

Mechanical and Aerospace Engineering University of California, San Diego

Allerton Conference on Communication, Contol, and Computing Monticello, Sep 28-30, 2016

Need for network optimization is pervasive

Optimizing agent operation given limited network resources

- power networks: generation, transmission, distribution, consumption
- wireless communication networks: throughput, routing, topology
- sensor&robotic networks: data gathering, fusion, estimation, life

Integration of renewables and distributed energy resources (DERs)

From small number of large generators to large number of smaller generators

- advent of renewables, distributed energy generation
- large-scale grid optimization problems, highly dynamic
- traditional top-down approaches impractical, inefficient

Rethinking of operational&infrastructure design for efficiency and emission targets

Optimized coordination for allowing&dispatching power flows originating from any point, handle dynamic loads, robust against failures, privacy, plug-and-play

Nuclear Shutdowns Put Belgians and Britons on Blackout Alert - IEEE

Multiple reactor shutdowns in Belgium and the U.K. are a reminder of the potential brittleness of power systems reliant on a small number of large generators

SPECTRUM.IEEE.ORG

September 22, 2014

January 21, 2015

Network optimization with non-sparse constraints

Network of n agents communicating over connected undirected graph

- convex cost function: $f_i : \mathbb{R} \to \mathbb{R}, \forall i$
- local constraint: $x_i^m \le x_i \le x_i^M, \forall i$
- global constraint: Ax = b, with $b \in \mathbb{R}^m$ and non-sparse $A \in \mathbb{R}^{m \times n}$

Network optimization problem

minimize	$\sum_{i=1}^{n} f_i(x_i)$
subject to	Ax = b
	$x^m \le x \le x^M$

Objective: distributed algorithmic solution under

- local exchanges: only neighbors communicate with each other
- information: *i* knows f_i , x_i^m , x_i^M and $([A]_k, b_k)$ for *k* such that $[A]_{k,i} \neq 0$

Sample scenario: I

Economic dispatch

Group of n power generators aim to meet power demand while minimizing total cost of generation and respecting individual generator constraints

Economic dispatch problem

minimize	$\sum_{i=1}^{n} f_i(P_i)$
subject to	$\sum_{i=1}^{n} P_i = L$
	$P^m \le P \le P^M$

load constraint is global and generator constraints are local
m = 1, A = [1, ..., 1], and b = L

Sensitivity analysis-based optimal power flow¹

Given operating point, group of n power generators seek to determine cost-effective change in generation to meet change in demand while accounting for flow constraints

Linearized optimal power flow

 $\begin{array}{ll} \text{minimize} & \sum_{i=1}^{N_g} f_i(\Delta P_i^g) \\ \text{subject to} & \sum_{i=1}^{N_g} \Delta P_i^g = \sum_{i=1}^{N_l} \Delta P_j^d + \Lambda^\top \Delta P^g \\ & \underline{P}^f \leq \Psi \begin{bmatrix} \Delta P^g \\ \Delta P^d \end{bmatrix} \leq \overline{P}^f \\ & \underline{P}^g \leq \Delta P^g \leq \overline{P}^g \end{array}$

• change in losses and flows represented using shift factors

• power balance and flow constraints are global as Λ and Ψ are non-sparse

security-constrained economic dispatch," IEEE Transaction on Power Systems, vol. 31, no. 5, pp. 3548-3560, 2016.

¹K. E. Van Horn, A. D. Domínguez-García, and P. W. Sauer. "Measurement-based real-time

Outline

Introduction
Motivation
Problem statement

2 Exact reformulations

- Using consensus
- Using auxiliary variables

3 Perturbation analysis

- General constraints
- Affine constraints

7 / 16

Exact reformulation using consensus

Decision variable for agent i is copy of network state x̂ⁱ ∈ ℝⁿ
Collective decision variable x̂ = (x̂¹; x̂²;...; x̂ⁿ) ∈ (ℝⁿ)ⁿ

• $(\tilde{A}_i, \tilde{b}_i)$ are submatrices formed by rows k of A and b where $[A]_{k,i} \neq 0$

Original problem		
\min	$\sum_{i=1}^{n} f_i(x_i)$	
s.t.	Ax = b	
	$x^m \le x \le x^M$	

77		
Exact reformulation		
min	$\sum_{i=1}^{n} f_{i}(\hat{x}^{i})$	
111111	$\sum_{i=1} J_i(x_i)$	
s.t.	$\tilde{A}_i \hat{x}^i = \tilde{b}_i, \forall i$	
	$x_i^m \leq \hat{x}_i^i \leq x_i^M, \forall i$	
	$(L\otimes I_n)\hat{x} = 0_{n^2}$	
Lie graph Lar	lagian	

All constraints are local (computable using information exchange with neighbors) in the reformulated problem!

Exact reformulation using consensus

- Decision variable for agent i is copy of network state x̂ⁱ ∈ ℝⁿ
 Collective decision variable x̂ = (x̂¹; x̂²;...; x̂ⁿ) ∈ (ℝⁿ)ⁿ
- $(\tilde{A}_i, \tilde{b}_i)$ are submatrices formed by rows k of A and b where $[A]_{k,i} \neq 0$

Original problem	
min s.t.	$\sum_{i=1}^{n} f_i(x_i)$ $Ax = b$
	$x^m \le x \le x^m$

Exact reformulation	
min	$\sum_{i=1}^{n} f_i(\hat{x}_i^i)$
s.t.	$\tilde{A}_i \hat{x}^i = \tilde{b}_i, \forall i$
	$x_i^m \leq \hat{x}_i^i \leq x_i^M, \forall i$
	$(L\otimes I_n)\hat{x}=0_{n^2}$

Proposition

Original problem and consensus-based formulation have the same optimizers

Cherukuri & Cortés (UCSD)

Exact reformulation using consensus

Decision variable for agent *i* is copy of network state x̂ⁱ ∈ ℝⁿ
Collective decision variable x̂ = (x̂¹; x̂²;...; x̂ⁿ) ∈ (ℝⁿ)ⁿ

• $(\tilde{A}_i, \tilde{b}_i)$ are submatrices formed by rows k of A and b where $[A]_{k,i} \neq 0$

Origin	al problem
min	$\sum_{i=1}^{n} f_i(x_i)$
s.t.	Ax = b
	$x^m \le x \le x^M$
_	

Exact reformulation	
min	$\sum_{i=1}^{n} f_i(\hat{x}_i^i)$
s.t.	$\tilde{A}_i \hat{x}^i = \tilde{b}_i, \forall i$
	$x_i^m \leq \hat{x}_i^i \leq x_i^M, \forall i$
	$(L\otimes I_n)\hat{x}=0_{n^2}$

L is graph Laplacian

Distributed implementation:

- $\bullet\,$ size of the interchanged messages is order n
- either communication complexity or time complexity suffers

Cherukuri & Cortés (UCSD)

for k ∈ {1,...,m}, let y^k ∈ ℝⁿ be auxiliary variable for k-th constraint
decision variable for agent i is (x_i, {y_i^k}_{k=1}^m)

Original problem

$$\begin{array}{ll} \min & \sum_{i=1}^{n} f_i(x_i) \\ \text{s.t.} & Ax = b \\ & x^m \leq x \leq x^M \end{array}$$

Exact reformulation

$$\min \sum_{i=1}^{n} f_i(x_i)$$
s.t.
$$\operatorname{diag}([A]_k)x + \mathsf{L}y^k = \frac{b_k}{\mathbf{1}_n^{\top} e^k} e^k, \ \forall k$$

$$x^m \leq x \leq x^M$$

$$\in \mathbb{R}^n \text{ is defined by } e_i^k = \begin{cases} 1, & \text{if } [A]_{k,i} \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

All constraints are local in the reformulated problem!

 e^{k}

for k ∈ {1,...,m}, let y^k ∈ ℝⁿ be auxiliary variable for k-th constraint
decision variable for agent i is (x_i, {y_i^k}_{k=1}^m)

Original problem

$$\begin{array}{ll} \min & \sum_{i=1}^{n} f_i(x_i) \\ \text{s.t.} & Ax = b \\ & x^m \le x \le x^M \end{array}$$

Exact reformulation

$$\begin{split} \min & \sum_{i=1}^{n} f_i(x_i) \\ \text{s.t.} & [A]_{k,i} x_i + \sum_{j \in \mathcal{N}_i} (y_i^k - y_j^k) = \frac{b_k}{\mathbf{1}_n^\top e^k} e_i^k, \; \forall k, i \\ & x^m \leq x \leq x^M \\ \hline \\ \hline \\ e^k \in \mathbb{R}^n \text{ is defined by } e_i^k = \begin{cases} 1, & \text{ if } [A]_{k,i} \neq 0 \\ 0, & \text{ otherwise} \end{cases} \end{split}$$

All constraints are local in the reformulated problem!

• for $k \in \{1, \ldots, m\}$, let $y^k \in \mathbb{R}^n$ be auxiliary variable for k-th constraint • decision variable for agent i is $(x_i, \{y_i^k\}_{k=1}^m)$

Original problem

$$\begin{array}{ll} \min & \sum_{i=1}^{n} f_i(x_i) \\ \text{s.t.} & Ax = b \\ & x^m \leq x \leq x^M \end{array}$$

Exact reformulation

min
$$\sum_{i=1}^{n} f_i(x_i)$$

s.t. diag
$$([A]_k)x + \mathsf{L}y^k = \frac{b_k}{\mathbf{1}_n^{\top} e^k} e^k, \ \forall k$$

$$x^m \le x \le x^M$$

 $e^k \in \mathbb{R}^n$ is defined by $e_i^k = \begin{cases} 1, \\ 0 \end{cases}$

if
$$[A]_{k,i} \neq 0$$

otherwise

Proposition

Original problem and reformulation have same optimizers

Key fact:
$$\mathbf{1}_n^{\top} \left(\operatorname{diag}([A]_k) x + \mathsf{L} y^k = \frac{b_k}{\mathbf{1}_n^{\top} e^k} e^k \right)$$
 yields $[A]_k x = b_k$

Cherukuri & Cortés (UCSD)

for k ∈ {1,...,m}, let y^k ∈ ℝⁿ be auxiliary variable for k-th constraint
decision variable for agent i is (x_i, {y_i^k}_{k=1}^m)

Original problem

min
$$\sum_{i=1}^{n} f_i(x_i)$$

s.t. $Ax = b$
 $x^m \le x \le x^M$

Exact reformulation

$$\min \quad \sum_{i=1}^{n} f_i(x_i)$$
s.t.
$$\operatorname{diag}([A]_k)x + \mathsf{L}y^k = \frac{b_k}{\mathbf{1}_n^\top e^k} e^k, \ \forall k$$

$$x^m \le x \le x^M$$

$$\in \mathbb{R}^n \text{ is defined by } e_i^k = \begin{cases} 1, & \text{if } [A]_{k,i} \neq 0 \\ 0, & \text{otherwise} \end{cases}$$

Distributed implementation:

- size of the interchanged messages is of order m + 1
- $\bullet\,$ scalable implementation when m and n independent

Comparison

Economic dispatch problem

$$\min\left\{\sum_{i=1}^{n} c_i P_i^2 \mid \sum_{i=1}^{n} P_i = L\right\}$$

four cases, number of generators (n): 5, 15, 25, 35
same primal-dual dynamics for both formulations

No. of steps to convergence for different network sizes

Volume of communication at each iteration for different network sizes

Method with auxiliary variables can be generalized

Network optimization problems with "separable" inequality constraints can be reformulated in a similar way

Original problem

min
$$\sum_{i=1}^{n} f_i(x_i)$$

s.t. $\sum_{i=1}^{n} g_i(x_i, \{x_j\}_{j \in \mathcal{N}_i}) \leq 0$

Reformulation
min
$$\sum_{i=1}^{n} f_i(x_i)$$

s.t. diag $([g_1(\cdot), \dots, g_n(\cdot)]) + Ly \leq \mathbf{0}_n$

For the reformulation:

- decision variable for agent i is (x_i, y_i)
- constraints are local: for each i,

$$g_i(x_i, \{x_j\}_{j \in \mathcal{N}_i}) + \sum_{j \in \mathcal{N}_i} (y_i - y_j) \le 0$$

Outline

IntroductionMotivationProblem statement

Exact reformulations

- Using consensus
- Using auxiliary variables

③ Perturbation analysis

- General constraints
- Affine constraints

Motivation for perturbation analysis

Alternative approach to make network optimization problem 'distributed'

- sparsify matrix A by zeroing some entries
- bound distance between optimizer of original and approximated problems
- bound distance between optimal values

Perturbation analysis: general constraints

Proposition (Arbitrary convex optimization problem)

Let f be C^2 with $0 \prec \nabla^2 f$, \mathcal{F}_1 and \mathcal{F}_2 compact, and

 $x_1^* = \operatorname{argmin}\{f(x) \mid x \in \mathcal{F}_1\} \qquad x_2^* = \operatorname{argmin}\{f(x) \mid x \in \mathcal{F}_2\}$

Then,

$$\|x_1^* - x_2^*\| \le \sqrt{\frac{3}{2m}} \Big(Md(\mathcal{F}_1, \mathcal{F}_2)^2 + 2Gd(\mathcal{F}_1, \mathcal{F}_2) \Big)^{1/2} + Md(\mathcal{F}_1, \mathcal{F}_2)$$

- conservative bound, not Lipschitz with respect to distance between constraint sets \mathcal{F}_1 and \mathcal{F}_2
- analysis is oblivious to geometry of \mathcal{F}_1 and \mathcal{F}_2

 $d(\mathcal{F}_1, \mathcal{F}_2)$ is the Hausdorff distance between sets and

$$G = \max\{\|\nabla f(x)\| \mid x \in \mathcal{F}_1 \cup \mathcal{F}_2\}$$
$$m = \min\{\|\nabla^2 f(x)\| \mid x \in \mathcal{F}_1 \cup \mathcal{F}_2\}$$
$$M = \max\{\|\nabla^2 f(x)\| \mid x \in \mathcal{F}_1 \cup \mathcal{F}_2\}$$

Perturbation analysis: affine constraints

Proposition

For
$$x_0 \in \mathbb{R}^n$$
, $A_1, A_2 \in \mathbb{R}^{m \times n}$ of full row-rank, $b_1, b_2 \in \mathbb{R}^m$, let

 $x_1^* = \operatorname{argmin}\{\|x - x_0\|^2 \mid A_1 x = b_1\}$ $x_2^* = \operatorname{argmin}\{\|x - x_0\|^2 \mid A_2 x = b_2\}$

Then,

$$||x_1^* - x_2^*|| \le \alpha ||A_1 - A_2|| + \beta ||b_1 - b_2||,$$

- Lipschitz bound that uses the affine nature of constraints
- still, perturbation of same magnitude to different entries of A_1 gives the same error bound, which is not desirable

 $\alpha = (\|x_0\| + \|b_2\|)\tilde{\alpha}(A_1, A_2)$ $\beta = \|A_1^\top (A_1 A_1^\top)^{-1}\|$

Summary

Conclusions

- global affine constraints to local affine constraints
- exact reformulations and their comparison
- relaxations via perturbation analysis

Future work

- extend perturbation analysis to general objective functions
- \bullet determine entries of A that affect least the optimizer accuracy
- \bullet design algorithms to identify "optimal" sparse A
- characterize trade-off between communication cost and accuracy of solution