Event-triggered Control for Nonlinear Systems with Time-Varying Input Delay

Erfan Nozari http://carmenere.ucsd.edu/erfan

University of California, San Diego

55th IEEE Conference on Decision and Control, Las Vegas, USA December 12, 2016

Joint work with Pavankumar Tallapragada and Jorge Cortés

Motivation

Time delay and **bandwidth limitation** are widespread in real-world implementations of networked control systems

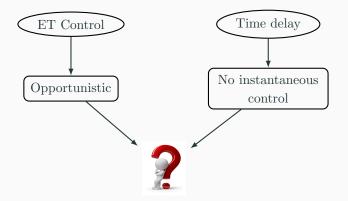
Erfan Nozari (UCSD)

Event-triggered Control with Time-Varying Delay

Motivation

We address bandwidth limitation using event-triggered (ET) control

? challenging due to interplay between ET and time delay



Erfan Nozari (UCSD)

Outline

- 1 Problem Statement
- 2 Event-Triggered Design and Analysis
 - Predictor Feedback
 - Event-Triggered Law
 - Convergence Analysis
- **3** The Linear Case
 - Communication-Convergence Trade-off
- 4 Numerical Results
 - Compliant Nonlinear System
 - Non-compliant Nonlinear System

 $4/_{16}$

Outline

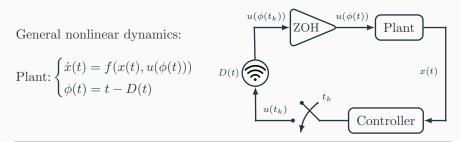
2 Event-Triggered Design and Analysis

- Predictor Feedback
- Event-Triggered Law
- Convergence Analysis
- **3** The Linear Case
 - Communication-Convergence Trade-off
- **4** Numerical Results
 - Compliant Nonlinear System
 - Non-compliant Nonlinear System

 $4/_{16}$

Problem Statement Dynamics

Problem Statement Objective

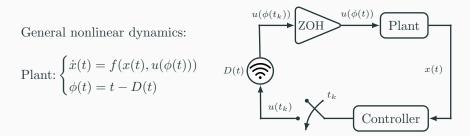


Assumptions

- $\{u(t) \mid \phi(0) \le t \le 0\}$ is given and bounded
- No finite escape time
- Delay bounds: $0 < t \phi(t) \le M_0$ and $0 < m_2 \le \dot{\phi}(t) \le M_1$
- Globally Lipschitz $K : \mathbb{R}^n \to \mathbb{R}, K(0) = 0$ exists s.t.

 $\dot{x}(t) = f(x(t), K(x(t)) + w(t))$ is **ISS** with respect to w

Problem Statement



Design Objective

1. Event-triggered stabilization: closed-loop GAS using

$$u(t) = u(t_k) \qquad t \in [t_k, t_{k+1}), \ k \in \mathbb{Z}_{\geq 0}$$

2. No Zeno behavior:

$$\lim_{k \to \infty} t_k = \infty$$

Erfan Nozari (UCSD)

Event-triggered Control with Time-Varying Delay 5/16

Outline

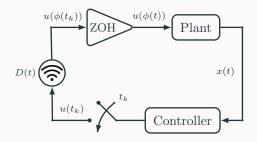
1 Problem Statement

2 Event-Triggered Design and Analysis

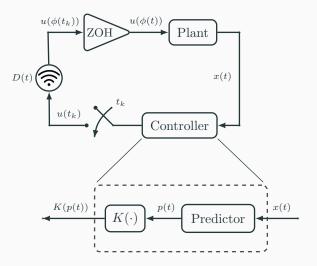
- Predictor Feedback
- Event-Triggered Law
- Convergence Analysis
- **3** The Linear Case
 - Communication-Convergence Trade-off
- 4 Numerical Results
 - Compliant Nonlinear System
 - Non-compliant Nonlinear System

 $5/_{16}$

Controller Structure



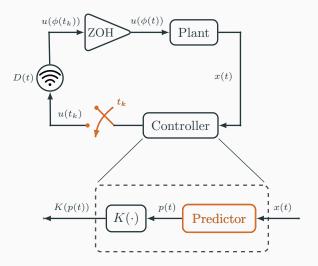
Controller Structure



Erfan Nozari (UCSD)

6/16

Controller Structure



Erfan Nozari (UCSD)

 $6/_{16}$

Predictor Feedback [Bekiaris-Liberis and Krstic, 2013]

• p(t) is the **prediction of the future** state of the plant:

$$p(t) = x(\phi^{-1}(t)) = x(t) + \int_{t}^{\phi^{-1}(t)} f(p(\phi(\tau)), u(\phi(\tau))) d\tau \quad \to s = \phi(\tau)$$
$$= x(t) + \int_{\phi(t)}^{t} f(p(s), u(s)) \frac{d\phi^{-1}(s)}{ds} ds, \qquad t \ge 0$$

Predictor Feedback [Bekiaris-Liberis and Krstic, 2013]

• p(t) is the **prediction of the future** state of the plant:

$$p(t) = x(\phi^{-1}(t)) = x(t) + \int_{t}^{\phi^{-1}(t)} f(p(\phi(\tau)), u(\phi(\tau))) d\tau \quad \to s = \phi(\tau)$$
$$= x(t) + \int_{\phi(t)}^{t} f(p(s), u(s)) \frac{d\phi^{-1}(s)}{ds} ds, \qquad t \ge 0$$

- Computing p(t) requires:
 - 1. State feedback: x(t)
 - 2. Control history: $\{u(s)|\phi(t) \le s \le t\}$
 - 3. **Prediction history:** $\{p(s)|\phi(t) \le s \le t\}$
- Either analytical or numerical integration is used

 $7/_{16}$

• S(x(t)) = Lyapunov function for the **delay-free system**:

$$\alpha_1(|x|) \le S(x) \le \alpha_2(|x|)$$
$$\frac{\partial S}{\partial x} f(x, K(x) + w) \le -\gamma(|x|) + \rho(|w|)$$

• S(x(t)) = Lyapunov function for the **delay-free system**:

$$\alpha_1(|x|) \le S(x) \le \alpha_2(|x|)$$
$$\frac{\partial S}{\partial x} f(x, K(x) + w) \le -\gamma(|x|) + \rho(|w|)$$

• V(t) = Lyapunov function of the **delayed system** (b > 0)

$$V(t) = S(x(t)) + \frac{2}{b} \int_0^{2L(t)} \frac{\rho(r)}{r} dr, \quad L(t) = \sup_{t \le \tau \le \sigma(t)} |e^{b(\tau-t)} w(\phi(\tau))|$$
$$w(t) = u(t) - K(p(t_k))$$

• S(x(t)) = Lyapunov function for the **delay-free system**:

$$\alpha_1(|x|) \le S(x) \le \alpha_2(|x|)$$
$$\frac{\partial S}{\partial x} f(x, K(x) + w) \le -\gamma(|x|) + \rho(|w|)$$

• V(t) = Lyapunov function of the **delayed system** (b > 0)

$$V(t) = S(x(t)) + \frac{2}{b} \int_0^{2L(t)} \frac{\rho(r)}{r} dr, \quad L(t) = \sup_{t \le \tau \le \sigma(t)} |e^{b(\tau - t)} w(\phi(\tau))|$$
$$w(t) = u(t) - K(p(t_k))$$

Proposition: Bound on V

If $e(t) = p(t_k) - p(t)$ is the **prediction error**,

 $\dot{V}(t) \le -\gamma(|x(t)|) - \rho(2L(t)) + \rho(2L_K|e(\phi(t))|)$

Erfan Nozari (UCSD)

Event-triggered Control with Time-Varying Delay

Proposition: Bound on \dot{V}

If $e(t) = p(t_k) - p(t)$ is the **prediction error**,

$$\dot{V}(t) \le -\gamma(|x(t)|) - \rho(2L(t)) + \rho(2L_K|e(\phi(t))|)$$

Proposition: Bound on \dot{V}

If $e(t) = p(t_k) - p(t)$ is the **prediction error**,

$$\dot{V}(t) \leq \boxed{-\gamma(|x(t)|)} - \rho(2L(t)) + \boxed{\rho(2L_K|e(\phi(t))|)} \\ \times \theta \in (0,1)$$

Proposition: Bound on \dot{V}

If $e(t) = p(t_k) - p(t)$ is the **prediction error**,

$$\dot{V}(t) \leq \boxed{-\gamma(|x(t)|)} - \rho(2L(t)) + \boxed{\rho(2L_K|e(\phi(t))|)} \\ \times \theta \in (0, 1)$$

➡

Triggering Condition

 $\rho(2L_K|e(\phi(t))|) \le \theta\gamma(|x(t)|) \Leftrightarrow |e(t)| \le \frac{\rho^{-1}(\theta\gamma(|p(t)|))}{2L_K}, \qquad \theta \in (0,1)$

Event-triggered Control with Time-Varying Delay 9/16

Proposition: Bound on \dot{V}

If $e(t) = p(t_k) - p(t)$ is the **prediction error**,

$$\dot{V}(t) \leq \boxed{-\gamma(|x(t)|)} - \rho(2L(t)) + \boxed{\rho(2L_K|e(\phi(t))|)} \\ \times \theta \in (0, 1)$$

Triggering Condition

$$|e(\phi(t))|) \le heta\gamma(|x(t)|) \Leftrightarrow |e(t)| \le rac{
ho^{-1}(heta\gamma(|p(t)|))}{2L_K},$$

$$\dot{V}(t) \le -(1-\theta)\gamma(|x(t)|) - \rho(2L(t))$$

Erfan Nozari (UCSD)

 $\rho(2L_K)$

Event-triggered Control with Time-Varying Delay 9/16

 $\theta \in (0,1)$

1. Event-triggered stabilization:

Corollary

There exists $\beta \in \mathcal{KL}$ s.t. for any $x(0) \in \mathbb{R}^n$ and bounded $\{u(t)\}_{t=\phi(0)}^0$,

$$|x(t)| + \sup_{\phi(t) \leq \tau \leq t} |u(\tau)| \leq \beta \Big(|x(0)| + \sup_{\phi(0) \leq \tau \leq 0} |u(\tau)|, t \Big), \qquad t \geq 0$$

1. Event-triggered stabilization:

Corollary

There exists $\beta \in \mathcal{KL}$ s.t. for any $x(0) \in \mathbb{R}^n$ and bounded $\{u(t)\}_{t=\phi(0)}^0$,

$$|x(t)| + \sup_{\phi(t) \le \tau \le t} |u(\tau)| \le \beta \Big(|x(0)| + \sup_{\phi(0) \le \tau \le 0} |u(\tau)|, t \Big), \qquad t \ge 0$$

2. No Zeno behavior:

Proposition

• Solve $\dot{r} = M_2(1+r)(L_f(1+L_K)+L_fL_Kr), r(0) = 0$

• Define
$$\delta = r^{-1} \left(\frac{1}{2L_{\gamma^{-1}\rho/\theta}L_K} \right)$$

Then:

$$t_{k+1} - t_k \ge \delta, \qquad k \ge 1$$

Erfan Nozari (UCSD)

Event-triggered Control with Time-Varying Delay 10/16

Outline

- 1 Problem Statement
- 2 Event-Triggered Design and Analysis
 - Predictor Feedback
 - Event-Triggered Law
 - Convergence Analysis
- **3** The Linear Case
 - Communication-Convergence Trade-off
- 4 Numerical Results
 - Compliant Nonlinear System
 - Non-compliant Nonlinear System

The Linear Case Exponential Stability

$$\dot{x}(t) = f(x(t), u(\phi(t))) = Ax(t) + Bu(\phi(t))$$

The Linear Case Exponential Stability

$$\dot{x}(t) = f(x(t), u(\phi(t))) = Ax(t) + Bu(\phi(t))$$

$$\checkmark K(x) = Kx$$
, globally Lipschitz
• $L_K = |K|$

$$\dot{x}(t) = f(x(t), u(\phi(t))) = Ax(t) + Bu(\phi(t))$$

$$\checkmark K(x) = Kx$$
, globally Lipschitz
• $L_K = |K|$

$$\checkmark S(x) = x^T P x$$

$$\bullet (A + BK)^T P + P(A + BK) = -Q, \qquad Q > 0$$

$$\dot{x}(t) = f(x(t), u(\phi(t))) = Ax(t) + Bu(\phi(t))$$

$$\checkmark K(x) = Kx$$
, globally Lipschitz
• $L_K = |K|$

$$\checkmark S(x) = x^T P x \bullet (A + BK)^T P + P(A + BK) = -Q, \qquad Q > 0$$

$$\dot{x}(t) = f(x(t), u(\phi(t))) = Ax(t) + Bu(\phi(t))$$

$$\checkmark K(x) = Kx$$
, globally Lipschitz
• $L_K = |K|$

$$\checkmark S(x) = x^T P x \bullet (A + BK)^T P + P(A + BK) = -Q, \qquad Q > 0$$

✓ Closed-loop GES with rate
$$\mu = \frac{(2-\theta)\lambda_{\min}(Q)}{4\lambda_{\max}(P)}$$

Erfan Nozari (UCSD)

$$\dot{x}(t) = f(x(t), u(\phi(t))) = Ax(t) + Bu(\phi(t))$$

$$\checkmark K(x) = Kx$$
, globally Lipschitz
• $L_K = |K|$

$$\checkmark S(x) = x^T P x \bullet (A + BK)^T P + P(A + BK) = -Q, \qquad Q > 0$$

✓ Closed-loop GES with rate
$$\mu = \frac{(2-\theta)\lambda_{\min}(Q)}{4\lambda_{\max}(P)}$$

Erfan Nozari (UCSD)

$$\dot{x}(t) = f(x(t), u(\phi(t))) = Ax(t) + Bu(\phi(t))$$

$$\checkmark K(x) = Kx$$
, globally Lipschitz
• $L_K = |K|$

$$\checkmark S(x) = x^T P x \bullet (A + BK)^T P + P(A + BK) = -Q, \qquad Q > 0$$

✓ Closed-loop GES with rate
$$\mu = \frac{(2-\theta)\lambda_{\min}(Q)}{4\lambda_{\max}(P)}$$

Question: How to balance communication cost (~ δ) and convergence speed (~ μ)?

Erfan Nozari (UCSD)

Event-triggered Control with Time-Varying Delay $11/_{16}$

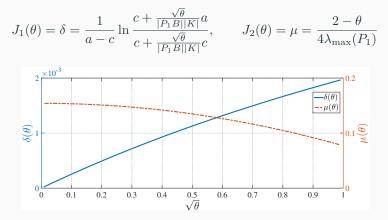
The Linear Case Communication-Convergence Trade-off

Using $Q = qI_n, P_1 = q^{-1}P$, we have a multi-objective optimization:

$$J_1(\theta) = \delta = \frac{1}{a-c} \ln \frac{c + \frac{\sqrt{\theta}}{|P_1B||K|}a}{c + \frac{\sqrt{\theta}}{|P_1B||K|}c}, \qquad J_2(\theta) = \mu = \frac{2-\theta}{4\lambda_{\max}(P_1)}$$

The Linear Case Communication-Convergence Trade-off

Using $Q = qI_n, P_1 = q^{-1}P$, we have a multi-objective optimization:



✓ The Pareto front is the entire domain $\theta \in [0, 1]$

Erfan Nozari (UCSD)

Event-triggered Control with Time-Varying Delay 12/16

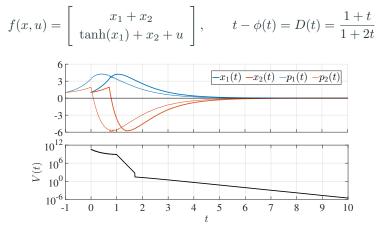
Outline

- 1 Problem Statement
- 2 Event-Triggered Design and Analysis
 - Predictor Feedback
 - Event-Triggered Law
 - Convergence Analysis
- **3** The Linear Case
 - Communication-Convergence Trade-off

4 Numerical Results

- Compliant Nonlinear System
- Non-compliant Nonlinear System

Numerical Results Compliant Nonlinear System



Triggering condition: $|e(t)| \leq \overline{\rho}|p(t)|$

 $\checkmark~$ Analytically $\overline{\rho}\simeq 0.015,$ but stability remains until $\overline{\rho}\simeq 0.9$

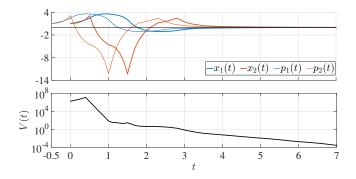
Erfan Nozari (UCSD)

Event-triggered Control with Time-Varying Delay

Numerical Results Non-compliant Nonlinear System

$$f(x,u) = \begin{bmatrix} x_1 + x_2 \\ x_2 + x_1^3 + u \end{bmatrix}, \qquad t - \phi(t) = D + a\sin(t)$$

 $\checkmark~D=0.5$ is known but the perturbation magnitude a=0.05 is not



Erfan Nozari (UCSD)

Event-triggered Control with Time-Varying Delay 14/16

In this talk, we

- ✓ designed a predictor-based event-triggered GAS control law for arbitrary, known time-varying delays
- \checkmark uniformly lower bounded the inter-event times
- $\checkmark~{\bf proved}~{\rm GES}$ in the linear case
- \checkmark analyzed the communication-convergence trade-off for linear systems

In this talk, we

- ✓ designed a predictor-based event-triggered GAS control law for arbitrary, known time-varying delays
- \checkmark uniformly lower bounded the inter-event times
- \checkmark **proved** GES in the linear case
- \checkmark analyzed the communication-convergence trade-off for linear systems

Future work includes the extension of this approach to

- ? systems with **disturbances**
- ? systems with unknown time delays
- ? networked control scenarios with multiple agents

Questions and Comments

Erfan Nozari (UCSD)

Event-triggered Control with Time-Varying Delay 16/16