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Flying to Australia

Options Transit (Hours) Cost (Dollars)
1 10 1100
2 5 1500
3 2 1400

How would a robot know which option is the best?

Some options are obviously worse.

But, we are left with mathematically ambiguous options (Pareto Solutions)

Ask Human!
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Flying to Australia

Options Transit (Hours) Cost (Dollars) Happiness

1 10 1100

3 2 1400

How would a robot know which option is the best?

Some options are obviously worse.

But, we are left with mathematically ambiguous options (Pareto Solutions)
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My Talk in One Slide

Motivation:
1 Rise of robots that will eventually coexist with human
2 Robot solve a optimization problem to do something
3 Robot becomes more complex, can do more than one thing

Scenario:
Human interacts with robot to help solve
multiobjective optimization problem

Robot Accommodate Human:
1 Human cannot be asked too often
2 Human needs some time to answer

Approach: Use Event-Trigger Control to minimize human interaction.
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Outline

Describing Scenario

Problem Statement and Assumptions

Our approach: Interactive Gradient Descent

Modeling Humans

Human needs to rest.

Designing Event Trigger

Adding Human Response Time

Limiting design parameter

Wrapping up my Talk

Simulations

Conclusions
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Problem and Assumptions

Our problem:
minimize

x∈Rn
f (x)

with f (x) ∈ Rm, m objective functions

In general, infinite number of Pareto solutions

The human has an implicit cost function, c : Rm → R, that ranks them

1 Implicit because the human cannot express what it is
2 Human can respond to queries; we assume he can give the gradient

Assumptions: To assure there is a unique solution,
1 Each objective function is strictly convex.
2 The implicit function is strictly convex, increasing w.r.t. each objective value.
3 The implicit function is bounded from below and is radially unbounded.
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Restate the problem

What do we mean by solving a multiobjective optimization problem?

Answer: Find the Pareto solution that the human likes the best.

Problem that we will solve:

minimize
x∈Rn

(c ◦ f )(x)

Scenario: human and robot working together to get the best Pareto solution.

Single objective optimization.
No objective function avaliable. Only gradient value available upon requests.
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Interactive Gradient Descent

Let’s try gradient descent!

ẋ(t) = −(∇(c ◦ f )(x(t)))T

Role: What’s the human and robot role in this optimization?

Humans cannot update the value continuously!
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ẋ(t) = −(∇(c ◦ f )(x(t)))T

Role: What’s the human and robot role in this optimization?
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Event-Triggered Interactive Gradient Descent

Preferably, only ask for human help only when it really needs to.

ẋ(t) = −(∇c(f (x(tk)))︸ ︷︷ ︸
human

Jf (x(t))︸ ︷︷ ︸
robot

)T

with tk to be determined by the robot iteratively.

When to ask human?
Our proposition: robot monitors

‖x(t)− x(tk)‖
σ ‖ẋ(t)‖

Lc‖Jf (x(t))‖ with σ ∈ (0, 1)

When these two things are equal, ask human.
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Design Guarantees

Properly stated

tk+1 = min
t

{
t ≥ tk | ‖x(t)− x(tk)‖ = σ

‖∇c(f (x(tk)))Jf (x(t))‖
Lc‖Jf (x(t))‖

}

Guarantees:

1 Global asymptotic stability:
Lyapunov Function: V (x) = c ◦ f (x)− c ◦ f (x∗)

=⇒ d

dt
V (x(t)) ≤ − 1− σ

(1 + σ)2
‖∇c(f (x(t)))Jf (x(t))‖2 < 0

=⇒ Asymptotic Stability

Moreover, if c ◦ f is strongly convex with a parameter µ, the optimizer is
exponentially stable with the following bound,

V (x(t)) ≤ V (x0)e
− 2µ(1−σ)

(1+σ)2 t
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Design Guarantee - Continued

tk+1 = min
t

{
t ≥ tk | ‖x(t)− x(tk)‖ = σ

‖∇c(f (x(tk)))Jf (x(t))‖
Lc‖Jf (x)‖

}
.

2 Autonomous operation: Robot has all the information to calculate above

3 No Zeno behavior: There exists a uniform lower bound for the inter-event
times τσ ≤ tk+1 − tk for all k ∈ N ∪ {0} where τσ is a constant given by

τσ =
1

β
ln(1 + β

σ

LcJmax
)

tk

Update
gradient

rest
tk + τσ

Ready to
work

standby tk+1

Update
gradient
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Delay in Human

Previous model human responds instantaneously

Better model Human requires some time to work, has some response time.

The more accurate gradient descent is

ẋ(t) = ∇c(f (x(tk)))︸ ︷︷ ︸
human

Jf (x(t))︸ ︷︷ ︸
robot

, t ∈ [tk + Dk , tk+1 + Dk+1)

tk

Start
working

work
tk + Dk

Update
gradient

standby tk+1

Start
working

work
tk+1 + Dk+1

Update
gradient

ẋ [k−1] ẋ [k]
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Trigger Design - Delay Case

Assuming there is a maximum delay D, we propose a similar trigger design: robot
monitors

‖x(t)− x(tk)‖
σ′ ‖ẋ(t)‖

LcJmax
but σ′ not (0, 1)

tk

Start
working

work
tk + Dk

Update
gradient

standby tk+1

Start
working

work
tk+1 + Dk+1

Update
gradient

ẋ [k−1] ẋ [k]
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Design Guarantees - Delay Case

tk+1 = min
t

{
t ≥ tk | ‖x(t)− x(tk)‖ = σ′

‖∇c(f (x(tk)))Jf (x(t))‖
LcJmax

}
.

Guarantees:

1 Global asymptotic stability: Same

2 Autonomous Operation: Same

3 No Zeno Behavior: The uniform lower bound to the interevent times for
the delay case is

τσ′ =
1

β
ln

 1 + β σ′

LcJmax

1 +
(

1+σ
1−σ

)2

(eβD − 1)

+ D
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Simulations
A robot trying to get close to two objects
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Conclusions

Event-triggered design for human-robot interaction

Human works as supervisor, robot works as extension of human capability

Bound on inter-event time guarantees human has time to do other things.

Provably correct: achieves multiobjective optimization task

Future Work

Richer models for human engagement
1 Rest time and Response time
2 Human inputs with errors

Scenarios where human needs to rest for longer than interevent time

Online Learning of human model using human responses
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Thank You!

My advisor: Jorge Cortés

Our Funding Source: NSF award CNS-1329619
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Question?

Questions and feedbacks are welcome!
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