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age consensus-

Consider
o N agents with state x = (z1,...,2x5) € RV

@ each agent ¢ can communicate with neighbors j € V; in undirected
communication graph G

@i(t) = u;(t)

Well known distributed solution

wi(t) = = 3 (@it) — a5(1))

JEN;

o Continuous local state information
e Continuous communication

e Continuous actuation

=

Cameron Nowzari (Penn) rent- ered consensus June 5, 2014



Digital controllers

Consider a single plant being controlled by a microprocessor through a
feedback control loop

= f(x,u)
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Digital controllers

Consider a single plant being controlled by a microprocessor through a
feedback control loop

-25toed pute & ()
&= f(z,u)
Notice that this is different from the idealistic system

&= f(x, k(x))
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Digital controllers

25 facdsmte &(z)
&= f(z,u) # &= f(x,k(z))

Most existing control theory was developed ignoring the implementation
details
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Digital controllers

25 facdsmte &(z)
&= f(z,u) # &= f(x,k(z))

Most existing control theory was developed ignoring the implementation
details

As long as k(x) is updated sufficiently fast, everything will be okay
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Digital controllers

-Time-triggered- control

Controller is updated periodically at an a priori chosen period T

Benefits:
e simple and easy to implement

e does not require extra computations

Drawbacks:
@ controller is often designed assuming perfect information

o state is sampled and controllers are updated periodically

@ robustness analysis done a posteriori
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Digital controllers

-Event-triggered- control
Consider a linear system
& = Ax + Bu,

with ideal control law u* = Kz rendering the closed loop system
asymptotically stable
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Digital controllers

-Event-triggered- control

Defining the error in the system as e(t) = x(t) — x(¢¢), the closed loop
dynamics is

& = Ax(t) + BKx(t,)
= (A+ BK)x(t) + BKe(t)

Since (A 4+ BK) is stable, there exists a Lyapunov function V' such that
V < —allz|? + bl|z el
If we can now enforce that
a
< —
lell < o5 fl]
for some o € (0,1), then

V<—(1-0)lz|?><0
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Digital controllers

-Event-triggered- control

Event-trigger is given by

a
lell = o4 ll]
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Digital controllers

-Event-triggered- control

Event-trigger is given by

Solves the problem of continuous actuation requirement

Still requires continuous communication in a network
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Problem statement

The distributed, continuous control law

wp(t) == Y (wilt) —z(1))

JEN;

is well known to have each agent state asymptotically converge to the initial
average of all agent states.
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Problem statement

The distributed, continuous control law

wp(t) == Y (wilt) —z(1))

JEN;

is well known to have each agent state asymptotically converge to the initial
average of all agent states.

Instead, we will use the control law

JEN;

where #;(t) is the last broadcast state of agent .

How should agents decide to broadcast their state to ensure their state
converges to the initial average of all agent states?
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Lyapunov design

Ideal controller Implementable controller
wi(t) ==Y (wilt) —a;(1)) wit) = = Y (@) — (1))
JEN; JEN;
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Lyapunov design

Ideal controller Implementable controller
wi(t) ==Y (wilt) —a;(1)) wit) = = Y (@) — (1))
JEN; JEN;
u*=—Lx u=—LZI

Lyapunov function

V =2TLa

L,V (z)=2"Li L,V(z)=2TLi
=—2"LLz <0 = —2TLLE <777
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Lyapunov design

How does & need to be updated such that

LV(@)=V=—2TLLz <0

at all times?
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Lyapunov design

How does & need to be updated such that

LV(@)=V=—2TLLz <0

at all times?

The ideal way would be to update & each time —z” LLZ = 0. But the problem
with this is that it is centralized and requires perfect information.

So how can we do this in a distributed way?
Let e = & — x, then

V=—(-eTLLi
= —||L&[* + (L&)" Le

5, 2014
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Lyapunov design

Let Z = Lz, then

<

[

|
[]=
22,
+
[~]=

Z ZA‘I(Bz — 6j)

i=1 i=1 jeN;
N N N
2 N
= — E 25+ E |Ni|Zie; — E E Ziej
i=1 i=1 i=1 jeN;
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Lyapunov design

Let Z = Lz, then

N N
V:—ZZA«'?‘FZZZz(e'L_e])
i=1 i=1 jEN;
N N N
= —2212 +Z |Ni|Zie Z Z Zi€j
i=1 i=1 i=1jEN;

By Young’s inequality,

N ~ 2
; IV;|zie; < ; (QIJ\@zia + 2aNi|ei)

and
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Lyapunov design

So we can bound
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Lyapunov design

So we can bound

N N/ 1 N 1
ve-Y ey <2|N¢|zia n zawzwef) 'y (223a+ 2?)
=1 =1 i=1jEN;
Since the graph is undirected, we know
N N N
Lo Lo 1 2
DD 5. =2 D 5a = D g Wil
i=1 jeN; i=1jeN; i=1
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Lyapunov design

So we can bound

a 1 1 N 1 1
) s 2 § : 52 2
*;121' + ;1 <2|M|Zz‘a+ 2|M|62) + : | (221a+ 2€j>

Since the graph is undirected, we know

)IEEED I IEEED L

i=1 jeN;

Then,

<
Mz

(alAF] — 1)27 + T INGfe?

.
|
—
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Lyapunov design

We can now present the distributed event-triggering condition as

1—alNi|) .
2 = a( a|N|)UiZ¢2
Wil
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Lyapunov design

We can now present the distributed event-triggering condition as

o2 — a(l — G|M|) 22

(3 |M| oF} 7
This means that

o _ a(l—alNi])

e < —————50,%;

R— |M| (ag)

at all times,
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Lyapunov design

We can now present the distributed event-triggering condition as

1- i .
612 _ a( a|N|)UiZ¢2
Vil

This means that

1—alN;
? < a( al z|)0i2i2
IV

at all times, then
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Lyapunov design

Theorem (E. Garcia et al. 2013)

The system with the described control law and event-triggered broadcasting
algorithm converges to the average consensus state.
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Lyapunov design

Theorem (E. Garcia et al. 2013)

The system with the described control law and event-triggered broadcasting
algorithm converges to the average consensus state.

Drawbacks:
e Parameter a needs to be found and agreed on a priori

@ Possibility of Zeno executions

Theorem (E. Garcia et al. 2013)

The inter-event times for each agent i = {1,..., N} are strictly positive.
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Modified algorithm

Main trigger

: 1 1
2> o L= sailNi| == ) a; | 27
N Ca 2 2L M)

Agents only need to know local parameters a; and a; for j € N;
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Modified algorithm

Main trigger

; 1 1
2> 2 1= NG| = = | 52
N Ca 2JZ€M“J K

Agents only need to know local parameters a; and a; for j € N;

Additional trigger added to ensure no Zeno behavior can occur

The system with the described control law and modified event-triggered
broadcasting algorithm exponentially converges to the average consensus state
and is guaranteed to avoid Zeno erecutions.
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Simulations

Simulation with N =5 agents

°a;=az=as=03 Evolution of state trajectories
Q@ A2 = Qg4 = 0.2

e 0; = 0.999 for all agents

Number of events triggered Evolution of Lyapunov function V'
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Conclusions

Distributed event-triggered broadcasting and control algorithm
e does not require any global a priori knowledge
@ no Zeno executions
@ exponential convergence rate

@ extension to time-varying topologies
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Conclusions

Distributed event-triggered broadcasting and control algorithm
e does not require any global a priori knowledge
@ no Zeno executions
@ exponential convergence rate

@ extension to time-varying topologies

Future work:
e sampled-data implementations
o directed graphs

@ more general algorithms
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