[i]
p = n

[i]
root = i and the

communication graph is connected, the swarm will stay connected at all time.

As a prelude to the main result, we present Lemma 5.3.10, which shows that n rounds is

sufficient time to satisfy the pre-conditions of Theorem 5.3.8.
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Lemma 5.3.10. Use nk to denote the number of rounds it takes for each node, i, having n
[i]
root = k

to be connected to k in Grestr(k) given that the network starts with a connected underlying graph. This

number obeys the following relationship : nk ≤ n − nk−1 (i.e. within at most n − nk−1 rounds, each

node, i, having n
[i]
root = k will be connected to k in Grestr(k), leaving at most n−nk nodes with n

[·]
root > k).

Proof. From Lemma 5.3.6, note that n
[i]
root ≥ n

[f
[i]
p ]

root holds for each agent i. We will proceed by induction

on k. As in Proposition 5.3.7, our base case, with k = 0 follows from Corollary 5.2.3 of Theorem 5.2.2.

Assume our hypothesis holds for all κ < k. So long as there are nodes with n
[·]
root = k not connected

to k in Grestr(k), at least one such node must have a parent with n
[·]
root < k (any such node must have

a parent other than itself, otherwise it would have UID equal to k). So for each round during which

there are such nodes, one such node must permanently get n
[·]
root < k. No node having n

[·]
root = k which

is connected to k in Grestr(k) after round n(k − 1) ever becomes disconnected because the only way for

edges in Grestr(k) to become severed are

• Through re-attach: however, this guarantees the child node gets a new root. Unless the parent

gets a new root as well, the child remains attached to the parent.

• An edge between i and j in Grestr(k) disappears when i and j get the same value of n
[·]
root, or i

detaches from its old parent, j, and both i and j get the same value of n
[·]
root. Since i and j were

already in Grestr(k), they must get new n
[·]
root values less than k, but by induction, must therefore

be connected in G
restr(n

[i]
root)

.

Since there are at most n−nk−1 nodes which could possibly have n
[·]
root > k− 1, after at most

n − nk−1 more rounds, no nodes having n
[·]
root = k remain unless they are connected to k in Grestr(k).

For each round between round nk−1 and round nk, where nk is the minimum time at which each node

having n
[·]
root = k is connected to k in Grestr(k), at least one node per round goes from n

[·]
root = k to
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n
[·]
root < k, leaving at most n− nk nodes with n

[·]
root > k.

Note that the above result implies 0 ≤ nk ≤ n for each nk. Finally, the next result shows

that after 2n rounds with no underlying hardware failures, once the communication graph becomes

connected, it will remain connected for all time.

Theorem 5.3.11. If the graph starts in any initial state (even if the underlying graph is disconnected),

and the evolution of the network follows the constraints imposed by the notion of motion compatible

with CM algorithm for 2n rounds, then, if the underlying graph becomes connected again, it will stay

connected for all time, thus building a connected constraint tree.

Proof. After n rounds, the value of n
[·]
root along links from children to parents is monotonically non-

increasing by Lemma 5.3.6. By Lemma 5.3.10, which shows that another n rounds suffices to satisfy

the preconditions of Theorem 5.3.8, any time the graph becomes connected, it will remain connected

for all time.

5.4 Reachability properties

Here we examine the reachability properties of the CM Algorithm. Roughly speaking, by

reachability we mean that the algorithm is capable of switching between any two given constrained

trees. After providing a formal definition, we show that the CM Algorithm combined with the Null

Depth Increment Algorithm does not satisfy reachability. This motivates the introduction of a

new depth compatible with CM algorithm, termed Cycle-Detecting Depth Increment Algo-

rithm. After characterizing the execution of the CM Algorithm combined with Cycle-Detecting

Depth Increment Algorithm, we are able to show that the resulting input-output control and

communication law satisfies reachability.
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We begin by defining what it means for one tree to be reachable from another. Note that the

evolution of the constraint tree depends not only on CM Algorithm, but also on the algorithms it is

coupled with. We take this into account in our following definition of reachability.

Definition 5.4.1 (Reachable trees). We say a constraint tree T2 is reachable from a constraint tree T1

with a sequence of underlying graphs {G(t)}t∈N under CM Algorithm coupled with a depth compatible

with CM algorithm A if the following conditions hold for any initial allocation of dpth
[i]
est, i ∈ Zn

satisfying dpth
[0]
est = 0 and dpth

[i]
est ≥ dpth

[f
[i]
p ]

est for all i ∈ Zn.

• i is allowed to set f
[i]
p = j or g

[i]
p = j at round t only if (i, j) ∈ E(G(t)),

• T1 and T2 are subgraphs of each G(t),

• There exists a set of link preferences (values of R
[i]
pref, i ∈ Zn) such that, under CM Algorithm

coupled with A, the constraint tree will eventually settle on T2 if it starts in T1,

Next, we define what is an algorithm that satisfies the reachability property.

Definition 5.4.2. A depth compatible with CM algorithm A satisfies the reachability property if, for

every pair of trees T1 and T2, and any sequence of graphs G(t), having T1 and T2 subgraphs of G(t) for

all t, T2 is reachable from T1 with underlying graphs {G(t)}t∈N under CM Algorithm combined with

A.

Consequently, an algorithm which satisfies the reachability property can drive the constraint

tree to any desired tree given a suitable preference function. It turns out that Null Depth Increment

Algorithm does not satisfy the reachability property, as we show next.

Theorem 5.4.3. The CM Algorithm coupled with Null Depth Increment Algorithm does not

have the reachability property.
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Proof. Let G be the cycle graph on n vertices, with (i, (i + 1)modn) ∈ E(G) for every i ∈ Zn. Let

T1 have f
[n−1]
p = 0 and f

[i]
p = i − 1 for all i other than 0 and n − 1. Let T2 have f

[1]
p = 0 and

f
[i]
p = (i + 1)mod n for all i other than 0 and 1. Let the initial depth estimates, dpth

[i]
est, be equal to

the exact depth of i in the tree T1. Node n− 1 cannot attach to anything other than 0 until node n− 2

has a depth dpth
[n−2]
est ≤ 1. But the only nodes n− 2 can attach to are n− 3 and n− 1. If it attaches

to n− 1 it will get a depth estimate dpth
[n−2]
est = 2. Since n− 3 cannot attach to the root, it will always

have a depth estimate dpth
[n−3]
est ≥ 2, so if n − 2 attaches to n − 3 it will have dpth

[n−2]
est ≥ 3 > 1 thus

preventing node n− 1 from ever attaching to it.

5.4.1 Cycle-Detecting Depth Increment Algorithm

Given the negative result in Theorem 5.4.3, here we introduce a new depth compatible with CM

algorithm, termed Cycle-Detecting Depth Increment Algorithm. Informally, this algorithm

performs two operations, described as follows.

[Informal description:] Each robot stores a “start number”, a “number of descendants”
and a “mapping from child UID to child start number.” At each round, in addition to the
tree constraint information and its “number of descendants”, each node sends the following
information to each neighbor. If the neighbor is a child, it sends the appropriate entry in
its mapping, or, if the child is not in the mapping, it sends its own “start number.” If the
neighbor is not a child, it sends its own “start number.” With the messages received, each
node updates its numbers in the following way. Its “number of descendants” is the sum
of the “number of descendants” information received from each child, plus one (for itself).
Its “start number” is the one received from its parent. For each child it receives a message
from, it adds an entry to its map that is indexed by that child’s UID and has a value of
“the sum, over all children with lesser UID, of the number of descendants of those children,
plus one plus its own start number.”

The formal description of Cycle-Detecting Depth Increment Algorithm as an input-

output control and communication law consists of the sets

(i) L = (Zn ∪ {∅})× Z (further explanation of L will be provided when we introduce msg);
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(ii) W = (Zn ∪ {∅})× Z2 × Z× Z× F(Zn; Z), are sets of values of logic variables

w[i] = (n
[i]
incr-sgnl, I

[i]
incr-dep, n

[i]
start, n

[i]
num-desc, f

[i]
start), i ∈ I,

where n
[i]
incr-sgnl is used to break cycles, while n

[i]
start, n

[i]
num-desc and f

[i]
start are used to detect descen-

dants;

(iii) W
[i]
0 = {(∅, false, 0, 0, f

[i]
start)} ⊂W , with f

[i]
start ≡ 0;

(iv) Win = Zn ∪ {∅}, win
[i] = n

[i]
dep-targ, i ∈ I;

(v) Win,0
[i] = {∅};

(vi) Wout = Z2× (Zn ∪ {∅})×F(Zn; {true, false}), are sets of values of output logic variables wout
[i] =

(I
[i]
incr-dep, n

[i]
incr-sgnl, f

[i]
allow), i ∈ I;

and of the maps:

(i) msg(x, w, win, i) =






(n
[id]
incr-sgnl, f

[id]
start(i)) f

[i]
p = id

(n
[id]
incr-sgnl, n

[id]
num-desc) f

[i]
p 6= id

; Each robot, id sends n
[id]
incr-sgnl to each of

its neighbors, and, to each neighbor j, sends either f
[id]
start(j) to j if f

[j]
p = id or sends n

[id]
num-desc to

j otherwise, with the intent that n
[j]
start will be set to f

[id]
start(j);

(ii) stfio−slf as described in Table 5.1 ;

(iii) stfio-out(win, w, {li}i∈N (id)) = (I
[id]
incr-dep, n

[i]
incr-sgnl, f

[id]
allow), where

f
[id]
allow(j) =






true ([n
[id]
start, n

[id]
start + n

[id]
num-desc] ∩ [n

[j]
start, n

[j]
start + n

[j]
num-desc] = ∅)

false otherwise

;

(iv) ctl(xtℓ , x, w, win) = 0.

Before tackling a detailed analysis of the properties of the Cycle-Detecting Depth In-

crement Algorithm, we show next that the variables n
[i]
num-desc and n

[i]
start of the processor state can

be used to correctly answer queries of the form “is i a descendant of j?”
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function stfio−slf(n
[id]
dep-targ, (n

[id]
incr-sgnl, I

[id]
incr-dep), l)

1: n
[id]
num-desc ←

∑
j∈{j∈N (i) : f

[j]
p =i}(1 + n

[j]
num-desc)

2: n
[id]
start ← n

[f
[i]
p ]

start

3: f
[id]
start(j)← n

[id]
start +

∑
{k∈S

[id]
desc : k<j} n

[k]
num-desc for each j ∈ N (id)

4: if n
[f

[id]
p ]

incr-sgnl 6= ∅ then

5: Set n
[id]
incr-sgnl ← n

[f
[id]
p ]

incr-sgnl; Set I
[id]
incr-dep ← false

6: else if n
[id]
dep-targ 6= ∅ and n

[n
[id]
dep-targ]

incr-sgnl 6= ∅ then

7: if n
[n

[id]
dep-targ]

incr-sgnl < n
[id]
incr-sgnl or n

[id]
incr-sgnl = ∅ then

8: Set n
[id]
incr-sgnl ← n

[n
[id]
dep-targ]

incr-sgnl

9: else if n
[n

[id]
dep-targ]

incr-sgnl = id then

10: Set I
[id]
incr-dep ← false

11: end if
12: end if
13: return (n

[id]
incr-sgnl, I

[id]
incr-dep)

Table 5.1: stfio−slf for Cycle-Detecting Depth Increment Algorithm.

Lemma 5.4.4. If the constraint tree T remains fixed for 2 depth(T ) rounds, then each i satisfies

(i) n
[i]
num-desc is equal to the total number of descendants of i,

(ii) n
[i]
start =

∑
j<lex−T i 1,

(iii) if i is an ancestor of j, eventually n
[i]
start ≤ n

[j]
start and n

[i]
start + n

[i]
num-desc ≥ n

[j]
start + n

[j]
num-desc will

hold, and

(iv) if i is not an ancestor of j, either n
[i]
start > n

[j]
start +n

[j]
num-desc or n

[j]
start > n

[i]
start +n

[i]
num-desc will hold.

Proof. Each node, i, has the proper value of n
[i]
num-desc one round after the last of its children have the

proper n
[·]
num-desc. This takes at most depth(T ) rounds, thus showing (i). To show (ii), each node has the

proper value of n
[i]
start one round after its siblings each have the proper value of n

[·]
num-desc and its parent,

f
[i]
p , has the proper value of n

[f
[i]
p ]

start. This takes at most depth(D) additional rounds after all nodes satisfy
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(i). Regarding fact (iii), after 2 depth(T ) rounds, for each node m ∈ Zn, n
[m]
num-desc will be the total

number of descendants of m and n
[·]
start will be

∑
k<lex−T m 1. If i is not an ancestor of j, without loss of

generality let j > i. Let k be the nearest common ancestor of i and j. Let ki and kj be the children

of k having i and j as descendants respectively. At some point ki will get some n
[ki]
start and kj will get

n
[kj ]
start ≥ n

[ki]
start + n

[ki]
num-desc thus showing (iii). Regarding fact (iv), if i is an ancestor of j, for every link,

(k1, k2), between i and j, k2 will get some number between n
[k1]
start and n

[k1]
start + n

[k1]
num-desc − n

[k2]
num-desc for

n
[k2]
start. Thus, at every step along the way, n

[k1]
start ≤ n

[k2]
start ≤ n

[k2]
start + n

[k2]
num-desc ≤ n

[k1]
start + n

[k1]
num-desc. By

inducting on the number of links from i, this gives (iv).

5.4.2 Properties of the evolutions under Cycle-Detecting Depth Increment Algo-

rithm

Here we gather some properties of the executions of CM Algorithm combined with Cycle-

Detecting Depth Increment Algorithm. These results will later be instrumental to establish the

reachability properties satisfied by this combination. We begin by introducing several auxiliary graphs.

Definition 5.4.5. Consider the following subgraphs of the underlying graph...

• The increase depth graph is the graph containing all edges of the form (i, n
[i]
dep-targ) for n

[i]
dep-targ 6= ∅

and all edges of the form (i, f
[i]
p ) where n

[i]
incr-sgnl 6= ∅ and n

[f
[i]
p ]

incr-sgnl 6= ∅;

• The lowest subgraph (in the increase depth graph) consists of all edges (i, n
[i]
dep-targ) where no

ancestor, j, of i has n
[j]
dep-targ 6= ∅ and all edges of the form (i, f

[i]
p ) where some ancestor of i is

also in the lowest subgraph;

• The signal graph on i is the graph containing all edges of the form (j, k) where n
[j]
incr-sgnl = i,

n
[k]
incr-sgnl = i and either k = f

[j]
p or k = n

[j]
dep-targ;
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Each of these graphs contain only those nodes adjacent to an edge in the respective graph.

Note that the increase depth graph and its lowest subgraph only change when the underlying

graph, the constraint tree, or n
[i]
dep-targ for some i change. The signal graph on i can change even when

the aforementioned structures remain constant.

We proceed to show that whenever the set of agent preferences are such that each node in the

network would prefer its parent in T2 to its parent in the current tree, some node will change parents.

We break this down by cases.

(i) The “lowest subgraph of the increase depth graph” contains no cycles.

(ii) The “lowest subgraph of the increase depth graph” contains at least one cycle.

Case (i) is treated in Lemma 5.4.6, which describes what happens when the set of preferences

do not induce a cycle in the “lowest subgraph of the increase depth graph.” Case (ii) is handled in

Lemma 5.4.8.

Lemma 5.4.6. If there is no cycle in the “lowest subgraph in the increase depth graph” then some node

j in this graph will attach to n
[j]
dep-targ within a finite number of time steps.

Proof. If there is no such cycle, than some edge of the form (i, n
[i]
dep-targ) exists such that neither n

[i]
dep-targ

nor any of its ancestors has n
[·]
dep-targ 6= ∅. Since i is in the lowest subgraph of the increase depth graph,

each ancestor, j, of i has n
[j]
dep-targ = ∅. If this is the case, than n

[i]
dep-targ will settle to a depth estimate,

dpth
[n

[i]
dep-targ]

est , of its actual depth in the tree (less than n + 1). i will never receive n
[·]
incr-sgnl = i and will

keep increasing depth until it can attach to n
[i]
dep-targ (at a value of, at most, n + 1).

If there is a cycle in the “lowest subgraph of the increase depth graph” the signaling mechanism

of Cycle-Detecting Depth Increment Algorithm will detect it, as shown in Lemma 5.4.7.
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Lemma 5.4.7. If there is a cycle in the “lowest subgraph of the increase depth graph” then within a

finite number of timesteps, there exists some k such that the “signal graph on k” contains that cycle.

Proof. There are two cases in which a node can switch from n
[i]
incr-sgnl = j to n

[i]
incr-sgnl = k. One is

when its parent sends n
[f

[i]
p ]

incr-sgnl = k. This does not happen for any i having (i, n
[i]
dep-targ) in the lowest

subgraph of the increase depth graph. The other is when n
[n

[i]
dep-targ]

incr-sgnl = k and k < j. The nodes i in

any cycle of lowest subgraph having (i, n
[i]
dep-targ) in the lowest subgraph have a unique minimum UID,

k. When some edge, (i, f
[i]
p ) in the subgraph has n

[f
[i]
p ]

incr-sgnl = k, in the next round, n
[i]
incr-sgnl gets k.

Likewise when some (i, n
[i]
dep-targ) in the subgraph gets n

[n
[i]
dep-targ]

incr-sgnl = k, in the next round, n
[i]
incr-sgnl = k.

Since these edges describe every edge in the lowest subgraph of the increase depth graph, eventually

all nodes in this cycle will have n
[·]
incr-sgnl = k.

This detection mechanism makes our proof for case (ii) above possible, as we show next.

Lemma 5.4.8. If there is an edge, (i, j) in one of the cycles of the “lowest subgraph of the increase

depth graph” where j is not an ancestor of i and vice versa, then within a finite number of time steps,

some node, k, in this graph will attach to n
[k]
dep-targ.

Proof. By Lemma 5.4.7, every edge of this cycle will get n
[·]
incr-sgnl = k for some k. Node k will reset,

as it receives n
[n

[k]
dep-targ]

incr-sgnl = k, as will every descendant trying to attach to some node dependent on this

cycle. Some node which is not a descendant of k must be trying to attach to a descendant of k, and

will keep increasing depth while k’s ancestors stay reset.

Finally, Lemma 5.4.9 and Theorem 5.4.10 tie the two cases together.

Lemma 5.4.9. If the graph and the constraint tree do not change, for 2 depth(T ) time steps, either

the conditions for Lemma 5.4.8 or Lemma 5.4.6 will hold, or no node, i, will have n
[i]
dep-targ 6= ∅
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Proof. By Lemma 5.4.4, after 2 depth(T ) time steps, no i and j where j is a descendant of i will

have f
[i]
allow(j) = true. CM Algorithm will not allow n

[i]
dep-targ to be j and thus any cycle in the

lowest subgraph of the increase depth graph must contain at least one of the type of edge described in

Lemma 5.4.8.

The next result shows that as long as some node wishes to attach to a node which is not one

of its descendants, the constraint tree will change.

Theorem 5.4.10. If the underlying graph and the constraint tree do not change for 2 depth(T ) rounds,

and some node desires to attach to a node other than its descendants, one such node will eventually do

so (causing the constraint tree to change).

Proof. Either there is some node, i which wants to attach to a node j having dpth
[j]
est < dpth

[i]
est, or

(by Lemma 5.4.9) the lowest subgraph of the increase depth graph contains no cycles, or the lowest

subgraph of the increase depth graph contains at least one cycle. The first case is trivial, the second is

handled by Lemma 5.4.6 and the third is handled by Lemma 5.4.8.

5.4.3 Reachability analysis

We now approach the reachability problem. Our strategy is as follows: we give the network

the simplest set of preferences that yield T2 as the most desirable tree. We then show that this set of

preferences yields T2 given sufficient time. Theorem 5.4.12 is the culmination of this line of reasoning.

Its proof classifies the edges of T2 into (i) those which are in the current tree, (ii) those which will be

in the current tree within a finite amount of time, and (iii) those which cannot currently be added to

the current tree.

To show that the existence of edges in the third case requires the existence of edges in the

second, we prove the following result.
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Lemma 5.4.11. Consider what happens when we start with a valid tree, T , and begin replacing edges

in T with edges from nodes back to their ancestors in T . Any sequence of such operations will yield a

graph which is not connected.

Proof. The first such edge we replace will disconnected all the descendants of some node, i, from the

root. Any replacement involving one of the now disconnected nodes changing its parent will not connect

these nodes back to the root, since the disconnected node is attaching back to one of its ancestors. Any

replacement involving a currently connected node will also not connect these nodes to the root, as

the currently connected node loses its path to the root when the old edge from itself to its parent is

removed.

We are now ready to characterize the reachability property holds for the CM Algorithm

coupled with Cycle-Detecting Depth Increment Algorithm.

Theorem 5.4.12. The CM Algorithm coupled with Cycle-Detecting Depth Increment Al-

gorithm satisfies the reachability property.

Proof. Consider two trees, T1 and T2, both (connected) subgraphs of an underlying graph G. For each

robot, i, let R
[i]
pref be set in the following way. Let p1

[i] = f
[i]
p under T1, p2

[i] = f
[i]
p under T2. Let

(p2
[i], p1

[i]) ∈ R
[i]
pref and (p1

[i], j) ∈ R
[i]
pref for all j 6∈ {p2

[i], p1
[i]}. No node will ever attach to a parent

other than its parent in one of {T1, T2} (since it starts attached to its T1 parent, only prefers its T2

parent over that, and the graph doesn’t change). At all times, T2 consists of pairs of the forms (i, j)

where either

(i) j = f
[i]
p ,

(ii) or j is a descendant of i in the current tree, or
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(iii) j is not a descendant of i in the current tree.

To show that T2 cannot consist solely of cases (i) and(iii) unless T2 is the current tree we use

Lemma 5.4.11, which shows that if there are any edges in case (iii), and no edges in case (ii), then the

result is a disconnected graph with at least one cycle. So whenever there is some (i, j) ∈ E(T2) where

(i, j) is not in the current tree, there must be at least one such (i, j) where j is not a descendant of

i. By Theorem 5.4.10 one such edge will be added to the current tree in finite time. This will stop

happening when each (i, f
[i]
p ) in the current constraint tree is also in T2.

5.5 Simulations

Here we illustrate the performance of the Connectivity Maintenance Algorithm in

several simulations. We combine the algorithm with Cycle-Detecting Depth Increment Algo-

rithm and the deployment algorithm presented in [12]. The proximity graph of the robotic network is

the r-disk proximity graph. The deployment algorithm assumes that each robot has a sensor coverage

disk – i.e. the sensor we are interested in on each robot covers a disk of radius r centered about the

robot position. The algorithm moves the robots to maximize sensor coverage of a “region of interest”

represented by a density function ρ : R
2 → R. In particular, it maximizes the integral, over the union

of all sensor coverage disks, of the density function. We assume the robots have a maximum velocity

of vmax.

Definition 5.5.1. Our deployment algorithm consists of the sets:

(i) L = Zn × R
2;

(ii) W = R
2, w[i] contains the “target” of i’s motion, Ptargi;

(iii) W
[i]
0 = W , i ∈ I;
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(iv) Win = Zn × F(Zn)× F(Zn), win
[i] = (f

[i]
p , S

[i]
constraints, S

[i]
children) for i ∈ I.

(v) Wout = R(Zn, Zn), wout
[i] = (R

[i]
pref) defined as follows. For agent i ∈ Zn,

(j, k) ∈ R
[i]
pref for j, k 6= i if n

[i]
root = n

[j]
root = n

[k]
root and ‖x[j] − x[i]‖ < ‖x[k] − x[i]‖.

(vi) Win,0
[i] ⊆ Win, subsets of allowable initial input values Initially S

[i]
constraints = N (i), f

[i]
p =

i, S
[i]
children = ∅;

and of the maps:

(i) msg(x[i], w[i], win
[i], i) = (i, x[i]);

(ii) stfio(w
[i], win

[i], ) =

Let D = {p ∈ R
2 : ‖p− x[i]‖ ≤ rd ∧ ‖p− x[i]‖ ≤ ‖p− x[j]‖∀j ∈ N (i)}

Set Ptargi← [
R R

D
xρ(x,y)dxdy

R R

D
ρ(x,y)dxdy

,
R R

D
yρ(x,y)dxdy

R R

D
ρ(x,y)dxdy

]T

Let DC = ∩
j∈{f [i]

p }∩S
[i]
constraints∩S

[i]
children

B(x[j]+x[i]

2 , r
2) {Recall we are working with the r-disk graph}

Set Ptargi← argminp∈DC
(‖p− Ptargi‖)

(iii) ctl(x[i], x[i](tlast), w
[i], win

[i]) = vmax(
Ptargi−x[i]

‖Ptargi−x[i]‖)

Links of the constraint tree are preserved adapting the procedure described in [2]. To preserve

a link between two robots, we constrain the motion of the two robots to a circle of radius r
2 centered at

the midpoint of the line between their positions. Because each robot has a “target” it moves towards,

we can find the closest point to the target in the intersection of the circles generated by the constraint

edges. We do this by considering as candidate points each intersection between the boundaries of each

pair of constraint circles, and each closest point between a given constraint circle and the target as shown

in Figure 5.2. By filtering out those candidate points which are outside one or more constraint circles,
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Target

Robot

Constrained Neighbors

Closest Point

Figure 5.2: Motion constraints used in simulation.

and picking the remaining point with the minimum distance to the target, we find the closest feasible

point to the target. Each robot is then instructed to move towards its closest feasible point instead

of its original target. The constraint algorithm is made more robust by adding an extra constraint

circle, centered about the position of the robot making the motion decision, with a radius equal to its

maximum travel range between communication rounds.

The algorithm resulting from the combination of the deployment algorithm with the Con-

nectivity Maintenance Algorithm is executed in our Java simulation platform [53] for robotic

networks. This platform has been developed to provide a software implementation of the modeling

framework introduced in [37]. Our results are shown in Figure 5.3.

(a) (b) (c)

Figure 5.3: The plots show an execution of Connectivity Maintenance Algorithm, showing (a)
the paths taken by the robots, (b) a contour plot of the density field and the sensor coverage regions
of the robots, (c) the final network constraint tree.
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The evolution of CM Algorithm coupled with Cycle-Detecting Depth Increment Al-

gorithm and our deploy algorithm when repairing an initially disconnected tree is shown in Figure 5.4.

(a) (b)

(c) (d)

Figure 5.4: From left to right, top to bottom, progress of repair starting with an initially disconnected
constraint tree. Agents are labeled by “agent id/root id” : those in red have not yet completed repair.

5.6 Conclusions and future work

We have studied connectivity maintenance of robotic networks performing spatially distributed

tasks. We have proposed a distributed strategy based on maintaining the links of an evolving tree that is

specified by the motion control algorithm. We have analyzed the correctness of the proposed algorithm

and characterizes its repair and reachability and properties. All the developments have been done in a

general modeling framework that allos for easy composition with other coordination algorithms.
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5.7 Formation morphing problem

In this section, we illustrate the utility of the Connectivity Maintenance introduced in

Section 5.1.1. We design a coordination algorithm that provides the network with the capability of

moving between any two different formations while maintaining connectivity. Let us introduce some

useful task notions.

Definition 5.7.1 (Formation morphing problem). Given a proximity graph, G, the formation morphing

problem is that of designing a distributed algorithm to compute motion between two configurations,

[(Ps, Ts)] and [(Ptarg, Ttarg)], of n robots in d-dimensional space such that the graph G(iF(P )) remains

connected at all times and the network reaches [(Ptarg, Ttarg)] in finite time.

5.7.1 Algorithm framework and specification

In this section, we introduce the Formation Morphing Algorithm to solve the formation

morphing problem.

For clarity, we will use the symbols ai,1, . . . , ai,mi
, where mi is the depth of i in the target

constraint tree, Ttarg, to denote the ancestors of i in Ttarg. We use ai,1 to mean the parent of i in Ttarg,

and ai,mi
to mean the root of Ttarg.

Consider a uniform network S with identifiers I = {0, . . . , n − 1}, agents of the form A =

(R2, R2, R2, f(x, u) = u), and r-disk communication edge map Ecmm, that is, i and j are connected if

‖x[i] − x[j]‖ ≤ r. We use several constants to specify values known a priori and used by each agent’s

control law, message generation function and state transition function. Pick some lower numbers

d1 < d2 ≤ r to be the distance constraints used in practice, and let all robots know d1 and d2 before

commencing the morph algorithm. Each robot, i, also knows its position (xfinal, yfinal) in the final

configuration;
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A formation morphing input-output control and communication law over S consists of

(i) communication schedule equal to 1
4ntcmm for n ∈ N. This means that tcmm is the time for

Connectivity Maintenance to go through all four iterations in a cycle. we also choose vscale

such that 4vscaletcmm < |d2 − d1|;

(ii) communication language equal to

(i, I
[i]
branch, n

[i]
chld, anc[i], x[i]) ∈

N× {true, false} × Zn × N
3 × R

2,

where (i, I
[i]
branch) is the logic variable state of the sending robot, i, n

[i]
chld is the number of children

i will have in the target configuration, and anc consists of 3 numbers used to indicate ancestry

information (see Theorem 5.7.2);

(iii) logic variables, W [i] = Zn × {true, false} × Zn × N
3 × Z3, w[i] = (i, I

[i]
branch, n

[i]
chld, anc[i], M

[i]
mode),

where i is the agent unique identifier, I
[i]
branch is a flag used to indicate which stage of the algorithm

i is executing and n
[i]
chld is the number of children of i in the target tree. Each robot, i, will know

enough about its ancestors in the constraint tree, Ttarg, of the target configuration, [(Ptarg, Ttarg)]

to answer membership queries of the form “is j an ancestor of i?” and distance queries of the form

“given that j is an ancestor of i, how many edges are in the shortest path from i to j in Ttarg?”

We show in Theorem 5.7.2 that this information can be stored with three integers which we will

denote by anc[i]. M
[i]
mode ∈ Z3 is used to indicate to the control function which of 3 motion modes

to use. We will denote these modes Mstay, Morigin and Mu,v final, corresponding to a stationary

mode, a “move towards origin” mode and a “move towards final configuration” mode;

(iv) W0
[i] equal to {(i, false, n

[i]
chld, anc[i], Mstay)};
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(v) Win
[i] equal to Zn, where win

[i] = f
[i]
p , indicates the ith robots parent in the constraint tree;

(vi) Win0
[i] such that the tree induced by f

[i]
p is a connected spanning tree of the robotic network;

(vii) Wout
[i] = {wout

[i] : Zn 7→ Zn ∪ {∞}}, where wout
[i] ∈Wout

[i] is a ranking of which nearby robots i

would prefer to be connected to;

and with the following functions

(i) the standard message generation function (i.e., msg(t, x[i], w[i], j) = (x[i], w[i]));

(ii) function stfio-out(t, x
[id], f

[id]
p , (id, I

[id]
branch, anc[id], M

[id]
mode),

{lj | j ∈ Nid})

1: Let wout
[id] : Zn 7→ Zn ∪ {∞} be defined by wout

[id](j)






∞ ‖x[j] − x[id]‖ > d1

k j = aid,k ∧ (I
[i]
branch = I

[j]
branch ∨ j = f

[id]
p )

mid + 1 j /∈ {aid,k : k ∈ 1 . . . mid} ∧ j = f
[f [id]

p ]
p

mid + 2 j /∈ {aid,k : k ∈ 1 . . . mid} ∧ j = f
[id]
p

∞ otherwise

2: return wout
[id]

In other words, if no member of {aid,k : k ∈ {1, . . . , mid}} is available, id would prefer to attach

to f
[f

[id]
p ]

p , and if f
[f

[id]
p ]

p is also not in reach, id will remain attached to f
[id]
p ;

(iii) function stfio−slf(t, f
[id]
p , win

[id], w[id], {lj : j ∈ Nid})

1: if ‖x[id] − x[f
[id]
p ]‖ ≥ d1 then

2: Set M
[id]
mode ←Mparent
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3: else if I
[id]
branch 6= true then

4: if f
[id]
p = aid,1 then

5: if each j such that f
[j]
p = id has sent I

[j]
branch = true and there are n

[id]
chld such j then

6: Set I
[id]
branch ← true.

7: end if

8: end if

9: M
[id]
mode ←Morigin

10: else if I
[id]
branch = true then

11: M
[id]
mode ←Mu,v final

12: end if

13: return (id, I
[id]
branch, n

[id]
chld, anc[id], M

[id]
mode)

(iv) the control function is ctl(x[id], w[id]) = 0 if M
[id]
mode = Mstay, ctl(x[id], w[id]) = vscale vers(−x[id]) if

M
[id]
mode = Morigin, and ctl(x[id], w[id]) = vscale vers(xfinal − x[id]) if M

[id]
mode = Mu,v final.

Next, we specify how the numbers anc[i] ∈ N
3 are initialized.

Prior to running any control algorithms, perform the following operations on the constraint
tree, Ttarg, of [(Ptarg, Ttarg)]. Perform a depth-first search on Ttarg. Mark each node, i, with
the number of nodes visited before node i (nvisit(i)), and the number of descendants of i in
the tree Ttarg (ndesc(i)). Note that nvisit(i) + ndesc(i) is the number of nodes visited before
the first node after i that is not an ancestor of i is visited. Recalling that mi is the depth
in the final target tree of node i, let anc[i] ← (nvisit(i), ndesc(i), mi).

Theorem 5.7.2. The numbers anc[i] ∈ N
3, i ∈ I, allows Formation Morphing Algorithm to

answer queries of the form “Is robot j ai,d in [(Ptarg, Ttarg)]?” using only O(log(n)) bits of storage in

O(1) time.

Note that storing a unique identifier for each robot requires O(log(n)) bits. The Forma-

tion Morphing Algorithm is the composition (in the sense of Definition 2.2.3) of Connectivity
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Maintenance with the formation morphing input-output law defined above.

5.7.2 Correctness analysis

We will now establish the correctness of Formation Morphing Algorithm. Lemma 5.7.3

shows that we do not break any edges in the constraint tree. Lemma 5.7.4, Lemma 5.7.4, Lemma 5.7.6

and Lemma 5.7.7 establish that Formation Morphing Algorithm performs the necessary topol-

ogy re-arrangements for formation morphing. These topology lemmas and Lemma 5.7.8 lead up to

Theorem 5.7.9 which establishes the correctness and time complexity of Formation Morphing Al-

gorithm.

Lemma 5.7.3. While following Formation Morphing Algorithm composed with Connectivity

Maintenance, no two robots that are connected in the constraint tree are ever d2 apart.

Proof. Let robot i be the parent of robot j in the constraint tree. Let t0 be the first instant of time at

which this edge is contained in the tree. Consider the distance dij(t) = ‖x[i](t) − x[j](t)‖. If this edge

is the result of a re-attach event, then dij must have been less than d1 one round before the attach (by

line 18: of Connectivity Maintenance, stfio-out of Formation Morphing Algorithm and the

fact that the connect step is one round later at line 6: of Connectivity Maintenance). By the

definition of vscale, j and i cannot have moved more then ‖d2 − d1‖ further apart in the intervening

round. If t0 is the initial creation of the spanning tree, then we still have ‖x[i](t0)− x[j](t0)‖ < d1. At

every round of communication one of two things happens. If dij(t) ≤ d1, the robots cannot move more

than 2vscaletcmm further apart before the next communication round. Since vscale ≤ d2−d1
2tcmm

, dij will be

less than d2 by the next communication round. On the other hand, if dij(t) > d1, robot j moves towards

x[i](t) until the next communication round with velocity vscale. Since i is moving with velocity at most

vscale, dij can be at most 2vscaletcmm− d1 away by the next communication round. Since vscale ≤ d1
2tcmm

,
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dij will be smaller than d2 at next communication round.

Lemma 5.7.4. In the execution of Formation Morphing Algorithm for each robot, i, for each

descendant, j, of i, I
[i]
branch = true at time t1 implies I

[j]
branch = true for all t ≥ t1.

Proof. If any descendant, j, does not satisfy f
[j]
p = aj,1, then I

[j]
branch 6= true. Since j cannot attach to

any node k having I
[k]
branch 6= I

[j]
branch, and I

[f
[j]
p ]

branch cannot be set to true until I
[j]
branch = true, no robot, k,

in the path from j to the root can have I
[k]
branch = true and neither can i.

Lemma 5.7.5. In the execution of Formation Morphing Algorithm no robot, i, satisfies I
[i]
branch =

true until each of its descendants, j, in Ttarg satisfies f
[j]
p = aj,1.

Proof. Let t be the first time at which I
[i]
branch = true. By Lemma 5.7.4, each robot j which is a

descendant of i in the constraint tree at time t satisfies f
[j]
p = aj,1. Each such robot must also be a

descendant of i in the target tree, otherwise the path from some j to i would contain a link from k to

f
[k]
p where f

[k]
p 6= ak,1. Since each descendant, j, of i checks that it has n

[j]
chld children before setting

I
[j]
branch = true, and no j having f

[j]
p = aj,1 switches parents, the number of descendants of i in the

constraint tree at time t is equal to the number of descendants in the target tree.

Lemma 5.7.6. Let diam(P (t0)) be the initial diameter of the convex hull of the robot positions. Within

O(diam(P (t0))
tcmmvscale

) rounds, each robot i is within d1 of each robot in the current path from i to ai,1, or satisfies

f
[i]
p = ai,1.

Proof. Any robot i with I
[i]
branch 6= true moves towards (0, 0). O(diam(P (t0))

tcmmvscale
) is the number of rounds

required for the robots to rendezvous under this behavior. Clearly the condition ‖x[i] − k‖ < d1 holds

for all i, and k having I
[i]
branch = I

[k]
branch = false before rendezvous occurs. Each robot, k, along the path

from i to the root satisfies I
[k]
branch = false as f

[i]
p 6= ai,1. Each robot k along the path from the root to

ai,1 satisfies I
[k]
branch = false for the same reason.
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Lemma 5.7.7. Within 4(K) rounds of the condition from Lemma 5.7.6 holding, each robot, i, is at

depth and depth estimate of at least min(dpth
[i]
Ttarg

, max(K − 2dpth
[i]
Ttarg

, 1)).

Proof. We will proceed by induction on K and dpth
[i]
Ttarg

. As a base case, when K = 0, every non-root

robot is at depth at least 1. Assume true for K − 1, thus after 4(K − 1) rounds, for each of i’s final

ancestors, ai,k (where k is the final distance from ai,k to i) was at depth at least min(dpth
[ai,k]
Ttarg

, max(K−

1− dpth
[ai,k]
Ttarg

, 1)) = min(dpth
[ai,k]
Ttarg

, max(K − dpth
[i]
Ttarg

+ (2k − 1), 1)). If max(K − dpth
[i]
Ttarg

, 1) = 1 or if

i is at its final depth, there is nothing left to do, otherwise each of i’s ancestors is at a depth greater

then i, or at its final position. This means that the one ancestor of i at i’s current depth and depth

estimate is in its final position, and line 2 of stfio of Connectivity Maintenance allows i to make

the connection, increase its depth by 1 and over the next 4 rounds, increase its depth estimate to the

proper value.

Lemma 5.7.8. Within dpth
[i]
Ttarg

(1 + 2d1
tcmmvscale

) rounds of the first time I
[j]
branch is true for all j, where

Ttarg is the topology of the final configuration, each robot i is at its final position.

Proof. Let us induct on dpth
[i]
Ttarg

. As a base case, the root reaches its final position in zero rounds.

When f
[i]
p reaches its final position, it stops, and within one more round, i is within d1 of x[f

[i]
p ] which

is within a distance of d1 of i’s final position. It takes i at most 2d1
tcmmvscale

further rounds to reach its

final position.

The next result follows from the previous discussion.

Theorem 5.7.9. Within O(
(diam(P (t0))+diam(Ttarg)d1

tcmmvscale
) rounds Formation Morphing Algorithm

achieves formation morphing, where Ttarg is the final tree in the target configuration, and diam(Ttarg)

is its graph diameter.
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5.8 Simulation results

We have developed a custom java simulation engine for robotic networks expressed in the

formalism of [37]. We used this framework to develop simulations and visualizations of the Formation

Morphing Algorithm. The source is available upon request.

(a) (b) (c)

Figure 5.5: Plots show (a) the initial positions, (b) the paths taken by and (c) the final configuration
(including constraint tree) of an execution of Formation Morphing Algorithm.

We further developed the simulator to run approximately 80000 runs of Formation Morph-

ing Algorithm with initial and final configurations sampled randomly. In Figure 5.6 we plot the actual

task completion times of each of these runs versus the function diam(P (t0)) + diam(Ttarg). Because

of the uniform time schedule, the number of communication rounds required for completion is linearly

related to the time required for completion. From the graph one can see a linear relationship between

the worst completion times for Formation Morphing Algorithm and diam(P (t0)) + diam(Ttarg),

as fore-casted by our analysis.
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Figure 5.6: Comparison of the time complexity bound in Theorem 5.7.9 with actual running times of
Formation Morphing Algorithm under random choices of initial and final configurations. Each
point represents a successful execution.
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Chapter 6

Algebraic connectivity maximization

6.1 Robotic network model and problem formulation

Assume we are given a specific algorithm which achieves a coordination task. Our objective

is to design a procedure that modifies the directions of motion specified by the given algorithm as little

as possible while preserving network connectivity. Let us start by formalizing this idea.

Definition 6.1.1. An Underlying Control Law for n robots in R
d is a specification, for each

network configuration P, of a control input ugoal−i for each robot i ∈ {1, . . . , n}, a bound θmax−i on

the angle by which the true motion of the ith robot is allowed to deviate from ugoal−i, and a time step

δT > 0 over which ugoal−i and θmax−i are valid. A set of inputs (ui)i∈{1,...,n} is compatible with the

Underlying Control Law if and only if the following two conditions hold for all i ∈ {1, . . . , n},

‖ui‖ ≤ ‖ugoal−i‖, |∠(ugoal−i, ui)| ≤ θmax−i. •

The first problem we address is that of deciding when a proposed motion can be made while

safely maintaining connectivity of the robotic network.
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Problem 6.1.2 (Spectral Connectivity Decision Problem). Given a control input, ui known

to the ith agent, for i ∈ {1, . . . , n}, a control bound, vmax, known to all agents, such that each agent’s

control input, ui must always satisfy ‖ui‖ ≤ vmax, a time interval [t0, t0 + δT ], and [λ−, λ+] ⊂ R>0,

Spectral Connectivity Decision Problem consists of providing a (distributed) procedure which,

for each robot i returns a value, fsafe ∈ R having fsafe ≥ 0 only if the following hold for all t ∈

[t0, t0 + δT ] for all {ũj , ‖ũj‖ ≤ vmax}j∈{1,...,n}\{i} and for all network configurations, P, consistent with

the information available to the ith robot.

• f2−conn(P(t)) 6∈ [λ−, λ+], or

• f◦
2−conn(P(t);[0, . . . , uT

i , . . . ,0]T ) ≥ 0. •

where P(t) denotes the network evolution under control (ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũn) starting from P.

We follow with an informal description of Definition 6.1.2

[Informal description:] Our goal is to determine (in a distributed manner) whether a given
motion could, potentially, cause λ2 to drop below the threshold λ+. Under ideal conditions
with exact computation, it would suffice to ensure that no motion causes the time derivative
of λ2 to be less than zero whenever λ2 is exactly equal to λ+. Because exact computation is,
at best, infeasible (and at worst impossible), we instead ensure that the time derivative of λ2

is never less than zero whenever λ2 inhabits a range around λ+, in this case [λ−, λ+] (while
we have not characterized an optimal value for λ− given λ+, in practice λ− = 0.0 works just
fine, and elegantly handles cases where the initial connectivity is lower than planned for).
We further specify that our solution answer this decision problem by returning a number,
fsafe, which is greater than or equal to zero only if we can guarantee that our proposed
robot motion is safe.

The second problem we address is the problem of determining directions of motion that are

compatible with the given algorithm and preserve connectivity.

Problem 6.1.3 (Spectral Connectivity Problem). Given an Underlying Control Law, a

bound, vmax, on agent control input, a time interval, [t0, t0 + δT ], and an interval [λ−, λ+] ⊂ R>0,
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Spectral Connectivity Problem consists of providing a procedure which, for each robot, i ∈

{1, . . . , n} finds an input ui, having ‖ui‖ ≤ vmax, compatible with the Underlying Control Law

such that Spectral Connectivity Decision Problem returns a value fsafe ≥ 0 when provided with

[t0, t0 + δT ], [λ−, λ+], and ui. •

For clarity, we also present an informal description of Definition 6.1.3

[Informal description:] In Definition 6.1.3 we are describing the process of, given a procedure
to solve Spectral Connectivity Decision Problem, determine whether we can find a
set of robot motions close to the motions specified by the underlying control law which are
allowed by our solution to Spectral Connectivity Decision Problem. In our case,
“close” means “the direction taken by each robot is close in angle to the direction proposed
by the underlying control law.” This is somewhat like expressing Spectral Connectivity

Decision Problem as a function from “angle of motion” to fsafe, and searching for roots
of fsafe.

6.2 Eigenvalue games and information dissemination

In this section we introduce the main algorithmic components of our solution to the problems

presented in Section 6.1. In Section 6.2.1, we reformulate Spectral Connectivity Decision Prob-

lem as a game, termed Graph Picking Game, which can be played with out-of-date information on

the state of the network and in Section 6.2.2 we study the properties of its space of solutions. Next,

we present in Section 6.2.3 a distributed procedure that allows network agents to decide whether an

intended motion wins Graph Picking Game. The other algorithmic component of our solution is a

distributed information dissemination algorithm, presented in Section 6.2.4, which provides each robot

with the information needed to play Graph Picking Game.
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6.2.1 Graph Picking Game

We are interested in characterizing the rates of change of Laplacian matrices arising from

instantaneous robot motions which solve Spectral Connectivity Decision Problem. To do this,

we reformulate this problem as a game and study the properties of the solutions to the game.

In order to present a clean formulation, let us introduce some notation. Let

LAP±(n) = {M ∈ Sym(n) : M1 = 0},

LAP(n) = {M ∈ LAP±(n) : Mi,j ≤ 0 for all i 6= j}.

Note that, given M ∈ LAP(n), it is possible to define a graph, G, with Laplacian M , by assigning

to each edge (i, j) ∈ E the weight −Mi,j . We consider the following partial order in LAP±(n). For

A, B ∈ LAP±(n), we write A <LAP B if and only if Ai,j > Bi,j for all i 6= j ∈ {1, . . . n}. Likewise,

A ≤LAP B if and only if Ai,j ≥ Bi,j for all i 6= j ∈ {1, . . . n}. For A ≤LAP B, we define the interval

[A, B]LAP = {L ∈ LAP±(n) : A ≤LAP L ≤LAP B}.

Note that A, B ∈ LAP(n) and L ∈ [A, B]LAP imply L ∈ LAP(n). The following result provides more

properties of the matrices in the interval [A, B]LAP.

Lemma 6.2.1. Let A, B ∈ LAP(n) and L ∈ [A, B]LAP. Then,

(i) fλ2(L) ∈ [fλ2(A), fλ2(B)],

(ii) vvT • L ∈ [vvT •A, vvT •B] for v ∈ R
n.

Proof. Fact (i) follows from the monotonicity of λ2(G) on the edge weights of G. To prove fact (ii),

note that vvT •L = vT Lv for any L ∈ Sym(n) and any v ∈ R
n. Because any graph Laplacian is positive
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semidefinite, and L−A, B − L ∈ LAP(n), we have

vvT • (L−A) = vvT • L− vvT •A ≥ 0,

vvT • (B − L) = vvT •B − vvT • L ≥ 0,

and the result follows.

We can now formulate the core question we need to solve to obtain a solution to Spectral

Connectivity Decision Problem as a game played against a graph-picking opponent.

Definition 6.2.2 (Graph Picking Game). Given A, B ∈ LAP(n) with A ≤LAP B, we pick Y ∈

[A, B]LAP. Our opponent then selects L ∈ [A, B]LAP. We win if either of the following conditions hold

• fλ2(L) 6∈ [λ−, λ+], or

• f◦
λ2

(L; Y ) ≥ 0. •

Our objective is to characterize the choices Y that ensure that Graph Picking Game is won

(specifically, we characterize the choices X such that all Y having X ≤LAP Y win Graph Picking

Game). This is what we tackle next.

6.2.2 Bounds on matrices which win Graph Picking Game

A direction that a robot can take in physical space induces an instantaneous rate of change

of the Laplacian matrix of the underlying communication graph of the network. Given out-of-date

information on the state of the network, each robot can produce bounds on the actual Laplacian of the

graph. In this section we answer the following question: given a matrix lower bound A ∈ LAP(n) and a

matrix upper bound B ∈ LAP(n) on the Laplacian matrix of the communication graph and a range of

96



possible instantaneous rates of change of the Laplacian matrix due to a proposed physical motion, can

we guarantee that the proposed motion will not decrease the second smallest eigenvalue of the graph

Laplacian? We do this by answering the related question: given the information listed above, and a

range of “unsafe” eigenvalues, [λ−, λ+], can we guarantee the proposed motion will not decrease the

second smallest eigenvalue of the Laplacian matrix whenever the said eigenvalue is outside of the range

[λ−, λ+]?

More formally, we bound the union of all possible gradients of fλ2 evaluated at L ∈ [A, B]LAP.

Consider L ∈ [A, B]LAP such that fλ2(L) ∈ [λ−, λ+]. Following the formula for the gradient of fλ2 in

Theorem 2.6.3, we examine the vectors w ∈ S
n such that Lw = λ2(L)w. For such vectors, we have

L • (wwT ) = wT Lw = fλ2(L), and therefore, using Lemma 6.2.1, it follows that A • (wwT ) ≤ λ+. Our

strategy is then to bound the set of w ∈ R
n which satisfy A•(wwT ) ≤ λ+. The fact that the nonsmooth

gradient of fλ2 is actually the convex closure of such wwT is addressed in Proposition 6.2.3.

Let {u1, . . . , um} be the m eigenvectors of A corresponding to eigenvalues λj ≤ λ+ and let

{um+1, . . . , un} be the n −m eigenvectors of A corresponding to eigenvalues λj > λ+. Given m̃ ≥ m,

define

ǫA(m̃) =

√
λ+ − λ2(A)

λm̃+1(A)− λ2(A)
,

uspan-A(m̃) = span{u1, . . . , um̃},

UA(m̃) = {w ∈ S
n | ∃u ∈ uspan-A(m̃) with ‖u‖ = 1 such that w ∈ B(u, ǫA(m̃))}.

We have chosen UA(m̃) to contain the elements w satisfying wwT ∈ ∂fλ2(L) for any m̃ ≥ m,

as we show next.

Proposition 6.2.3. Let A, B ∈ LAP(n), L ∈ [A, B]LAP, fλ2(L) ≤ λ+, w ∈ S
n, m̃ ≥ m. If w 6∈ UA(m̃),
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then wwT 6∈ ∂fλ2(L). •

Proof. If w 6∈ UA(m̃), then the component of w outside span(v1(A), . . . , vm̃−1(A)) has magnitude at

least ǫA(m̃). Since w ∈ S
n, the remaining component has magnitude at most

√
1− ǫ2A(m̃), and therefore

we can deduce

wT Aw > (
√

1− ǫA(m̃)2)2fλ2(A) + ǫA(m̃)2fλm̃+1
(A)

= fλ2(A) + ǫA(m̃)2(fλm̃+1
(A)− fλ2(A)) = λ+.

Since L ∈ [A, B]LAP, wT Lw ≥ wT Aw > λ+. By λ+ > fλ2(L), w 6∈ {v ∈ S
n : vT Lv = fλ2(L)}. To

show wwT 6∈ ∂fλ2(L) we recall that ∂fλ2(L) = co{v∈Sn : Lv=fλ2
(L)v}{vvT } = co{v∈Sn : vT Lv=fλ2

(L)}{vvT }.

Noting that there is only one combination of vectors in {vvT : v ∈ S
n} which can have a convex

combination of wwT for w ∈ S
n, namely the singleton set {wwT }, we deduce that w 6∈ {v ∈ S

n :

vT Lv = fλ2(L)} implies wwT 6∈ co{v∈Sn : vT Lv=fλ2
(L)}{vvT } = ∂fλ2(L).

The bound induced by UA(m̃) works for any m̃ ≥ m. Our idea is to check the bounds induced

by all such m̃ ≥ m, in the hope of finding one which verifies that our proposed motion is allowable.

The following result is a consequence of Proposition 6.2.3 and Theorems 2.6.3 and 2.6.4.

Corollary 6.2.4. Any instantaneous change in robot positions, (ui)i∈{1,...,n}, inducing an instantaneous

rate of change of the Laplacian Y ∈ LAP±(n) satisfying Y • (uuT ) ≥ 0 for all u ∈ UA(m̃) for some

m̃ ≥ m, satisfies f◦
2−conn(P; (ui)i∈{1,...,n}) ≥ 0. •

Given some m̃ ≥ m, we can conclude from Proposition 6.2.3 and Corollary 6.2.4 that any

Y satisfying Y • (wwT ) ≥ 0 for all w ∈ UA(m̃) wins Graph Picking Game on A, B, λ−, λ+. To

determine whether a given Y satisfies this property, it is sufficient to find the vector umin ∈ uspan-A(m̃)
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which minimizes Y • (uuT ) = uT Y u (and then tack a fudge factor based on ǫA(m̃) onto this minimum).

We justify this in the following.

Let Mu(m̃) ∈ R
n×m̃ be a matrix whose column vectors are an orthonormal basis of uspan-A(m̃).

Note that any vector in uspan-A(m̃)∩S
n can be expressed in the form Mu(m̃)x for some x ∈ S

m̃. Likewise

any x ∈ S
m̃ satisfies Mu(m̃)x ∈ uspan-A(m̃) ∩ S

n.

Proposition 6.2.5. Finding the vector u ∈ uspan-A(m̃)∩S
n which minimizes Y • (uuT ) is equivalent to

finding the vector x ∈ S
m̃ which minimizes xT MT

u (m̃)Y Mu(m̃)x. Since MT
u (m̃)Y Mu(m̃) is symmetric,

minimization is achieved when uT Y u equals the smallest eigenvalue of MT
u (m̃)Y Mu(m̃). •

Proof. Let umin be the vector in uspan-A(m̃) ∩ S
n that minimizes uT Y u. Since there exists xmin ∈ S

m̃

having Mu(m̃)xmin = umin, we have xT
minM

T
u (m̃)Y Mu(m̃)xmin ≤ minu∈uspan-A(m̃)∩Sn(uT Y u), and hence

minλ∈eigs(MT
u (m̃)Y Mu(m̃))(λ) ≤ uT

minY umin. Since each x ∈ S
m̃ satisfies Mu(m̃)x ∈ uspan-A(m) ∩ S

n, then

xT MT
u (m̃)Y Mu(m̃)x ≥ uT

minY umin for all x ∈ S
m̃. Thus minλ∈eigs(MT

u (m̃)Y Mu(m̃))(λ) ≥ uT
minY umin. We

conclude that minλ∈eigs(MT
u (m̃)Y Mu(m̃))(λ) = uT

minY umin.

The next results provides a sufficient criterion to check if a matrix is a winning solution to

Graph Picking Game.

Proposition 6.2.6. (1 − ǫA(m̃)2)Y • (uuT ) + ǫA(m̃)2min(min(eigs(Y )), 0) ≥ 0 for all u ∈ uspan-A(m̃)

implies that Y • (wwT ) ≥ 0 for all w ∈ UA(m̃).

Proof. Any w ∈ UA(m̃) can be decomposed into αu +
√

1− α2v for u ∈ uspan-A(m̃) and

v ∈ complement(uspan-A(m̃)) where
√

1− α2 ≤ ǫA(m̃). Since Proposition 6.2.5 gives us Y •

(vvT ) ≥ min(eigs(Y )), we have Y • (
√

1− α22
vvT ) ≥ ǫ2A(m̃)min(eigs(Y )) if min(eigs(Y )) ≤ 0

and Y • (
√

1− α22
vvT ) ≥ min(eigs(Y )) ≥ 0 if min(eigs(Y )) ≥ 0. Thus Y • (

√
1− α22

vvT ) ≥
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ǫ2A(m̃)min(min(eigs(Y )), 0) and Y • (wwT ) ≥ (1 − ǫA(m̃)2)Y • (uuT ) + ǫA(m̃)2min(min(eigs(Y )), 0) ≥

0.

6.2.3 Direction Checking Algorithm

We introduce Direction Checking Algorithm in Table 6.1. Given A, B ∈ LAP(n), and

a lower bound, X ∈ LAP±(n) of the candidate instantaneous rate of change of the Laplacian matrix,

Y ∈ LAP±(n), Y ≥LAP X, the algorithm returns a value Scheck ≥ 0 if it can verify that any Y ≥LAP X

wins Graph Picking Game on A and B, and returns Scheck < 0 otherwise.

Lemma 6.2.7. Direction Checking Algorithm returns Scheck ≥ 0 only if X satisfies X •M ≥ 0

for every M ∈ ∂fλ2(L) with L ∈ [A, B]LAP. •

Proof. If Direction Checking Algorithm returns Scheck ≥ 0, Proposition 6.2.5 implies that there

must be some m̃ ≥ m having min{wwT : w∈B(u,ǫA(m̃)),u∈Sn∩uspan-A(m̃)}(X • (uuT )) ≥ 0 thus, by Proposi-

tion 6.2.6, X •wwT ≥ 0 for all w ∈ UA(m̃) and, by Proposition 6.2.3, X •wwT ≥ 0 for all w ∈ S
n having

wwT ∈ ∂fλ2(L). Since any M ∈ ∂fλ2(L) is the convex combination of some set of wwT ∈ ∂fλ2(L),

X •M must be the sum of X • (wwT ) for such a set of wwT and thus X •M ≥ 0.

The following result shows that Direction Checking Algorithm is successful in deter-

mining if we win Graph Picking Game.

Theorem 6.2.8. Direction Checking Algorithm returns Scheck ≥ 0 only when each Y having

Y ≥LAP X satisfies Y •M ≥ 0 for M ∈ ∂fλ2(L) with L ∈ [A, B]LAP. •

Proof. The conditions Scheck ≥ 0 holds only if

min(eigs(MT
u (m̃)XMu(m̃))) + ǫA(m̃)min(λmin(X), 0) ≥ 0,

100



Name: Direction Checking Algorithm

Goal: Let Y be the (unknown) instantaneous rate of change of the Laplacian
matrix of the communication graph of a robotic network. Given X
(known) such that Y−X is known to be positive semidefinite, determine
whether Y can be proved to win Graph Picking Game on A and B
and eigenvalue bounds λ− and λ+

Inputs: • Matrices A, B ∈ LAP(n)
• Eigenvalue bounds λ− ≤ λ+ ∈ R

• Lower bound, X ∈ LAP±(n), on candidate direction in matrix space,
Y ∈ LAP±(n)

Outputs: Scheck ∈ R. Scheck ≥ 0 means each Y ≥LAP X wins Graph Picking

Game on A, B and [λ−, λ+]

1: Let λ+ ← min(λ+, λ2(B))
2: Let λ− ← max(λ−, λ2(A))
3: if λ− > λ+ then
4: return 0
5: end if
6: Let λmin ← min(eigs(X))
7: Let mmin ← min{m : λm ∈ eigs(A), λm > λ+}
8: Initialize Scheck ← −1.
9: for all m̃ ∈ {mmin − 1, . . . , n} do

10: if m̃ < n then

11: Let ǫA(m̃)←
√

λ+−λ2(A)
λm̃+1(A)−λ2(A) and uspan-A(m̃)← span(uj , j ∈ {1, . . . , m})

12: else
13: Let ǫA(m̃)← 0
14: end if
15: Let Mu(m̃) ∈ R

n×m̃ whose columns are orthogonal basis of uspan-A(m̃)
16: Let S ← (1− ǫA(m̃)2)min(eigs(MT

u (m̃)XMu(m̃))) + ǫA(m̃)2 min(λmin, 0) {Does cur-
rent m̃ verify X is safe?}

17: Let Scheck ← max(S, Scheck) {Does any m̃ checked so far verify X is safe?}
18: end for
19: return Scheck {Does any m̃ verify X is safe?}

Table 6.1: Direction Checking Algorithm.
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for some m̃ > m. For any Y having Y ≥LAP X, Y −X is positive semidefinite, thus each eigenvalue

of Y is greater than or equal to the corresponding eigenvector of X, making λmin(Y ) > λmin(X). Like-

wise, we can express MT
u (m̃)Y Mu(m̃) as MT

u (m̃)XMu(m̃) + MT
u (m̃)(Y −X)Mu(m̃) where Y −X, and

therefore MT
u (m̃)(Y −X)Mu(m̃) as well, are each positive semidefinite. This means that each eigen-

value of MT
u (m̃)Y Mu(m̃) = MT

u (m̃)XMu(m̃) + MT
u (m̃)(Y −X)Mu(m̃) is greater than or equal to the

corresponding eigenvalue of MT
u (m̃)XMu(m̃). So min(eigs(MT

u (m̃)XMu(m̃))) +ǫA(m̃)min(λmin(X), 0)

≤ min(eigs(MT
u (m̃)Y Mu(m̃))) +ǫA(m̃)min(λmin(Y ), 0), thus Scheck > 0 only if

min(eigs(MT
u (m̃)Y Mu(m̃))) + ǫA(m̃)min(λmin(Y ), 0) > 0,

for some m̃ > m. By Lemma 6.2.7 this holds only if Y satisfies Y •M ≥ 0 for M ∈ ∂fλ2(L) with

L ∈ [A, B]LAP.

6.2.4 Information dissemination of robot positions

In order to execute Direction Checking Algorithm, robots first need information about

the past states of the network to come up with reasonable bounds on the Laplacian matrix. Before

specifying the protocol to disseminate information about each node throughout the network, we first

address what it means for each node to hold information which is consistent with the real world. A

formal definition is given next.

Definition 6.2.9 (Consistency of stored network information). Let Ptruth ∈ R
n×n be the actual position

of the robots at time tcurr, and let vmax be a bound on the maximum velocity of each individual robot.

A tuple, (P, T, D), P ∈ R
d×n, T ∈ R

n, D ∈ R
n×n, is called consistent with Ptruth at time tcurr if the

following hold:
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(i) For each i ∈ {1, . . . , n}, Pi ∈ B(Ptruthi, (tcurr − Ti)vmax).

(ii) For each i, j ∈ {1, . . . , n}×{1, . . . , n}, ‖Ptruthi−Ptruthj‖ ∈ [Di,j−vmax(tcurr−Ti+tcurr−Tj), Di,j +

vmax(tcurr − Ti + tcurr − Tj)]. •

In other words, a set of information is consistent with an actual state of the world, (i) if the

position of each robot, i, in the actual state of the world is within the range it could have reached by

traveling with speed vmax starting from position Pi for time tcurr − Ti and (ii) Di,j stores the distance

between Pi and Pj and relates to the actual distance in the natural way.

Next we provide an algorithm which correctly disseminates consistent information on the

state of the network to all robots. We start with the bookkeeping data necessary for this task. Each

robot i ∈ {1, . . . , n} holds the following data structures

• For each other robot, j, a position, pos[i](j) ∈ R
d and a time T

[i]
j ∈ R since it was last known

that the position of j was pos[i](j).

• For each other robot, j, Sk,j(i) ∈ {true, false} is true if and only if the most recent copy of

(pos[i](k), T
[i]
k ) needs to be sent from i to j.

The All-to-all Broadcast Algorithm is described in Table 6.2.

Note that, in lines 7:-8: of All-to-all Broadcast Algorithm, each robot pushes its own

updated information in its queue, as well as that of a randomly selected robot, at each communication

round. While this is not necessary for our proof, in practice it leads to much better bounds on the

instantaneous rates of change of the Laplacian due to individual robot motions, which primarily depend

on accurate information on each agent’s immediate neighbors.

Because this algorithm is randomized, we discuss its expected performance. In the following

result, let pathj,k(t) denote the shortest path between robots j and k at time t.
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Name: All-to-all Broadcast Algorithm

Goal: Disseminate information about robot positions throughout the network
Inputs: • tcurr ∈ R indicating the current time
Messages • j ∈ {1, . . . , n} is identifier of the robot from which the signal origi-

nated
from neighbors: • tvalid ∈ R indicating the time at which message from j originated

• Pj ∈ R
d, the position of j at time tvalid

Sensor Data • Pid ∈ R
d, current position of this robot, acquired via sensing

Persistent • id ∈ {1, . . . , n}, current robot’s unique identifier
data: • T ∈ R

n, array of last recorded time information
• P ∈ R

d×n, array of last recorded position information
• S ∈ {true, false}n×n where Si,j indicates whether the most up-to-date
information about i needs to be sent to j (value true) or not (value false)
• D ∈ R

n×n, matrix of approximate inter-robot distances

1: Let Pid ← Pid and Tid ← tcurr {Update self }
2: for all m ∈ {1, . . . , n} \ {id} do
3: Let Sid,m ← true {Sending phase}
4: end for
5: for all k ∈ N do
6: Randomly select j from elements having Sj,k = true
7: Push (j, Tj ,Pj) onto the queue of items to be sent to agent k
8: Push (id, Tid,Pid) onto the queue of items to be sent to agent k
9: end for

10: Send two items from each queue to corresponding destination
11: for all k ∈ N do
12: for all message {1, 2} {Each neighbor sent two messages previously} do
13: Receive j, tvalid, Pj from k. {Receiving phase}
14: if tvalid > Tj then
15: for all m ∈ {1, . . . , n} \ {id} do
16: Let Sj,m ← true
17: end for
18: Let Sj,k ← false, Tj ← tvalid, and Pj ← Pj

19: for all i ∈ {1, . . . , n} \ {j} do
20: Let Di,j ← ‖Pi − Pj‖ and Dj,i ← ‖Pi − Pj‖
21: end for
22: end if
23: end for
24: end for

Table 6.2: All-to-all Broadcast Algorithm.
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Lemma 6.2.10. For j ∈ {1, . . . , n}, let k ∈ {1, . . . , n} be the robot that maximizes tcurr − T
[k]
j at

time tcurr, in other words, k’s estimate of j is the most out of date estimate on the network. If

the communication graph is connected between rounds at time t and t + δT , then the expectation of

∑
i∈pathj,k(t) T

[i]
j , increases by at least 1

n
|T [k]

j − T
[j]
j | between t and t + δT for any j ∈ {1, . . . , n}.

Likewise, if tcurr is the current time, the expectation of
∑

i∈pathj,k(t)(tcurr − T
[i]
j ) (the sum of the

amount by which the timestamps for j are out of date along the path from j to k) decreases by at

least 1
n

maxk,l∈{1,...,n}(|T [k]
j − T

[l]
j |)− |pathj,k(t)|δT between t and t + δT for any j ∈ {1, . . . , n}. •

Proof. Let iless and igreater be the two agent identities adjacent to an edge, e, having T
[iless]
j ≤ T

[igreater]
j .

With probability at least 1
n

agent igreater will broadcast its estimate of j to agent iless increasing T
[iless]
j

by |T [igreater]
j − T

[iless]
j |. Broadcasting j the other direction does not affect any agents state estimate.

Since G(P(T )) is connected for T ∈ [t, t+ δT ], there must be at least one path between the agents with

the least and greatest value of T
[i]
j , and a set of edges must exist along this path for which the sum

of the differences of T
[igreater]
j − T

[iless]
j must exceed maxk∈{1,...,n}(|T [k]

j − T
[j]
j |). The second half of the

statement follows from the first.

The next result characterizes the expected time by which the information held by each node

may be out of date.

Corollary 6.2.11. For any robot, j ∈ {1, . . . , n}, the average expectation, over all robots, i ∈ {1, . . . , n}

of (tcurr − T
[i]
j ) never exceeds (n2 + 1)δT . Likewise the expected maximum, over all i ∈ {1, . . . , n} of

tcurr−T
[i]
j never exceeds n(n2 +1)δT , and the expected maximum, over all i, j ∈ {1, . . . , n} of tcurr−T

[i]
j

never exceeds n(n2 + 1) •
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Proof. By Lemma 6.2.10, ( 1
n

∑
i∈1,...n(tcurr − T

[i]
j )) decreases whenever

1

n
max

k,l∈{1,...,n}
|T [k]

j − T
[l]
j | − nδT > 0.

Since at least one node (j) has the fresh value of j (T
[j]
j = tcurr), the expectation of maxk,l∈{1,...,n}(|T [k]

j −

T
[l]
j |) is at least the average (over i) of the expectation of tcurr − T

[i]
j and the average expectation of

tcurr − T
[i]
j decreases whenever the expectation of maxk,l∈{1,...,n}(|T [k]

j − T
[l]
j |) is above n2δT . The

expectation of the average over i of tcurr−T
[i]
j , being a lower bound of maxk,l∈{1,...,n}(|T [k]

j −T
[l]
j |), must

decrease if it exceeds n2δT . This quantity goes up by at most δT each round and thus never exceeds

n2δT + δT . Since the expectation of tcurr−T
[i]
j is never below 0, the expectation of the maximum must

be at most n times the average, thus it never exceeds n(n2 + 1)δT .

For the last part of the statement, the average over all i of the expectation of tcurr−T
[i]
j never

exceeds (n2 + 1)δT for any fixed j, and so the average over all i, j of the expectation of tcurr − T
[i]
j also

never exceeds (n2 +1)δT . Since the maximum over all i, j ∈ {1, . . . , n} of tcurr−T
[i]
j is at most n2 times

the average over all i, j of tcurr − T
[i]
j , this value never exceeds n2(n2 + 1)δT .

Finally, we establish that the information stored by the network is consistent with the actual

robot positions in the sense of Definition 6.2.9.

Theorem 6.2.12. Assume each robot moves with velocity at most vmax. At all times, each robot holds

values of T,P, D which are consistent, in the sense of Definition 6.2.9, with the state of the network

at time tcurr. •

Proof. Each broadcast message, as sent in All-to-all Broadcast Algorithm, contains a position

of a robot, and the time at which that position was valid. Since the time and the position are both

stored, the results always verify condition 1 of Definition 6.2.9. Condition 2 of Definition 6.2.9 holds
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for any (P, T, D) where condition 1 holds for P and T , and Di,j = ‖Pi − Pj‖ for all i and j.
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6.3 Algorithmic solutions to the connectivity problems

In this section, we combine the algorithmic procedures developed in Section 6.2 to decide if a

proposed network motion is safe for connectivity maintenance and to disseminate position information

across the network. This allows us to synthesize the Motion Test Algorithm and the Motion Pro-

jection Algorithm to solve the Spectral Connectivity Decision Problem and the Spectral

Connectivity Problem, respectively.

6.3.1 Motion Test Algorithm

Here we combine the Direction Checking Algorithm and the All-to-all Broadcast

Algorithm to synthesize a motion coordination algorithm that solves the Spectral Connectivity

Decision Problem. First, we provide the Matrix Bound Generator in Table 6.3 to compute

lower A ∈ LAP(n) and upper B ∈ LAP(n) bounds on the Laplacian matrix of the communication

graph from the data disseminated via the All-to-all Broadcast Algorithm.

Lemma 6.3.1. Let tcurr be the current time. Given a proximity graph induced by a monotonic function

gwgt : R → R, for (P, T, D) consistent with the current set of robot positions, Matrix Bound

Generator returns two matrices which bound the Laplacian of the graph induced by Ptruth at any time

between tcurr and tcurr + δT . •

Proof. Let t ∈ [tcurr, tcurr + δT ]. By monotonicity of gwgt and consistency of (P, T, D), the distance

between i and j is between Di,j − vmax((tcurr − Ti + δT ) + (tcurr − Tj + δT )) and Di,j + vmax((tcurr −

Ti)+(tcurr−Tj +δT )), yielding the (i, j)-th element of the adjacency matrix in the interval [gwgt(Di,j−

vmax((tcurr−Ti + δT )+ (tcurr−Tj + δT ))), gwgt(Di,j − vmax((tcurr−Ti + δT )+ (tcurr−Tj + δT )))]. Since

all the off-diagonal elements of the Laplacian matrices, A and B, are defined this way, and the diagonal
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Name: Matrix Bound Generator

Goal: Compute bounds A, B ∈ LAP(n) of Laplacian of communication graph
Inputs: • Current time tcurr ∈ R

• Maximum velocity of any robot, vmax

• Maximum time between communication rounds, δT
Persistent • T ∈ R

n, array of last recorded time information
data: • P ∈ R

d×n, array of last recorded position information
• D ∈ R

n×n, matrix of approximate inter-robot distances
Outputs: A, B ∈ LAP(n), are the matrix bounds

1: for all i ∈ {1, . . . , n} do
2: for all j ∈ {1, . . . , n} do
3: Let Ai,j ← gwgt(Di,j − vmax((tcurr − Ti + δT ) + (tcurr − Tj + δT )))
4: Let Bi,j ← gwgt(Di,j + vmax((tcurr − Ti + δT ) + (tcurr − Tj + δT )))
5: end for
6: end for
7: Let A← diag(1T A)−A
8: Let B ← diag(1T B)−B

Table 6.3: Matrix Bound Generator.

elements are consistent with the definition of LAP±(n), the actual Laplacian matrix of the graph is

in [A, B]LAP for all t ∈ [tcurr, tcurr + δT ].

Next, we characterize the expected gap between the off-diagonal elements of A and B generated

by Matrix Bound Generator.

Lemma 6.3.2. Let gmax = maxx∈R≥0
(|g′wgt(x)|). For i 6= j ∈ {1, . . . , n}, the expected gap, Bi,j − Ai,j

never exceeds 4gmaxvmax(n(n2 +2)δT ). The expected maximum over i 6= j, i ∈ {1, . . . , n}, j ∈ {1, . . . , n}

Bi,j −Ai,j never exceeds 4gmaxvmax(n
2(n2 + 2)δT ). •

Proof. The expectations of tcurr−Ti and tcurr−Tj never exceed (n(n2+1)δT ) by Corollary 6.2.11. Since

Ai,j = gwgt(Di,j − vmax((tcurr − Ti + δT ) + (tcurr − Tj + δT ))) and Bi,j = gwgt(Di,j − vmax((tcurr − Ti +

δT ) + (tcurr− Tj + δT ))), their difference never exceeds 2gmaxvmax(n(n2 + 1 + 1)δT + n(n2 + 1 + 1)δT ).

By similar reasoning, the expected maximum over all i 6= j of Bi,j − Ai,j never exceeds
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4gmaxvmax(n
2(n2+1+1)δT ) since this is at most twice 2gmaxvmax times maxi∈{1,...,n}(tcurr−Ti+δT ).

Finally, we combine the Direction Checking Algorithm which verifies winning solutions

to Graph Picking Game with the All-to-all Broadcast Algorithm and the Matrix Bound

Generator which provide position information to the network robots. This combination allows us

to synthesize a solution to Spectral Connectivity Decision Problem. This solution, Motion

Test Algorithm, is presented in Table 6.4. The next result shows that Motion Test Algorithm

returns a value of fsafe ≥ 0 only if the instantaneous change in the Laplacian due to motion in direction

v wins Graph Picking Game.

Theorem 6.3.3. Assuming that each robot moves with velocity at most vmax, Motion Test Algo-

rithm solves Spectral Connectivity Decision Problem. •

Proof. By Theorem 6.2.12 the information received by each robot is consistent with the state

of the network. Lemma 6.3.1 shows, given consistent data, that the matrices A and B properly

bound the graph Laplacian of the communication graph. The motion in matrix space induced by

the proposed instantaneous motion in R
d×n is bounded from below by Xlower, i.e., it is a member of

{Y ∈ LAP±(n) : Y ≥LAP Xlower}. Finally Theorem 6.2.8 and Corollary 6.2.4 show that Direction

Checking Algorithm called on line 14: of Motion Test Algorithm returns fsafe ≤ 0 only when

the proposed direction of motion wins Graph Picking Game, and hence is allowable under Spectral

Connectivity Decision Problem.

The next result shows that solutions to the Spectral Connectivity Decision Problem

keep the algebraic connectivity of the network above the desired threshold.

Corollary 6.3.4. If each robot runs an algorithm which solves Spectral Connectivity Decision

Problem, then the algebraic connectivity λ2 of the network never drops below λ+. •
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Name: Motion Test Algorithm

Goal: Solve Spectral Connectivity Decision Problem.
Inputs: • Current time tcurr ∈ R

• Maximum velocity of any robot, vmax

• Maximum time between communication rounds, δT
• Proposed direction of motion, v
• Eigenvalue bounds λ− ≤ λ+ ∈ R

Persistent • T ∈ R
n, an array of last recorded time information

data: • P ∈ R
d×n, an array of last recorded position information

• D ∈ R
n×n, a matrix of rough inter-robot distances

• A, B ∈ LAP(n)
• id ∈ {1, . . . , n}, unique identifier of current robot

Outputs: • fsafe ∈ R such that fsafe ≥ 0 if, for any time t ∈ [tcurr, tcurr + δT ],
the instantaneous change in the Laplacian matrix due to motion in the
direction v wins Graph Picking Game at time t

1: Initialize Xupper ← 0
2: Initialize Xlower ← 0
3: for all i ∈ {1, . . . , n} do
4: Xlowerid,i ← −minp∈B(Pi,vmax(t−Ti+δT ))(g

′
wgt(p,Pid; v,0) {Compute bounds on direc-

tion matrix}
5: Let Xupperid,i ← −maxp∈B(Pi,vmax(t−Ti+δT ))(g

′
wgt(p,Pid; v,0)

6: Let Xupperid,id ← Xupperid,id −Xupperid,i

7: Let Xlowerid,id ← Xlowerid,id −Xlowerid,i

8: end for
9: Let λ− ← max(λ−, λ2(A))

10: Let λ+ ← min(λ+, λ2(B))
11: if λ− ≥ λ+ then
12: return 0 {There are no possible matrices with eigenvalues in the disallowed range}
13: end if
14: Let fsafe ← Direction Checking Algorithm on A, B, Xlower, λ−, λ+

15: return fsafe

Table 6.4: Motion Test Algorithm.
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Proof. Since each robot’s individual motion solves Spectral Connectivity Decision Problem,

whenever λ2 ≤ λ+, we know f◦
2−conn(P(t);[0, . . . , uT

i , . . . ,0]T ) ≥ 0, for i ∈ {1, . . . , n}, for all times t.

Since [u1, . . . , un]T =
∑n

i=1[0, . . . , uT
i , . . . ,0]T , by [11, Proposition 2.3.3],

f◦
2−conn(P(t);[u1, . . . , un]T ) ⊆ [

n∑

i=1

min(f◦
2−conn(P(t);[0, . . . , uT

i , . . . ,0]T )),

n∑

i=1

max(f◦
2−conn(P(t);[0, . . . , uT

i , . . . ,0]T ))],

and thus f◦
2−conn(P(t);[u1, . . . , un]T ) ≥ 0.

6.3.2 Analysis of Motion Test Algorithm under perfect information

We wish to show that Motion Test Algorithm exhibits reasonable behavior as δT becomes

small. To do so, we compare it to an idealized variant of Motion Test Algorithm under which each

robot has perfect information.

We let Idealized Motion Test Algorithm be the algorithm defined by executing Motion

Test Algorithm in continuous time, with δT = 0, and with perfect information about the state of

the network available to each robot. We expound on how this is an idealized variant of Motion Test

Algorithm in Lemma 6.3.5, which shows that Idealized Motion Test Algorithm allows any

collective motion such that no individual robot’s motion instantaneously decreases λ2 unless λ2 > λ+.

Lemma 6.3.5. Under Idealized Motion Test Algorithm, a direction proposed by robot j is

accepted if and only if it does not decrease λ2 when taken by itself or if λ2 > λ+.

Proof. Consider a direction of motion, uj , which induces an instantaneous rate of change, X ∈ LAP±(n)

of the Laplacian matrix L ∈ LAP(n). Consider the case when X • (vvT ) < 0 for some vvT ∈ δλ2(L)

and λ+ ≥ λ2(L). Line 1: of Direction Checking Algorithm ensures that λ2 is used in place of
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λ+ in picking mmin. Since each such (vvT ) satisfies Lv = λ2(L), v ∈ uspan-L(m) for any m having

λm+1(L) > λ2(L). Thus the eigenvector calculation in line 17: of Direction Checking Algorithm

returns a value less than 0 and the proposed motion is rejected. If λ+ ≥ λ2(L) and the direction, X, does

not satisfy X • (vvT ) < 0 for any vvT ∈ δλ2(L), then there is no basis element, u, in uspan-L(mmin − 1)

having uT Xu < 0, so there is at least one m which produces a value greater than or equal to zero in

line 17: of Direction Checking Algorithm. In the case in which λ+ < λ2(L), lines 3: and 4: of

Direction Checking Algorithm force the direction to be allowed.

The following lemma establishes various useful facts that hold with high probability as δT

approaches zero.

Lemma 6.3.6. If the second derivative of gwgt is bounded, and gwgt has zero derivative at 0, then for

any configuration, for any k ∈ R and any proposed physical motion of robot j, uj, there exists a time

step δT such that, with high probability, the following are true:

(i) The actual Laplacian, L ∈ LAP(n) is within k of the estimated lower and upper bounds on the

Laplacian (A, B ∈ LAP(n)), i.e., ‖A− L‖2 < k and ‖B − L‖2 < k.

(ii) The actual instantaneous direction of motion, Y ∈ LAP±(n), is within k of the lower bound on

the direction of motion, X ∈ LAP±(n), i.e., ‖Y −X‖2 < k.

(iii) For some m, ǫA(m) < k.

Proof. Fact (i) follows from Lemma 6.3.2. Corollary 6.2.11 allows us to bound the expected time by

which the information robot i holds about robot j is out of date. The bound is a decreasing function

of δT . This bound is linearly related to the bound on the radius of a sphere known to contain robot

j, which induce decreasing bounds on both the range of angles i can be relative to j and the range

113



of distances i can be from j. If the second derivative of gwgt is also bounded, these induce a bound

on the computations in lines 4: and 5: of Matrix Bound Generator. Since the results of these

computations form upper and lower bounds for Y , we can deduce that the distance from the lower bound

to Y can be bounded by a decreasing function of δT , thus showing fact (ii). Regarding fact (iii), note

that g′wgt(0) = 0, thus the proximity graph is smooth with bounded second derivative even where two

robots are coincident. Assume λn(L) 6= λ2(L). Let l be the index such that λl(A) > λl−1(A) = λ2(A).

From part 1, δT can be picked such that, with high probability, ‖(B − L)‖2 < λ+ − λ2(L). Thus we

can replace the expression in line 11: of Direction Checking Algorithm with
√

λ2(B)−λ2(A)
λl(A)−λ2(A) There

exists a δT such that the maximum eigenvalue of the expected difference between A and B is less than

any constant, thus allow ǫA(l) to be chosen to be less than any given constant. If λn(L) = λ2(L), let

l = n + 1, and note that ǫA(n) = 0.

The next result shows that, as δT approaches zero, the behavior of Motion Test Algorithm

approaches that of Idealized Motion Test Algorithm.

Theorem 6.3.7. For any configuration, and any proposed direction of motion, v, for robot j, which is

permitted under Idealized Motion Test Algorithm, there exists a time step, δT , such that when

communication happens every δT time units, with high probability robot j will be allowed to move in

direction v. •

Proof. Let Y be the instantaneous change in the Laplacian matrix induced by v. Let −3k >

min{v : Lv=λ2v}(Y • (vvT )) Let l be defined as in Lemma 6.3.6, i.e., λl(L) > λl−1(L) = λ2(L)

or l = n + 1 and λl−1(L) = λn(L). By Lemma 6.3.6 there is a δT such that ǫA(l − 1) < k

and |λmin − min(eigs(Y ))| < k. Likewise, by Lemma 6.3.6, we can pick X and A sufficiently

close to Y and L respectively that |(Y −X) • A)| + |Y • (L−A)| ≤ k thus guaranteeing that

MT
u ((l − 1))XMu((l − 1))(1− ǫ2A(l − 1)) + ǫ2A(l − 1)min(λmin, 0) ≥ 0.
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6.3.3 Motion Projection Algorithm

In this section, we introduce Motion Projection Algorithm to solve the Spectral Con-

nectivity Problem, see Table 6.5. For this algorithm, we set the dimensionality of physical space, d,

to be 2. In other words, each robot lives in R
2. Roughly speaking, Motion Projection Algorithm

is a root-finder procedure wrapped around Motion Test Algorithm. The idea is to find the min-

imum angle by which to deviate a proposed direction of motion so that Motion Test Algorithm

returns fsafe ≥ 0 when executed with the resulting projected direction. If this is the case, then Theo-

rem 6.3.3 guarantees that the change in the Laplacian due to motion in the projected direction wins

Graph Picking Game.

Let us start by introducing some useful notation. Given a vector v = [v1, v2]
T ∈ R

2, let

fmotion : R 7→ R be defined as follows: for each θ ∈ R, fmotion(θ) is the result of evaluating Motion Test

Algorithm with the direction of motion [v1 cos(θ) − v2 sin(θ), v2 cos(θ) + v1 sin(θ)]T . The following

result provides an upper bound on how fmotion changes with θ.

Lemma 6.3.8. fmotion is globally Lipschitz with Lipschitz constant nvmax maxs∈R(g′wgt(s)).

Proof. We begin by noting that fmotion(θ) is the minimum, over m̃ > m, of

min(eigs(MT
u (m̃)XMu(m̃))) + ǫA(m̃),

where Mu(m̃) and ǫA(m̃) do not depend on θ. Each off-diagonal element of X has a Lipschitz constant

bounded by vmax maxs∈R(g′wgt(s)). From here on, let vedg = vmax maxs∈R(g′wgt(s)). Let Lclique(n) ∈

LAP(n) satisfy Lclique(n)i,j = −1 for each i 6= j. The change in X due to a change in θ of ∆θ lives

in LAP±(n) and is bounded from above by vedgLclique(n)∆θ and from below by −vedgLclique(n)∆θ.

Let ∆expression be the change in the value of expression due to a change in θ of ∆θ. Since Mu(m̃)
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Name: Motion Projection Algorithm

Goal: Solve Spectral Connectivity Problem

Inputs: • Current time tcurr ∈ R

• Maximum velocity of any robot, vmax

• Maximum time between communication rounds, δT
• Proposed direction of motion, v
• Eigenvalue bounds λ− ≤ λ+ ∈ R

Persistent • T ∈ R
n, an array of last recorded time information

data: • P ∈ R
2×n, an array of last recorded position information

• D ∈ R
n×n, a matrix of approximate inter-robot distances

• A, B ∈ LAP(n)
• id ∈ {1, . . . , n}, unique identifier of current robot
• Maximum angle deflection, θmax−id

• xincr ∈ R, step-size for root finder.
Outputs: • ṽ ∈ R

2, safe projected direction.
• θ ∈ S1, angle by which to rotate v to get safe direction

1: Let D ← call All-to-all Broadcast Algorithm on tcurr

2: Let (A, B) ← Matrix Bound Generator on tcurr, vmax and δT
3: Let v⊥ ← [−v1, v2]

T and θ ← 0 {Perpendicular direction, for computing rotations}
4: while θ ≤ θmax−id do
5: for all xsgn ∈ {−1, 1} do
6: Let ṽ ← v cos(θ) + xsgnv⊥ sin(θ) {Rotated direction}
7: Let Scheck ← Motion Test Algorithm on tcurr, vmax, δT, ṽ
8: if xsgn = −1 or |Scheck| < k then
9: Let k ← |Scheck| {For stepsize computation}

10: end if
11: if Scheck ≥ 0 then
12: return (ṽ, xsgnθ) {Found good direction}
13: end if
14: end for
15: Let θ ← θ + max(xincr,

k
nvmax maxs∈R(g′wgt(s))

) {Step θ}
16: end while{At this point, no safe direction has been found.}
17: return ([0, 0]T , 0)

Table 6.5: Motion Projection Algorithm.
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is defined by a subset of the columns of an orthogonal basis, each element of eigs(MT
u (m̃)X) has a

Lipschitz constant contained in

[−vedg max(eigs(Lclique(n))), vedg max(eigs(Lclique(n)))] = [−vedgn, vedgn].

Because

min(eigs(A + B)) ∈ [min(eigs(A) + min(eigs(B)), min(eigs(A)) + max(eigs(B))],

we deduce that

∆ min(eigs(MT
u (m̃)XMu(m̃)))

∈ [min(eigs(MT
u (m̃)∆XMu(m̃))), max(eigs(MT

u (m̃)∆XMu(m̃)))]

and therefore ∆ min(eigs(MT
u (m̃)XMu(m̃))) ∈ [−vedgn, vedgn].

The following result establishes that the root finder embedded in Motion Projection Al-

gorithm uses a reasonable step size.

Lemma 6.3.9. Let vedg = vmax maxs∈R(g′wgt(s)). If fmotion(θ) < −k for some k ∈ R≥0, fmotion(θ +

k
nvedg

) < 0. •

Proof. The bound that the Lipschitz constant for fmotion(θ) lies in [−nvedg, nvedg] holds for all θ. So

the change in fmotion from θ to θ + k
nvedg

is bounded within k
nvedg

[−nvedg, nvedg].

Finally, we are ready to show that Motion Projection Algorithm is a solution to Spec-

tral Connectivity Problem.
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Theorem 6.3.10. The Motion Projection Algorithm solves the Spectral Connectivity

Problem. If there is an interval, [θ−, θ+] ⊆ S1, such that fmotion(α) ≥ 0 for all α ∈ [θ−, θ+] and

θ+ − θ− ≥ xincr then Motion Projection Algorithm will return a direction other than [0, 0]T . •

Proof. The outer loop in Motion Projection Algorithm checks possible directions and evaluates

Motion Test Algorithm on them. If one of these directions results in Motion Test Algorithm

returning a non-negative value, Motion Projection Algorithm returns that direction, otherwise

it returns [0, 0]T . Let the current angle be θ. If θ steps by k
nvmax maxs∈R(g′wgt(s))

, where k is the max of

fmotion over {θ,−θ}, then fmotion will be less than zero for the next θ. If θ steps by more than this,

then θ steps by xincr. To pass the boundaries of the region [θ−, θ+], θ must step by xincr, and must,

therefore land in [θ−, θ+]. Because each step of θ is at least xincr, θ covers the entire region from 0 to

θmax−id in finite time.

6.3.4 Analysis of the communication complexity

At each communication round, the above solutions to the Spectral Connectivity Deci-

sion Problem and the Spectral Connectivity Problem require each robot to perform computa-

tions whose memory requirements are polynomial in the number of robots and whose time complexity

is polynomial in the number of robots times the time required to calculate the eigenspace of an n× n

matrix.

As is typically the case with any coordination algortihm, multiple communication rounds are

required in order to complete the assigned task. Therefore, it is also important to study the complexity

of our algorithm in terms of the required rate of communication to achieve a desired performance.

This is related, in some sense, to the notion of communication complexity, commonly discussed in the

literature on distributed algorithms [7, 33, 44], in which one studies the number of messages that need
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to be sent during an algorithm execution in order to achieve a given task, usually written as a function

of the size of the network.

In addition to the size of the network, there are additional factors that need to be considered

to accurately characterize the required rate of commmunication, including the required performance

(represented here as the probability that an agent will move, pmove ∈ (0, 1)), the amount we expect

λ2(G) to be above the threshold λ+, the maximum velocity with which the robots move, vmax, the

time between communication rounds, δT , and a bound, gmax, on the magnitude of the gradient of the

proximity function.

We begin by characterizing a property of the matrices A and B generated by the Matrix

Bound Generator which we will use to bound the gap between λ2(A) and λ2(L(G)).

Lemma 6.3.11. For any pmove ∈ (0, 1), the following holds

Pr
(

max
i,j∈{1,...,n}

(Bi,j −Ai,j)
)
≤ 4

1− pmove
gmaxvmax(n

2(n2 + 2)δT ) ≤ pmove. •

Proof. Follows from Markov’s inequality, Pr(|X| > α) ≤ E(|X|)
α

and Lemma 6.3.2.

We next proceed to combine this result with some general properties of graph Laplacians to

bound the transmission rate necessary for each robot to be allowed to move in any direction with high

probability (and thus be allowed to move in the direction specified by the underlying control algorithm).

Theorem 6.3.12. Let gmax = maxx∈R≥0
(|g′wgt(x)|). If the time between communication rounds is such

that δT ≤ (1−pmove)(λ2(L(G))−λ+)
4gmaxvmax(n2(n2+2)

, then each robot will move on each timestep with probability at least

pmove.

Proof. By Lemma 6.3.11, with probability at least pmove, maxi6=j,i∈{1,...,n},j∈{1,...,n} Bi,j − Ai,j never

exceeds 4
1−pmove

gmaxvmax(n
2(n2+2)δT ). Thus, with probability at least pmove, B−A satisfies B−A ≤LAP
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4
1−pmove

gmaxvmax(n
2(n2+2)δT )Lunit where Lunit ∈ LAP(n) has off-diagonal entries consisting solely of 0

and 1. The maximum possible eigenvalue of such a matrix is n, as shown in [18], and λ2(B) ≤ λ2(A) +

λn(B−A), thus λ2(B)−λ2(A) ≤ λ2(B−A) Whenever λ2(L) satisfies λ2(L(G)) ≥ λ++δλ, setting δT ≤

(1−pmove)δλ

4gmaxvmax(n2(n2+2)
, or equivalently, setting the transmission rate to approximately 8

1−pmove
gmaxvmaxn

4

real numbers per time unit allows the robots to move at each timestep with probability at least pmove.

We note that this result does not fully characterize the communication complexity of our

solutions because, among other things, does not account explicitly for the proposed direction of motion

of the robots. We discuss this topic among our ideas for future research later in Section 6.5.

6.4 Simulations

In this section, we present simulations of the Motion Projection Algorithm to further

validate the results presented in the previous sections. We have developed a custom Java-based plat-

form [53] for the simulation of algorithms running on networks of robotic agents following the modeling

framework proposed in [37]. The platform has a user interface layer which allows the simulations to be

graphically displayed in real time in a Java applet.

In all simulations, Motion Projection Algorithm is implemented with the r-disk graph

for the actual communication network, and the nonconvex weight function of the spline graph defined

in Remark 2.4.2, where rmax ∈ R was chosen to be slightly less than r and rmin ∈ R was slightly bigger

than zero. Note that the function gwgt satisfies the conditions of Lemma 6.3.6. The maximum velocity

of each individual robot is vmax = 0.125 and the time step is δT = 0.125.

We consider four sets of underlying control laws. In the first simulation, shown in Figure 6.1,
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all robots attempt to follow a Laplacian-based flocking algorithm. Each robot moves at unit speed

and, at each time step, updates its heading to its own heading plus a scalar (0.1) times the average

of the differences between its own heading and those of its neighbors. This is in fact a discrete-time

implementation of the Laplacian-based averaging consensus [42], see also [23]. Each robot tries to move

in the direction of its own heading, subject to maintaining connectivity.

(a) (b)

Figure 6.1: Execution of Motion Projection Algorithm with 12 robotic agents. The underlying
control law is determined by the robots moving at unit speed and running a Laplacian-based consensus
to update its heading. Plot (a) shows the paths taken by the robots and plot (b) shows the evolution of
the algebraic connectivity and the proportion of robots activel moving as functions of the communication
round. The angle of motion each robot is allowed to deviate from is 0.95π.

In the second simulation, shown in Figure 6.2, all robots attempt to follow a Laplacian-based

rendezvous algorithm. Each robot moves at unit speed and, at each time step, moves towards the

average of its neighbors positions, while maintaining connectivity.

In the third simulation, shown in Figure 6.3, four agents with different conflicting control

laws attempt to follow their own directives while maintaining connectivity. Note that the simulations

in which the control directives naturally align with maintaining connectivity tend to require far fewer

iterations to converge than those in which this is not the case (particularly those with random or
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(a) (b)

Figure 6.2: Execution of Motion Projection Algorithm with 12 robotic agents. The underlying
control law is determined by the robots moving at unit speed and running a Laplacian-based consensus
to update its target position. Plot (a) shows the paths taken by the robots and plot (b) shows the
evolution of the algebraic connectivity and the proportion of robots activel moving as functions of the
communication round. The angle of motion each robot is allowed to deviate from is π.

conflicting motion).

In the fourth simulation, shown in Figure 6.4, one leader robot attempts to follow a fixed

trajectory while the remaining robots try to move randomly subject to the constraint of maintaining

connectivity. For each robot, we specify the threshold θmax−i = 0.2.

These simulations validate the preliminary results in Section 6.3.4 linking the communication

complexity of the algorithm to the difference between λ2 and λ+. In particular, we observe that the

fraction of agents moving at any given time is correlated to the difference between λ2 and λ+, and

that the fraction of agents moving together with vmax affect the time required for the network to

complete the given task. We also find that, in situations where λ2 stays well above λ+, the complexity

is reasonable. On the other hand, the complexity degrades as the algorithm begins to push λ2 up

against the threshold. Adding a single agent whose underlying motion is random may help to maintain

connectivity, but assigning random underlying motion to the majority of the agents, as in the simulation
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(a) (b)

Figure 6.3: Execution of Motion Projection Algorithm with 4 robotic agents. The underlying
control law corresponds to following scenario: Three leaders each attempt to follow different control
laws each of which converges on a different fixed trajectory. The remaining agent moves randomly. Plot
(a) shows the paths taken by the robots and plot (b) shows the evolution of the algebraic connectivity,
the fraction of robots moving at each round, and the evolution of the angle of each robot’s position
relative to the origin.

(a) (b)

Figure 6.4: Execution of Motion Projection Algorithm with 5 robotic agents. The underlying
control law corresponds to one leader following a fixed trajectory and the remaining agents moving
randomly. Plot (a) shows the paths taken by the robots and plot (b) shows the evolution of the
algebraic connectivity, the fraction of robots moving at each round, and the evolution of the angle of
each robot’s position relative to the origin.
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shown in Figure 6.4, may slow down collective agent motion.

6.5 Conclusions

We have studied the problem of connectivity maintenance in robotic networks performing

spatially-distributed tasks. In our approach, the edge weights of the connectivity graph are not nec-

essarily convex functions of the inter-robot distances. We have proposed a distributed procedure to

synthesize motion constraints on the individual robots so that the algebraic connectivity of the overall

network remains above a desired threshold. The algorithm works even though individual robots only

have partial information about the network state due to communication delays and network mobility.

We have shown that as the communication rate increases, the performance of the proposed algorithm

approaches that of the ideal centralized solution of Spectral Connectivity Decision Problem.

6.5.1 Comparison to other algorithms

Other distributed algorithms to control the algebraic connectivity of a spatially induced net-

work includes those presented in [16, 67] and [69]. We discuss the relative merits of each approach

here. The first such work to come to our attention, [16], operates by computing the gradient, v2v
T
2 , of

λ2 in the space of Laplacian matrices. It them restricts robot motion to have the appropriate effect

(growth or control) on λ2 based on its gradient. Their approach, like ours, requires that each robot

store O(n2) numbers while computing the gradient. Unlike our approach, theirs requires that each

robot send multiple messages of size O(n2) per motion allowed by the gradient algorithm. It also re-

stricts the inter-robot edge weights to be of a particular form based on decaying exponetials, unlike our

restriction that the inter-robot edge weights be monotonically decreasing as a function of inter-robot

distance and have zero derivative at special places. The multiple messages of O(n2) real numbers (or

124



approximations thereof) are sent within a numerical distributed averaging operation which, in turn, is

executed multiple times within a numerical method (based on the QR algorithm from linear algebra)

for finding the eigenvector v2.

A simple improvement to this approach might be to come up with an upper bound, λmax-est

for λn, and, instead of finding the top n − 1 eigenvectors of the Laplacian matrix, L, instead find the

top 2 eigenvectors of λmax-estI − L.

This approach forms part of the series of improvements to this basic gradient algorithm pro-

posed in [67]. Their algorithm requires robots to send messages of O(1) real numbers and to store

only O(1) real numbers (while our algorithm requires each robot store O(n2) real numbers). The

authors of [67] express their algorithm as a continuous-time algorithm, rather than a discrete-time

communication algorithm. To rewrite it in our framework would require numerically discretizing their

integrator-based approach. To date, no study has been done on the communication rate bounds required

to do this effectively, and how they compare to those of our algorithm.

An approach which seems like a comprimise between the algorithms presented in this chapter

and those in Chapter 5 is presented in [69]. Like our approach in Chapter 5 this work decouples the

problem of constraining motion to preserve a link from that of deciding which links to preserve. Like

the work in Chapter 6, each robot slowly propogates information about the entire graph and acts on

locally available estimates of the state of the network to ensure the algebraic connectivity has desired

properties. Unlike either of the above algorithms, the method proposed in [69] requires an auction to

be held across the entire network for the deleting of each edge. It is currently unknown under what

conditions this algorithm allows a link to be dropped while ours doesn’t and vice versa.
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Part IV

Concluding remarks
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Chapter 7

Lessons from studies of multiple connectivity

problems

Some lessons learned from these studies include the following:

• Synchronized operations help with connectivity algorithms.

• Special graphs can be useful

• It can be valuable to decouple a connectivity algorithm into a component which handles individual

links and a component which decides which links to handle.

• While connectivity is a global property, there are multiple methods for transmitting global infor-

mation, each of which yields connectivity algorithms with different properties

The Connectivity Maintenance Algorithm discussed in Chapter 5 is heavily dependent

on the synchronized nature of the network model in which it is implemented. Many of the proofs of

correctness fail if adjacent robots are on different communication rounds. A practical implementation of

this algorithm would have to rely on some external (possibly expensive) synchronization method. Since
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most tree rearrangements allowed by the algorithm happen in very few steps it might be reasonable

to achieve this by running CM Algorithm at a very slow rate compared to the communication

rate required by the underlying control law allowing rounds of CM Algorithm to be triggered by a

slow simulation of synchronous communication on an otherwise asynchronous network. Likewise the

algorithms described in Part II require that spacecraft simultaneously and syncrhonously start and end

certain motion operations. If the robot motion speed is low relative to the communication rate or the

drift of the robot’s on-board clocks, this is feasible.

Special graphs can be useful for connectivity algorithms. The Connectivity Maintenance

Algorithm relies on a tree as a certificate of graph connectivity. Likewise the algorithms presented

in Part II use properties of the bipartite graph to reduce the problem of “graph connectivity” to one

of link connectivity.

Relatedly, both of the algorithms discussed above decouple the problem into a component

which deals with graph connectivity (whether it be negotiations to maintain a tree, or agreement on

which agents will be in which component of the bipartite graph in Part II) and a component which

handles individual links (preserving them in Chapter 5 and creating them in Part II).

Finally, different methods of transmitting global information yield different connectivity algo-

rithms. Three ways of computing values which depend on the state of all nodes on a network are

• Explicitly perform an all-to-all broadcast, as in Chapter 6 and [69].

• Express the final computed value as a function of the sum of values computed at each node, and

run a distributed averaging algorithm, much like the work presented in [16, 67]

• Express the final value as a heierarchical function and compute it over a tree, as in Chapter 5.
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Each of these has been used in at least one connectivity maintenance algorithm, and each class of

algorithms resulting from one of these methods has different properties. The tree method can compute

final values in time proportional to the depth of the tree, but may have issues with synchronization

and brittleness. The explicit broadcast algorithm easily handles asynchronous communication and lost

messages, but at great cost in terms of communication complexity. The distributed averaging approach

can represent a compromise between the two (if done properly).

As a final note, we directly compare Connectivity Maintenance Algorithm with Mo-

tion Projection Algorithm by showing the results of each algorithm coupled with a flocking

algorithm in Figure 7.1.
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(a) (b)

(c) (d)

Figure 7.1: Execution of Motion Projection Algorithm with 12 robotic agents in (a) and (b). The
underlying control law is determined by the robots moving at unit speed and running a Laplacian-based
consensus to update its heading. Plot (a) shows the paths taken by the robots and plot (b) shows the
evolution of the algebraic connectivity and the proportion of robots activel moving as functions of the
communication round. The angle of motion each robot is allowed to deviate from is 0.95π. Execution
of CM Algorithm with 12 robotic agents in (c) and (d) with the same underlying control law. The
agent velocity in (c) and (d) is set to half that in (a) and (b)
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Chapter 8

Potential directions of future research

Potential future work connected with Chapter 5 includes understanding how the resulting

trees of our algorithm compare to minimum spanning trees, developing systematic ways to encode

preference re-arrangements in connection with other coordination algorithms and exploring the efficacy

of the proposed ideas in conjunction with other proximity graphs relevant in motion coordination, such

as the visibility graph.

Future work on the algorithms presented Chapter 6 could evaluate the communication com-

plexity of the proposed coordination algorithms. We are especially interested in calculating lower

bounds on the communication complexity required by the computation of the gradient of the algebraic

connectivity function in a distributed way. We would also like to study in more detail the relationship

between the rate of information transmission and the rate of robot motion in terms of the number of

robots and the exact value of f2−conn. Finally, we would like to explore the combination of the proposed

approach with algorithms for deployment and exploration.
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