

Transient-state Feasibility Set Approximation of Power Networks Against Disturbances

Yifu Zhang and Jorge Cortés

Mechanical and Aerospace Engineering University of California, San Diego

Power Systems II 2017 American Control Conference Seattle, Washington May 25, 2017

Power Network: Efficiency & Robustness

Efficiency

Economic DispatchOptimal Power Flow

Robustness

- Voltage Collapse
- ② Cascading Failure

Power Network: Efficiency & Robustness

Efficiency

Economic Dispatch
Optimal Power Flow
...

Robustness

- Voltage Collapse
- ② Cascading Failure

How to identify the **disturbances** under which

- (a) **frequencies** of buses stay within safe bounds, and
- (b) **power flows** of transmission lines stay within safe bounds?

Outline

Problem Statement

- Linearized Power Network Dynamics
- Disturbance Modeling

2 Equivalent Transformation

- Time Domain Solution
- Set Decomposition

3 Approximation of the Feasibility Set

- Outer Approximations
- Inner Approximations

Linearized Power Network Dynamics

$$\begin{bmatrix} \dot{\Lambda}(t) \\ \dot{\Omega}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^T Y_b & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t) \\ \Omega(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_m \\ M^{-1}P(t) \end{bmatrix}$$

$$\begin{split} \Lambda &= [\lambda_1, \lambda_2, \dots, \lambda_m]^T \in \mathbb{R}^m \text{— angle difference vector} \\ \Omega &= [\omega_1, \omega_2, \dots, \omega_n]^T \in \mathbb{R}^n \text{— frequency vector} \\ M &\in \mathbb{R}^{n \times n} \text{— inertia matrix} \\ E &\in \mathbb{R}^{n \times n} \text{— damping/droop parameter matrix} \\ Y_b &\in \mathbb{R}^{m \times m} \text{— susceptance matrix} \\ P &= [p_1, p_2, \dots, p_n]^T \in \mathbb{R}^n \text{— power injection vector} \\ (Y_b \Lambda &= [f_1, f_2, \dots, f_m]^T \in \mathbb{R}^m \text{— power flow vector}) \end{split}$$

Disturbance Modeling

Power network dynamics

$$\begin{bmatrix} \dot{\Lambda}(t) \\ \dot{\Omega}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^T Y_b & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t) \\ \Omega(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_m \\ M^{-1}P(t) \end{bmatrix}$$

Disturbance Modeling

Power network dynamics

$$\begin{bmatrix} \dot{\Lambda}(t, \mathbf{K}) \\ \dot{\Omega}(t, \mathbf{K}) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^T Y_b & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t, \mathbf{K}) \\ \Omega(t, \mathbf{K}) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_m \\ M^{-1}P(t, \mathbf{K}) \end{bmatrix}$$

 $P(t, \mathbf{K}) = P_0(t) + \bar{P}(t, \mathbf{K})$ $P_0(t) \in \mathbb{R}^n: \text{ scheduled power injection }$ $\bar{P}(t, \mathbf{K}) \in \mathbb{R}^n: \text{ power disturbance}$

Disturbance Modeling

Power network dynamics

$$\begin{bmatrix} \dot{\Lambda}(t, \mathbf{K}) \\ \dot{\Omega}(t, \mathbf{K}) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^T Y_b & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t, \mathbf{K}) \\ \Omega(t, \mathbf{K}) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_m \\ M^{-1}P(t, \mathbf{K}) \end{bmatrix}$$

 $P(t, \mathbf{K}) = P_0(t) + \bar{P}(t, \mathbf{K})$ $P_0(t) \in \mathbb{R}^n: \text{ scheduled power injection }$ $\bar{P}(t, \mathbf{K}) \in \mathbb{R}^n: \text{ power disturbance}$

Disturbance model

$$\bar{P}(t, \mathbf{K}) = B_K D_{\zeta(t)} \mathbf{K}$$

Example

Example

$$\dot{P}(t,K) = \begin{bmatrix} 1(t)K_1 \\ 0 \\ 1(t)e^{-t}K_2 + 1(t-0.5)K_3 \end{bmatrix} \\
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1(t) & 0 & 0 \\ 0 & 1(t)e^{-t} & 0 \\ 0 & 0 & 1(t-0.5) \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ K_3 \end{bmatrix} \\
= B_K \text{diag} \left\{ 1(t) & 1(t)e^{-t} & 1(t-0.5) \right\} K \\
= B_K D_{\zeta(t)} K$$

Example

 $\bar{P}(t, K) =$ "location × trajectory form × amplitude"

Problem Statement

Power network dynamics

$$\begin{bmatrix} \dot{\Lambda}(t,K) \\ \dot{\Omega}(t,K) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^TY_b & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t,K) \\ \Omega(t,K) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_m \\ M^{-1}P(t,K) \end{bmatrix}$$

Problem Statement

Power network dynamics

$$\begin{bmatrix} \dot{\Lambda}(t,K) \\ \dot{\Omega}(t,K) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^T Y_b & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t,K) \\ \Omega(t,K) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_m \\ M^{-1} \left(P_0(t) + B_K D_{\zeta(t)} K \right) \end{bmatrix}$$

For a given $0 \leq t_1 < t_2$, find all K's that guarantee:

- Transient-state frequency bound: $\Omega^{\min} \leq \Omega(t, K) \leq \Omega^{\max}, \ \forall t \in [t_1, t_2]$
- **2** Transient-state power flow bound: $F^{\min} \leq Y_b \Lambda(t, K) \leq F^{\max}, \ \forall t \in [t_1, t_2]$

Problem Statement

Power network dynamics

$$\begin{bmatrix} \dot{\Lambda}(t,K) \\ \dot{\Omega}(t,K) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^T Y_b & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t,K) \\ \Omega(t,K) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_m \\ M^{-1} \left(P_0(t) + B_K D_{\zeta(t)} K \right) \end{bmatrix}$$

For a given $0 \leq t_1 < t_2$, find all K's that guarantee:

- Transient-state frequency bound: $\Omega^{\min} \leq \Omega(t, K) \leq \Omega^{\max}, \ \forall t \in [t_1, t_2]$
- **2** Transient-state power flow bound: $F^{\min} \leq Y_b \Lambda(t, K) \leq F^{\max}, \ \forall t \in [t_1, t_2]$

$$\Psi \triangleq \left\{ K \in \mathbb{R}^s \mid \Omega^{\min} \leqslant \Omega(t, K) \leqslant \Omega^{\max}, \ F^{\min} \leqslant Y_b \Lambda(t, K) \leqslant F^{\max}, \ \forall t \in [t_1, t_2] \right\}$$

 Ψ :(transient-state) feasibility set

Goal: Characterize Ψ !

Outline

Problem Statement

- Linearized Power Network Dynamics
- Disturbance Modeling

2 Equivalent Transformation

- Time Domain Solution
- Set Decomposition

3 Approximation of the Feasibility Set

- Outer Approximations
- Inner Approximations

Time Domain Solution

$$\begin{bmatrix} \dot{\Lambda}(t,K) \\ \dot{\Omega}(t,K) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^{T}Y_{b} & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t,K) \\ \Omega(t,K) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{m} \\ M^{-1} \left(P_{0}(t) + B_{K}D_{\zeta(t)}K \right) \end{bmatrix}$$

Time Domain Solution

$$\begin{bmatrix} \dot{\Lambda}(t,K) \\ \dot{\Omega}(t,K) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^{T}Y_{b} & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t,K) \\ \Omega(t,K) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{m} \\ M^{-1} \left(P_{0}(t) + B_{K}D_{\zeta(t)}K \right) \end{bmatrix}$$
$$\hat{\mathbf{x}}(t,K) = A\mathbf{x}(t,K) + \begin{bmatrix} \mathbf{0}_{m} \\ M^{-1} \left(P_{0}(t) + B_{K}D_{\zeta(t)}K \right) \end{bmatrix}$$

Time Domain Solution

$$\begin{bmatrix} \dot{\Lambda}(t,K) \\ \dot{\Omega}(t,K) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{m \times m} & D \\ -M^{-1}D^{T}Y_{b} & -M^{-1}E \end{bmatrix} \begin{bmatrix} \Lambda(t,K) \\ \Omega(t,K) \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{m} \\ M^{-1} \left(P_{0}(t) + B_{K}D_{\zeta(t)}K \right) \end{bmatrix}$$
$$\hat{\mathbf{x}}$$
$$\dot{\mathbf{x}}(t,K) = A\mathbf{x}(t,K) + \begin{bmatrix} \mathbf{0}_{m} \\ M^{-1} \left(P_{0}(t) + B_{K}D_{\zeta(t)}K \right) \end{bmatrix}$$

 \Uparrow Solve first-order ODE

 $\boldsymbol{x}(t,K) = \boldsymbol{S}(t) + \boldsymbol{V}(t)\boldsymbol{K}$

where

$$S(t) \triangleq e^{At} x_0 + \int_0^t e^{A(t-\tau)} \begin{bmatrix} \mathbf{0}_m \\ M^{-1} P_0(\tau) \end{bmatrix} \mathrm{d}\tau, \ V(t) \triangleq \int_0^t e^{A(t-\tau)} \begin{bmatrix} \mathbf{0}_m \\ M^{-1} B_K D_{\zeta(\tau)} \end{bmatrix} \mathrm{d}\tau$$

Equivalent Transformation

Y. Zhang & J. Cortés (UCSD)

Equivalent Transformation

 $\Psi \triangleq \left\{ K \in \mathbb{R}^s \mid \Omega^{\min} \leqslant \Omega(t, K) \leqslant \Omega^{\max}, \ F^{\min} \leqslant Y_b \Lambda(t, K) \leqslant F^{\max}, \ \forall t \in [t_1, t_2] \right\}$

 \updownarrow

$$\Psi = \left\{ K \in \mathbb{R}^s \mid x^{\min} \leqslant S(t) + V(t)K \leqslant x^{\max}, \ \forall t \in [t_1, t_2] \right\}$$

where

$$x^{\max} \triangleq \begin{bmatrix} \Omega^{\max} \\ Y_b^{-1} F^{\max} \end{bmatrix}, \ x^{\min} \triangleq \begin{bmatrix} \Omega^{\min} \\ Y_b^{-1} F^{\min} \end{bmatrix}$$

$\Psi = \left\{ K \in \mathbb{R}^s \mid x^{\min} \leqslant S(t) + V(t)K \leqslant x^{\max}, \ \forall t \in [t_1, t_2] \right\}$

$$\Psi = \left\{ K \in \mathbb{R}^s \mid x^{\min} \leqslant S(t) + V(t)K \leqslant x^{\max}, \ \forall t \in [t_1, t_2] \right\}$$
$$= \bigcap_{t_1 \leqslant t \leqslant t_2} \left\{ K \in \mathbb{R}^s \mid x^{\min} \leqslant S(t) + V(t)K \leqslant x^{\max} \right\}$$

$$\Psi = \left\{ K \in \mathbb{R}^s \mid x^{\min} \leqslant S(t) + V(t)K \leqslant x^{\max}, \ \forall t \in [t_1, t_2] \right\}$$
$$= \bigcap_{t_1 \leqslant t \leqslant t_2} \left\{ K \in \mathbb{R}^s \mid x^{\min} \leqslant S(t) + V(t)K \leqslant x^{\max} \right\}$$

 $\Rightarrow \Psi$ contains **infinitely many** constraints \Rightarrow **Approximation**

$\Psi = \left\{ K \in \mathbb{R}^s \mid x^{\min} \leqslant S(t) + V(t)K \leqslant x^{\max}, \ \forall t \in [t_1, t_2] \right\}$

$$\begin{split} \Psi &= \left\{ K \in \mathbb{R}^s \mid x^{\min} \leqslant S(t) + V(t)K \leqslant x^{\max}, \ \forall t \in [t_1, t_2] \right\} \\ &= \bigcap_{i=1,2,\dots,n+m} \left\{ K \in \mathbb{R}^s \mid x_i^{\min} \leqslant [S(t)]_i + [V(t)]_i K \leqslant x_i^{\max}, \ \forall t \in [t_1, t_2] \right\} \\ &\triangleq \bigcap_{i=1,2,\dots,n+m} \Psi_i \end{split}$$

$$\begin{split} \Psi &= \left\{ K \in \mathbb{R}^s \mid x^{\min} \leqslant S(t) + V(t)K \leqslant x^{\max}, \; \forall t \in [t_1, t_2] \right\} \\ &= \bigcap_{i=1,2,\dots n+m} \left\{ K \in \mathbb{R}^s \mid x_i^{\min} \leqslant [S(t)]_i + [V(t)]_i K \leqslant x_i^{\max}, \; \forall t \in [t_1, t_2] \right\} \\ &\triangleq \bigcap_{i=1,2,\dots n+m} \Psi_i \end{split}$$

Approximation of $\Psi_i \Rightarrow$ Approximation of Ψ

Outline

Problem Statement

- Linearized Power Network Dynamics
- Disturbance Modeling

2 Equivalent Transformation

- Time Domain Solution
- Set Decomposition

3 Approximation of the Feasibility Set

- Outer Approximations
- Inner Approximations

From Vector to Scalar

From Vector to Scalar

where y(t, K) is some scalar signal

From Vector to Scalar

Strategy: Construct inner approximation Σ_I & outer approximation Σ_O

$$\Sigma_I \subseteq \Sigma \subseteq \Sigma_O$$

 $t_1 = \tau_1 < \tau_2 < \cdots < \tau_r = t_2$: sampling points

 $t_1 = \tau_1 < \tau_2 < \cdots < \tau_r = t_2$: sampling points

 $y^{\min} \leqslant y(t,K) \leqslant y^{\max}, \; \forall t \in [t_1,t_2] \Rightarrow y^{\min} \leqslant y(\tau_q,K) \leqslant y^{\max}, \; \forall q \in [1,r]_{\mathbb{N}}$

Outer approximation

Define
$$\Sigma_O \triangleq \{K \mid y^{\min} \leqslant y(\tau_q, K) \leqslant y^{\max}, \forall q \in [1, r]_{\mathbb{N}}\}, \text{ then } \Sigma \subseteq \Sigma_O$$

Y. Zhang & J. Cortés (UCSD)

Outer approximation

Define $\Sigma_O \triangleq \{K \mid y^{\min} \leqslant y(\tau_q, K) \leqslant y^{\max}, \forall q \in [1, r]_{\mathbb{N}}\}, \text{ then } \Sigma \subseteq \Sigma_O$

Note:

- If $\dot{y}(t,K)$ is bounded, and $\forall q \in [1, r-1]_{\mathbb{N}}, (\tau_{q+1} \tau_q) \to 0^+$, then $\Sigma_O \to \Sigma$
- 2 #constraints in Σ_O is r

Y. Zhang & J. Cortés (UCSD)

Let q go through $1, 2, \ldots r - 1 \Rightarrow$

Inner approximation

Define

$$\Sigma_I \triangleq \left\{ K \mid y^{\min} + \tilde{\delta}_q \leqslant y(\tau_q, K), \ y(\tau_{q+1}, K) \leqslant y^{\max} - \tilde{\delta}_q, \ \forall q \in [1, r-1]_{\mathbb{N}} \right\},$$

then $\Sigma_I \subseteq \Sigma$

Note:

• If
$$\forall q \in [1, r-1], (\tau_{q+1} - \tau_q) \to 0^+$$
, then $\Sigma_I \to \Sigma$

2 #constraints in
$$\Sigma_I$$
 is $2(r-1)$

Back to the Vector Case

$$\Psi = \bigcap_{i=1,2,\dots,n+m} \left\{ K \in \mathbb{R}^s \mid x_i^{\min} \leq [S(t)]_i + [V(t)]_i K \leq x_i^{\max}, \ \forall t \in [t_1, t_2] \right\}$$
$$\triangleq \bigcap_{i=1,2,\dots,n+m} \Psi_i$$

Associate each Ψ_i sampling points t₁ = τⁱ₁, τⁱ₂, ..., τⁱ_{r(i)} = t₂
Obtain Ψ_{i,O} and Ψ_{i,I} s.t. Ψ_{i,I} ⊆ Ψ_i ⊆ Ψ_{i,O}
Define

$$\Psi_O \triangleq \bigcap_{i=1,2,\dots,n+m} \Psi_{O,i}, \ \Psi_I \triangleq \bigcap_{i=1,2,\dots,n+m} \Psi_{I,i}$$

 $\Rightarrow \Psi_I \subseteq \Psi \subseteq \Psi_O$ • If $(\tau_{q+1}^i - \tau_q^i) \to 0^+$ for every $q \in [1, r(i) - 1]_{\mathbb{N}}$ and every $i \in [1, m+n]_{\mathbb{N}}$, then $\Psi_I \to \Psi$ and $\Psi_O \to \Psi$

Outline

Problem Statement

- Linearized Power Network Dynamics
- Disturbance Modeling

2 Equivalent Transformation

- Time Domain Solution
- Set Decomposition

3 Approximation of the Feasibility Set

- Outer Approximations
- Inner Approximations

Figure: IEEE 39-bus power network.

Figure: IEEE 39-bus power network.

$$t_{1} = 3s,$$

$$\Omega^{\min} = -0.5 \text{Hz} \times \mathbf{1}_{39},$$

$$\Omega^{\max} = 0.5 \text{Hz} \times \mathbf{1}_{39},$$

$$F^{\min} = -10 \text{unit} \times \mathbf{1}_{46},$$

$$F^{\max} = 10 \text{unit} \times \mathbf{1}_{46},$$

$$\tau^{i} = (0s, 0.02s, 0.04s, ..., 2.98s, 3s), \quad \forall i = 1, 2, ... 39$$

 $K = \begin{bmatrix} K_1 \\ K_2 \end{bmatrix},$

 $t_0 = 0s,$

 $\Psi \triangleq \left\{ K \mid \Omega^{\min} \leqslant \Omega(t, K) \leqslant \Omega^{\max}, \ F^{\min} \leqslant Y_b \Lambda(t, K) \leqslant F^{\max}, \ \forall t \in [t_1, t_2] \right\}$

 $\Rightarrow K_I \in \Psi, K_O \notin \Psi$

Figure: Flow response w.r.t. K_I .

Figure: Frequency response w.r.t. K_I .

Figure: Flow response w.r.t. K_O .

Figure: Frequency response w.r.t. K_O .

Figure: Frequency response w.r.t. K_O .

Conclusion & Future Work

Conclusion

- Provided inner and out approximations of the feasibility set.
- **2** Proved the convergence of the approximations.
- Overlapped an algorithm to reduce the approximation gaps w/o adding new sampling points.

Future Work

- Consider uncertain trajectory form.
- ② Extend results to nonlinear swing dynamics.