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Distributed Coordination

What if local information is sensitive?
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Motivating Scenario: Optimal EV Charging

[Han et. al., 2014]
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Motivating Scenario: Optimal EV Charging
[Han et. al., 2014]

Central aggregator solves:

.....

minimize U ( Zn ) ri) X @6‘
1 Tn =
subject to r; €C; i€ {l,...,n} \.f/v

e U = energy cost function @9 f X @9
e 1; = r;(t) = charging rate >

e C; = local constraints
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Motivating Scenario: Optimal EV Charging
[Han et. al., 2014]

Central aggregator solves:

.....

minimize U ( Zn ) ri) X @a
1 Tn =
subject to r; €C; ie€{l,...,n} \.f/v

e U = energy cost function @a f X @9
e 1; = r;(t) = charging rate >

e C; = local constraints
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Myth: Aggregation Preserves Privacy
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Myth: Aggregation Preserves Privacy

e Fact: NOT in the presence of side-information
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Myth: Aggregation Preserves Privacy

e Fact: NOT in the presence of side-information

e Toy example:
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e Fact: NOT in the presence of side-information

e Toy example:
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Myth: Aggregation Preserves Privacy

e Fact: NOT in the presence of side-information

Database
1] 100
2 | 120
— Average = 110
e Toy example: n | 90 Side Information
2 ‘ 120 = d; = 100
n| 90

e Real example: A. Narayanan and V. Shmatikov successfully
de-anonymized Netflix Prize dataset (2007)
Side information: IMDB databases!
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Outline

@ DP Distributed Optimization
@ Problem Formulation

@ Impossibility Result

@® Functional Perturbation

@ Perturbation Design

® DP Distributed Optimization via Functional Perturbation
o Regularization

o Algorithm Design and Analysis
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Outline

@ DP Distributed Optimization
@ Problem Formulation

@ Impossibility Result
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Problem Formulation
Optimization

Standard additive convex optimization problem:

minimize  f(z) £ ; fil=)

subject to G(z) <0
Azx =b

Assumption:

e D is compact
e f;’s are strongly
convex and C?
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Problem Formulation
Optimization

Standard additive convex optimization problem:

minirgize f(x) = En:fl(x)

xTE

subject to G(z) <0

xTE

minirEize f(z) = Z fi(x)

n Assumption:
J e D is compact

e f;’s are strongly
convex and C?
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Problem Formulation
Optimization

Standard additive convex optimization problem:

minirgize f(z) 2 Z fi(x)

TE

Assumption:

e D is compact
e f;’s are strongly
convex and C?
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Problem Formulation
Optimization

Standard additive convex optimization problem:

minimize f(z) £} fi(x) J

¢ A non-private solution
[Nedic et. al., 2010]:

i(k +1) = projx (zi(k) — axV fi(zi(k))) Assumption:
zi(k) = Zwijxj (k) o Dvis compact
J=1 e f;’s are strongly

convex and C?
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Problem Formulation
Optimization

Standard additive convex optimization problem:

minimize f(z) £} fi(x) J

¢ A non-private solution
[Nedic et. al., 2010]:

xi(k+ 1) = proj x (z; (k) —vfi(zi(k))) Assumption:
B n e D is compact
zi(k) = szg%(k) 2o = 00 e f;’s are strongl
j=1 Zai < 00 ' o

convex and C?
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Problem Formulation
Privacy

e “Information”: F = (f;)l, € F"
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Problem Formulation
Privacy

e “Information”: F' = (f;)’., € F"

e Given (V.| - |v) with V C F,

F,F' € F™ are V-adjacent if there exists ig € {1,...,n} such that

fi=fifori#iy and f;, —fi €V
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Problem Formulation
Privacy

e “Information”: F' = (f;)’., € F"

e Given (V.| - |v) with V C F,

F,F' € F™ are V-adjacent if there exists ig € {1,...,n} such that

fi=fifori#iy and f;, —fi €V

e For a random map M : F" x 2 — X and € € RZ,

Differential Privacy (DP)

M is e-DP if
V V-adjacent F, F' ¢ F" VO C X
P{M(F',w) € O} < eSiollo =T VP{M(F,w) € O}
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Case Study

Linear Classification with Logistic Loss Function

e Training records: {(a;,b;)}02, A[TiTTETT o
where a; € [0,1]? and : ;a:
bj € {_L 1} E

e Goal: find the best separating
hyperplane z”a

T
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Case Study

Linear Classification with Logistic Loss Function

az
e Training records: {(a;,b;)}7;
where a; € [0,1]? and
bj S {—1, 1}
e Goal: find the best separating

hyperplane z”a

N
nd
I

Y locoocoocoooas

0

Convex Optimization Problem

N

z* = arxgerr;(m Z (Z(w,aj,bj) + §|x\2)

a

Jj=1

e Logistic loss: 4(z;a,b) = In(1 + e—baTw)
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Case Study

Linear Classification with Logistic Loss Function

a2

e Training records: {(ajvbj)}é’vzl

N
nd
I

where a; € [0,1]? and |
bj € {_17 1} E
e Goal: find the best separating
hyperplane z”a

0 T al

Convex Optimization Problem
A
= argmlnzz (a5 @3, 0 05, 5) 4F §\x|

zeX =1 =i

e Logistic loss: ¢(z;a,b) = In(1 + efbaTr)
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Message Perturbation vs. Objective Perturbation

A generic distributed optimization algorithm:

Network
Message Passing
@0
\
Local State Update
fi —
- h’ (IH 7)
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Message Perturbation vs.

Message Perturbation:

Network

Objective Perturbation

-

Message Passing

O 0O

|

Local State Update
- h’ (x’L? )

fi —

Objective Perturbation:
Network
Message Passing
@0
A\
Local State Update
fi —>

= hi(z;, T—;)
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Message Perturbation vs.

Message Perturbation:

Network

Objective Perturbation
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Message Passing

=
ogye
/

|
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Objective Perturbation:
Network
Message Passing
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A\
/ Local State Update
fi —>

= hi(z;, T—;)
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Impossibility Result

Generic message-perturbing algorithm:

z(k+1) = az(z(k),£(k))
§(k) = z(k) +n(k)
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Impossibility Result

Generic message-perturbing algorithm:

z(k+1) = ag(x(k),&(k))
£(k) = x(k) + n(k)

Theorem

If
e The n — x dynamics is 0-LAS
o 7;(k) ~ Lap(b;(k)) or n;(k) ~ N(0,b;(k))
e b;(k) is O(45) for some p > 0

Then no e-DP of the information set Z for any € > 0
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Impossibility Result: An Example

Algorithm proposed in [Huang et. al., 2015]:
zi(k + 1) = projx (zi(k) — axV fi(zi(k)))
zi(k) = wi;&;(k)
j=1

& (k) = z;(k) +mn;(k)
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Impossibility Result: An Example

Algorithm proposed in [Huang et. al., 2015]:
zi(k + 1) = projx (zi(k) — axV fi(zi(k)))
zi(k) = wi;&;(k)
j=1

§i(k) = x;(k) +n;(k)

e 7;(k) ~ Lap(ox p¥)

0<g<p<l1
o oy, x gF
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Impossibility Result: An Example

Algorithm proposed in [Huang et. al., 2015]:
zi(k + 1) = projx (zi(k) — axV fi(zi(k)))
zi(k) = wi;&;(k)
j=1

§i(k) = x;(k) +n;(k)

e 7;(k) ~ Lap(ox p¥)

. 0<g<p<l1

Finite sum
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Impossibility Result: An Example

Algorithm proposed in [Huang et. al., 2015]:

e Simulation results for a linear classification problem:

T T
1016 O Empirical data L
== Linear fit of log |#* — 2*| against log e
15 —Theoretical upper bound on |E[Z*] — 2*|
107 ¢
1 014
i 13 I I I I I
10
| 102 T T T T T
8
1
10 ¢ 3
10° z ! G !
S 3 o
1 0—1 8] 4
1
107 102
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Outline

@® Functional Perturbation

@ Perturbation Design
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State of the Art

e [Chaudhuri et. al., 2011]
e First proposed “objective perturbation” by adding linear random
functions
e Extended by [Kifer et. al., 2012] to constrained and non-differentiable
problems
e Preserves DP of objective function parameters
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State of the Art

e [Chaudhuri et. al., 2011]
e First proposed “objective perturbation” by adding linear random
functions
e Extended by [Kifer et. al., 2012] to constrained and non-differentiable
problems
e Preserves DP of objective function parameters

e [Zhang et. al., 2012]

e Proposed objective perturbation by adding sample path of Gaussian
stochastic process
e Preserves DP of objective function parameters
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State of the Art

e [Chaudhuri et. al., 2011]

e First proposed “objective perturbation” by adding linear random
functions

e Extended by [Kifer et. al., 2012] to constrained and non-differentiable
problems

e Preserves DP of objective function parameters

e [Zhang et. al., 2012]

e Proposed objective perturbation by adding sample path of Gaussian
stochastic process
e Preserves DP of objective function parameters

e [Hall et. al., 2013]

e Proposed objective perturbation by adding quadratic random functions
e Preserves DP of objective function parameters
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Prelim: Hillbert Spaces

e Hilbert space H = complete inner-product space
e Orthonormal basis {e}rer C H

o If H is separable:
Ok
O~
o= Z <h, 6k> €L

=1
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Prelim: Hillbert Spaces

Hilbert space H = complete inner-product space

Orthonormal basis {e;}rer C H

If H is separable:

Ok
—~
(h, er) ex

=1

For D C R4, Ly(D) is a separable Hilbert space = F = Ly(D)
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Functional Perturbation via Laplace Noise

e & : coefficient sequence § — function h = Y ;- | drex

e Adjacency space:

Vy = {®(8) | Y (k%) < oo}
k=1
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Functional Perturbation via Laplace Noise

e & : coefficient sequence § — function h = Y ;- | drex

e Adjacency space:

Vy = {®(8) | Y (k%) < oo}
k=1

e Random map:

Functional
M(f,m) =@ (27(f) +n) = f +2(n) ,
Perturbation
Erfan Nozari (UCSD) Differentially Private Distributed Optimization 14



Functional Perturbation via Laplace Noise

e & : coefficient sequence § — function h = Y ;- | drex
e Adjacency space:

Vy = {®(8) | Y (k%) < oo}
k=1

e Random map:

unctional
M(fm) = @ (@ () +m) = f+ () |

Perturbation

For ny ~ Lap(:%5), ¢ > 1, and p € (%,q — %), M guarantees e-DP with

s ¢(2(g —p))
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Outline

® DP Distributed Optimization via Functional Perturbation
o Regularization

o Algorithm Design and Analysis
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Resilience to Post-processing

Algorithm sketch:

1. Each agent perturbs its own objective function (offline)

2. Agents participate in an arbitrary distributed optimization
algorithm with perturbed functions (online)
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Resilience to Post-processing

Algorithm sketch:

1. Each agent perturbs its own objective function (offline)

2. Agents participate in an arbitrary distributed optimization
algorithm with perturbed functions (online)

1

o M: LQ(D)” x Q — LQ(D)”

o F: Ly(D)" — X, where (X,Xx) is an arbitrary measurable space

Corollary (special case of [Ny & Pappas 2014, Theorem 1])
If M is eDP, then F o M : Ly(D)" x Q — X is e-DP.
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Ensuring Regularity of Perturbed Functions

e f; = M(f;,m:) may be discontinuous/non-convex/...
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e f; = M(f;,m:) may be discontinuous/non-convex/...

e S = {Regular functions} C C?(D) C Ly(D)
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Ensuring Regularity of Perturbed Functions

e f; = M(f;,m:) may be discontinuous/non-convex/...
e S = {Regular functions} C C?(D) C Ly(D)

e Ensuring Smoothness: C?(D) is dense in Ly(D) so

Ve; >0 pick ff € C?(D) such that ||f; — f5]| <&
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Ensuring Regularity of Perturbed Functions

fi = M(fi,mi) may be discontinuous/non-convex/...

S = {Regular functions} C C?(D) C Ly(D)

e Ensuring Smoothness: C?(D) is dense in Ly(D) so
Ve; > 0 pick ff € C?(D) such that | fi — ff]| < &

e Ensuring Regularity:

fi = PTOJ‘S(JE{?)

Proposition

S is convex and closed relative to C?(D)
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Algorithm

1. Each agent perturbs its function:

fi=M(fism) = fi+®(my), Mg ~Lap(bix), bix = ]:;

2. Each agent selects ff € Sy such that
Ife = FEll < e

3. Each agent projects ff onto S:

fi = projs(f7)

4. Agents participate in any distributed optimization algorithm
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Algorithm

Offline <

(1

Erfan Nozari (UCSD)

. Each agent perturbs its function:

fi=M(fi,n;) = fi +®(m;), ik~ Lap(bir), bix

. Each agent selects f € Sy such that

Ifi — fill < e

Each agent projects ff onto S:

fi = projs(f7)

_ T
T kpi

Agents participate in any distributed optimization algorithm

with (ﬂ)?ﬂ
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Accuracy Analysis

e Set of “regular” functions:

S ={h € C*(D) | al; < V?h(z) < Bl and |Vh(z)| < u}

Lemma (K-Lipschitzness of argmin)
For f,g € S,

| argmin f — argmmg| < kag(llf — gl
zeX
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Accuracy Analysis

e Set of “regular” functions:

S ={h € C*(D) | al; < V?h(z) < Bl and |Vh(z)| < u}

Lemma (K-Lipschitzness of argmin)
For f,g € S,

| argmin f — argmmg| < kag(llf — gl
zeX

e Define
= argmlnz fl and z* = argmlnz fi,

reX i—1 reX im1

Theorem (Accuracy)

n
E|z* — z¥| <Z/~@n(
i=1

C(sl)> + Kn(es)
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Simulation Results
Linear Classification with Logistic Loss Function

10* 10* ‘
3 [ —— 3 C——
10 s 10 T
10? 10?
10’ 10"
& 10 10°
. 107" §‘ 107 \\
ﬁ S .ﬁ ’v.;_-_-_-—.._-_
1072 (6} 'E g " S— S—g 1072 "=,...
10 g 1073 [{—Theoretical bound e, S
—Theoretical bound == 2nd order
104 £| © Empirical data 1074 L|==6th order
== Piecewise linear fit ==:14th order
10-5 -2 ‘-1 ‘0 1 2 3 10-5 -2 ‘-1 ‘0 ‘1 2 3
10 10 10 10 10 10 10 10 10 10 10 10
€ €
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Conclusions and Future Work

In this talk, we

e Proposed a definition of DP for functions

Mlustrated a fundamental limitation of message-perturbing strategies

Proposed the method of functional perturbation

Discussed how functional perturbation can be applied to distributed
convex optimization
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Conclusions and Future Work

In this talk, we

e Proposed a definition of DP for functions

Mlustrated a fundamental limitation of message-perturbing strategies

Proposed the method of functional perturbation

Discussed how functional perturbation can be applied to distributed
convex optimization

Future work includes

e relaxation of the smoothness, convexity, and compactness assumptions
e comparing the numerical efficiency of different bases for Lo

e characterizing the expected sub-optimality gap of the algorithm and
the optimal privacy-accuracy trade-off curve

e further understanding the appropriate scales of privacy parameters for
particular applications
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Questions and Comments

3
-
el

Full results of this talk available in:

E. Nozari, P. Tallapragada, J. Cortés, “Differentially Private Distributed Convex
Optimization via Functional Perturbation,” IEEE Trans. on Control of Net. Sys.,
provisionally accepted, http://arxiv.org/abs/1512.00369
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Formal Definition
in original context [Dwork et. al., 2006]

Context:

e D € D: A database of records

Adjacency: Dy, Dy € D are adjacent if they differ by at most 1 record
(Q,3,P): Probability space

e ¢: D — X: (Honest) query function

e M :D x Q — X: Randomized/sanitized query function
e ¢ > 0: Level of privacy

Definition

M is eDP if

V adjacent D1,Ds € D VO C X P{M(D;) € O} < e'P{M(D3) € O}

P{M(Dl) € O} < GE]P){M(DQ) S O}

e Adjacency is symmetric =
P{M(Ds) € O} < eP{M(D;) € O}
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Formal Definition: Geometric Interpretation
in original context

Definition

M is eDP if

V adjacent D1,D2 € D YO CX  P{M(D;) € O} < eP{M(D;) € O}

X
M(th)

/\/—N
|

Dl.

D,

\_/
M q _/ M(Ds,w)

(. J
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Operational Meaning of DP
A binary decision example [Geng&Pramod, 2013]

TRUE if M(D,w) €O
FALSE if M(D,w) € O°

Adversary’s decision = {

D

o MD = {M(Dy,w) € O°}

o FA = {M(Dy,w) € O}

If M is e-DP then

{P{M(Dl,w) €0} < eP{M(Do,w) €0} {1 — pub < €“pra
P{M(Ds,w) € O°} < eP{M(D1,w) € O°}

et —1

e — 1

1 —pra < e“pup

= PMD, PFA =
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Generalizing the Definition: Using Metrics
[Chatzikokolakis et. al., 2013]

e If Dy, D, differ in NV elements then
P{M(D;,w) € O} < NP{M(Dy,w) € O}
e d:D xD — |[0,00) metric on D

Definition —revisited

M gives/preserves e-differential privacy if

VDy,Dy € D YO C X we have
P{M(D1,w) € O} < /Pt PIP{M(Dy, w) € O}
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