Differentially Private Distributed Convex Optimization

via Functional Perturbation

Erfan Nozari

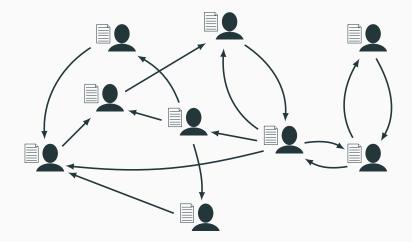
Department of Mechanical and Aerospace Engineering University of California, San Diego http://carmenere.ucsd.edu/erfan

July 6, 2016

Joint work with Pavankumar Tallapragada and Jorge Cortés

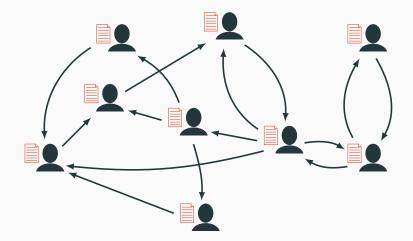
UC San Diego Jacobs School of Engineering

Distributed Coordination



Erfan Nozari (UCSD)

Distributed Coordination

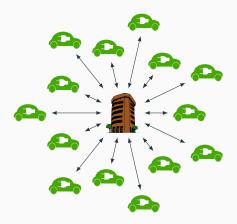


What if local information is sensitive?

Erfan Nozari (UCSD)

Differentially Private Distributed Optimization

Motivating Scenario: Optimal EV Charging [Han et. al., 2014]



Erfan Nozari (UCSD)

Differentially Private Distributed Optimization

Motivating Scenario: Optimal EV Charging [Han et. al., 2014]

Central aggregator solves:

 $\begin{array}{ll} \underset{r_1,\ldots,r_n}{\text{minimize}} & U\big(\sum_{i=1}^n r_i\big) \\ \text{subject to} & r_i \in \mathcal{C}_i \quad i \in \{1,\ldots,n\} \end{array}$

- U = energy cost function
- $r_i = r_i(t) =$ charging rate
- $C_i = \text{local constraints}$

Motivating Scenario: Optimal EV Charging [Han et. al., 2014]

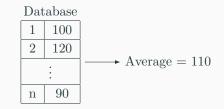
Central aggregator solves:

 $\begin{array}{ll} \underset{r_1,\ldots,r_n}{\text{minimize}} & U\left(\sum_{i=1}^n r_i\right) \\ \text{subject to} & r_i \in \mathcal{C}_i \quad i \in \{1,\ldots,n\} \end{array}$

- U = energy cost function
- $r_i = r_i(t) = \text{charging rate}$
- $C_i = \text{local constraints}$

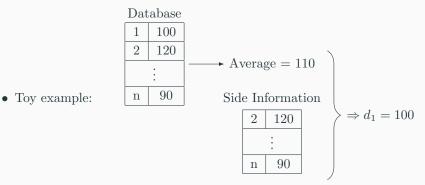
• Fact: NOT in the presence of side-information

• Fact: NOT in the presence of side-information



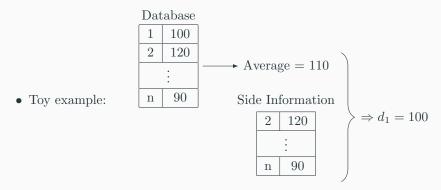
• Toy example:

• Fact: NOT in the presence of side-information



Erfan Nozari (UCSD)

• Fact: NOT in the presence of side-information



• Real example: A. Narayanan and V. Shmatikov successfully de-anonymized Netflix Prize dataset (2007) Side information: IMDB databases!

Outline

1 DP Distributed Optimization

- Problem Formulation
- Impossibility Result
- **2** Functional Perturbation
 - Perturbation Design

3 DP Distributed Optimization via Functional Perturbation

- Regularization
- Algorithm Design and Analysis

Outline

1 DP Distributed Optimization

- Problem Formulation
- Impossibility Result
- **2** Functional Perturbation
 - Perturbation Design

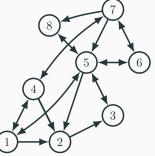
3 DP Distributed Optimization via Functional Perturbation

- Regularization
- Algorithm Design and Analysis

Problem Formulation Optimization

Standard additive convex optimization problem:

$$\begin{array}{ll} \underset{x \in D}{\text{minimize}} & f(x) \triangleq \sum_{i=1}^{n} f_{i}(x) \\ \text{subject to} & G(x) \leq 0 \\ & Ax = b \end{array}$$



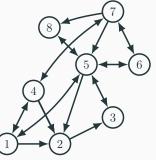
- D is compact
- f_i 's are strongly convex and C^2

Problem Formulation Optimization

Standard additive convex optimization problem:

$$\begin{array}{ll} \underset{x \in D}{\text{minimize}} & f(x) \triangleq \sum_{i=1}^{n} f_{i}(x) \\ \text{subject to} & G(x) \leq 0 \\ & Ax = b \end{array}$$

$$\begin{array}{l} & & \\ &$$



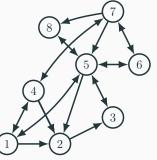
Assumption:

- D is compact
- f_i 's are strongly convex and C^2

Erfan Nozari (UCSD)

Standard additive convex optimization problem:

$$\underset{x \in X}{\text{minimize}} \quad f(x) \triangleq \sum_{i=1}^{n} f_i(x)$$



- D is compact
- f_i 's are strongly convex and C^2

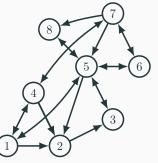
Problem Formulation Optimization

Standard additive convex optimization problem:

$$\underset{x \in X}{\text{minimize}} \quad f(x) \triangleq \sum_{i=1}^{n} f_i(x)$$

• A non-private solution [Nedic *et. al.*, 2010]:

$$x_i(k+1) = \operatorname{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k)))$$
$$z_i(k) = \sum_{j=1}^n w_{ij} x_j(k)$$



- D is compact
- f_i 's are strongly convex and C^2

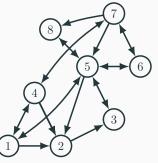
Problem Formulation Optimization

Standard additive convex optimization problem:

$$\underset{x \in X}{\text{minimize}} \quad f(x) \triangleq \sum_{i=1}^{n} f_i(x)$$

• A non-private solution [Nedic *et. al.*, 2010]:

$$x_i(k+1) = \operatorname{proj}_X(z_i(k) - \alpha_k) \nabla f_i(z_i(k)))$$
$$z_i(k) = \sum_{j=1}^n w_{ij} x_j(k) \qquad \left\{ \sum_{\substack{j \geq \alpha_k = \infty \\ \sum \alpha_k^2 < \infty}} \alpha_k z_k^2 \right\}$$



- *D* is compact
- f_i 's are strongly convex and C^2

Problem Formulation Privacy

• "Information": $F = (f_i)_{i=1}^n \in \mathcal{F}^n$

Problem Formulation Privacy

- "Information": $F = (f_i)_{i=1}^n \in \mathcal{F}^n$
- Given $(\mathcal{V}, \|\cdot\|_{\mathcal{V}})$ with $\mathcal{V} \subseteq \mathcal{F}$,

Adjacency

 $F, F' \in \mathcal{F}^n$ are \mathcal{V} -adjacent if there exists $i_0 \in \{1, \ldots, n\}$ such that

$$f_i = f'_i \text{ for } i \neq i_0 \text{ and } f_{i_0} - f'_{i_0} \in \mathcal{V}$$

Problem Formulation Privacy

- "Information": $F = (f_i)_{i=1}^n \in \mathcal{F}^n$
- Given $(\mathcal{V}, \|\cdot\|_{\mathcal{V}})$ with $\mathcal{V} \subseteq \mathcal{F}$,

Adjacency

 $F, F' \in \mathcal{F}^n$ are \mathcal{V} -adjacent if there exists $i_0 \in \{1, \ldots, n\}$ such that

$$f_i = f'_i \text{ for } i \neq i_0 \text{ and } f_{i_0} - f'_{i_0} \in \mathcal{V}$$

• For a random map $\mathcal{M}: \mathcal{F}^n \times \Omega \to \mathcal{X}$ and $\epsilon \in \mathbb{R}^n_{>0}$

Differential Privacy (DP)

 ${\mathcal M}$ is $\epsilon\text{-}{\mathbf D}{\mathbf P}$ if

 $\forall \ \mathcal{V}\text{-adjacent} \ F, F' \in \mathcal{F}^n \quad \forall \mathcal{O} \subseteq X$

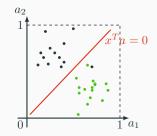
$$\mathbb{P}\{\mathcal{M}(F',\omega)\in\mathcal{O}\}\leq e^{\epsilon_{i_0}\|f_{i_0}-f'_{i_0}\|_{\mathcal{V}}}\mathbb{P}\{\mathcal{M}(F,\omega)\in\mathcal{O}\}$$

Erfan Nozari (UCSD)

Differentially Private Distributed Optimization

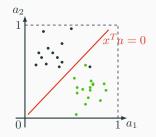
Case Study Linear Classification with Logistic Loss Function

- Training records: $\{(a_j, b_j)\}_{j=1}^N$ where $a_j \in [0, 1]^2$ and $b_j \in \{-1, 1\}$
- Goal: find the best separating hyperplane $x^T a$



Case Study Linear Classification with Logistic Loss Function

- Training records: $\{(a_j, b_j)\}_{j=1}^N$ where $a_j \in [0, 1]^2$ and $b_j \in \{-1, 1\}$
- Goal: find the best separating hyperplane $x^T a$



Convex Optimization Problem

$$x^* = \underset{x \in X}{\operatorname{argmin}} \qquad \sum_{j=1}^{N} \left(\ell(x; a_j, b_j) + \frac{\lambda}{2} |x|^2 \right)$$

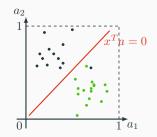
• Logistic loss:
$$\ell(x; a, b) = \ln(1 + e^{-ba^T x})$$

Erfan Nozari (UCSD)

Differentially Private Distributed Optimization

Case Study Linear Classification with Logistic Loss Function

- Training records: $\{(a_j, b_j)\}_{j=1}^N$ where $a_j \in [0, 1]^2$ and $b_j \in \{-1, 1\}$
- Goal: find the best separating hyperplane $x^T a$



Convex Optimization Problem

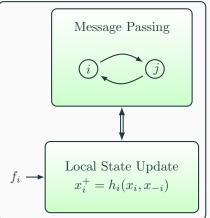
$$x^{*} = \underset{x \in X}{\operatorname{argmin}} \sum_{i=1}^{n} \sum_{j=1}^{N_{i}} \left(\ell(x; a_{i,j}, b_{i,j}) + \frac{\lambda}{2} |x|^{2} \right)$$

• Logistic loss: $\ell(x; a, b) = \ln(1 + e^{-ba^{T}x})$

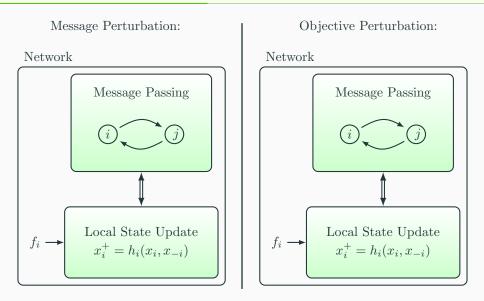
Erfan Nozari (UCSD)

Differentially Private Distributed Optimization

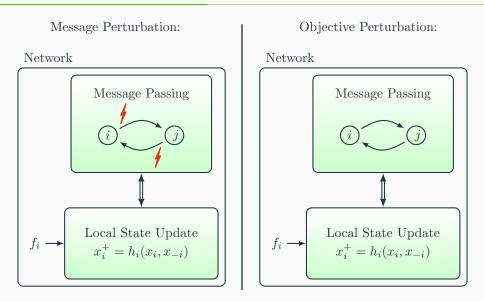
A generic distributed optimization algorithm:



Erfan Nozari (UCSD)



Erfan Nozari (UCSD)



Erfan Nozari (UCSD)

Differentially Private Distributed Optimization



Erfan Nozari (UCSD)

Impossibility Result

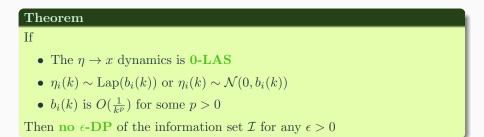
Generic message-perturbing algorithm:

$$x(k+1) = a_{\mathcal{I}}(x(k), \xi(k))$$
$$\xi(k) = x(k) + \eta(k)$$

Impossibility Result

Generic message-perturbing algorithm:

$$x(k+1) = a_{\mathcal{I}}(x(k), \xi(k))$$
$$\xi(k) = x(k) + \eta(k)$$



$$x_i(k+1) = \operatorname{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k)))$$
$$z_i(k) = \sum_{j=1}^n w_{ij} \xi_j(k)$$
$$\xi_j(k) = x_j(k) + \eta_j(k)$$

$$x_i(k+1) = \operatorname{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k)))$$
$$z_i(k) = \sum_{j=1}^n w_{ij} \xi_j(k)$$
$$\xi_j(k) = x_j(k) + \eta_j(k)$$

$$x_i(k+1) = \operatorname{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k)))$$
$$z_i(k) = \sum_{j=1}^n w_{ij} \xi_j(k)$$
$$\xi_j(k) = x_j(k) + \eta_j(k)$$

•
$$\eta_j(k) \sim \operatorname{Lap}(\propto p^k)$$

• $\alpha_k \propto q^k$ $0 < q < p < 1$

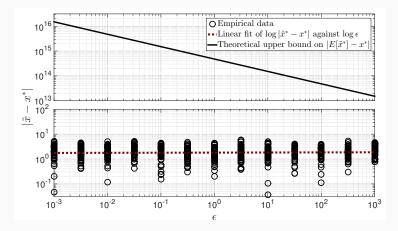
$$x_i(k+1) = \operatorname{proj}_X(z_i(k) - \alpha_k \nabla f_i(z_i(k)))$$
$$z_i(k) = \sum_{j=1}^n w_{ij} \xi_j(k)$$
$$\xi_j(k) = x_j(k) + \eta_j(k)$$

•
$$\eta_j(k) \sim \operatorname{Lap}(\propto p^k)$$

• $\alpha_k \propto q^k$
Finite sum

Algorithm proposed in [Huang et. al., 2015]:

• Simulation results for a linear classification problem:



Erfan Nozari (UCSD)

Outline

DP Distributed Optimization

- Problem Formulation
- Impossibility Result
- **2** Functional Perturbation
 - Perturbation Design

3 DP Distributed Optimization via Functional Perturbation

- Regularization
- Algorithm Design and Analysis

- [Chaudhuri *et. al.*, 2011]
 - First proposed "objective perturbation" by adding linear random functions
 - Extended by [Kifer *et. al.*, 2012] to constrained and non-differentiable problems
 - Preserves DP of objective function parameters

- [Chaudhuri *et. al.*, 2011]
 - First proposed "objective perturbation" by adding linear random functions
 - Extended by [Kifer *et. al.*, 2012] to constrained and non-differentiable problems
 - Preserves DP of objective function parameters
- [Zhang et. al., 2012]
 - Proposed objective perturbation by adding sample path of Gaussian stochastic process
 - Preserves DP of objective function parameters

- [Chaudhuri *et. al.*, 2011]
 - First proposed "objective perturbation" by adding linear random functions
 - Extended by [Kifer *et. al.*, 2012] to constrained and non-differentiable problems
 - Preserves DP of objective function parameters
- [Zhang et. al., 2012]
 - Proposed objective perturbation by adding sample path of Gaussian stochastic process
 - Preserves DP of objective function parameters
- [Hall et. al., 2013]
 - Proposed objective perturbation by adding quadratic random functions
 - Preserves DP of objective function parameters

Prelim: Hillbert Spaces

- Hilbert space $\mathcal{H} = \text{complete inner-product space}$
- Orthonormal basis $\{e_k\}_{k\in I} \subset \mathcal{H}$
- If \mathcal{H} is separable:

$$h = \sum_{k=1}^{\infty} \overbrace{\langle h, e_k \rangle}^{\delta_k} e_k$$

Prelim: Hillbert Spaces

- Hilbert space $\mathcal{H} = \text{complete inner-product space}$
- Orthonormal basis $\{e_k\}_{k\in I} \subset \mathcal{H}$
- If \mathcal{H} is separable:

$$h = \sum_{k=1}^{\infty} \overbrace{\langle h, e_k \rangle}^{\delta_k} e_k$$

• For $D \subseteq \mathbb{R}^d$, $L_2(D)$ is a separable Hilbert space $\Rightarrow \mathcal{F} = L_2(D)$

Erfan Nozari (UCSD)

Functional Perturbation via Laplace Noise

- Φ : coefficient sequence $\delta \to \text{function } h = \sum_{k=1}^{\infty} \delta_k e_k$
- Adjacency space:

$$\mathcal{V}_q = \left\{ \Phi(\boldsymbol{\delta}) \mid \sum_{k=1}^{\infty} (k^q \delta_k)^2 < \infty \right\}$$

Functional Perturbation via Laplace Noise

- Φ : coefficient sequence $\delta \rightarrow$ function $h = \sum_{k=1}^{\infty} \delta_k e_k$
- Adjacency space:

$$\mathcal{V}_q = \left\{ \Phi(\boldsymbol{\delta}) \mid \sum_{k=1}^{\infty} (k^q \delta_k)^2 < \infty \right\}$$

• Random map:

$$\mathcal{M}(f,\boldsymbol{\eta}) = \Phi\left(\Phi^{-1}(f) + \boldsymbol{\eta}\right) = f + \Phi(\boldsymbol{\eta})$$

Functional Perturbation

Functional Perturbation via Laplace Noise

- Φ : coefficient sequence $\delta \to$ function $h = \sum_{k=1}^{\infty} \delta_k e_k$
- Adjacency space:

$$\mathcal{V}_q = \left\{ \Phi(\delta) \mid \sum_{k=1}^{\infty} (k^q \delta_k)^2 < \infty \right\}$$

• Random map:

$$\mathcal{M}(f, \boldsymbol{\eta}) = \Phi\left(\Phi^{-1}(f) + \boldsymbol{\eta}\right) = f + \Phi(\boldsymbol{\eta})$$
Functional
Perturbation

Theorem

For $\eta_k \sim \operatorname{Lap}(\frac{\gamma}{k^p}), q > 1$, and $p \in (\frac{1}{2}, q - \frac{1}{2}), \mathcal{M}$ guarantees ϵ -DP with $\epsilon = \frac{1}{\gamma} \sqrt{\zeta(2(q-p))}$

Erfan Nozari (UCSD)

Outline

DP Distributed Optimization

- Problem Formulation
- Impossibility Result
- **2** Functional Perturbation
 - Perturbation Design

3 DP Distributed Optimization via Functional Perturbation

- Regularization
- Algorithm Design and Analysis

Algorithm sketch:

- 1. Each agent **perturbs its own** objective function (offline)
- 2. Agents **participate in an arbitrary** distributed optimization algorithm with perturbed functions (online)

Algorithm sketch:

- 1. Each agent **perturbs its own** objective function (offline)
- 2. Agents **participate in an arbitrary** distributed optimization algorithm with perturbed functions (online)

- $\mathcal{M}: L_2(D)^n \times \Omega \to L_2(D)^n$
- $\mathcal{F}: L_2(D)^n \to \mathcal{X}$, where $(\mathcal{X}, \Sigma_{\mathcal{X}})$ is an arbitrary measurable space

Corollary (special case of [Ny & Pappas 2014, Theorem 1]) If \mathcal{M} is ϵ -DP, then $\mathcal{F} \circ \mathcal{M} : L_2(D)^n \times \Omega \to \mathcal{X}$ is ϵ -DP.

• $\hat{f}_i = \mathcal{M}(f_i, \eta_i)$ may be discontinuous/non-convex/...

- $\hat{f}_i = \mathcal{M}(f_i, \eta_i)$ may be discontinuous/non-convex/...
- $S = \{ \text{Regular functions} \} \subset C^2(D) \subset L_2(D)$

- $\hat{f}_i = \mathcal{M}(f_i, \eta_i)$ may be discontinuous/non-convex/...
- $S = \{ \text{Regular functions} \} \subset C^2(D) \subset L_2(D)$
- Ensuring Smoothness: $C^2(D)$ is dense in $L_2(D)$ so

 $\forall \varepsilon_i > 0 \text{ pick } \hat{f}_i^s \in C^2(D) \text{ such that } \|\hat{f}_i - \hat{f}_i^s\| < \varepsilon_i$

- $\hat{f}_i = \mathcal{M}(f_i, \eta_i)$ may be discontinuous/non-convex/...
- $S = \{ \text{Regular functions} \} \subset C^2(D) \subset L_2(D)$
- Ensuring Smoothness: $C^2(D)$ is dense in $L_2(D)$ so

 $\forall \varepsilon_i > 0 \text{ pick } \hat{f}_i^s \in C^2(D) \text{ such that } \|\hat{f}_i - \hat{f}_i^s\| < \varepsilon_i$

• Ensuring Regularity:

$$\tilde{f}_i = \operatorname{proj}_{\mathcal{S}}(\hat{f}_i^s)$$

Proposition

 \mathcal{S} is convex and closed relative to $C^2(D)$

Erfan Nozari (UCSD)

1. Each agent **perturbs** its function:

$$\hat{f}_i = \mathcal{M}(f_i, \boldsymbol{\eta}_i) = f_i + \Phi(\boldsymbol{\eta}_i), \quad \eta_{i,k} \sim \operatorname{Lap}(b_{i,k}), \quad b_{i,k} = \frac{\gamma_i}{k^{p_i}}$$

2. Each agent selects $\hat{f}_i^s \in \mathcal{S}_0$ such that

$$\|\hat{f}_i - \hat{f}_i^s\| < \varepsilon_i$$

3. Each agent **projects** \hat{f}_i^s onto \mathcal{S} :

$$\tilde{f}_i = \operatorname{proj}_{\mathcal{S}}(\hat{f}_i^s)$$

4. Agents **participate** in any distributed optimization algorithm with $(\tilde{f}_i)_{i=1}^n$

Algorithm

 $\begin{array}{l} \text{ f. Each agent perturbs its function:} \\ \hat{f}_{i} = \mathcal{M}(f_{i}, \boldsymbol{\eta}_{i}) = f_{i} + \Phi(\boldsymbol{\eta}_{i}), \quad \eta_{i,k} \sim \operatorname{Lap}(b_{i,k}), \quad b_{i,k} = \frac{\gamma_{i}}{k^{p_{i}}} \\ \text{ 2. Each agent selects } \hat{f}_{i}^{s} \in \mathcal{S}_{0} \text{ such that} \\ & \|\hat{f}_{i} - \hat{f}_{i}^{s}\| < \varepsilon_{i} \\ \text{ 3. Each agent projects } \hat{f}_{i}^{s} \text{ onto } \mathcal{S}: \\ & \tilde{f}_{i} = \operatorname{proj}_{\mathcal{S}}(\hat{f}_{i}^{s}) \end{array}$ 4. Agents **participate** in *any* distributed optimization algorithm with $(\tilde{f}_i)_{i=1}^n$

Accuracy Analysis

• Set of "regular" functions:

$$\mathcal{S} = \{h \in C^2(D) \mid \alpha I_d \le \nabla^2 h(x) \le \beta I_d \text{ and } |\nabla h(x)| \le \overline{u}\}$$

Lemma (*K*-Lipschitzness of argmin)

For $f, g \in \mathcal{S}$,

$$\operatorname*{argmin}_{x \in X} f - \operatorname*{argmin}_{x \in X} g \Big| \le \kappa_{\alpha,\beta} (\|f - g\|)$$

Accuracy Analysis

• Set of "regular" functions:

$$\mathcal{S} = \{ h \in C^2(D) \mid \alpha I_d \le \nabla^2 h(x) \le \beta I_d \text{ and } |\nabla h(x)| \le \overline{u} \}$$

Lemma (*K*-Lipschitzness of argmin)

For $f, g \in \mathcal{S}$,

$$\operatorname*{argmin}_{x \in X} f - \operatorname*{argmin}_{x \in X} g \Big| \le \kappa_{\alpha,\beta} (\|f - g\|)$$

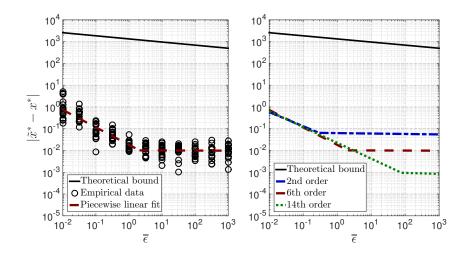
• Define
$$\tilde{x}^* = \operatorname*{argmin}_{x \in X} \sum_{i=1}^n \tilde{f}_i$$
 and $x^* = \operatorname*{argmin}_{x \in X} \sum_{i=1}^n f_i$,

Theorem (Accuracy)

$$\mathbb{E}\left|\tilde{x}^* - x^*\right| \le \sum_{i=1}^n \kappa_n\left(\frac{\zeta(q_i)}{\epsilon_i}\right) + \kappa_n(\varepsilon_i)$$

Erfan Nozari (UCSD)

Simulation Results Linear Classification with Logistic Loss Function



Erfan Nozari (UCSD)

In this talk, we

- Proposed a definition of DP for functions
- Illustrated a fundamental limitation of message-perturbing strategies
- Proposed the method of functional perturbation
- Discussed how functional perturbation can be applied to distributed convex optimization

In this talk, we

- Proposed a definition of DP for functions
- Illustrated a fundamental limitation of message-perturbing strategies
- Proposed the method of functional perturbation
- Discussed how functional perturbation can be applied to distributed convex optimization

Future work includes

- relaxation of the smoothness, convexity, and compactness assumptions
- comparing the numerical efficiency of different bases for L_2
- characterizing the expected sub-optimality gap of the algorithm and the optimal privacy-accuracy trade-off curve
- further understanding the appropriate scales of privacy parameters for particular applications

Questions and Comments

Full results of this talk available in:

E. Nozari, P. Tallapragada, J. Cortés, "Differentially Private Distributed Convex Optimization via Functional Perturbation," *IEEE Trans. on Control of Net. Sys.*, provisionally accepted, http://arxiv.org/abs/1512.00369

Formal Definition in original context [Dwork *et. al.*, 2006]

Context:

- $D \in \mathcal{D}$: A database of records
- Adjacency: $D_1, D_2 \in \mathcal{D}$ are adjacent if they differ by at most 1 record
- $(\Omega, \Sigma, \mathbb{P})$: Probability space
- $q: \mathcal{D} \to X$: (Honest) query function
- $\mathcal{M}: \mathcal{D} \times \Omega \to X$: Randomized/sanitized query function
- $\epsilon > 0$: Level of privacy

Definition

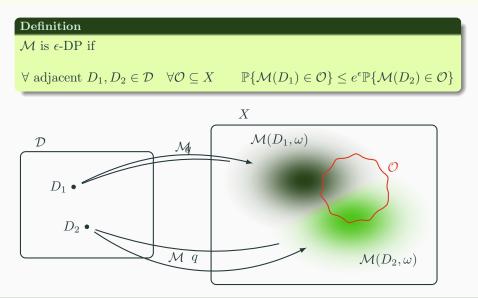
 $\mathcal M$ is $\epsilon\text{-}\mathrm{DP}$ if

 $\forall \text{ adjacent } D_1, D_2 \in \mathcal{D} \quad \forall \mathcal{O} \subseteq X \qquad \mathbb{P}\{\mathcal{M}(D_1) \in \mathcal{O}\} \le e^{\epsilon} \mathbb{P}\{\mathcal{M}(D_2) \in \mathcal{O}\}$

• Adjacency is symmetric $\Rightarrow \begin{cases} \mathbb{P}\{\mathcal{M}(D_1) \in \mathcal{O}\} \le e^{\epsilon} \mathbb{P}\{\mathcal{M}(D_2) \in \mathcal{O}\} \\ \mathbb{P}\{\mathcal{M}(D_2) \in \mathcal{O}\} \le e^{\epsilon} \mathbb{P}\{\mathcal{M}(D_1) \in \mathcal{O}\} \end{cases}$

Erfan Nozari (UCSD)

Formal Definition: Geometric Interpretation in original context



Erfan Nozari (UCSD)

Operational Meaning of DP A binary decision example [Geng&Pramod, 2013]

• If \mathcal{M} is ϵ -DP then

$$\begin{cases} \mathbb{P}\{\mathcal{M}(D_1,\omega)\in\mathcal{O}\}\leq e^{\epsilon}\mathbb{P}\{\mathcal{M}(D_2,\omega)\in\mathcal{O}\}\\ \mathbb{P}\{\mathcal{M}(D_2,\omega)\in\mathcal{O}^c\}\leq e^{\epsilon}\mathbb{P}\{\mathcal{M}(D_1,\omega)\in\mathcal{O}^c\} \end{cases} \Rightarrow \begin{cases} 1-p_{\mathrm{MD}}\leq e^{\epsilon}p_{\mathrm{FA}}\\ 1-p_{\mathrm{FA}}\leq e^{\epsilon}p_{\mathrm{MD}} \end{cases} \\ \Rightarrow p_{\mathrm{MD}}, p_{\mathrm{FA}}\geq \frac{e^{\epsilon}-1}{e^{2\epsilon}-1} \end{cases}$$

Erfan Nozari (UCSD)

Generalizing the Definition: Using Metrics [Chatzikokolakis et. al., 2013]

• If D_1, D_2 differ in N elements then

$$\mathbb{P}\{\mathcal{M}(D_1,\omega)\in\mathcal{O}\}\leq e^{N\epsilon}\mathbb{P}\{\mathcal{M}(D_2,\omega)\in\mathcal{O}\}\$$

• $d: \mathcal{D} \times \mathcal{D} \to [0, \infty)$ metric on \mathcal{D}

Definition -revisited

 \mathcal{M} gives/preserves ϵ -differential privacy if

 $\forall D_1, D_2 \in \mathcal{D} \quad \forall \mathcal{O} \subseteq X \text{ we have}$

 $\mathbb{P}\{\mathcal{M}(D_1,\omega)\in\mathcal{O}\}\leq e^{\epsilon d(D_1,D_2)}\mathbb{P}\{\mathcal{M}(D_2,\omega)\in\mathcal{O}\}$

Erfan Nozari (UCSD)