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Distributed Convex Optimization

Problem. Given a network of n agents whose objective is to
cooperatively solve a convex optimization problem

minx∈X f (x)

xi

filocal objective

local coupling

separable objective

“structured” constraints

Figure: A network of agents that seek to solve a convex program

Objective. Develop continuous-time algorithms that

• are asymptotically correct

• are providing performance guarantees?

• are amenable to distributed implementation
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Problem Statement

Problem. Consider the convex optimization problem

min{f (x) | h(x) = 0p, g(x) ≤ 0m} (P)

Assumptions.

• (additively) separable objective function f

• local coupling constraints h and g

• f and g are locally Lipschitzian

• (P) admits a (continuum of) minimizer x∗

• (P) satisfies the strong Slater assumption

Idea. Saddle-point dynamics to solve (P)
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Problem Statement (cont’d)

Augmented Lagrangian. Let κ > 0 and Lκ : Rn × Rp → R be

Lκ(x , λ) = f (x) +
1

2
‖h(x)‖2 + 〈λ, h(x)〉+ κ〈1m, [g(x)]+〉

Saddle Points. ((P) convex ∧ strong Slater assumption) ⇒

∀x∗ ∃(λ∗, µ∗) : Lκ(x∗, λ) ≤ Lκ(x∗, λ∗) ≤ Lκ(x , λ∗), ∀(x , λ)

given that κ ≥ ‖µ∗‖∞

Lemma (Saddle-point theorem). Let Lκ : Rn × Rp → R and
let (x∗, λ∗) ∈ sp(Lκ) with κ > ‖µ∗‖∞ for some dual solution µ∗

of (P). Then, x∗ is a solution of (P).
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Saddle-Point Dynamics

Saddle-point dynamics.{
ẋ(t) + ∂xLκ(x(t), λ(t))

a.e.
3 0n, x(t0) ∈ Rn

λ̇(t)− ∂λLκ(x(t), λ(t))
a.e.
3 0p, λ(t0) ∈ Rp

(SPD)

Interpretation.

• gradient-descent dynamics in the primal variable

• gradient-ascent dynamics in the dual variable

Lκ(x , λ)
Lκ(x∗, λ∗)

Lκ(x(t0), λ(t0))
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Saddle-Point Dynamics (cont’d)

Theorem (Asymptotic convergence). Let κ > ‖µ∗‖∞ for some
dual solution µ∗ of (P). Let ∂f be (strictly) monotone. Then,

lim
t→+∞

dist
(
(x(t), λ(t)), sp(Lκ)

)
= 0.

Idea. Two strategies:

1 Let ∂f be monotone. Let (x∗, λ∗) ∈ sp(Lκ) and define

V1(x , λ) =
1

2
‖x − x∗‖2 +

1

2
‖λ− λ∗‖2

 LaSalle invariance principle

2 Let ∂f be strictly monotone. Let (x̃ , λ̃) ∈ sp(Lκ) and define

V2(x , λ) = Lκ(x , λ)−Lκ(x̃ , λ̃)+ min
(x∗,λ∗)∈sp(Lκ)

(1

2
‖x−x∗‖2+

1

2
‖λ−λ∗‖2

)
 V2 is a Liapunov function
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Saddle-Point-Like Dynamics

Let G = {x ∈ Rn | g(x) ≤ 0m} and define F : G × Rp ⇒ Rn by

F (x , λ) = −∇
(1

2
‖h(x)‖2

)
−∇〈λ, h(x)〉 − ∂f (x)

Saddle-point-like dynamics.{
ẋ(t)− ΠG

(
x(t),F (x(t), λ(t))

) a.e.
3 0n, x(t0) ∈ G

λ̇(t)− ∂λLκ(x(t), λ(t))
a.e.
3 0p, λ(t0) ∈ Rp

(SPLD)

Illustration.

G

x0

NG (x)

F (x , λ)x

ΠG

(
x ,F (x , λ)

)
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ẋ(t)− ΠG

(
x(t),F (x(t), λ(t))

) a.e.
3 0n, x(t0) ∈ G

λ̇(t)− ∂λLκ(x(t), λ(t))
a.e.
3 0p, λ(t0) ∈ Rp

(SPLD)

Illustration.

G

x0

NG (x)

F (x , λ)x

ΠG

(
x ,F (x , λ)

)

S. K. Niederländer - Exponentially Fast Distributed Coordination, CDC 2016 7 / 13



Saddle-Point-Like Dynamics

Let G = {x ∈ Rn | g(x) ≤ 0m} and define F : G × Rp ⇒ Rn by

F (x , λ) = −∇
(1

2
‖h(x)‖2

)
−∇〈λ, h(x)〉 − ∂f (x)

Saddle-point-like dynamics.{
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Saddle-Point-Like Dynamics (cont’d)

Theorem (Relationship of solutions). Let (x , λ) : [t0,+∞) →
G×Rp be any solution of (SPLD) starting from (x0, λ0) ∈ G×Rp.
Then, there exists κ > 0 such that it is also a solution of (SPD).

Idea.

• transfer convergence properties of (SPD) to (SPLD)

• relate solutions of (SPD) to the ones of (SPLD)

G

x0

NG (x)

F (x , λ)x

κ

κ

ΠG

(
x ,F (x , λ)

)
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Inequality Constrained Optimization

Problem. Consider the minimization problem

min{f (x) | g(x) ≤ 0m} (PI)

Gradient dynamics. Fκ : Rn → R, x 7→ f (x) + κ〈1m, [g(x)]+〉

ẋ(t) + ∂Fκ(x(t))
a.e.
3 0n, x(t0) ∈ Rn (GD)

Theorem (Performance characterization). Let κ > ‖µ∗‖∞ for
some dual solution µ∗ of (PI). The following statements hold:

(i) If ∂f is monotone, then eq(∂Fκ) is strongly stable
under (GD);

(ii) If ∂f is strictly monotone, then eq(∂Fκ) is strongly
asymptotically stable under (GD);

(iii) If ∂f is strongly monotone, then eq(∂Fκ) is strongly
exponentially stable under (GD).
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Inequality Constrained Optimization (cont’d)

Example. Consider a network of n = 10 agents that seek to
cooperatively solve the minimization problem

minimize
x∈Rn

∑
i∈{1,...,n}

x2i /2 + |xi |

subject to ‖(x1 − 2, . . . , x5 − 2)‖∞ ≤ 1

‖(x6 + 2, . . . , xn + 2)‖∞ ≤ 1
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Figure: Network topology
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Figure: Execution of the dynamics ẋ(t)− ΠG
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x(t),−∂f (x(t))

) a.e.
3 0n
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Equality Constrained Optimization

Problem. Consider the minimization problem

min{f (x) | h(x) = 0p}

Saddle-point dynamics. L(x , λ) = f (x) + 1
2‖h(x)‖2 + 〈λ, h(x)〉{

ẋ(t) +∇xL(x(t), λ(t)) = 0n, x(t0) ∈ Rn

λ̇(t)−∇λL(x(t), λ(t)) = 0p, λ(t0) ∈ Rp
(SP)

Theorem (Performance characterization). Let f ∈ C1,1(Rn,R).
The following statements hold:

(i) If ∇f is monotone, then sp(L) is stable under (SP);

(ii) If ∇f is strictly monotone, then sp(L) is asymptotically
stable under (SP);

(iii) If ∂(∇f ) � 0, then sp(L) is exponentially stable under (SP).
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ẋ(t) +∇xL(x(t), λ(t)) = 0n, x(t0) ∈ Rn

λ̇(t)−∇λL(x(t), λ(t)) = 0p, λ(t0) ∈ Rp
(SP)

Theorem (Performance characterization). Let f ∈ C1,1(Rn,R).
The following statements hold:

(i) If ∇f is monotone, then sp(L) is stable under (SP);

(ii) If ∇f is strictly monotone, then sp(L) is asymptotically
stable under (SP);

(iii) If ∂(∇f ) � 0, then sp(L) is exponentially stable under (SP).

S. K. Niederländer - Exponentially Fast Distributed Coordination, CDC 2016 11 / 13



Equality Constrained Optimization

Problem. Consider the minimization problem

min{f (x) | h(x) = 0p}

Saddle-point dynamics. L(x , λ) = f (x) + 1
2‖h(x)‖2 + 〈λ, h(x)〉{
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Equality Constrained Optimization (cont’d)

Example. Consider a network of n = 10 agents whose objective is
to cooperatively solve the minimization problem

minimize
x∈Rn

∑
i∈{1,...,n}
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Figure: Execution of the saddle-point dynamics (SP)
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Conclusions

Summary.

• continuous-time algorithms for distributed convex optimization

• convergence analysis of saddle-point(-like) dynamics

• identification of a nonsmooth Lyapunov function

• algorithm performance characterization for optimization
subject to either inequality or equality constraints

Outlook.

• convergence rates of algorithms for generic convex programs

• robustness properties of the algorithms

Thank you for your attention!
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