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Disturbance attenuation in discrete-time feedback systems

-

ed y
Controller Plant

OΣ

Measure of disturbance attenuation performance at frequency ω:

Sd ,e(ω) =
√

Φe(ω)/Φd(ω)

Φx(ω) denotes the power spectral density of a wide sense stationary
stochastic process x

If the controller is linear time-invariant, Sd,e is the transfer function between
d and e

Small Sd,e(ω) implies good disturbance attenuation performance

However, it is in general not possible to make Sd,e(ω) small at all frequencies
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Classical Bode integral formula (DT, SISO, LTI)
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once, and only in an optional reading of an unassigned chap-
ter in one of the classical textbooks. This integral surfaced for
me for the second time in the mid 1970s, referenced in a paper
by Isaac Horowitz titled “On the Superiority of Transfer Func-
tions over State-Variable Methods. . . .” It appeared as a per-
spectives paper in IEEE Transactions on Automatic Control
amid a certain amount of controversy [2].

The second integral did not surface for me until 1983, in a
talk by Jim Freudenberg at an IEEE Conference on Decision
and Control in San Antonio [3]. If memory serves, someone
pointed out at the time that this result was “just a version of
Jensen’s theorem,” well known in mathematics for a long
time. Perhaps this historical reference reduced the value of
the result in the minds of some listeners, but it should not
have, because the integral explains so much about the diffi-
culties of controlling unstable systems.

A Bode Integral Interpretation
I like to think of Bode’s integrals as conservation laws. They
state precisely that a certain quantity—the integrated value
of the log of the magnitude of the sensitivity function—is
conserved under the action of feedback. The total amount
of this quantity is always the same. It is equal to zero for sta-
ble plant/compensator pairs, and it is equal to some fixed
positive amount for unstable ones.

Since we are talking about the log of sensitivity magnitude,
it follows that negative values are good (i.e., sensitivities less
than unity, better than open loop) and positive values are bad
(i.e., sensitivities greater than unity, worse than open loop).
So for open-loop stable systems, the average sensitivity im-
provement a feedback loop achieves over frequency is ex-
actly offset by its average sensitivity deterioration. For
open-loop unstable systems, things are worse because the
average deterioration is always larger than the
improvement. This applies to every controller,
no matter how it was designed. Sensitivity im-
provements in one frequency range must be paid
for with sensitivity deteriorations in another fre-
quency range, and the price is higher if the plant
is open-loop unstable.

It is curious, somehow, that our field has not
adopted a name for this quantity being con-
served (i.e., the integrated log of sensitivity
magnitude), to put it on a par with some of the
great quantities of physics such as mass, mo-
mentum, or energy. But since it has not, we are
free to choose a name right now. Let me propose
that we simply call it dirt. It is stuff we would
rather not have around; the less we have, the
better. I want to choose this name because it
lets me liken the job of a serious control de-
signer to that of a ditch digger, as illustrated in
Figure 3. He moves dirt from one place to an-
other, using appropriate tools, but he never gets
rid of any of it. For every ditch dug somewhere,

a mound is deposited somewhere else. This fact is most evi-
dent to the ditch digger, because he is right there to see it
happen.

In the same spirit, I can also illustrate the job of a more ac-
ademic control designer with more abstract tools such as
linear quadratic Gaussian (LQG), H∞ , convex optimization,
and the like, at his disposal. This designer guides a powerful
ditch-digging machine by remote control from the safety of
his workstation (Figure 4). He sets parameters (weights) at
his station to adjust the contours of the machine’s digging
blades to get just the right shape for the sensitivity function.
He then lets the machine dig down as far as it can, and he
saves the resulting compensator. Next, he fires up his auto-
matic code generator to write the implementation code for
the compensator, ready to run on his target microprocessor.
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Figure 3. Sensitivity reduction at low frequency unavoidably
leads to sensitivity increase at higher frequencies.
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Figure 4. Sensitivity shaping automated by modern control tools.

Figure: 1989 Bode lecture: respect the unstable, Gunter Stein

Open-loop dynamics → achievable closed-loop performance.

Controller can only shape the sensitivity integral.

Important for controller design reference.
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(Limited) literature review on Bode integral formula

Bode (1945): Continuous, SISO, LTI, stable plant

Freudenberg and Looze (1985): Unstable plant

Freudenberg and Looze (1988), Chen and Nett (1995), Chen (2000), Ishii,
Okano, and Hara (2011): MIMO system

Iglesias (2001,2002), Sandberg and Bernhardsson (2005): Time-varying
system

Zhang and Iglesias (2003), Martins and Dahleh (2008), Yu and Mehta
(2010): Nonlinear control

Martins, Dahleh, and Doyle (2007): Bode integral formula with
disturbance preview

Zhao and Gupta (2014): DT linear periodic systems
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Preview side information improves disturbance rejection
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Figure: Preview side information at the controller improves closed-loop disturbance
rejection (Martins, Dahleh, and Doyle (2007)).
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−π
log Sd,e(ω)dω ≥

∑
i :|λi (A)|>1

log |λi (A)| − C

What about delayed side information?
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Can DSI improve disturbance rejection?
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Figure: Feedback system configuration when the controller has delayed side information.
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∫ π

−π
log Sd,e(ω)dω ≥ ?

Intuitively, delayed side information about an i.i.d. disturbance process is not
useful since it contains no information about the current or future disturbance.
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Can DSI improve disturbance rejection?
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Figure: Feedback system configuration when the controller has DSI.

However, we will show that DSI improves disturbance rejection if the plant is
unstable

1
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∫ π

−π
log Sd,e(ω)dω ≥

( ∑
i :|λi (A)|>1

log |λi (A)| − C
)+

where (x)+ , max(x , 0) and C represents the Shannon capacity of the side
channel.
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Problem setup
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Plant: [
x(k + 1)
y(k)

]
=

[
A B
H 0

] [
x(k)
u(k)

]
where x(k) ∈ Rn, u(k), y(k), e(k) ∈ R, ∀k ∈ Z+.

Controller:
u(k) = fk(k, d̂k , ek)

where fk is a time-varying, possibly nonlinear, function.
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Assumptions
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The closed-loop system is mean-square stable.

The disturbance process d is a zero-mean Gaussian process with i.i.d. r.v.
d(k). The plant’s initial condition x(0) is a zero-mean r.v. with finite
differential entropy, and independent of d .
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DSI is useful for unstable plants

Theorem (DSI can reduce the log integral of sensitivity)

Denote the transfer function from the disturbance d to the error e by Sd,e

1

2π

∫ π

−π
log Sd,e(ω)dω ≥

( ∑
i :|λi (A)|>1

log |λi (A)| − C
)+
.

Unlike PSI, the contribution of DSI to the disturbance attenuation
performance is upper bounded by

∑
i :|λi (A)|>1 log |λi (A)|.

DSI can only help to stabilize the open-loop system but cannot reduce the
controller’s uncertainty about the disturbance.
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DSI can help to stabilize an unstable plant
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1

2π

∫ π

−π
log Sd,e(ω)dω ≥

( ∑
i :|λi (A)|>1

log |λi (A)| − C
)+
.

The power in e comes from 2 sources: disturbance d and stabilizing
information about x(0).

Even if d̂ is independent of x(0), it can still help to stabilize the system by
providing conditional information about the initial condition given e
(I (d̂k ; x(0)|ek) > 0).
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Lower bound on log integral of sensitivity is tight
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Consider the scalar plant

x(k + 1) = ax(k) + u(k), y(k) = x(k),

for some |a| > 1 and channel capacity C > log |a| bits/sec.

Let the side channel transmit d(0) at every time step k , so that the controller has
an increasingly better estimate d̂0(k) of d(0).
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Lower bound on log integral of sensitivity is tight
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The encoder/decoder pair is such that

E (‖d(0)− d̂0(k)‖2) ≤ 2−2CkE (‖d(0)‖2).

Use the control law

u(k) =

{
a(d̂0(0)− e(0)), k = 0,

ak+1(d̂0(k)− d̂0(k − 1)), k ≥ 1.
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Lower bound on log integral of sensitivity is tight
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The corresponding closed-loop dynamics is given by

x(k) = ak(d̂0(k − 1)− d(0)).

Based on the above computation, it follows that

1

2π

∫ π

−π
log |Sd,e(ω)|dω = 0 =

(
log |a| − C , 0

)+
,

and the lower bound is achieved for any C > log |a|.
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Conclusion and future direction
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Even delayed side information can help to attenuate the disturbance if the plant is
unstable, i.e., the log integral of sensitivity can be reduced at most∑

i :|λi (A)|>1 log |λi (A)|
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∫ π

−π
log Sd,e(ω)dω ≥

( ∑
i :|λi (A)|>1

log |λi (A)| − C
)+
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Conclusion and future direction
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Future work 1: study the effect of DSI on the log integral of complementary
sensitivity function

1

2π

∫ π

−π
log Sd,y (ω)dω ≥ ?
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Conclusion and future direction
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Future work 2: study network control system where the side information is a mix
of preview and delayed side information.
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