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Distributed Coordination

What if local information is sensitive?
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Motivating Scenario: Optimal EV Charging
[Han et. al., 2014]

Central aggregator solves:

minimize
r1,...,rn

U
(∑n

i=1
ri
)

subject to ri ∈ i ∈ {1, . . . , n}

• U = energy cost function

• ri = ri(t) = charging rate

•

Erfan Nozari (UCSD) Differentially Private Distributed Optimization 3



Motivating Scenario: Optimal EV Charging
[Han et. al., 2014]

Central aggregator solves:

minimize
r1,...,rn

U
(∑n

i=1
ri
)

subject to ri ∈ Ci i ∈ {1, . . . , n}

• U = energy cost function

• ri = ri(t) = charging rate

• Ci = local constraints

Erfan Nozari (UCSD) Differentially Private Distributed Optimization 3



Motivating Scenario: Optimal EV Charging
[Han et. al., 2014]

Central aggregator solves:

minimize
r1,...,rn

U
(∑n

i=1
ri
)

subject to ri ∈ Ci i ∈ {1, . . . , n}

• U = energy cost function

• ri = ri(t) = charging rate

• Ci = local constraints

Erfan Nozari (UCSD) Differentially Private Distributed Optimization 3



Myth: Aggregation Preserves Privacy

• Fact: NOT in the presence of side-information

• Toy example:

1 100

2 120
...

n 90

Database

Average = 110

2 120
...

n 90

Side Information

⇒ d1 = 100

• Real example: A. Narayanan and V. Shmatikov successfully

de-anonymized Netflix Prize dataset (2007)

Side information: IMDB databases!
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Problem Formulation
Optimization

Standard additive convex optimization problem:

minimize
x∈D

f(x) ,
n∑
i=1

fi(x)

subject to G(x) ≤ 0

Ax = b

minimize
x∈X

f(x) ,
n∑
i=1

fi(x)

• A non-private solution

[Nedic et. al., 2010]:

xi(k + 1) = projX(zi(k)− αk∇fi(zi(k)))

zi(k) =
n∑
j=1

wijxj(k)
{∑

αk =∞∑
α2
k <∞

1 2

3

4

5 6

7

8

Assumption:

• D is compact

• fi’s are strongly

convex and C2
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Problem Formulation
Privacy

• “Information”: F = (fi)
n
i=1 ∈ Fn

• Given (V, ‖ · ‖V) with V ⊆ F ,

Adjacency

F, F ′ ∈ Fn are V-adjacent if there exists i0 ∈ {1, . . . , n} such that

fi = f ′i for i 6= i0 and fi0 − f ′i0 ∈ V

• For a random map M : Fn × Ω→ X and ε ∈ Rn>0

Differential Privacy (DP)

M is ε-DP if

∀ V-adjacent F, F ′ ∈Fn ∀O ⊆ X

P{M(F ′, ω) ∈ O} ≤ eεi0‖fi0−f
′
i0
‖VP{M(F, ω) ∈ O}
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Case Study
Linear Classification with Logistic Loss Function

• Training records: {(aj , bj)}Nj=1

where aj ∈ [0, 1]2 and

bj ∈ {−1, 1}
• Goal: find the best separating

hyperplane xTa

0 1

1

a1

a2

xTa = 0

Convex Optimization Problem

x∗ = argmin
x∈X

n∑
i=1

• Logistic loss: `(x; a, b) = ln(1 + e−ba
T x)

1 2

3

4

5 6

7

8
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Message Perturbation vs. Objective Perturbation

A generic distributed optimization algorithm:

Message Passing

i j

Local State Update

x+i = hi(xi, x−i)
fi

Network
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Impossibility Result

Generic message-perturbing algorithm:

x(k + 1) = aI(x(k), ξ(k))

ξ(k) = x(k) + η(k)

Theorem

If

• The η → x dynamics is 0-LAS

• ηi(k) ∼ Lap(bi(k)) or ηi(k) ∼ N (0, bi(k))

• bi(k) is O( 1
kp ) for some p > 0

Then no ε-DP of the information set I for any ε > 0
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Impossibility Result: An Example

Algorithm proposed in [Huang et. al., 2015]:

xi(k + 1) = projX(zi(k)− αk∇fi(zi(k)))

zi(k) =

n∑
j=1

wijξj(k)

ξj(k) = xj(k) + ηj(k)
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Impossibility Result: An Example

Algorithm proposed in [Huang et. al., 2015]:

• Simulation results for a linear classification problem:
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|x̃
−
x
∗
|
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-1

10
0
 

10
1
 

10
2
 

Empirical data
Linear fit of log |x̃∗

− x
∗| against log ǫ

Theoretical upper bound on |E[x̃∗]− x
∗|
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State of the Art

• [Chaudhuri et. al., 2011]

• First proposed “objective perturbation” by adding linear random

functions

• Extended by [Kifer et. al., 2012] to constrained and non-differentiable

problems

• Preserves DP of objective function parameters

• [Zhang et. al., 2012]

• Proposed objective perturbation by adding sample path of Gaussian

stochastic process

• Preserves DP of objective function parameters

• [Hall et. al., 2013]

• Proposed objective perturbation by adding quadratic random functions

• Preserves DP of objective function parameters
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Prelim: Hillbert Spaces

• Hilbert space H = complete inner-product space

• Orthonormal basis {ek}k∈I ⊂ H

• If H is separable:

h =

∞∑
k=1

δk︷ ︸︸ ︷
〈h, ek〉 ek

• For D ⊆ Rd, L2(D) is a separable Hilbert space ⇒ F = L2(D)
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Functional Perturbation via Laplace Noise

• Φ : coefficient sequence δ → function h =
∑∞
k=1 δkek

• Adjacency space:

Vq =
{

Φ(δ) |
∞∑
k=1

(kqδk)2 <∞
}

• Random map:

M(f,η) = Φ
(
Φ−1(f) + η

)
= f + Φ(η)

Functional

Perturbation

Theorem

For ηk ∼ Lap( γkp ), q > 1, and p ∈
(
1
2 , q −

1
2

)
, M guarantees ε-DP with

ε =
1

γ

√
ζ(2(q − p))
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Resilience to Post-processing

Algorithm sketch:

1. Each agent perturbs its own objective function (offline)

2. Agents participate in an arbitrary distributed optimization

algorithm with perturbed functions (online)

• M : L2(D)n × Ω→ L2(D)n

• F : L2(D)n → X , where (X ,ΣX ) is an arbitrary measurable space

Corollary (special case of [Ny & Pappas 2014, Theorem 1])

If M is ε-DP, then F ◦M : L2(D)n × Ω→ X is ε-DP.
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Ensuring Regularity of Perturbed Functions

• f̂i =M(fi,ηi) may be discontinuous/non-convex/...

• S = {Regular functions} ⊂ C2(D) ⊂ L2(D)

• Ensuring Smoothness: C2(D) is dense in L2(D) so

∀εi > 0 pick f̂si ∈ C2(D) such that ‖f̂i − f̂si ‖ < εi

• Ensuring Regularity:

f̃i = projS(f̂si )

f̂i

εi

f̂si

Proposition

S is convex and closed relative to C2(D)
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Algorithm

1. Each agent perturbs its function:

f̂i =M(fi,ηi) = fi + Φ(ηi), ηi,k ∼ Lap(bi,k), bi,k =
γi
kpi

2. Each agent selects f̂si ∈ S0 such that

‖f̂i − f̂si ‖ < εi

3. Each agent projects f̂si onto S:

f̃i = projS(f̂si )

4. Agents participate in any distributed optimization algorithm

with (f̃i)
n
i=1

Offline
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Accuracy Analysis

• Set of “regular” functions:

S = {h ∈ C2(D) | αId ≤ ∇2h(x) ≤ βId and |∇h(x)| ≤ u}

Lemma (K-Lipschitzness of argmin)

For f, g ∈ S, ∣∣ argmin
x∈X

f − argmin
x∈X

g
∣∣ ≤ κα,β(‖f − g‖)

• Define
x̃∗ = argmin

x∈X

n∑
i=1

f̃i and x∗ = argmin
x∈X

n∑
i=1

fi,

Theorem (Accuracy)

E |x̃∗ − x∗| ≤
n∑
i=1

κn

(
ζ(qi)

εi

)
+ κn(εi)
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Simulation Results
Linear Classification with Logistic Loss Function
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Conclusions and Future Work

In this talk, we

• Proposed a definition of DP for functions

• Illustrated a fundamental limitation of message-perturbing strategies

• Proposed the method of functional perturbation

• Discussed how functional perturbation can be applied to distributed

convex optimization

Future work includes

• relaxation of the smoothness, convexity, and compactness assumptions

• comparing the numerical efficiency of different bases for L2

• characterizing the expected sub-optimality gap of the algorithm and

the optimal privacy-accuracy trade-off curve

• further understanding the appropriate scales of privacy parameters for

particular applications
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Questions and Comments

Full results of this talk available in:

E. Nozari, P. Tallapragada, J. Cortés, “Differentially Private Distributed Convex

Optimization via Functional Perturbation,” IEEE Trans. on Control of Net. Sys.,

provisionally accepted, http://arxiv.org/abs/1512.00369
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Formal Definition
in original context [Dwork et. al., 2006]

Context:

• D ∈ D: A database of records

• Adjacency: D1, D2 ∈ D are adjacent if they differ by at most 1 record

• (Ω,Σ,P): Probability space

• q : D → X: (Honest) query function

• M : D × Ω→ X: Randomized/sanitized query function

• ε > 0: Level of privacy

Definition

M is ε-DP if

∀ adjacent D1, D2 ∈ D ∀O ⊆ X P{M(D1) ∈ O} ≤ eεP{M(D2) ∈ O}

• Adjacency is symmetric ⇒

{
P{M(D1) ∈ O} ≤ eεP{M(D2) ∈ O}
P{M(D2) ∈ O} ≤ eεP{M(D1) ∈ O}
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Formal Definition: Geometric Interpretation
in original context

Definition

M is ε-DP if

∀ adjacent D1, D2 ∈ D ∀O ⊆ X P{M(D1) ∈ O} ≤ eεP{M(D2) ∈ O}

D

X

D1

D2

q(D1)

q(D2)

q

q

M

M

M(D1, ω)

M(D2, ω)

O
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Operational Meaning of DP
A binary decision example [Geng&Pramod, 2013]

• Adversary’s decision =

{
TRUE if M(D,ω) ∈ O
FALSE if M(D,ω) ∈ Oc

• MD = {M(D1, ω) ∈ Oc}

• FA = {M(D2, ω) ∈ O}

D X

D1

D2

q(D1)

q(D2)

q

q

O

• If M is ε-DP then{
P{M(D1, ω) ∈ O} ≤ eεP{M(D2, ω) ∈ O}
P{M(D2, ω) ∈ Oc} ≤ eεP{M(D1, ω) ∈ Oc}

⇒

{
1− pMD ≤ eεpFA
1− pFA ≤ eεpMD

⇒ pMD, pFA ≥
eε − 1

e2ε − 1
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Generalizing the Definition: Using Metrics
[Chatzikokolakis et. al., 2013]

• If D1, D2 differ in N elements then

P{M(D1, ω) ∈ O} ≤ eNεP{M(D2, ω) ∈ O}

• d : D ×D → [0,∞) metric on D

Definition –revisited

M gives/preserves ε-differential privacy if

∀D1, D2 ∈ D ∀O ⊆ X we have

P{M(D1, ω) ∈ O} ≤ eεd(D1, D2)P{M(D2, ω) ∈ O}
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