

Event-Triggered Control Design with Performance Barrier

Pio Ong and Jorge Cortés

Mechanical and Aerospace Engineering University of California, San Diego http://carmenere.ucsd.edu/jorge

57th IEEE Conference on Decision and Control: Robust Event-Triggered Control Miami, Florida December 17-19, 2018

Motivating Example

Example from [P. Tabuada 2007], a well-cited paper in ET control

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

Motivating Example

Example from [P. Tabuada 2007], a well-cited paper in ET control

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

Continuous time: Pick $u = x_1 - 4x_2$

Motivating Example

Example from [P. Tabuada 2007], a well-cited paper in ET control

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

Continuous time: Pick $u = x_1 - 4x_2$

Event-triggered: Update *u* above when $||e|| = \sigma ||x||$, $e = x - x_k$

 $\begin{array}{l} \sigma \text{ is a design parameter.} \\ \text{Lower} \rightarrow \text{better } \textbf{performance} \\ \text{Higher} \rightarrow \text{less trigger, conserving resources} \end{array}$

Key Idea to Take Away from My Talk

• Motivation:

- Unclear on how to tune the design parameter to create a balance between trigger frequency and performance
- **2** Standard ET design scheme can be inefficient in achieving desired performance

• Assumption:

Desired performance can be achieved in continuous time

• Approach:

- **(**) Throw away the Lyapunov's criterion for stability, i.e. $\dot{V} \leq 0$
- 2 Allow $\dot{V} > 0$
- Incorporate performance requirement into the trigger condition

Outline

Event-triggered control design overview:

- Linear system example
- Identify inefficiencies in satisfying a given desired performance

Our design:

- Incorporating performance requirement
 - Use barrier concept
- Advantages
- Apply our new design idea to distributed cases

Wrapping Up My Talk

- Simulations
- Conclusion and future ideas

Design Parameter

How might σ be picked?

From earlier example: Lyapunov function

$$V(x) = x^T \begin{bmatrix} 1 & 1/4 \\ 1/4 & 1 \end{bmatrix} x \implies \dot{V} \le -0.44 \|x\|^2 + 8\|e\|\|x\|^2$$

using ET control, $\dot{V} \leq -(0.44-8\sigma)\|x^2\|$, $\sigma=0.05$ was picked, but why?

Design Parameter

How might σ be picked?

From earlier example: Lyapunov function

$$V(x) = x^T \begin{bmatrix} 1 & 1/4 \\ 1/4 & 1 \end{bmatrix} x \implies \dot{V} \le -0.44 \|x\|^2 + 8\|e\|\|x\|^2$$

using ET control, $\dot{V} \leq -(0.44-8\sigma)\|x^2\|$, $\sigma=0.05$ was picked, but why?

Maybe because this σ guarantees the **performance** of

$$\dot{V} \leq -\frac{0.04}{3/4}V \Longrightarrow V(x(t)) \leq V(x_0)\exp(-0.032t)$$

Design Parameter

How might σ be picked?

From earlier example: Lyapunov function

$$V(x) = x^T \begin{bmatrix} 1 & 1/4 \\ 1/4 & 1 \end{bmatrix} x \implies \dot{V} \le -0.44 \|x\|^2 + 8\|e\|\|x\|^2$$

using ET control, $\dot{V} \leq -(0.44-8\sigma)\|x^2\|$, $\sigma=0.05$ was picked, but why?

Maybe because this σ guarantees the **performance** of

$$\dot{V} \leq -\frac{0.04}{3/4}V \Longrightarrow V(x(t)) \leq V(x_0)\exp(-0.032t)$$

We can reverse the process. Given performance specification $S(t) \le V(x_0) \exp(-rt)$, one can find σ

Assumptions so that we can reverse the process

Assumptions so that we can reverse the process

Known ISS Lyapunov function (same [P. Tabuada 2007]) V ≤ −α(||x||) + γ(||e||)

Assumptions so that we can reverse the process

Known ISS Lyapunov function (same [P. Tabuada 2007]) *V* ≤ −α(||x||) + γ(||e||)

- Given specification function
 - $\dot{S} = -h(S), \ S(x_0, 0) \ge V(x_0)$ where h locally Lipschitz, class \mathcal{K}
 - Note: earlier, special case S = -rS

Assumptions so that we can reverse the process

- Known ISS Lyapunov function (same [P. Tabuada 2007])
 V
 < −α(||x||) + γ(||e||)
- Given specification function
 - $\dot{S} = -h(S), \ S(x_0, 0) \ge V(x_0)$ where h locally Lipschitz, class \mathcal{K}
 - Note: earlier, special case $\dot{S} = -rS$
- Performance achievable in continuous time
 - $-\alpha(||x||) < -h(\bar{V}(x))$

Design idea: forget σ , make $\dot{V} \leq -h(V)$, then $V \leq S$ (Comparison Lemma)

Derivative-based ET

$$t_{k+1} = \min_{t} \{ t > t_k \mid g(x(t), e(t)) + h(\bar{V}(x(t))) = 0 \}$$

where $\mathcal{L}_{f}V(x) \leq g(x, e) \leq -\alpha(||x||) + \gamma(||e||)$

Design idea: forget σ , make $\dot{V} \leq -h(V)$, then $V \leq S$ (Comparison Lemma)

Derivative-based ET

$$t_{k+1} = \min_{t} \{ t > t_k \mid g(x(t), e(t)) + h(\overline{V}(x(t))) = 0 \}$$

where $\mathcal{L}_f V(x) \leq g(x, e) \leq -\alpha(\|x\|) + \gamma(\|e\|)$

Ex. update u when $-0.44||x||^2 + 8||e||||x|| + 0.032V(x) = 0$

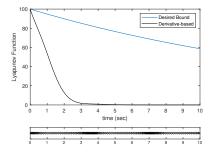
Design idea: forget σ , make $\dot{V} \leq -h(V)$, then $V \leq S$ (Comparison Lemma)

Derivative-based ET

$$t_{k+1} = \min_{t} \{ t > t_k \mid g(x(t), e(t)) + h(\overline{V}(x(t))) = 0 \}$$

where $\mathcal{L}_f V(x) \leq g(x, e) \leq -\alpha(||x||) + \gamma(||e||)$

Ex. update u when $-0.44||x||^2 + 8||e||||x|| + 0.032V(x) = 0$



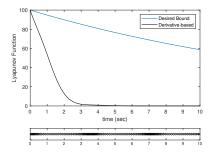
Design idea: forget σ , make $\dot{V} \leq -h(V)$, then $V \leq S$ (Comparison Lemma)

Derivative-based ET

$$t_{k+1} = \min_{t} \{ t > t_k \mid g(x(t), e(t)) + h(\overline{V}(x(t))) = 0 \}$$

where $\mathcal{L}_f V(x) \leq g(x, e) \leq -\alpha(||x||) + \gamma(||e||)$

Ex. update u when $-0.44||x||^2 + 8||e||||x|| + 0.032V(x) = 0$



Problem? The trigger is too early. There is room for improvements.

P. Ong (UCSD)

Lyapunov Function Trigger

Design idea: just make $V \leq S$

Function-based ET

$$t_{k+1} = \{t > t_k \mid S(x_0, t) - V(x(t)) = 0\}$$

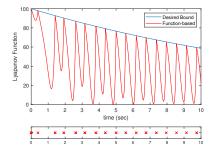
Lyapunov Function Trigger

Design idea: just make $V \leq S$

Function-based ET

$$t_{k+1} = \{t > t_k \mid S(x_0, t) - V(x(t)) = 0\}$$

Straightforward. Performance immediately satisfied



Efficient, less triggers, but there is no robustness to time delay

P. Ong (UCSD)

Design idea: combine the two schemes, but how?

Design idea: combine the two schemes, but how?

• Answer: Use the concept from control barrier function

Design idea: combine the two schemes, but how?

• Answer: Use the concept from control barrier function

Performance Barrier ET

$$t_{k+1} = \min_{t} \left\{ t > t_k \mid \underbrace{g(x(t), e(t)) + h(\bar{V}(x(t)))}_{\text{derivative-based}} = \beta \left(S(x_0, t) - \bar{V}(x(t)) \right) \right\}$$

where β is class- \mathcal{K}_∞

Design idea: combine the two schemes, but how?

• Answer: Use the concept from control barrier function

Performance Barrier ET

$$t_{k+1} = \min_{t} \left\{ t > t_k \mid \underbrace{g(x(t), e(t)) + h(\bar{V}(x(t)))}_{derivative-based} = \beta \left(S(x_0, t) - \bar{V}(x(t)) \right) \right\}$$

where β is class- \mathcal{K}_{∞}

What have we done here?

• We allow $\dot{V} > -h(V)$ given some performance "residual", S-V>0

Design idea: combine the two schemes, but how?

• Answer: Use the concept from control barrier function

Performance Barrier ET

$$t_{k+1} = \min_{t} \left\{ t > t_k \mid \underbrace{g(x(t), e(t)) + h(\bar{V}(x(t)))}_{derivative-based} = \beta \left(S(x_0, t) - \bar{V}(x(t)) \right) \right\}$$

where β is class- \mathcal{K}_{∞}

What have we done here?

- We allow $\dot{V} > -h(V)$ given some performance "residual", S-V>0
- We satisfy V < S because it must be the case that $\dot{V} < -h(V)$ when V = S

Design idea: combine the two schemes, but how?

• Answer: Use the concept from control barrier function

Performance Barrier ET

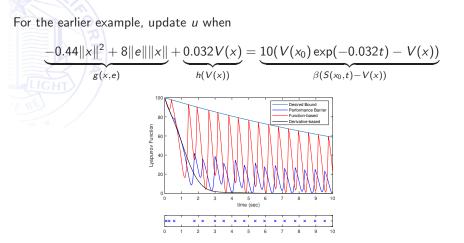
$$t_{k+1} = \min_{t} \left\{ t > t_k \mid \underbrace{g(x(t), e(t)) + h(\bar{V}(x(t)))}_{\text{derivative}-\text{based}} = \beta \left(S(x_0, t) - \bar{V}(x(t)) \right) \right\}$$

where β is class- \mathcal{K}_{∞}

What have we done here?

- We allow $\dot{V} > -h(V)$ given some performance "residual", S-V>0
- We satisfy V < S because it must be the case that V < -h(V) when V = S
- It's like we set a **barrier** on V with S

Example



Maintain some level of robustness to time delay, not too inefficient in triggering

Advantages

Advantages of performance barrier design include:

- compared to derivative-based, guarantee higher minimum interevent time
 - because in each interval, derivative-based has to happen first
 - we provide the bound for the interevent time for linear case
 - we do not know by how much for general nonlinear case (future work)

Advantages

Advantages of performance barrier design include:

- compared to derivative-based, guarantee higher minimum interevent time
 - because in each interval, derivative-based has to happen first
 - we provide the bound for the interevent time for linear case
 - we do not know by how much for general nonlinear case (future work)

• compared to function-based, maintain some level of robustness to delays

- have some time to update *u* after the trigger
- $\bullet\,$ depending on the function $\beta,$ we can control how fast V is increasing
- we do not know how much time delay we can tolerate exactly (future work)

Advantages

Advantages of performance barrier design include:

- compared to derivative-based, guarantee higher minimum interevent time
 - because in each interval, derivative-based has to happen first
 - we provide the bound for the interevent time for linear case
 - we do not know by how much for general nonlinear case (future work)
- compared to function-based, maintain some level of robustness to delays
 - have some time to update *u* after the trigger
 - depending on the function β , we can control how fast V is increasing
 - we do not know how much time delay we can tolerate exactly (future work)
- flexibility for distributed implementation
 - can extend performance barrier design to distributed scenarios
 - some interesting things can happen... (future work)

For the distributed system

$$\dot{x}_i = f_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(i)})$$

Under the following assumptions:

- V separable into $V = \sum_{i} V_i(x_{N_i})$
- \dot{V} separable into $\dot{V} = \sum_i \dot{V}_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(\mathcal{N}_i)})$
- S separable into $S = \sum_i S_i$

For the distributed system

$$\dot{x}_i = f_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(i)})$$

Under the following assumptions:

- V separable into $V = \sum_i V_i(x_{\mathcal{N}_i})$
- \dot{V} separable into $\dot{V} = \sum_i \dot{V}_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(\mathcal{N}_i)})$
- S separable into $S = \sum_i S_i$

•
$$\dot{V}_i(x_{\mathcal{N}_i},0) \leq g_i(x_{\mathcal{N}_i},0) < -h(ar{V}_i(x_{\mathcal{N}_i}))$$

For the distributed system

$$\dot{x}_i = f_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(i)})$$

Under the following assumptions:

- V separable into $V = \sum_i V_i(x_{\mathcal{N}_i})$
- \dot{V} separable into $\dot{V} = \sum_i \dot{V}_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(\mathcal{N}_i)})$
- S separable into $S = \sum_i S_i$

•
$$\dot{V}_i(x_{\mathcal{N}_i},0) \leq g_i(x_{\mathcal{N}_i},0) < -h(ar{V}_i(x_{\mathcal{N}_i}))$$

• Access to state information of two-hop neighbors

For the distributed system

$$\dot{x}_i = f_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(i)})$$

Under the following assumptions:

- V separable into $V = \sum_i V_i(x_{\mathcal{N}_i})$
- \dot{V} separable into $\dot{V} = \sum_i \dot{V}_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(\mathcal{N}_i)})$
- S separable into $S = \sum_i S_i$

•
$$\dot{V}_i(x_{\mathcal{N}_i},0) \leq g_i(x_{\mathcal{N}_i},0) < -h(\bar{V}_i(x_{\mathcal{N}_i}))$$

- Access to state information of two-hop neighbors
- Interevent time is lower bounded
 - Decentralized ET implementation can lead to Zeno (known in literature)
 - Trigger barrier can help! (in some situation)

For the distributed system

$$\dot{x}_i = f_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(i)})$$

Under the following assumptions:

- V separable into $V = \sum_{i} V_i(x_{N_i})$
- \dot{V} separable into $\dot{V} = \sum_i \dot{V}_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i}^{(\mathcal{N}_i)})$
- S separable into $S = \sum_i S_i$

•
$$\dot{V}_i(x_{\mathcal{N}_i},0) \leq g_i(x_{\mathcal{N}_i},0) < -h(\bar{V}_i(x_{\mathcal{N}_i}))$$

- Access to state information of two-hop neighbors
- Interevent time is lower bounded
 - Decentralized ET implementation can lead to Zeno (known in literature)
 - Trigger barrier can help! (in some situation)

Distributed Performance Barrier Design

$$t_{i_{k+1}} = \min_{t} \left\{ t > t_{i_k} \mid g_i(x_{\mathcal{N}_i^2}, e_{\mathcal{N}_i^2}^{(\mathcal{N}_i)}) + h(\bar{V}_i(x_{\mathcal{N}_i})) = \beta(S_i(t) - \bar{V}_i(x_{\mathcal{N}_i})) \right\}$$

Simulations

Consider a full-state controlled system

$$\dot{x} = \begin{bmatrix} 2 & 2 & 1 & 0 & 0 \\ -3 & -3 & 0 & 2 & 0 \\ 1 & 0 & -2 & 3 & 1 \\ 0 & 1 & 3 & -4 & 5 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix} x + u, \ x, u \in \mathbb{R}^5$$

Simulations

Consider a full-state controlled system

$$\dot{x} = \begin{bmatrix} 2 & 2 & 1 & 0 & 0 \\ -3 & -3 & 0 & 2 & 0 \\ 1 & 0 & -2 & 3 & 1 \\ 0 & 1 & 3 & -4 & 5 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix} x + u, \ x, u \in \mathbb{R}^5$$

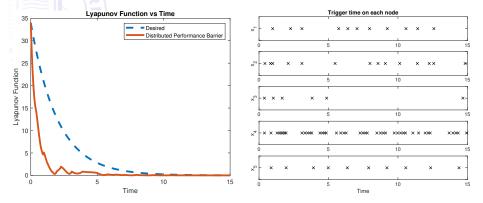
For continuous signal, cancel the off-diagonal

$$u = -\begin{bmatrix} 3 & 2 & 1 & 0 & 0 \\ -3 & 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 & 1 \\ 0 & 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & -2 & 2 \end{bmatrix} x \implies \dot{x} = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix} x$$

This satisfy $S(x_0, t) = V(x_0) \exp(-0.5t)$ with some margin. But, using **derivative-based** design \rightarrow **Zeno!**

Simulations (cont.)

Using performance barrier design,



No Zeno Behavior!

New event-triggered design schemes - Performance Barrier

- ullet Increase minimum interevent time by relaxing condition on \dot{V}
- Maintain some level of robustness
- Interesting application possibility in distributed scenarios

Future Work

- Characterize increase in interevent time and tradeoff with robustness
- Explore the benefits in distributed settings
 - When can performance barrier fix Zeno behavior?
 - ② Can distributed system communicate the residual and collaborate?

Question?

Questions and feedback are welcome!

Extra Slide

Possible future work: Rebalancing residuals between nodes

between without and with rebalancing				
	× ' ×	× × ×	× ' × × ×	
× o c	0 0 0	0 0	0 0 0 0	0
0	5		10	15
	× '×	× × ×	< × × ××	×
×` 000	0 0 00	∞	, 0 0	0
0	5		10	15
~ × × ×	× ×		1	×
× o o		00 0	ορο ο	0
0	5		10	15
	xxxxx xxxx' x x	× × × × × × × × × × × × × × × × × × ×	< xxxxx x x xxxx	×××× ×
× 0.000	000	000 0 0	00,000 0 00	00
0	5		10	15
u × ×	××	× ×	× ' × ×	×
× o o c		0 0	0,00	
0	5		10	15
Time				

Comparison of Trigger Times of Performance Barrier Design