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Need for network opti tion is pervasive

Optimizing agent operation given limited network resources
e power networks: generation, transmission, distribution, consumption
e wireless communication networks: throughput, routing, topology

e sensor&robotic networks: data gathering, fusion, estimation, life
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Grid of the future: from vertical to flat

Integration of renewables and distributed energy resources (DERs)

From small number of large generators to large number of smaller generators

@ advent of renewables, distributed energy generation

@ large-scale grid optimization problems, highly dynamic g’L 4
o traditional top-down approaches impractical, \!
inefficient

Rethinking of operational&infrastructure design for efficiency and emission targets

Optimized coordination for allowing&dispatching power flows originating from
any point, handle dynamic loads, robust against failures, privacy, plug-and-play

How Rooftop Solar Can Stabilize
the Grid

Following Germany's lead, California gives advanced
inverters a bigger role in the grid

Nuclear Shutdowns Put Belgians and
Britons on Blackout Alert - IEEE

Multiple reactor shutdowns in Belgium and the UK. are
reminder of the potential brittleness of power systems reliant on
asmall number of large generators
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Network optimization with non-sparse constraints

Network of n agents communicating over connected undirected graph
e convex cost function: f; : R — R, Vi
e local constraint: 2™ < z; < zM | Vi

e global constraint: Az = b, with b € R™ and non-sparse A € R™*"

Network optimization problem

minimize Z?:l fi (mz)
subject to Az =b

2" <z < aM

Objective: distributed algorithmic solution under
@ local exchanges: only neighbors communicate with each other
o information: i knows f;, 27, M and ([A]x, by) for k such that [A]x; # 0

7
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Sample scenario: I

Economic dispatch

Group of n power generators aim to meet power demand while

minimizing total cost of generation and respecting individual generator
constraints

Economic dispatch problem

minimize Y., f;(P)
subject to >, P =1L
Pm < P<PM

@ load constraint is global and generator constraints are local
em=1,A=]1,...,1],and b=1L
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Sample scenario: II

Sensitivity analysis-based optimal power flow!

Given operating point, group of n power generators seek to determine
cost-effective change in generation to meet change in demand while

accounting for flow constraints

Linearized optimal power flow

minimize vazgl fi(AP?)
subject to Ef\]:“’l APf =N AP + ATAP?

APY —
f< <

PI<API <P’

e change in losses and flows represented using shift factors
@ power balance and flow constraints are global as A and ¥ are non-sparse

IK, E. Van Horn, A. D. Dominguez-Garcia, and P. W. Sauer. “Measurement-based real-time

security-constrained economic dispatch,” IEEE Transaction on Power Systems, vol. 31, no. 5, pp. 3548-3560, 2016.
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Exact reformulation using consensus

o Decision variable for agent i is copy of network state &' € R™
e Collective decision variable & = (2';2%;...;2") € (R")"
o (A;,b;) are submatrices formed by rows k of A and b where [A]; # 0

Original problem Exact reformulation

min 371, fi(w:) min Y, fi(&)
st. Az =h0 st. A3 =b;,Vi
™ <z <M xznga%zga;ZM,Vi

(L®I,)E = 0,

L is graph Laplacian

All constraints are local (computable using information exchange
with neighbors) in the reformulated problem!
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Exact reformulation using consensus

e Decision variable for agent i is copy of network state £#* € R™
e Collective decision variable # = (£1;2%;...;4") € (R™)"
o (A;,b;) are submatrices formed by rows k of A and b where [A]; # 0

Original problem Ezact reformulation

min Y0, fi(zi) min Y3, fi(2)
st. Az=b st At =b;,Vi
2™ <z <M g;’."<”i< MVi
(L R I ):C =0,
L is graph Laplacian

Proposition

Original problem and consensus-based formulation have the same optimizers
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Exact reformulation using consensus

o Decision variable for agent i is copy of network state &' € R™
o Collective decision variable # = (£1;2%;...;2") € (R™)"
o (A;,b;) are submatrices formed by rows k of A and b where [A]; # 0

Original problem Exact reformulation

min >0, fi(x:) min Y, fi(&)
st. Az =hb st. Ai=b;,Vi
g™ <z <M o < 3 < oM Vi

(L®I,)E = 0,2

L is graph Laplacian

Distributed implementation:
@ size of the interchanged messages is order n

@ either communication complexity or time complexity suffers
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Exact reformulation using auxiliary variables

o for k€ {1,...,m}, let y* € R” be auxiliary variable for k-th constraint
o decision variable for agent i is (z;, {yF}7,)

Original problem

Ezact reformulation
min 37, fi(w:)
st.  diag([A]x)z + Ly* =

br

ik
1 e

e, Vk

2" < x < aM

1, if[A]y; #0

k n 5 k
e” € R™ is defined by e? =
Y 4 {0, otherwise

All constraints are local in the reformulated problem!
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Exact reformulation using auxiliary variables

o for k€ {1,...,m}, let y* € R” be auxiliary variable for k-th constraint
o decision variable for agent i is (z;, {yF}7,)

Original problem

Ezact reformulation

min 350, fi(@i)

by :
st [Awizit D (WF —yf) = 1T_eke?’ Vk,i
. n

1, if[Alg,; #£0

k n § k
€ R™ is defined b; Y=
“ : . b7 &g {0, otherwise

All constraints are local in the reformulated problem!
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Exact reformulation using auxiliary variables

o for k € {1,...,m}, let y® € R™ be auxiliary variable for k-th constraint
o decision variable for agent i is (x;, {yF}7 )

Original problem

Exact reformulation
min 37, fi@i)
s.t. diag([A]x)z + Ly* = bk i

17 ek

n

2" < x<aM

1 if [A 5 0
ek € R™ is defined by ek = 4 Al #
o 0, otherwise

Proposition

Original problem and reformulation have same optimizers

Key fact: 1, (diag([A]x)x + Ly* = 1?;,0 ek) yields [A]xz = by
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Exact reformulation using auxiliary variables

o for k € {1,...,m}, let y* € R" be auxiliary variable for k-th constraint
o decision variable for agent i is (z;, {yF}7 )

Exact reformulation
min 370, fi(2:)
st.  diag([A]p)z + Ly* =

Original problem

bi
17ek

ek, vk

2" < ax<aM

i, if [A]k,i #0
0, otherwise

eF € R™ is defined by ef = {

Distributed implementation:
@ size of the interchanged messages is of order m + 1
e scalable implementation when m and n independent
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Comparison

Economic dispatch p

min{Z?zl P} | Y0, P =1L}

e four cases, number of generators (n): 5, 15, 25, 35

@ same primal-dual dynamics for both formulations
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Method with auxiliary variables can be generalized

Network optimization problems with “separable” inequality constraints can be
reformulated in a similar way

Original problem Reformulation

min Yo, fi(z;) min Y, fi(z)
st iy 9i(mi {zs}jen:) <0 | st diag((gi(), .-, 9n()]) + Ly < On

For the reformulation:
e decision variable for agent i is (z;,y;)

@ constraints are local: for each i,

gi(wi, {z;}jens) + D (i —y;) <0
JEN;
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Motivation for perturbation analysis

Alternative approach to make network optimization problem ‘distributed’
o sparsify matrix A by zeroing some entries
@ bound distance between optimizer of original and approximated problems

@ bound distance between optimal values
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Perturbation analysis: general constraints

Proposition (Arbitrary convex optimization problem)
Let f be C% with 0 < V2f, F1 and Fa compact, and

x} = argmin{f(z) | x € Fy} x5 = argmin{ f(z) | x € Fa}
Then,

3 1/2
ot —a3ll < |/ 5 (Md(F1, Fo)? + 2Gd(F, o)) + Md(Fi, F)

@ conservative bound, not Lipschitz with respect to distance between
constraint sets JF; and JFy

e analysis is oblivious to geometry of F; and F»

d(Fi1, F2) is the Hausdorff distance between sets and
G =max{||[Vf(z)| |z € F1 U F2}
m = min{||V2f(z)| | z € F1 U F2}
M = max{||V2f(z)| | z € F1 U F2}
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Perturbation analysis: affine constraints

Proposition

For xg € R™, Ay, Ay € R™*"™ of full row-rank, by,bs € R™, let
o} = argmin{||z — zo||* | A1z = b1} rh = argmin{||x — xo||? | A2z = ba}

Then,

J21 — @3] < af| A = Azl + Bllbr — bal|,

o Lipschitz bound that uses the affine nature of constraints

e still, perturbation of same magnitude to different entries of A; gives the
same error bound, which is not desirable

a = ([lzoll + [[b2[)a(A1, A2)
B =lA] (A1 AD)7H|
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Summary

Conclusions
o global affine constraints to local affine constraints
e exact reformulations and their comparison

e relaxations via perturbation analysis

Future work
@ extend perturbation analysis to general objective functions

o determine entries of A that affect least the optimizer accuracy

design algorithms to identify “optimal” sparse A

characterize trade-off between communication cost and accuracy of
solution

ributed ne optimization
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