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Networked control systems

• When to transmit:
Event-triggered strategies

• A trigger function encodes the control goal
• Transmissions occur only when necessary
• Better use of resources than time-triggered
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Networked control systems

• What to transmit:
Information-theory based data rate theorems

• Quite successful in the discrete-time setting
• Tight necessary and sufficient data rates are

available
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Unanswered questions

Event-triggered control:

• What is the average inter-tx time?

• More generally, what is the average data rate?

• Given a bound on the channel capacity, what should the
transmission policy be?

Information-theoretic control:

• There is still a lot of scope for work in the continuous-time setting

• How to design controllers with specified performance (e.g.
convergence rate)?

The two themes have complementary strengths
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System description

Plant dynamics:
ẋ(t) = Ax(t) +Bu(t) + v(t), u(t) = Kx̂(t)
‖v(t)‖2 ≤ ν, ∀t ∈ [0,∞)

Transmission times: {tk}k∈N, Reception times: {rk}k∈N

∆k , rk − tk = ∆(tk, pk), npk is the number of bits transmitted at tk

Dynamic controller flow:
˙̂x(t) = Ax̂(t) +Bu(t) = Āx̂(t), t ∈ [rk, rk+1)

Dynamic controller jump: x̂(rk) , qk(x(tk), x̂(t−k ))

Closed loop flow, for t ∈ [rk, rk+1)

ẋ(t) = Āx(t)−BKxe(t) + v(t), Ā , A+BK

ẋe(t) = Axe(t) + v(t), xe , x− x̂ (encoding error)
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Dynamic controller jump: x̂(rk) , qk(x(tk), x̂(t−k ))

Closed loop flow, for t ∈ [rk, rk+1)
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Quantization and coding (instant communication)

If the decoder knows de(t0) s.t. ‖xe(t0)‖∞ ≤ de(t0)

Both encoder and decoder compute recursively:

de(t) , ‖eA(t−tk)‖∞de(tk) +
ν

‖A‖2
[e‖A‖2(t−tk) − 1], t ∈ [tk, tk+1)

de(tk+1) =
1

2pk+1
de(t

−
k+1)

Then, ‖xe(t)‖∞ ≤ de(t), for all t ≥ t0

de(t
−
k ) defines the quantization domain at time tk

# bits used to quantize at time tk is npk

Non-instant communication: more involved
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Control objective

Suppose Ā = A+BK is Hurwitz ⇐⇒ PĀ+ ĀTP = −Q

Lyapunov function: x 7→ V (x) = xTPx

Desired performance function: Vd(t) = (Vd(t0)− V0)e−β(t−t0) + V0

Performance objective: ensure b(t) , V (x(t))
Vd(t) ≤ 1, for all t ≥ t0

Design objective:

• Design event-triggered communication policy that recursively
determines {tk} and npk

• Ensure a uniform positive lower bound for {tk − tk−1}k∈N
• Ensure npk is upper bounded by the given “channel capacity”

• Quantify the average data rate
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Necessary data rate (non-state-triggered transmissions)

Set S(t) must lie within the set
Vd(t) , {ξ ∈ Rn : V (ξ) ≤ Vd(t)} at all times.

Number of bits necessary to be transmitted between t0 and t to meet
the control goal:

B(t, t0) ≥
(

tr(A) +
nβ

2

)
log2(e)(t− t0) + log2

(
vol(S(t0))

cP (Vd(t0))
n
2

)

Ras , lim
t→∞

B(t, t0)

t− t0
≥
(

tr(A) +
nβ

2

)
log2(e)

Assuming all eigenvalues of A have real parts greater than −β.
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Control with arbitrary finite communication rate

Theorem

Assuming control goal is met with continuous and unquantized
feedback, let

tk+1 = min
{
t ≥ tk : b(t) ≥ 1, ḃ(t) ≥ 0

}
, b(t) =

V (x(t))

Vd(t)

npk ≥ npk , n

⌈
log2

(
de(t

−
k )

c
√
Vd(tk)

)⌉
, npk : # bits sent at tk

Then

• Inter-transmission times have a uniform positive lower bound,

• V (x(t)) ≤ Vd(t) for all t ≥ t0

No uniform bound on pk: for special initial conditions pk can be
arbitrarily large

9 / 18



Control with arbitrary finite communication rate

Theorem

Assuming control goal is met with continuous and unquantized
feedback, let

tk+1 = min
{
t ≥ tk : b(t) ≥ 1, ḃ(t) ≥ 0
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Upper bound on the sufficient data rate

Corollary

If no disturbances, then for any k ∈ N,
n(pk +

∑k−1
i=1 pi) ≤ n

(
‖A‖∞ + β

2

)
log2(e)(tk − t0)+n log2

(
de(t0)

c
√
Vd(t0)

)
+n.

• Linear dependence on tk − t0

• Similar to the necessary data rate (e.g. tr(A)→ n‖A‖∞)

• If more bits than sufficient are transmitted in the past, (pi > pi for
some i < k), then fewer bits are sufficient at tk

• For any k ∈ N, if tk − tk−1 is bounded, then so is pk

• Data rate is bounded even though “communication rate” (pk) is
not uniformly bounded
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Control under bounded channel capacity

Channel-trigger function:

hch(t) ,
de(t)

c
√
Vd(t)ρT (b(t))

, ρT (b) ,
(w + θ)(1− b)
W (e(w+θ)T − 1)

+ 1,

T > 0 is a fixed design parameter.

Interpretation: n log2(hch(t)) is a sufficient number of bits that, if

transmitted at time t, ensures b = V (x(t))
Vd(t) ≤ 1 for the next

TT = min{Γ1(1, 1), T} units of time.
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Control under bounded channel capacity

Theorem

Suppose all previous assumptions hold and that hch(t0) ≤ 2p̄, where np̄
is the upper bound on the number of bits that can be sent per
transmission. Let

tk+1 = min{t ≥ tk : b(t) ≥ 1, ḃ(t) ≥ 0 OR
hch(t)

2p̄
≥ 1}

npk ≥ npk , n
⌈

log2

(
hch(t−k )

) ⌉
, npk : # bits sent at tk

Then

• p1 ≤ p̄. Further for each k ∈ N, if pk ∈ N∩[pk, p̄], then pk+1 ≤ p̄.
• Inter-transmission times have a uniform positive lower bound,

• V (x(t)) ≤ Vd(t) for all t ≥ t0

Non-instant communication: given an upper bound on the
maximum communication time, TM , main idea is to anticipate the
threshold crossing of b(t) and hch(t)

2p̄ well ahead.
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Upper bound on the sufficient data rate

Corollary (Non-instant communication, disturbance)

Let θ̄ = ‖A‖∞ + β
2 . For any k ∈ N,

pk ≤ log2

(
eθ̄TM

ρT (b̃(TM ,b(t
−
k ),ε(t−k ))−α(TM )

)
+ 1 + log2

(
eθ̄(tk−t0)∏k−1
j=1 2pj

ε(t0) +
∑k−1

i=0

∏k−1
j=i+1

eθ̄Tj

2pj
α(Ti)

)
.

Corollary (Non-instant communication, no disturbance)

Let θ̄ = ‖A‖∞ + β
2 . For any k ∈ N,

n
(
pk +

∑k−1
i=1 pi

)
≤ n

[
log2

(
eθ̄TM

ρT (b̃(TM ,b(t
−
k ),ε(t−k ))

)
+ 1 + θ̄ log2(e)(tk − t0) + log2(ε(t0))

]
.

• In the general case, only an implicit characterization

• Effect of non-instant communication (through TM ) has only a
“transient” effect on sufficient data rate

• If no disturbance and instant communication (TM = 0), then we
recover the data rate of the basic implementation
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Simulation results: 2D linear system
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Non-instantaneous communication without disturbance and p̄ = 20, (a) shows

the number of bits on each transmission for “Sim2” (b) shows a comparison of

the interpolated total number of bits transmitted in “Sim1,2”.
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Conclusions

Contribution:

• Fusion of complementary strengths of event-triggered control and
information-theoretic control

• Stabilization with prescribed convergence rate

• Control under bounded and specified channel capacity

• Instantaneous and non-instantaneous transmissions

• Analysis of average data rate

Future work:

• Overcoming the assumption on synchronized encoder and decoder
in non-instant communication

• Efficient quantization and coding schemes

• Stochastic time varying channels
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Thank You

ptallapragada@ucsd.edu
http://carmenere.ucsd.edu/pavant/

cortes@ucsd.edu
http://carmenere.ucsd.edu/jorge/
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