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Need for network optimization is pervasive

Optimizing agent operation given limited network resources

power networks: generation, transmission, distribution, consumption

wireless communication networks: throughput, routing, topology

sensor&robotic networks: data gathering, fusion, estimation, life
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Grid of the future: from vertical to flat
Integration of renewables and distributed energy resources (DERs)

From small number of large generators to large number of smaller generators

advent of renewables, distributed energy generation

large-scale grid optimization problems, highly dynamic

traditional top-down approaches impractical,
inefficient

Rethinking of operational&infrastructure design for efficiency and emission targets

Optimized coordination for allowing&dispatching power flows originating from
any point, handle dynamic loads, robust against failures, privacy, plug-and-play

September 22, 2014 January 21, 2015

Cherukuri & Cortés (UCSD) Distributed network optimization September 28, 2016 3 / 16



Network optimization with non-sparse constraints

Network of n agents communicating over connected undirected graph

convex cost function: fi : R→ R, ∀i
local constraint: xmi ≤ xi ≤ xMi , ∀i
global constraint: Ax = b, with b ∈ Rm and non-sparse A ∈ Rm×n

Network optimization problem

minimize
∑n

i=1 fi(xi)

subject to Ax = b

xm ≤ x ≤ xM

Objective: distributed algorithmic solution under

local exchanges: only neighbors communicate with each other

information: i knows fi, x
m
i , xMi and ([A]k, bk) for k such that [A]k,i 6= 0
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Sample scenario: I
Economic dispatch

Group of n power generators aim to meet power demand while
minimizing total cost of generation and respecting individual generator
constraints

Economic dispatch problem

minimize
∑n

i=1 fi(Pi)

subject to
∑n

i=1 Pi = L

Pm ≤ P ≤ PM

load constraint is global and generator constraints are local

m = 1, A = [1, . . . , 1], and b = L
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Sample scenario: II
Sensitivity analysis-based optimal power flow1

Given operating point, group of n power generators seek to determine
cost-effective change in generation to meet change in demand while
accounting for flow constraints

Linearized optimal power flow

minimize
∑Ng

i=1 fi(∆P g
i )

subject to
∑Ng

i=1 ∆P g
i =

∑Nl
i=1 ∆P d

j + Λ>∆P g

P f ≤ Ψ

[
∆P g

∆P d

]
≤ P

f

P g ≤ ∆P g ≤ P
g

change in losses and flows represented using shift factors

power balance and flow constraints are global as Λ and Ψ are non-sparse

1
K. E. Van Horn, A. D. Domı́nguez-Garćıa, and P. W. Sauer. “Measurement-based real-time

security-constrained economic dispatch,” IEEE Transaction on Power Systems, vol. 31, no. 5, pp. 3548-3560, 2016.
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Exact reformulation using consensus

Decision variable for agent i is copy of network state x̂i ∈ Rn

Collective decision variable x̂ = (x̂1; x̂2; . . . ; x̂n) ∈ (Rn)n

(Ãi, b̃i) are submatrices formed by rows k of A and b where [A]k,i 6= 0

Original problem

min
∑n

i=1 fi(xi)

s.t. Ax = b

xm ≤ x ≤ xM

Exact reformulation

min
∑n

i=1 fi(x̂
i
i)

s.t. Ãix̂
i = b̃i,∀i

xmi ≤ x̂ii ≤ xMi ,∀i
(L⊗ In)x̂ = 0n2

L is graph Laplacian

All constraints are local (computable using information exchange
with neighbors) in the reformulated problem!
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Proposition

Original problem and consensus-based formulation have the same optimizers
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L is graph Laplacian

Distributed implementation:

size of the interchanged messages is order n

either communication complexity or time complexity suffers
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Exact reformulation using auxiliary variables

for k ∈ {1, . . . ,m}, let yk ∈ Rn be auxiliary variable for k-th constraint

decision variable for agent i is (xi, {yki }mk=1)

Original problem

min
∑n

i=1 fi(xi)

s.t. Ax = b

xm ≤ x ≤ xM

Exact reformulation

min
∑n

i=1 fi(xi)

s.t. diag([A]k)x+ Lyk =
bk

1>n e
k
ek, ∀k

xm ≤ x ≤ xM

ek ∈ Rn is defined by eki =

{
1, if [A]k,i 6= 0

0, otherwise

All constraints are local in the reformulated problem!
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xm ≤ x ≤ xM

ek ∈ Rn is defined by eki =

{
1, if [A]k,i 6= 0

0, otherwise

Proposition

Original problem and reformulation have same optimizers

Key fact: 1>n
(
diag([A]k)x + Lyk = bk

1>
n ek

ek
)

yields [A]kx = bk
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Exact reformulation using auxiliary variables
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0, otherwise

Distributed implementation:

size of the interchanged messages is of order m+ 1

scalable implementation when m and n independent
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Comparison
Economic dispatch problem

min
{∑n

i=1 ciP
2
i

∣∣ ∑n
i=1 Pi = L}

four cases, number of generators (n): 5, 15, 25, 35

same primal-dual dynamics for both formulations

No. of steps to convergence for differ-

ent network sizes

Volume of communication at each it-

eration for different network sizes
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Method with auxiliary variables can be generalized

Network optimization problems with “separable” inequality constraints can be
reformulated in a similar way

Original problem

min
∑n

i=1 fi(xi)

s.t.
∑n

i=1 gi(xi, {xj}j∈Ni
) ≤ 0

Reformulation

min
∑n

i=1 fi(xi)

s.t. diag([g1(·), . . . , gn(·)]) + Ly ≤ 0n

For the reformulation:

decision variable for agent i is (xi, yi)

constraints are local: for each i,

gi(xi, {xj}j∈Ni) +
∑
j∈Ni

(yi − yj) ≤ 0
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Motivation for perturbation analysis

Alternative approach to make network optimization problem ‘distributed’

sparsify matrix A by zeroing some entries

bound distance between optimizer of original and approximated problems

bound distance between optimal values

Cherukuri & Cortés (UCSD) Distributed network optimization September 28, 2016 13 / 16



Perturbation analysis: general constraints

Proposition (Arbitrary convex optimization problem)

Let f be C2 with 0 ≺ ∇2f , F1 and F2 compact, and

x∗1 = argmin{f(x) | x ∈ F1} x∗2 = argmin{f(x) | x ∈ F2}

Then,

‖x∗1 − x∗2‖ ≤
√

3

2m

(
Md(F1,F2)2 + 2Gd(F1,F2)

)1/2
+Md(F1,F2)

conservative bound, not Lipschitz with respect to distance between
constraint sets F1 and F2

analysis is oblivious to geometry of F1 and F2

d(F1,F2) is the Hausdorff distance between sets and

G = max{‖∇f(x)‖ | x ∈ F1 ∪ F2}

m = min{‖∇2f(x)‖ | x ∈ F1 ∪ F2}

M = max{‖∇2f(x)‖ | x ∈ F1 ∪ F2}
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Perturbation analysis: affine constraints

Proposition

For x0 ∈ Rn, A1, A2 ∈ Rm×n of full row-rank, b1, b2 ∈ Rm, let

x∗1 = argmin{‖x− x0‖2 | A1x = b1} x∗2 = argmin{‖x− x0‖2 | A2x = b2}

Then,

‖x∗1 − x∗2‖ ≤ α‖A1 −A2‖+ β‖b1 − b2‖,

Lipschitz bound that uses the affine nature of constraints

still, perturbation of same magnitude to different entries of A1 gives the
same error bound, which is not desirable

α = (‖x0‖ + ‖b2‖)α̃(A1, A2)

β = ‖A>1 (A1A
>
1 )−1‖
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Summary

Conclusions

global affine constraints to local affine constraints

exact reformulations and their comparison

relaxations via perturbation analysis

Future work

extend perturbation analysis to general objective functions

determine entries of A that affect least the optimizer accuracy

design algorithms to identify “optimal” sparse A

characterize trade-off between communication cost and accuracy of
solution
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