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Abstract

The reduction and reconstruction of the dynamics of nonholonomic mechanical

systems with symmetry are investigated. We have considered a more general framework

of constrained hamiltonian systems since they appear in the reduction procedure. A

reduction scheme in terms of the nonholonomic momentum mapping is developed. The

reduction of the nonholonomic brackets is also discussed. The theory is illustrated with

several examples.
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1 Introduction

The main goal of this paper is to analyze the reduction and reconstruction of nonholonomic

mechanical systems with symmetry. Our starting point is the general setting for constrained

systems developed by Cantrijn et al. [8]. As stated there, this framework is an unifying

model for the description of degenerate systems as well as of mechanical systems with non-

holonomic constraints. This generality is not fictious because in the reduction procedure of

some particular nonholonomic systems we need to consider it.

The classical approach to nonholonomic mechanical systems is based on the method of La-

grange multipliers (see e.g. [33] for a comprehensive treatment). The geometric foundations

of the theory were stated by A.M. Vershik and L.D. Faddeev [38, 39], and the subject has

experimented a great interest since the fundamental work by J. Koiller [14]. At this moment,

there are essentially three different but related approaches. A hamiltonian approach due to

L. Bates and J. Śniatycki [3] which is based in the construction on an adequated bundle

along which the constraints vanish but the equations of motion continue to be hamiltonian;

a Lagrange multipliers approach by J.E. Marsden et al. [4, 15, 16, 17] which is a modern

adaptation of the classical method; and a lagrangian approach by M. de León and D.M. de

Diego [19, 20] (see also [21, 22]) who worked on the tangent bundle and derived the equations

of motion by constructing explicitly a vector field yielding the dynamics. A more general

Poisson framework was considered by Ch.M. Marle [26, 27].

A mechanical system subject to constraints usually exhibits a lot of symmetries, so in re-

cent years there have been many attempts to adapt the well-known symplectic reduction

schemes for these systems. The main difficulty relies in the fact that, in contrast with the

unconstrained case, a symmetry of a nonholonomic system does not produce in general a

conserved quantity (even more, if the constraints are non linear the energy is not in general

a conserved quantity). Indeed, in [22] (see also [9, 35]) a Noether theorem was proved that

gives a necessary and sufficient condition to a quantity be conserved.

In [4], a nonholonomic mapping which extends the standard one for unsconstrained systems

was proposed; in fact, we have first to identify the situation of the constraints with respect

to the symmetries, and then define at each point a subspace of the Lie algebra of the group

of symmetries. The nonholonomic momentum mapping is then the restriction of the usual

one, but pointwise. In [4], it was exhibited a momentum equation which gives the variation

of the momentum along the trajectories of the system. In [5, 7, 8] the authors have derived

a momentum equation in terms of the dynamics.

In any case, a key point in this study is the fact that the equations of motion for a non-

holonomic system are far to be hamiltonian in the standard sense. This can be exhibited

in several ways (see [20, 22]) but one clear evidence of this fact is that the evolution of the

system can not be described by using the standard Poisson bracket. Indeed, one has to

define a new bracket on the constraint submanifold which gives the right evolution of ob-

servables and, in particular, provides the equations of motion. This bracket does not enjoy
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the Jacobi identity, so it was called nonholonomic bracket and, in a more general context,

almost Poisson bracket (see [6, 12, 13, 23, 27]). The nonholonomic bracket was first con-

sidered by Eden [10, 11] and later rediscovered by A.J. van der Schaft and B.M. Maschke

[37]. The relation between nonholonomic brackets and momentum mappings was exhibited

in [5]. Nonholonomic brackets have been used in recent papers to get reduction procedures

(see [7, 15, 16, 17]), and they are widely used along the present paper.

The paper can be summarized as follows. In Section 2 we give a brief description of the gen-

eral framework for constrained hamiltonian systems developed in [8], with special emphasis

in nonholonomic mechanics. The classification stated in [8], inspired in that of Bloch et al.

[4], is also recalled in Section 3. In Section 4 we discuss a reduction scheme of the general

case by using the nonholonomic mapping. We introduce the notion of coadjoint representa-

tion and isotropy group in this nonholonomic context. Our results are the natural extension

of the symplectic reduction procedure, of course, with the obvious differences and particular

restrictions. The kinematic case is considered in Section 5, where we pay a particular atten-

tion to the case of Čaplygin systems. The case of horizontal symmetries is the subject of

Section 6 and, in Section 7, we investigate the particular case when the bundle of “admissible

values” for the momenta is trivial. Along the paper we consider several examples and, in

some cases, we compute the phases that appear in the reconstruction.

Throughout this paper, we work in the category of smooth (i.e. C∞) objects. For convenience,

we will usually not make a notational distinction between a (vector) bundle over a manifold

and the ring of its smooth sections, i.e. if F denotes a vector bundle over a manifold N (for

instance a subbundle of TN), then X ∈ F simply means that X : N → F is a section of F .

The sole exception to this rule will be the occasional use of the notation X(N) for the ring

of smooth vector fields on N .

2 A general framework for constrained systems

Consider a symplectic manifold (P, ω), a smooth function H : P → R (the hamiltonian),

an embedded submanifold M of P (the constraint submanifold) and a distribution F on

P along M , i.e. F is a vector subbundle of TP|M . We are then interested in the following

problem: find a smooth section X of the restricted tangent bundle TP|M →M , such that
{

(iXω − dH)|M ∈ F o ,

X ∈ TM ,
(1)

with F o the annihilator of F in T ∗P|M . In particular, X then defines a vector field on M .

The problem of existence and unicity of solutions of the constrained system (1) was solved

in (see [8]):

Proposition 2.1 (i) The system (1) admits a solution if and only if

dH|M ∈ (F ∩ TM⊥)o .
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(ii) If (1) has a solution, then it is unique if and only if

F⊥ ∩ TM = 0 .

Note that the existence condition can be equivalently expressed as

XH |M ∈ TM + F⊥,

where XH denotes the (unconstrained) hamiltonian vector field on (P, ω) with hamiltonian

H. Hence, any solution X of (1) is of the form

X = XH |M + Z (2)

for some Z ∈ F⊥. An interesting special case occurs when rankF = dimM or, equivalently,

dimFx = dimTxM for all x ∈M .

Corollary 2.2 [8] If rankF = dimM , then the condition F⊥ ∩ TM = 0 implies both the

existence and unicity of a solution of (1).

Under the conditions of the Corollary, (1) is a constrained hamiltonian system in the sense

of Marle [26], who has studied such systems in the more general setting of Poisson manifolds.

It is important to point out that if the system admits a solution X, it need not be true, in

general, that (the restriction of)H is a first integral ofX. In classical mechanics, for instance,

it is well known that imposing nonholonomic constraints on a conservative mechanical system

may destroy the conservation of energy (see [26]). An additional assumption on the nature

of the constraints therefore is needed to ensure conservation of energy. For a lagrangian

system subject to nonholonomic constraints, a sufficient condition for the energy EL to be

conserved, is that the constraints are homogeneous which, in geometrical terms, means that

the dilation vector field ∆ should be tangent to the constraint submanifold (see [6, 7, 22]).

In the case of linear constraints, this condition is always fulfilled.

2.1 Nonholonomic lagrangian systems

Let us consider a regular lagrangian system with lagrangian L : TQ → R, subject to a

set of nonholonomic constraints given by a (2n − m)-dimensional submanifold M of TQ.

M is locally represented by a set of independent functions φi, for 1 ≤ i ≤ m, that is, the

constraints are just described by the equations φi = 0. For simplicity we always assume in

the sequel that τQ(M) = Q, i.e. the constraints are “purely kinematical” in the sense that

they do not impose restrictions on the allowable positions. The motions of the system are

forced to take place on M , and this requires the introduction of some (unknown) “reaction

forces”. In [20, 22], an intrinsic expression for the equations of motion was obtained, which

we will describe below.
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To fix notations, let us take (qA, q̇A) the bundle coordinates on TQ. Denote by ∆ = q̇A ∂

∂q̇A

the dilation vector field on TQ and, by S = dqA ⊗ ∂

∂q̇A
the canonical vertical endomorphism

(see [24]). Then ωL = −dS∗(dL) is the Poincar-Cartan two-form and, EL = ∆L − L

represents the energy of the system. The simplectic form ωL induces two isomorphisms of

C∞(TQ)-modules (musical mappings):

[L : X(TQ) −→ Ω1(TQ) , ]L : Ω1(TQ) −→ X(TQ) ,

where [L(X) = iXωL and ]L = [−1
L . In absence of constraints, the dynamics is given by

the solution ΓL of the equation iΓL
ωL = dEL, i.e. ΓL = ]L(dEL). Indeed, ΓL is a second

order differential equation (SODE for short) whose solutions are precisely the solutions of

the Euler-Lagrange equations for L. In the presence of constraints, the equations of motion

have to be modified to take account of them.

First of all, we define a distribution F on TQ along M by prescribing its annihilator to be

a subbundle of T ∗TQ which, along the constraint submanifold M , represents the bundle

of reaction forces. More precisely, we set F o = S∗(TM o). If we write Zi = ]L(S∗(dφi)),

1 ≤ i ≤ m, we have that F⊥ is locally generated by Z1, ..., Zm.

The equations of motion for the nonholonomic mechanical system are given by
{

(iXωL − dEL)|M ∈ S∗(TM o) ,

X|M ∈ TM .
(3)

It should be pointed out that each solution of (3) (if there exists one) is automatically a

SODE along M . This implies that, in local coordinates, the integral curves of X on M

are of the form (qA(t), q̇A(t)), whereby the qA(t) are solutions of the system of differential

equations
d

dt

(

∂L

∂q̇A

)

− ∂L

∂qA
= λi ∂φi

∂q̇A
, (4)

together with the constraint equations φi(q
A, q̇A) = 0, and where the λi are Lagrange mul-

tipliers to be determined.

In this case, taking (P, ω) = (TQ, ωL), H = EL, M and F as above, we observe the natural

fitting of nonholonomic lagrangian systems in the model (1). Looking at the problem of

existence and uniqueness of solution, we see that the hypothesis of Corollary 2.2, rankF =

dimM is fulfilled. So, the nonholonomic system will have a unique solution X if it satisfies

the condition F⊥∩TM = 0 (the compatibility condition). If the Hessian of L with respect to

the velocities is definite then this condition is automatically satisfied, and this is the usual

case in mechanics since L = T − V , where T is the kinetic energy of a Riemannian metric

on Q, and V is the potential energy. This will be the assumtion in the rest of the paper. If

this is the case, a simple counting of dimensions shows that TxTQ = F⊥
x ⊕ TxM , ∀x ∈ M ,

which gives rise to two complementary projectors:

Px : TxTQ −→ TxM , Qx : TxTQ −→ F⊥
x .
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A direct calculation shows that X = P(ΓL|M), where ΓL is the solution of the associated

unconstrained or free lagrangian system. In [3, 9, 22], the following alternative approach

has been proposed. The compatibility condition is equivalent to the condition that F ∩ TM
determines a symplectic vector bundle on M . Then, TxTQ = (Fx ∩ TxM) ⊕ (Fx ∩ TxM)⊥,

∀x ∈M , with induced projectors:

P̄x : TxTQ −→ (Fx ∩ TxM) , Q̄x : TxTQ −→ (Fx ∩ TxM)⊥ .

It should be noted that, in general, the projection of the unconstrained dynamics ΓL by

P̄ will not produce the constrained dynamics ΓL,M . However, in the case of homogeneous

constraints, we have

P̄(ΓL) = P(ΓL) = ΓL,M

along M .

3 Constrained systems with symmetry: a classification

Let us consider a general constrained system (1) with symmetries. More precisely, let Φ be

a symplectic action Φ : G × P −→ P of a Lie group G on the symplectic manifold (P, ω),

such that the submanifold M , the hamiltonian function H and the vector subbundle F are

G-invariant. For each g ∈ G and x ∈ P we put Φ(g, x) = Φg(x) = gx. The infinitesimal

generator (fundamental vector field) corresponding to ξ ∈ g, with g the Lie algebra of G,

will be denoted by ξP . The restriction of ξP to M is precisely the infinitesimal generator ξM

of the induced action on M .

For symplicity, we will always assume that this action is free and proper. Then, the orbit

space P̄ = P/G is a differentiable manifold and ρ : P −→ P̄ is a principal bundle with

structure group G, whereby ρ denotes the natural projection. The G-action induced by Φ

on M will still be free and proper. Thus, the quotient manifold M̄ = M/G is a smooth

submanifold of P̄ . Finally, the hamiltonian H will induce a function H̄ on P̄ .

In the sequel, we will denote by V the subbundle of TP whose fibers are the tangent spaces

to the G-orbits, i.e. Vx = Tx(Gx), ∀x ∈ P or, equivalently, V = kerTρ. Note that Vx ⊂ TxM

for all x ∈ M , i.e. V|M ⊂ TM . For simplicity, we will also usually write V , instead of V|M ,

when referring to its restriction to M (the precise meaning should be clear from the context).

If ξM is a section of V ∩ F , we will call it a horizontal symmetry of the given constrained

system (see [3, 4]).

We will recall now the symplectic reduction established by Cantrijn et al. in [8], which is

just a generalization of the one obtained by Bates and S̀niatycki for nonholonomic systems

(cf. [3], see also [15]). So, let us assume that there exists a G-invariant solution X of (1)

such that X ∈ F . Recall that the latter assumption in particular implies that X(H) = 0.

7



Remark 3.1 For nonholonomic lagrangian systems, the condition that the constrained dy-

namics should belong to the distribution F is not at all restrictive. In fact, from (3), the

property that X ∈ F is a consequence of the fact that X = ΓL,M is a SODE.

We define a (generalised) vector subbundle U of TP|M by

U = (F ∩ TM) ∩ (V ∩ F )⊥ , (5)

where (V ∩ F )⊥ is the ω-complement of V ∩ F in TP|M . It is not hard to see that U is

G-invariant and, hence, projects onto a subbundle Ū of T P̄|M̄ . In general, this bundle need

not be of constant rank, i.e. it determines a generalised distribution on P along M . In the

sequel, however, we will always tacitly assume that U is a genuine vector bundle over M .

Let us now denote by ωU the restriction of ω to U . Clearly, ωU is also G-invariant and since,

moreover, iξ̃ωU = 0 for all ξ̃ ∈ V ∩ U , the 2-form ωU pushes down to a 2-form ωŪ on Ū (i.e.

ωŪ only acts on vectors belonging to Ū). Similarly, the restriction of dH to U , denoted by

dUH, pushes down to a 1-form dŪH̄ on Ū , which is simply the restriction of dH̄ to Ū . Note

that neither ωŪ nor dŪH̄ are differential forms on M̄ ; they are exterior forms on a vector

bundle over M̄ , with smooth dependence on the base point.

Proposition 3.2 [8] Let X be a G-invariant solution of (1) such that, in addition, X belongs

to F . Then, the projection X̄ of X onto M̄ is a section of Ū satisfying the equation

iX̄ωŪ = dŪH̄ .

It is important to observe that, in general, the 2-form ωŪ may be degenerate. However, in

the case of a mechanical system with linear nonholonomic constraints, for instance, one can

prove that ωŪ is nondegenerate, such that (Ū , ωŪ) becomes a symplectic vector bundle over

M̄ (see [3]). The reduced dynamics is then uniquely determined by the equation mentioned

in Proposition 3.2.

Next, following [8], we will identify three classes of constrained systems with symmetry.

This classification arises from considering carefully the intersection V ∩ F , which points out

how well the symmetries fit in the constrained system.

(i) The general case: {0} ( Vx ∩ Fx ( Vx, for all x ∈M .

(ii) The purely kinematic case: Vx ∩Fx = {0} and TxM = Vx +(Fx ∩TxM), for all x ∈M .

(iii) The case of horizontal symmetries: Vx ∩ Fx = Vx, for all x ∈ M , which is equivalent

to Vx ⊂ Fx, for all x ∈M .
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4 The general case

Consider the case where at each x ∈M , {0} ( Vx ∩ Fx ( Vx. Let us assume that the given

action of G on P is hamiltonian, with momentum mapping J . If we make the corresponding

computations, we see that J is no longer a conserved quantity for the constrained dynamics.

However, extending a procedure developed by Bloch et al. [4] for non-holonomic mechanical

systems (see also [5]), Cantrijn et al. [8] have derived an equation which describes the

evolution of some components of the momentum mapping along the integral curves of the

constrained system. Which components? Just those which come from the symmetries whose

are compatible with the bundle F .

More precisely, for each x ∈M , we put

gx = {ξ ∈ g | ξM(x) ∈ Fx} .

Recall that ξM is just the restriction of ξP to the G-invariant submanifold M . We have that

gx is a vector subspace of g. Putting

gF =
∐

x∈M

gx ,

where we use the symbol “
∐

” to denote the disjoint union of the vector spaces, we obtain

a (“generalised”) vector bundle over M , with canonical projection gF → M : ξ ∈ gx 7→ x.

In general, this bundle need not have constant rank. However, for the subsequent discussion

we make the simplifying assumption that gF is a genuine vector bundle over M , the fibres

of which have constant dimension (independent of the base point).

Suppose now that the symplectic form ω is exact, say ω = dθ, and that the G-action leaves θ

invariant. In such a case there always exists a well-defined momentum mapping J : P −→ g∗

such that

〈J(x), ξ〉 = −(θx)(ξP (x)) , ∀x ∈ P, ∀ξ ∈ g .

(see [1]). Herewith we can define a smooth section J (c) : M −→ (gF )∗ of the dual bundle

(gF )∗ as follows:

J (c)(x) : gx −→ R , J (c)(x)(ξ) = 〈J(x), ξ〉 .
J (c) will be called the constrained momentum mapping [4, 5, 8]. Given a smooth section ξ̄

of the vector bundle gF , we can then define a smooth function J
(c)

ξ̄
on M according to

J
(c)

ξ̄
= 〈J (c), ξ̄〉 .

In addition, we can construct a vector field Ξ on M by putting

Ξ(x) = (ξ̄(x))M(x) , ∀x ∈M .

Denoting the Lie derivative operator with respect to Ξ as LΞ, we have the following result.

9



Theorem 4.1 [8] Let X be an arbitrary solution of (1). For any smooth section ξ̄ of gF we

then have

X(J
(c)

ξ̄
) = −(LΞθ)(X) . (6)

Note that for the above result we do not have to require X to be G-invariant. Equation

(6) is called the momentum equation for the given constrained system. In the case of linear

nonholonomic constraints we precisely recover the result established by Bloch et al [4].

Remark 4.2 Suppose again that X is a solution of (1) and let ξ̄ be a constant section of

gF , i.e. ξ̄(x) = ξ0 ∈ g for all x ∈ M . We may then identify the corresponding vector field Ξ

with the infinitesimal generator ξ0
M and, clearly, J

(c)

ξ̄
= (Jξ0)|M . Moreover, by construction,

ξ0
M is a horizontal symmetry. The momentum equation (6) then leads to

X(J
(c)

ξ̄
) = X(Jξ0)|M = 0

i.e. we have obtained a conserved quantity of X associated with the horizontal symmetry

ξ0
M . This is a manifestation of Noether’s theorem for constrained systems.

4.1 Reduction

In this section, we are going to do reduction in the general case via the constrained momen-

tum mapping. To fix ideas, we will work specifically with nonholonomic lagrangian

systems.

Remark 4.3 We note that for nonholonomic lagrangian systems (see [4, 7]) the reduction

theory is developed in terms of the vector bundle gM −→ Q, defined by:

gq = {ξ ∈ g | ξTQ(vq) ∈ Fvq for all vq ∈M ∩ TqQ} .

The nonholonomic momentum mapping Jnh : TQ −→ (gM)∗ is then defined by

< Jnh(vq), ξ >= αL(ξTQ)(vq) ,

for all vq ∈ TQ and ξ ∈ gq. In fact, Jnh restricts naturally to M , Jnh
|M : M −→ (gM)∗. For

simplicity, we will usually denote this mapping by Jnh, instead of Jnh
|M . We will only recover

the distinction when confusion is possible.

A global section ξ̄ of the vector bundle gM −→ Q induces a vector field Ξ on Q as follows:

Ξ(q) = (ξ̄(q))Q(q) ∈ TqQ

for all q ∈ Q. Then the nonholonomic momentum equation reads as:

ΓL,M (Jnh
ξ̄ ) = Ξc(L) .
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We will investigate the relation between the vector bundles gM −→ Q and gF −→M defined

above. By definition, we have that

gq =
⋂

vq∈M∩TqQ

gvq

for all q ∈ Q. However, the fibers do not coincide in general. Indeed, let us take ξ ∈ gvq

and wq ∈ M ∩ TqQ. We want to see if ξ ∈ gwq , i.e. ξTQ(wq) ∈ Fwq . Applying the musical

mapping [L, this is equivalent to [L(ξTQ(wq)) = (dJξ)wq ∈ [L(Fwq) = (F⊥
wq

)o. Now, F⊥ is

locally generated by the hamiltonian vector fields Z1, ..., Zm (cf. Section 2.1). Consequently,

we would have:

(dJξ)wqZi(wq) = 0 , 1 ≤ i ≤ m.

But (dJξ)wqZi(wq) = ωL(ξTQ, Zi)(wq) = −S∗(dφi)wq(ξTQ(wq)) = −(dφi)wq(ξ
v
Q(wq)). In coor-

dinates, if we write ξQ(q) = fA(q) ∂
∂qA , this reads as:

(dφi)wq(ξ
v
Q(wq)) =

∂φi

∂q̇A
(q, q̇)fA(q) .

Then, if the constraints are linear or affine,
∂φi

∂q̇A
(q, q̇) only depends on the base point q ∈ Q,

and ξ ∈ gvq implies ξ ∈ gwq for all wq ∈M ∩ TqQ. Therefore gq = gwq for all wq ∈M ∩ TqQ.

As we have remarked above, the main difficulty (and just the point) for nonholonomic systems

is that the momenta is not a conserved quantity. So, instead of fixing a value µ ∈ g∗ for the

momentum as in the traditional approach of symplectic reduction [1, 31, 32], we will take

a C∞-section µ : Q −→ (gM)∗ of the dual vector bundle (gM)∗, with canonical projection

π∗ : (gM)∗ −→ Q, which gives the momenta along the integral curves of the dynamics ΓL,M .

Now, consider the level set:

(Jnh)−1(µ) = {vq ∈M | Jnh(vq) = µ(q)}

In general, (Jnh)−1(µ) will not be a submanifold of M . We will denote the inclusion by

j : (Jnh)−1(µ) ↪→M .

Assume that the vector bundle gM −→ Q has constant rank r, and choose ξ̄1, ..., ξ̄r, r linearly

independent sections. Consider r functions on M , fi : M −→ R, defined by fi =< µ, ξ̄i >

◦τQ − Jnh
ξ̄i

. For each i, we denote Pξ̄i
= f−1

i (0). Then, it is not hard to see that:

(Jnh)−1(µ) =
r

⋂

i=1

Pξ̄i
.

In the following proposition, we characterize the section µ and give certain conditions to

assure the existence of a differentiable structure on (Jnh)−1(µ).
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Proposition 4.4 If 0 is a weakly regular value of fi for 1 ≤ i ≤ r, then Pξ̄i
is a submanifold

of M . If, in addition, the intersection
⋂r

i=1 Pξ̄i
is clean, then (Jnh)−1(µ) is a submanifold of

M , and ΓL,M is tangent to it if and only if

ΓL,M(< µ, ξ̄i > ◦τQ) = Ξc
i(L) , (7)

for all 1 ≤ i ≤ r.

Proof: Because of the above discussion, it only remains to prove the equivalence. Assume

that the section µ fulfills condition (7), namely, ΓL,M (< µ, ξ̄i > ◦τQ − Jnh
ξ̄i

) = Ξc
i(L), for

all 1 ≤ i ≤ r. Then, due to the nonholonomic momentum equation, we just have that

ΓL,M(fi) = 0. So ΓL,M is tangent to the level submanifold Pξ̄i
for each i. As T (Jnh)−1(µ) =

⋂r
i=1 TPξ̄i

, it follows that ΓL,M ∈ T (Jnh)−1(µ). The converse is obvious. QED

Remark 4.5 The hypothesis of 0 to be a weakly regular value of fi, for 1 ≤ i ≤ r, is the

natural traslation of fixing a weakly regular value of the momentum in the approach by

Marsden and Weinstein [31].

In the sequel, we will assume the hypothesis of Proposition 4.4.

Lemma 4.6 We have

T⊥(Jnh
|M)−1(µ) = T⊥M+ < Xf̃1

, ..., Xf̃r
> .

Proof: We will distinguish now between Jnh : TQ −→ (gM)∗ and Jnh
|M : M −→ (gM)∗. We

have that (Jnh
|M)−1(µ) = (Jnh)−1(µ) ∩M . Consider f̃i, the natural extension of fi to TQ,

f̃i =< µ, ξ̄i > ◦τQ − Jnh
ξ̄i

. For each i, denote P̃ξ̄i
= f̃−1

i (0). It is clear that Pξ̄i
= P̃ξ̄i

∩M .

We also have that (Jnh)−1(µ) =
⋂r

i=1 P̃ξ̄i
. A simple counting of dimensions shows that

dimT (Jnh)−1(µ) ≥ dimTQ− r. Consequently, we have that dimT⊥(Jnh)−1(µ) ≤ r. On the

other hand, it easy to check that Xf̃i
∈ T⊥(Jnh)−1(µ), 1 ≤ i ≤ r. Then, we have proved

that T⊥(Jnh)−1(µ) =< Xf̃1
, ..., Xf̃r

>. Finally, T⊥(Jnh
|M)−1(µ) = T⊥M + T⊥(Jnh)−1(µ) =

T⊥M+ < Xf̃1
, ..., Xf̃r

>. QED

In order to perform reduction, we need a kind of G-action on the vector bundle (gM)∗,

playing the role of the coadjoint action of G on g∗. The following lemma enables us to go

further in that direction:

Lemma 4.7 Let AdM : G × gM −→ gM be defined by AdM(g, ξ) = Adg(ξ), for each g ∈ G

and ξ ∈ gq. Then AdM is a well-defined “action” on the vector bundle gM .

12



Proof: The unique thing to be proved is that AdM is well-defined, because the properties

AdM
e = Id and AdM

gh = AdM
g ◦ AdM

h follows directly from the fact that Ad is a G-action.

Thus let us take g ∈ G and ξ ∈ gq, which is to say that ξTQ(vq) ∈ Fvq for all vq ∈ TqQ ∩M .

As the vector bundle F is G-invariant, we have that (Adg(ξ))TQ(g · vq) = (Φg)∗(ξTQ(vq))

belongs to Fg·vq , for all vq ∈ TqQ∩M , namely, (Adg(ξ))TQ(wq) ∈ Fwq , for all wq ∈ TqQ∩M .

Consequently, Adg(ξ) ∈ ggq and AdM is well-defined. QED

In a similar way, we can consider the G-“action” on (gM)∗ defined by

CoAdM : G× (gM)∗ −→ (gM)∗

(g, η) 7−→ CoAdM(g, η) = CoAdg(η)

Note that the nonholonomic momentum mapping Jnh : M −→ (gM)∗ is G-equivariant, that

is, the following diagram

M
Jnh

−→ (gM)∗

Φg ↓ ↓ CoAdM
g

M
Jnh

−→ (gM)∗

is conmutative: CoAdg(J
nh(vq)) = Jnh(g · vq), for all g ∈ G.

Remark 4.8 The concept of G-equivariance can be defined for general constrained dynam-

ical systems with symmetry in a similar way. It is clear that if the hamiltonian action of

the Lie group has a G-equivariant momentum mapping J , the corresponding constrained

momentum mapping J (c) will also be equivariant.

The last ingredient we need to define is the “isotropy group” of the action CoAdM corre-

sponding to the section µ : Q −→ (gM)∗. This is defined as

Gµ = {g ∈ G |CoAdM(µ) = µ} ,

where we mean by CoAdM(µ) = µ that CoAdM
g (µ(q)) = µ(gq) for all q ∈ Q. It is not hard

to see that Gµ is a Lie subgroup of G.

Therefore, we can define a Gµ-action on the manifold (Jnh)−1(µ) in the following manner:

Θ : Gµ × (Jnh)−1(µ) −→ (Jnh)−1(µ)

(g, vq) 7−→ Θ(g, vq) = g · vq

The definition of the group Gµ and the equivariance of Jnh : M −→ (gM)∗ implies that this

action is well defined, as we check in the following:

Lemma 4.9 The mappping Θ is well defined.

13



Proof: Take g ∈ Gµ and vq ∈ (Jnh)−1(µ). By the equivariance, we have that Jnh(Θ(g, vq)) =

CoAdM
g (Jnh(vq)) = CoAdM

g (µ(q)). Finally, by the definition of Gµ, it follows that Θ(g, vq) ∈
(Jnh)−1(µ). QED

We can consider the action Θ as the restriction to (Jnh)−1(µ) of a Gµ-action on M , ΘM :

Gµ ×M −→ M . Both Θ and ΘM will be free and proper actions, because they inherite

these properties from the original action Φ : G×TQ −→ TQ. Then, the orbit spaces M/Gµ

and (Jnh)−1(µ) = (Jnh)−1(µ)/Gµ are differentiable manifolds, and we have two principal

Gµ-bundles π : M −→M/Gµ and π|(Jnh)−1(µ) : (Jnh)−1(µ) −→ (Jnh)−1(µ), respectively.

4.1.1 A kind of symplectic reduction

Now, we define a (generalised) vector subbundle Uµ of TM|(Jnh)−1(µ), whose fiber at x ∈
(Jnh)−1(µ) is given by

(Uµ)x = {v ∈ Fx ∩ Tx(J
nh)−1(µ) / ωL(v, ξ̃) = 0 , for all ξ̃ ∈ (Vµ)x ∩ Fx} . (8)

In general, Uµ need not be of constant rank. For the further discussion, however, we will

assume that Uµ is a genuine vector bundle over (Jnh)−1(µ). Note that U = F∩T (Jnh)−1(µ)∩
(Vµ ∩ F )⊥, where (Vµ ∩ F )⊥ is the ωL-complement of Vµ ∩ F in TTQ|(Jnh)−1(µ). Uµ is Gµ-

invariant and, hence, it projects onto a subbundle Ūµ of T (M̄µ)
|(Jnh)−1(µ)

.

Let us now denote by ωµ the restriction of ωL to Uµ. Clearly, ωµ is also Gµ-invariant and

by the very definition of the vector bundle Uµ, the 2-form ωµ pushes down to a 2-form ω̄µ

on Ūµ. Similarly, the restriction of dEL to Uµ, denoted by dµEL, pushes down to a 1-form

dµĒL on Ūµ, which is simply the restriction of dĒL to Ūµ. Note that neither ω̄µ nor dµĒL are

differential forms on (Jnh)−1(µ); they are exterior forms on a vector bundle over (Jnh)−1(µ),

with smooth dependence on the base point.

Proposition 4.10 Let ΓL,M be the solution of (3). Then, its projection (Γ̄L,M)µ onto

(Jnh)−1(µ) is a section of Ūµ satisfying the equation

i(Γ̄L,M )µ
ω̄µ = dµĒL .

Proof: Similar as for Proposition 3.2. QED

Remark 4.11 It should be noticed that, in general, the 2-form ω̄µ may be degenerate. So,

the reduced dynamics is not uniquely determined by the equation mentioned in Proposition

4.10.
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4.1.2 Almost-Poisson reduction

For nonholonomic lagrangian systems, we know [6, 7, 16, 27, 37] that it can be constructed

on M the so-called nonholonomic bracket, {·, ·}M , in the following manner. Consider λ,

σ : M −→ R and take λ̃, σ̃ arbitrary extensions to TQ, λ̃ ◦ jM = λ, σ̃ ◦ jM = σ, with

jM : M ↪→ TQ. Then

{λ, σ}M = ωL(P̄(Xλ̃), P̄(Xσ̃)) ◦ jM .

It is a routine to verify that this bracket is well-defined. In general, {·, ·}M does not verify

the Jacobi identity, except if the constraints are holonomic. This almost-Poisson bracket is

very important because, in the case of homogeneous constraints, it gives the evolution of

the constrained dynamics in the following sense: for any function f ∈ C∞(M), its evolution

along integral curves of ΓL,M on M is given by

ḟ = ΓL,M(f) = {f, EL}M .

The idea of this approach is to project the nonholonomic bracket to the reduced space

(Jnh)−1(µ) via the Gµ-action Θ : Gµ × (Jnh)−1(µ) −→ (Jnh)−1(µ). For that purpose we

recall briefly the main results of Poisson reduction stated in [30, 36], but from an almost-

Poisson point of view.

Definition 4.12 Let (M,ΛM ) be an almost-Poisson manifold. Then a pair (N,E) that

consists of a submanifold j : N ⊆ M , and a vector subbundle E of TM|N will be called a

reductive structure of (M,ΛM) if the following conditions are satisfied:

(i) E ∩ TN is tangent to a foliation F whose leaves are the fibers of a submersion π :

N −→ S;

(ii) For all ϕ, ψ ∈ C∞(M) such that dϕ and dψ vanish on E, d{ϕ, ψ}M also vanishes on E.

Furthermore, if S above has an almost-Poisson structure ΛS such that for any local C∞

functions f , g on S, and any local extensions ϕ, ψ of π∗f , π∗g, with dϕ|E = dψ|E = 0,

the relation

{ϕ, ψ}M ◦ j = {f, g}S ◦ π
holds good, we say that (M,N,E) is a reducible triple, and (S,ΛS) is the reduced

almost-Poisson manifold of (M,ΛM) via (N,E).

The bundle E is called sometimes the control bundle. The following theorem characterizes

the reducible triples.

Theorem 4.13 Let (N,E) a reductive structure of the almost-Poisson manifold (M,ΛM).

Then (M,N,E) is a reducible triple iff

]M(Eo) ⊆ TN + E
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So, in our case, we have that N = (Jnh)−1(µ). It seems to be quite reasonable to take as E at

each point vq of (Jnh)−1(µ) just the tangent at vq to the Gµ-orbit of vq, i.e. Evq = Tvq(Gµ ·vq).

It is to easy see that (N,E) is a reductive structure, with S = (Jnh)−1(µ). We will discuss

if (M,N,E) is a reducible triple. We have that

Eo =< dχ / χ ∈ C∞
Gµ

(M) > ,

where C∞
Gµ

(M) denotes the Gµ-invariant functions on M . Then,

]M(Eo) =< XM
χ / χ ∈ C∞

Gµ
(M) > .

Note that XM
χ denotes the hamiltonian vector field associated to the function χ : M −→ R

by the musical mapping ]M induced by the almost-Poisson bivector field ΛM . But,

XM
χ (υ) = {υ, χ}M = ωL(P̄(Xυ̃), P̄(Xχ̃)) ◦ jM

= ωL(Xυ̃, P̄(Xχ̃)) ◦ jM = P̄(Xχ̃)(υ) ,

for all υ ∈ C∞(M), where χ̃ denotes an arbitrary extension of χ to TQ. So XM
χ = P̄(Xχ̃)

and

]M(Eo) =< P̄(Xχ̃) / χ ∈ C∞
Gµ

(M) > .

In addition, E + T (Jnh)−1(µ) = T (Jnh)−1(µ), then we have

]M(Eo) ⊆ T (Jnh)−1(µ) ⇐⇒ P̄(Xχ̃)(fi) ◦ j = 0 , 1 ≤ i ≤ r , ∀χ ∈ C∞
Gµ

(M) (9)

⇐⇒ {fi, χ}M ◦ j = 0 , 1 ≤ i ≤ r , ∀χ ∈ C∞
Gµ

(M)

In the purely kinematic case, as we will discuss below, the nonholonomic momentum mapping

is trivial, and therefore the conditions (9) hold trivially (in fact, (Jnh)−1(µ) = M). In the

horizontal case, we would have gM = g × Q, so r = dimG. Taking a constant section

µ(q) = (µ, q) and a basis of the Lie algebra g, ξ1, ..., ξr, we could write fi =< µ, ξi > −Jξi
,

1 ≤ i ≤ r. Then {fi, χ}M ◦ j = −P̄(Xfi
)(χ) ◦ j = (ξi)M(χ) ◦ j. In general, conditions (9)

will not be fulfilled, because C∞
Gµ

(M) 6= C∞
G (M).

4.1.3 Almost-Poisson mappings

The obstruction we have found above in the horizontal case to reduce the nonholonomic

bracket {·, ·}M to (Jnh)−1(µ) via ((Jnh)−1(µ)), T (Gµ·)) leads us to develop another scheme

of reduction which takes into account the whole group G. For that purpose, let us define

the following mapping:

k : (Jnh)−1(µ)
kµ−→M/Gµ

p−→M/G = M̄

On M̄ , we have the natural almost-Poisson structure induced by (M,ΛM). The idea of

this section is to study under which conditions there exists an almost-Poisson structure on
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(Jnh)−1(µ) so that k is an almost-Poisson mapping. In this case, then for each pair of

functions λ̄, σ̄ : M̄ −→ R we would have that

{λµ, σµ}µ = {λ̄, σ̄}M̄ ◦ k ,

with λ̄ ◦ k = λµ and σ̄ ◦ k = σµ.

In fact, taking λ̄1, λ̄2 : M −→ R with λ̄1 ◦ k = λ̄2 ◦ k = λµ, we would have

{λ̄1, σ̄}M̄ ◦ k = {λ̄2, σ̄}M̄ ◦ k , ∀σ̄ ∈ C∞(M̄) . (10)

In case of k being injective, this equality would be a necessary and sufficient condition to ob-

tain an almost-Poisson bracket {·, ·}µ on (Jnh)−1(µ), making k an almost-Poisson morphism.

Moreover, in this case, {·, ·}µ will be unique satisfying that property.

We will discuss if equality (10) is fulfilled. Equivalently, given λ̄ : M̄ −→ R with λ̄ ◦ k = 0,

we want to verify if

{λ̄, σ̄}M̄ ◦ k = 0 , ∀σ̄ ∈ C∞(M̄) .

Consider the following conmutative diagram:

(Jnh)−1(µ)
j−→ M −→ M

π(Jnh)−1(µ) ↓ ↓ ↓ ρ|M

(Jnh)−1(µ)
kµ−→ M/Gµ

p−→ M̄

Then, we have that {ρ∗|M λ̄, ρ∗|M σ̄}M ◦ j = {λ̄, σ̄}M̄ ◦ ρ|M ◦ j = {λ̄, σ̄}M̄ ◦ k ◦ π(Jnh)−1(µ). In

addition, ρ∗|M λ̄ ◦ j = λ̄ ◦ k ◦ π(Jnh)−1(µ) = 0.

It is clear that

{ρ∗|M λ̄, ρ∗|M σ̄}M ◦ j = 0 ⇐⇒ {λ̄, σ̄}M̄ ◦ k = 0 .

Therefore, now our question writes as follows: given λ ∈ C∞
G (M) with λ ◦ j = 0, we want to

verify if

{λ, σ}M ◦ j = 0 , ∀σ ∈ C∞
G (M) .

By definition, we have that {λ, σ}M = ωL(P̄(Xλ̃), P̄(Xσ̃)) ◦ jM , where λ̃, σ̃ are arbitrary

extensions of λ, σ to TQ, λ̃◦ jM = λ, σ̃ ◦ jM = σ. Without loss of generality, we can suppose

them to be G-invariant.

Now, (jM ◦ j)∗λ̃ = j∗λ = 0. Therefore we deduce

0 = (jM ◦ j)∗dλ̃ = (jM ◦ j)∗iXλ̃
ωL .

If we could assure that P̄(Xσ̃) ∈ T (Jnh)−1(µ), then we would have

{λ, σ}M ◦ j = ωL(Xλ̃, P̄(Xσ̃)) ◦ (jM ◦ j)
= ωL(Xλ̃, (jM ◦ j)∗P̄(Xσ̃)) ◦ (jM ◦ j)
= (jM ◦ j)∗iXλ̃

ωL(P̄(Xσ̃)

= 0 .
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Therefore, if we guarantee that P̄(Xσ̃) ∈ T (Jnh)−1(µ), ∀σ̃ ∈ C∞
G (TQ), then (10) holds. We

characterize when this occurs in the following

Proposition 4.14 Let σ be a G-invariant function on M , and σ̃ one G-invariant extension

of σ to TQ. Then,

P̄(Xσ̃) ∈ T (Jnh)−1(µ) ⇐⇒ {σ, fi}M ◦ j = 0 , 1 ≤ i ≤ r . (11)

Proof: Take σ ∈ C∞
G (M). We have that

P̄(Xσ̃) ∈ T (Jnh)−1(µ) ⇐⇒ ωL(P̄(Xσ̃), Z) ◦ jM ◦ j = 0 , ∀Z ∈ T⊥(Jnh)−1(µ) .

By Lemma 4.6, we know that T⊥(Jnh)−1(µ) = T⊥M+ < Xf̃1
, ..., Xf̃r

>. As F ∩TM ⊂ TM ,

then T⊥M ⊂ (F ∩ TM)⊥.Thus we have that ωL(P̄(Xσ̃), Z) = 0 for every Z ∈ T⊥M . Then

P̄(Xσ̃) ∈ T (Jnh)−1(µ) ⇐⇒ ωL(P̄(Xσ̃), Xfi
) ◦ jM ◦ j = {σ, fi}M ◦ j = 0 , 1 ≤ i ≤ r .

QED

Consequently, in case we have

{σ, fi}M ◦ j = 0 , 1 ≤ i ≤ r , ∀σ ∈ C∞
G (M) , (12)

we have proved that equality (10) holds good. Conditions (12) will not be fulfilled in general.

In Section 6.1.1, we will see that in the case of horizontal symmetries, k is injective and

conditions (12) are satisfied, and therefore, there is a well-defined (unique) almost-Poisson

structure on (Jnh)−1(µ), so that k : (Jnh)−1(µ) −→ M̄ is an almost-Poisson morphism.

Concerning the dynamics, if k is injective, then k∗(Γ̄L,M)µ = Γ̄L,M . The restriction of the

energy EL to (Jnh)−1(µ) is Gµ-invariant, so it induces a function on (Jnh)−1(µ), (EL)µ :

(Jnh)−1(µ) −→ R. One can easily check that (ĒL)|M̄ ◦k = (EL)µ. If, in addition, (10) holds,

we have that k is an almost-Poisson mapping, or equivalently,

k∗(X
µ

λ̄◦k
) = XM

λ̄ ◦ k , ∀λ̄ ∈ C∞(M̄) .

In particular, taking (ĒL)|M̄ , we have that

Xµ
(EL)µ

(λµ) = Xµ
(EL)µ

(λ̄ ◦ k) = k∗(X
µ
(EL)µ

)(λ̄)

= XM̄
(ĒL)|M̄

(λ̄) ◦ k = ¯ΓL,M(λ̄) ◦ k
= k∗((Γ̄L,M)µ)(λ̄) = (Γ̄L,M)µ(λµ) ,

for all λµ ∈ C∞((Jnh)−1(µ)). Therefore, Xµ
(EL)µ

= (Γ̄L,M)µ. Then, we can conclude that

the evolution of any function λµ ∈ C∞((Jnh)−1(µ)) along the integral curves of (Γ̄L,M)µ on

(Jnh)−1(µ)) is given by

λ̇µ = (Γ̄L,M)µ(λµ) = {λµ, (EL)µ}µ . (13)
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4.1.4 The nonholonomic free particle

We will discuss here an instructive example due to Rosenberg [34] which has been extensively

treated also in [2, 3, 4]. Consider a particle moving in space, so Q = R3, subject to the non-

holonomic constraint

φ = ż − yẋ .

The lagrangian function is

L =
1

2

(

ẋ2 + ẏ2 + ż2
)

,

and the Poincaré-Cartan two-form is

ωL = dx ∧ dẋ+ dy ∧ dẏ + dz ∧ dż .

The constraint manifold is the distribution

M =<
∂

∂x
+ y

∂

∂z
,
∂

∂y
> .

Consider the Lie group G = R2 and its action on Q:

ϕ : G×Q −→ Q

((r, s), (x, y, z)) 7−→ (x+ r, y, z + s) .

If we consider the lifted action ϕ1 of ϕ to TQ, given by (ϕ1)g = Tϕg, then the infinitesimal

generators of this action are

V =

〈

∂

∂x
,
∂

∂z

〉

.

It is a simple verification to see that L and M are G-invariant. Choose local coordinates

(x, y, z, ẋ, ẏ) on M . We find that the distribution F|M is generated by the vectors fields:

F|M =

〈

∂

∂x
+ y

∂

∂z
,
∂

∂y
,
∂

∂ẋ
,
∂

∂ẏ
,
∂

∂ż

〉

.

The symplectic vector bundle F ∩ TM is given by

F ∩ TM =

〈

∂

∂x
+ y

∂

∂z
,
∂

∂y
+ ẋ

∂

∂ż
,
∂

∂ẋ
+ y

∂

∂ż
,
∂

∂ẏ

〉

,

with symplectic orthogonal complement

(F ∩ TM)⊥ =

〈

∂

∂ż
− y

∂

∂ẋ
,
∂

∂z
+ ẋ

∂

∂ẏ
− y

∂

∂x

〉

.

We realize that for each m = (x, y, z, ẋ, ẏ) ∈M , we have

Vm ∩ Fm =

〈

∂

∂x
+ y

∂

∂z

〉

.
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Therefore we are in the general case. Let {e1, e2} be the standard basis of R2 and {e1, e2}
its dual basis. We define a section of the vector bundle (R2)M :

ξ̄ : M −→ (R2)M

(x, y, z, ẋ, ẏ) 7−→ e1 + ye2 .

Its corresponding nonholonomic momentum function is

Jnh
ξ̄ = ẋ+ yż .

We can construct from the section ξ̄ the vector field Ξ:

Ξ =
∂

∂x
+ y

∂

∂z
.

Therefore the momentum equation would be:

d

dt
(ẋ+ yż) = żẏ .

Using the constraint φ, we may rewrite this equation as

ẍ+
y

1 + y2
ẋẏ = 0 . (14)

In [2], Bates et al. have obtained a constant of the motion for this problem, apart from the

energy, related with the symmetry group and the constraint. We are going to see now how

the obtention of this constant fits nice in the geometrical setting we have exposed here.

We start remembering the nonholonomic Noether theorem [9, 22, 35], which ensures us when

a function ϕ is a constant of the motion:

Theorem 4.15 A function ϕ : TQ −→ R is a constant of the motion of X if and only if the

energy is constant along the integral curves of the vector field P̄(Xϕ), that is, P̄(Xϕ)(EL) = 0.

Now, it is important to realize the following facts:

(i) P̄(Ξ)(EL) = Ξ(EL) = 0, because Ξ ∈ F ∩ TM and EL is G-invariant,

(ii) P̄(Xφ)(EL) = ωL(XEL
, P̄(Xφ)) = −X(φ) = 0, because X ∈ F ∩ TM .

Therefore, if we can find functions f, g on TQ so that the vector field Z = fΞ+gXφ would be

hamiltonian, say Z = Xϕ, from Theorem 4.15, we would have a constant of the motion, due

to the symmetry and the constraint. In general, the condition “Z to be hamiltonian” will

lead us to a quite complex first-order system of partial derivative equations. However, in this

case, it is not difficult to prove (just a few computations) that f = 1√
1+y2

and g = − y√
1+y2

will do. Consequently, we obtain the conservation law:

ϕ = ẋ
√

1 + y2.
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Then we choose the following section of (R2)M ∗ −→ Q

µ : Q −→ (R2)M ∗

q 7−→ µ(q) : ((R2)q)∗ → R

e1 + ye2 7→ c
√

1 + y2 ,

where q = (x, y, z). We have that f : M −→ R, f =< µ, ξ̄ > ◦τQ − Jnh
ξ̄

is given by

f = c
√

1 + y2 − ẋ(1 + y2) .

The hypothesis of Proposition 4.4 are fulfilled. A direct computation shows that the section

µ satisfies equation (7). Then (Jnh)−1(µ) is a submanifold of M . In fact,

(Jnh)−1(µ) = {(x, y, z, ẋ, ẏ) / ẋ = c
√

1 + y2} = {(x, y, z, ẏ)} .

As the Lie group G = R2 is abelian, the coadjoint action is trivial. Then it is easily seen

that the isotropy group Gµ of the action CoAdM is Gµ = G. So we have the action

Θ : Gµ × (Jnh)−1(µ) −→ R

((r, s), (x, y, z, ẏ)) 7−→ (x+ r, y, z + s, ẏ) .

Consequently, (Jnh)−1(µ) = {y, ẏ}. We obtain that

Xf = − ∂

∂x
− y

∂

∂z
− (

cy
√

1 + y2
− ż)

∂

∂ẏ
∈ F ∩ TM .

Therefore, for all σ ∈ C∞
G (M), we have

{σ, f}M ◦ j = XM
f (σ) ◦ j = P(Xf )(σ) ◦ j = Xf (σ) ◦ j =

∂σ

∂ẏ
(

cy
√

1 + y2
− yẋ) = 0 .

Moreover, the mapping k is injective:

k : (Jnh)−1(µ) −→ M̄

(y, ẏ) 7−→ (y, c
√

1 + y2, ẏ) .

Then, we know from the above discussion that there is a well-defined almost-Poisson struc-

ture on (Jnh)−1(µ) which is given by

{y, ẏ}µ = 1 .

As conditions (9) and conditions (12) are exactly the same (due to Gµ = G), we have that

{·, ·}µ is the reduced bracket of {·, ·}M . Indeed, {·, ·}µ is integrable, that is, it is a Poisson

structure.
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5 The purely kinematic case

We recover now the discussion for general constrained systems (1) with symmetries. Suppose

that Vx ∩Fx = {0} and TxM = Vx +(Fx ∩TxM), for all x ∈M . In principle, this leads us to

think that the symmetries do not play an important role in reduction, because none of them

is compatible with the bundle of reaction forces. Indeed, in this case, gF = 0 and we have

no constrained momentum mapping. However, we see now that the symplectic reduction

explained in Section 3 takes a nice form here due to the particular geometry involved in the

system.

5.1 Reduction

In this case, we have that TxM = Vx ⊕ (Fx ∩ TxM), for all x ∈M . Moreover, U = F ∩ TM ,

so TM = V|M ⊕U . Since U is G-invariant, this decomposition defines a principal connection

Υ on the principal G-bundle ρ|M : M → M̄ , with horizontal subspace Ux at x ∈ M . Note,

in passing, that U here represents a vector bundle of constant rank. In what follows we let

X denote a fixed G-invariant solution of (1) which, moreover, belongs to F . In particular,

this means that X is horizontal, i.e. X ∈ U .

Denote by h : TM −→ U and v : TM −→ V the horizontal and vertical projectors associated

with the decomposition TM = V|M ⊕ U , respectively. The curvature of Υ is the tensor field

of type (1,2) on M given by

R =
1

2
[h,h] ,

where [ , ] denotes the Nijenhuis bracket of type (1,1) tensor fields. Taking into account that

in the present case Ū = TM̄ , we obtain on M̄ a 2-form ω̄ (which is now a genuine differential

form on M̄) and a function H̄ such that the projection X̄ of X verifies

iX̄ ω̄ = dH̄ . (15)

It should be pointed out that the reduced 2-form ω̄ in general need not be closed. We will

show, however, that in case the given 2-form ω on P is exact, one can construct a reduced

equation, equivalent to (15), but now in terms of a closed 2-form on M̄ .

Assume ω = dθ for some 1-form θ on P . Denote by θ′ the 1-form on M defined by θ′ = j∗Mθ,

where jM : M ↪→ P is the canonical inclusion. By means of the given solution X of (1) we

can construct a 1-form αX on M as follows:

αX = iX(h∗dθ′ − dh∗θ′) , (16)

with the usual convention that, for an arbitrary p-form β, h∗β is the p-form defined by the

prescription h∗β(X1, . . . , Xp) = β(h(X1), . . . ,h(Xp)).
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Proposition 5.1 [8] Assume, in addition, that the given action Φ leaves θ invariant. Then,

the 1-forms h∗θ′ and αX are projectable. Moreover, the projection X̄ of X, which is a solution

of (15), also satisfies the equation

iX̄dθ̄′h = dH̄ − αX , (17)

where θ̄′h and αX are the projections of the 1-forms h∗θ′ and αX , respectively.

Proposition 5.1 describes a situation where a constrained hamiltonian system (1) with sym-

metry, admits a reduction to an unconstrained system (17), but with an additional conser-

vative force represented by αX . Indeed, by construction, the 1-form αX satisfies

iXαX = 0 .

5.1.1 Čaplygin systems

We now consider an interesting special subcase of the purely kinematic case, namely a

(generalised) Čaplygin system. For such a system, the configuration manifold Q is a principal

G-bundle π : Q −→ Q/G, and the constraints are given by the horizontal subspace of a

principal connection γ on π (see [14, 20]). We also have a regular lagrangian L : TQ −→ R,

which is G-invariant. It is known that the lifted action of G on the symplectic manifold

(TQ, ωL) is hamiltonian. Let us assume that the resulting nonholonomic system verifies the

compatibility condition. The constrained equations then read as (cf. (3)):

{

iXωL − dEL ∈ S∗(TM o) ,

X|M ∈ TM .
(18)

Under the above conditions, one can easily see that there exists a well-defined lagrangian

function L∗ : T (Q/G) −→ R, given by

L∗(Y ) = L((Y h)q) ,

for any Y ∈ Ty(Q/G), where q ∈ Q is an arbitrary point in the fiber over y ∈ Q/G and Y h

denotes the horizontal lift of Y with respect to γ.

A direct computation shows that, V ∩ F = {0}. Moreover, we have U = F ∩ TM , and U is

symplectic with respect to ωL. Therefore we deduce that

TM = V ⊕ U .

Thus, a Čaplygin system fits indeed in the purely kinematic case. Moreover, one can prove

that M̄ = M/G ∼= T (Q/G) and ĒL = EL∗ .

The compatibility condition F⊥ ∩ TM = 0 ensures the existence of a unique solution X =

ΓL,M of (18) which, moreover, is a SODE. Notice that ΓL,M can be obtained by projecting
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the unconstrained Euler-Lagrange vector field ΓL by means of the first projector associated

with the decomposition

T (TQ)|M = TM ⊕ F⊥ .

Since ωL = −dθL, the reduced equation becomes

iX̄ωL∗ = dEL∗ − αΓL,M
,

where αΓL,M
is the projection of the 1-form αΓL,M

, defined by (16). Observe that

iΓ̄αΓL,M
= 0 ,

for any SODE Γ̄ on T (Q/G). This implies that αΓL,M
is a 1-form of gyroscopic type.

Remark 5.2 As was noticed in [33], Čaplygin considered systems with Abelian groups of

symmetries and it seemed to be Voronec who extended the theory to general Lie groups.

Remark 5.3 After the above reduction procedure, the system (17) can still have some

symmetries we have not taken into account. This is the case, for example, of the vertical

rolling disk [4, 8]: Consider a rolling disk of radius R constrained to remain vertical on a

horizontal plane. The configuration space is R × S1 × S1.

The dynamics of this mechanical system is described by:

(i) the regular lagrangian:

L =
1

2

(

mẋ2 +mẏ2 + I1θ̇
2
1 + I2θ̇

2
2

)

,

where m is the mass, and I1, I2 are moments of inertia;

(ii) the non-holonomic constraints:

φ1 = ẋ− (R cos θ1)θ̇2 = 0 ,

φ2 = ẏ − (R sin θ1)θ̇2 = 0 .

Consider the group G = R2 and its trivial action by translations on Q:

Φ : G×Q −→ Q

(r, s) × (x, y, θ1, θ2) 7−→ (x+ r, y + s, θ1, θ2) .

Note that ρ : Q → S1 × S1 is a principal G-bundle and M , the constraint manifold, is

the horizontal subbundle of a principal connection, so that the given system is a Čaplygin

system. Following the above analysis we then obtain:

L∗ =
1

2

(

I1θ̇
2
1 + (mR2 + I2)θ̇

2
2

)

,

ωL∗ = I1dθ1 ∧ dθ̇1 + (mR2 + I2) dθ2 ∧ dθ̇2 .
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In this particular case the gyroscopic 1-form αΓL,M
= 0 and ωŪ = ωL∗ . So the reduced

equation (17) becomes:

iX̄ωL∗ = dEL∗

Now, there is still some symmetries of this system we can consider. Denote K for the Lie

group S1 × S1 and let us define:

Ψ : K ×Q/G −→ Q/G

((λ1, λ2), (θ1, θ2)) 7−→ (θ1 + λ1, θ2 + λ2) .

If we consider the lifted action Ψ1 of Ψ to T (Q/G), given by (Ψ1)k = TΨk, it is clear that

the lagrangian L∗ is K-invariant. Then, we can go further reducing.

Thus, in general, the reduced system (17) can still enjoy more symmetries to be considered.

Let Ψ : K × M̄ −→ M̄ be an action on M̄ that leaves invariant the reduced hamiltonian

H̄ and the 1-form θ̄′h. We can define a momentum mapping, J : M̄ −→ k∗, in the usual

manner: < J(m̄), η >= − < θ̄′h(m̄), ηM̄(m̄) > for m̄ ∈ M̄ and η ∈ k. It is easy to see that

iηM̄
dθ̄′h = dJη for all η ∈ k. Using equation (17) and the K-invariance of H̄, we obtain a

momentum equation:

X̄(Jη) = αX(ηM̄) . (19)

5.1.2 The nonholonomic free particle revisited

We will show now how the example of the nonholonomic free particle can also be seen as a

Čaplygin system. With the same notations of Section 4.1.4, consider the Lie group G = R

and its trivial action by traslation on Q:

Φ : G×Q −→ Q

(s, (x, y, z)) 7−→ (x, y, z + s) .

Note that M is the horizontal subspace of a connection γ on the principal fiber bundle

Q −→ Q/G, where γ = (−ydx+ dz)e, with {e} the infinitesimal generator of the traslation.

Therefore this is a Čaplygin system. Following the above analysis, we obtain that

L∗ =
1

2

(

(1 + y2)ẋ2 + ẏ2
)

,

and the reduced system

iX̄ωL∗ = dEL∗ − αΓL,M
,

where αΓL,M
= ẋẏydx − yẋ2dy. Now we can take into account the remaining symmetry we

have ignored so far. Consider the Lie group K = R and its action on Q/G:

Ψ : K ×Q/G −→ Q/G

(r, (x, y)) 7−→ (x+ r, y) .
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It is clear that L∗ is K-invariant. The momentum function for this action is

J : T (Q/G) −→ R∗ ∼= R

(x, y, ẋ, ẏ) 7−→ (1 + y2)ẋe .

We compute αΓL,M
(eT (Q/G)) = ẋẏy and using (19), we get

d

dt

(

(1 + y2)ẋ
)

= ẋẏy ,

which is just

ẍ+
y

1 + y2
ẋẏ = 0 ,

that is, the same result obtained in (14).

5.2 Reconstruction

We now discuss the problem of reconstructing the dynamics onM from the reduced dynamics

on M̄ in the case where (1) admits a unique solution X. Suppose the flow of the reduced

system X̄ is known. Take c̄(t) an integral curve of X̄ starting from a point x̄ ∈ M̄ , and

fix x ∈ ρ−1(x̄). We want to find the corresponding integral curve c(t) of X starting from x

which projects on c̄(t), i.e. ρ(c(t)) = c̄(t). But we must realize that the curve c(t) is just the

horizontal lift of c̄(t) starting from x with respect to the principal connection Υ. We prove

this simple fact in the following:

Proposition 5.4 The curve c(t) is the horizontal lift of c̄(t) starting from x with respect to

the principal connection Υ.

Proof: Let d(t) denote the horizontal lift of c̄(t) starting from x. Therefore ρ(d(t)) = c̄(t)

and d(0) = x. Since X and X̄ are ρ-related, we have that Tρ(X(d(t))) = X̄ρ(d(t)) =

X̄c̄(t) = ˙c̄(t) = Tρ(ḋ(t)). Therefore ḋ(t) − X(d(t)) is vertical. But it is also horizontal,

because X ∈ U . Then we deduce that ḋ(t) = X(d(t)). QED

Thus, in the vertical case, the reconstruction problem is just an horizontal lift operation. We

recall now briefly the concepts of geometric, dynamic and total phases for the reconstruction

process [29]. The geometric phase is just the holonomy of the path c̄(t) with respect to the

connection Υ, that is, the Lie group element g so that d(1) = g · d(0). In general, we will

have that c(t), the integral curve projecting on c̄(t), is not exactly d(t), the horizontal lift

of c̄(t), but a shift of this curve, c(t) = g(t) · d(t). We call the Lie group element g(1) the

dynamic phase. And the total phase will stand for h = g(1) · g.

Corollary 5.5 In the vertical case, the geometric phase coincides with the total phase.
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5.2.1 Čaplygin systems

Concerning the reconstruction process for Čaplygin systems, the above description remains

valid, of course, but we can say a little more about the holonomy of the two connections, γ

and Υ. The following diagram will be helpful in the sequel:

TM = U ⊕ Vρ −→ TM̄ ∼= Ū

↓ ↓
TQ = M ⊕ Vπ −→ T (Q/G) ∼= M̄

↓ ↓
Q −→ Q/G

Let c̄(t) be the integral curve of X̄ starting from x̄. Fix x ∈ ρ−1(x̄) and consider its horizontal

lift, c(t), with respect to Υ starting from x. We have proved that c(t) is precisely the integral

curve of X starting from x which projects on c̄(t). Let q̄(t) be the projection of c̄(t) to Q/G,

q̄(t) = πQ/G(c̄(t)). We will denote by qM(t) its horizontal lift with respect to γ. Finally, we

write q(t) = πQ(c(t)). Then we have π(q(t)) = π ◦ πQ(c(t)) = πQ/G ◦ ρ(c(t)) = πQ/G(c̄(t)) =

q̄(t). Since c(t) is an integral curve of a SODE, we have c(t) = q̇(t) ∈M . So we have proved

that q(t) is just the horizontal lift of q̄(t), i.e. q(t) = qM(t).

Now, we study the holonomy of c̄(t). Let us suppose that c̄(t) is a closed loop. We have

c̄(0) = c̄(1) = x̄ and c(0) = x. Consequently, c(1) = gx and g is the geometric phase, which

is, in the vertical case, the total phase. As c(t) = q̇M(t), we have that q̇M(1) = gq̇M(0) which

in particular implies that qM(1) = gqM(0). Then we have proved the following result.

Proposition 5.6 The geometric phase (respect to Υ) of a closed integral curve of X̄ is the

same as the geometric phase (respect to γ) of its proyection to Q/G.

5.2.2 Plate with a knife edge on an inclined plane

The configuration space of the plate with a knife edge on an inclined plane is Q = R2 × S1

with coordinates (x, y, θ) (see e.g. [33] for more details). This system is determined by the

following data:

• the regular lagrangian function L:

L : TQ −→ R

(x, y, θ, ẋ, ẏ, θ̇) 7−→ 1

2
(ẋ2 + ẏ2) +

1

2
k2θ̇2 + gx sinα ,

where the mass of the plate is assumed equal to unity;

• the nonholonomic constraint function:

φ = ẏ − ẋ tan θ .
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Consider the Lie group G = R and its trivial action by translation on Q:

Φ : R ×Q −→ Q

(r, (x, y, θ)) 7−→ (x, y + r, θ) ,

with associated fibration:
ρ : Q −→ R × S1

(x, y, θ) 7−→ (x, θ) .

Note that ρ : Q −→ R × S1 is a principal bundle, with structure group G, and M , the

constraint submanifold, is the horizontal distribution of a principal connection, γ. The

connection 1-form is γ = dy − tan θ dx. Therefore, this is a Čaplygin system.

The corresponding reduced system (17) is described by:

• the reduced lagrangian L∗:

L∗ : T (R × S1) −→ R

(x, θ, ẋ, θ̇) 7−→ 1

2

(

sec2 θẋ2 + k2θ̇2
)

+ gx sinα ,

• the gyroscopic 1-form:

αΓL,M
= tan θ sec2 θ

[

(ẋ)2 dθ − ẋθ̇ dx
]

.

After some calculations, one finds the following equations of motion:

ẍ = −ẋθ̇ tan θ + g sinα cos2 θ ,

θ̈ = 0 .

We obtain that θ = ωt+ θ0, where ω and θ0 are constants. Consequently, a solution for the

initial conditions θ0 = x0 = ẋ0 = 0 and θ̇0 = ω is:

x =
g

2ω2
sinα sin2 ωt ,

θ = ωt .

This curve q̄(t) = (x(t), θ(t)) is closed since

q̄(0) = q̄(2π/ω) .

The horizontal lift q(t) = qM(t) of the curve q̄(t) with initial conditions θ0 = x0 = ẋ0 = y0 =

ẏ0 = 0 and θ̇0 = ω is

x =
g

2ω2
sinα sin2 ωt ,

y =
g

2ω2
sinα

[

ωt− 1

2
sinωt

]

,

θ = ωt .

Observe that q(0) = (0, 0, 0) and q(2π/ω) = (0,
gπ

ω2
sinα, 0). Therefore, the geometric phase

of the curve q̄(t) is
gπ

ω2
sinα.
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6 The case of horizontal symmetries

The assumption now is that Vx ∩ Fx = Vx, for all x ∈ M or, equivalently, V|M ⊂ F . In

particular, every infinitesimal generator of the given group action then yields a horizontal

symmetry. Thus, in this case, all the symmetries are compatible with the bundle F . This

lead us to suspect that we can perform a holonomic-type reduction. Note also that an

unconstrained hamiltonian system with symmetry can be regarded as a special subcase of

this case, since we then have M = P , F = TP and, obviously, V ⊂ TP .

6.1 Reduction

For the further analysis of this case we assume, in addition, that the given symplectic action

Φ on P is a hamiltonian action, in the sense that it admits an Ad∗-equivariant momentum

mapping J : P −→ g∗, such that for all ξ ∈ g, iξP
ω = d < J, ξ >. It follows from the

definition of the momentum mapping that ξP = XJξ
, where Jξ(x) = J(x)(ξ) for all x ∈ P .

Taking into account that, by assumption, V|M ⊂ F , we find that for any solution X of (1),

along the constraint submanifold M we have

X(Jξ) = 0 ,

i.e. the components of the momentum mapping are conserved quantities for the constrained

dynamics. This is a version of Noether’s theorem for constrained systems. (For the case of

mechanical systems with nonholonomic constraints, see in this respect [4, 9, 35]).

Let µ ∈ g∗ be a regular value of J . Since the action, Φ, of G on P is free and proper, we have

that the isotropy group Gµ acts freely and properly on the level set J−1(µ). It is known (see

[1, 25, 31, 32]) that under these conditions (Pµ = J−1(µ)/Gµ, ωµ) is a symplectic manifold,

where ωµ is the 2-form defined by

π∗
µωµ = j∗µω ,

with πµ : J−1(µ) −→ Pµ the canonical projection and jµ : J−1(µ) ↪→ P the natural inclusion.

Imposing a condition of clean intersection of M and J−1(µ), we have that M ′ = M ∩J−1(µ)

is a submanifold of J−1(µ) which is Gµ-invariant. Passing to the quotient we then obtain a

submanifold Mµ = M ′/Gµ of Pµ (that, with the adequate embedding, can be identified with

M̄ ∩ Pµ). Next, we can define a distribution F ′ on P along M ′ by putting

F ′
x′ = Tx′(J−1(µ)) ∩ Fx′ , ∀x′ ∈M ′ ,

and we now make the further simplifying assumption that F ′ has constant rank. It is obvious

that F ′ is a Gµ-invariant subbundle of TP|M ′ and, hence, it projects onto a subbundle Fµ

of TPµ along Mµ. Finally, since the restriction of the hamiltonian H to J−1(µ) is also

Gµ-invariant, it induces a function Hµ on Pµ.
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Theorem 6.1 [8] Suppose that X is a G-invariant solution of (1). Then, X induces a

vector field Xµ on Mµ, such that

{

(iXµωµ − dHµ)|Mµ ∈ F o
µ ,

Xµ ∈ TMµ .
(20)

In the case of horizontal symmetries we have thus proved that, under the appropriate as-

sumptions, the given constrained problem on (P, ω) reduces to a constrained problem on

(Pµ, ωµ).

6.1.1 lagrangian systems

Let us suppose that we have a nonholonomic lagrangian system which fulfills the compati-

bility condition. Next, we show that k : (Jnh)−1(µ) −→ M̄ is injective and conditions (12),

obtained in Section 4.1.3 to perform a kind of reduction via the mapping k, are satisfied.

Proposition 6.2 Let k : (Jnh)−1(µ) = Mµ −→ M̄ be the composition of kµ : Mµ −→M/Gµ

and p : M/Gµ −→ M̄ . Then we can define on Mµ an unique almost-Poisson structure so

that k is an almost-Poisson mapping.

Proof: It is an easy exercise to prove that k is injective in the case of horizontal symmetries.

From the analysis of Section 4.1.3, we know that it is sufficient to prove conditions (12). Now,

taking ξ1, ..., ξr a base of the Lie algebra g, we have that fi =< µ, ξi > −Jξi
, 1 ≤ i ≤ r.

Given σ ∈ C∞
G (M), we deduce that

{σ, fi}M ◦ j = (ξi)TQ(σ̃) ◦ jM ◦ j = (ξi)M(σ) ◦ j = 0 ,

due to the G-invariance of σ. QED

On the other hand, we have that the symplectic distribution F ∩ TM induces a symplectic

distribution Fµ ∩ TMµ in TPµ = T (TQ)µ, that is

T (TQ)µ|Mµ
= (Fµ ∩ TMµ) ⊕ (Fµ ∩ TMµ)⊥µ ,

with induced projectors for each v̄q ∈Mµ

P̄µ : Tv̄q(TQ)µ −→ ((Fµ)v̄q ∩ Tv̄qMµ) , Q̄µ : Tv̄q(TQ)µ −→ ((Fµ)v̄q ∩ Tv̄qMµ)⊥µ .

The above descomposition induces an almost-Poisson bracket {·, ·}Mµ on Mµ, in the same

manner as we previously did for M in Section 4.1.2. More precisely, given λµ, σµ : Mµ −→ R,

take λ̃µ, σ̃µ arbitrary extensions to (TQ)µ, λ̃µ ◦ jMµ = λµ, σ̃µ ◦ jMµ = σµ, with jMµ : Mµ ↪→
(TQ)µ, and define

{λµ, σµ}Mµ = (ωL)µ(P̄µ(Xµ

λ̃µ
), P̄µ(Xµ

σ̃µ
)) ◦ jMµ .

Indeed, we have that {·, ·}Mµ = {·, ·}µ, as we prove in the following
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Theorem 6.3 Consider (Mµ, {·, ·}Mµ) and (M̄, {·, ·}M̄ ). Then k : Mµ −→ M̄ is an almost-

Poisson mapping.

Proof: First of all, consider the following conmutative diagrams:

(Jnh)−1(µ) = M ′ j−→ M

i ↓ ↓ jM

J−1(µ)
jµ−→ TQ

M ′ i−→ J−1(µ)

πM ′ ↓ ↓ πµ

Mµ

jMµ−→ (TQ)µ

Now, the proof is a careful exercise of equalities. Indeed, given λµ, σµ : Mµ −→ R, we have

{λµ, σµ}µ ◦ πM ′ = {λ̄, σ̄}M̄ ◦ k ◦ πM ′ = {λ, σ}M ◦ j = ωL(P̄(Xλ̃), P̄(Xσ̃)) ◦ jM ◦ j
= (jM ◦ j)∗ωL(P̄(Xλ̃), P̄(Xσ̃)) = (πµ ◦ i)∗(ωL)µ(P̄(Xλ̃), P̄(Xσ̃))

= (ωL)µ(P̄µ(Xµ

λ̃µ
), P̄µ(Xµ

σ̃µ
)) ◦ jMµ ◦ πM ′ = {λµ, σµ}Mµ ◦ πM ′

QED

Remark 6.4 It should be noticed that from the general discussion in Section 4.1, it is con-

cluded that for nonholonomic lagrangian systems which fit in the horizontal case, Theorem

6.3 is the utmost one can say. That is, meanwhile conditions (12) are always fulfilled, condi-

tions (9) are no longer satisfied in general. This means, in particular, that the almost-Poisson

bracket {·, ·}Mµ is not the reduced bracket of {·, ·}M , as it was stated in [7] (Theorem 8.2).

However, following (13), we know that for all λµ ∈ C∞(Mµ), its evolution along the integral

curves of the dynamics is given by

λ̇µ = (ΓL,M)µ(λµ) = {λµ, (EL)µ}Mµ .

6.2 Reconstruction

As far as the reconstruction of the dynamics is concerned, we observe that, unlike in the

purely kinematic case, we first have to select an arbitrary connection on the principal Gµ-

bundle M ′ −→ Mµ. This connection will enable us subsequently to lift the integral curves

of the reduced system from Mµ to M ′.

More precisely, let Υ be such a principal connection. We start with cµ(t) an integral curve

of Xµ with initial condition cµ(0) = mµ,mµ ∈ Mµ. Choose m ∈ (πµ)−1(mµ) and we want

to find the unique integral curve c(t) of X which satisfies c(0) = m. As X and Xµ are πµ-

related, c(t) projects on cµ(t). We will proceed in a similar way as in Marsden, Montgomery

and Ratiu [29] for the holonomic reconstruction.

Consider d(t) the horizontal lift of cµ(t) with d(0) = m, that is, πµ(d(t)) = cµ(t) and

Υ(ḋ(t)) = 0. Put c(t) = g(t)d(t), for some curve g(t) in Gµ, with g(0) = e. As c(t) is an

integral curve of X, we have that X(c(t)) = ċ(t), i.e.,

X(g(t)d(t)) = ˙(g(t)d(t)) = g(t)ḋ(t) + g(t)((g−1(t)ġ(t))Md(t)) .
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As X(g(t)d(t)) = g(t)X(d(t)), we conclude

X(d(t)) = ḋ(t) + (g−1(t)ġ(t))Md(t) . (21)

So we can factorize the reconstruction process in two steps:

(i) To find a curve ξ(t) in gµ so that

ξ(t)M(d(t)) = X(d(t)) − ḋ(t) ,

(ii) To find a curve g(t) in Gµ so that

ġ(t) = g(t)ξ(t) , g(0) = e .

Making use of the connection Υ, we can replace (i) by

(i’) ξ(t) = Υ(ξ(t)M(d(t))) = Υ(X(d(t)) − ḋ(t)) = Υ(X(d(t))) .

Cotangent bundles. We now discuss the case in which P = T ∗Q, and G acts freely on

Q, φ : G×Q −→ Q, and therefore on P by cotangent lift, Φ : G× P −→ P . We will show

below that if the bundle ςµ : Q −→ Q/Gµ has a connection, for a certain µ to be specified,

this induces a connection on ρ : M ′ −→Mµ.

The momentum mapping J : T ∗Q −→ g∗ for the hamiltonian action Φ is defined by <

J(αq), ξ >=< αq, ξQ(q) >=< θ(αq), ξT ∗Q(αq) >, where αq ∈ T ∗
q Q, ξ ∈ g. Let µ ∈ g∗ a

regular value of J and suppose again that its isotropy groupGµ acts freely and properly on the

level set J−1(µ). As before, we consider the symplectic manifold (T ∗Q)µ = (J−1(µ)/Gµ, ωµ).

Denote by µ′ = µ|gµ
∈ g∗

µ, the restriction of µ to gµ. Assume ςµ : Q −→ Q/Gµ is a principal

G-bundle and let γ ∈ Λ1(Q, gµ) be a connection form on it. We recall now the cotangent

bundle reduction theorem of Satzer, Marsden and Kummer (see [1, 18]).

Theorem 6.5 Let Ω be the curvature of γ and let B the pull-back by τ : T ∗(Q/Gµ) −→
Q/Gµ of the closed two form on Q/Gµ induced by the µ′-component of Ω, µ′ · Ω ∈ Λ2(Q).

Endow T ∗(Q/Gµ) with the symplectic form ω−B, where ω is the canonical two form of the

cotangent bundle. Then (T ∗Q)µ is symplectically embedded in (T ∗(Q/Gµ), ω − B) and its

image is a vector subbundle with base Q/Gµ. This embedding is onto if and only if g = gµ.

The following conmutative diagram will help us to handle the theorem.

M ′ −→ J−1(µ) −→ J−1
µ (µ′)

tµ−→ J−1
µ (0) −→ T ∗Q

τQ−→ Q

↓ ↓ ↓ ↓
Mµ −→ (T ∗Q)µ

ϕµ−→ T ∗(Q/Gµ)
τQ/Gµ−→ Q/Gµ

32



where Jµ : T ∗Q −→ g∗
µ, tµ : J−1

µ (µ′) −→ J−1
µ (0) and ϕµ : (T ∗Q)µ −→ T ∗(Q/Gµ) are

respectively defined by Jµ(αq) = J(αq)|gµ
, tµ(αq) = αq−µ′ ·γq(·) and ϕµ(ᾱq) = αq − µ′ · γq(·)

for all αq ∈ T ∗Q.

The connection γ ∈ Λ1(Q, gµ) induces a connection Υ ∈ Λ1(M ′, gµ) by pullback, Υ =

(τQ · tµ)∗γ so that Υαq(Uαq) = γq(TτQ · Uαq) for all Uαq ∈ TαqM
′. Thus now, we can rewrite

(i’) above as

(i’) ξ(t) = Υ(X(d(t))) = γ(TτQ ·X(d(t))) = γ(FH(d(t))) ,

where FH : T ∗Q −→ TQ is the fiber derivative of the hamiltonian H : T ∗Q −→ R.

6.2.1 lagrangian systems

In case we have a lagrangian of mechanical type, L = T − V , where T is the kinetic energy

of a Riemannian metric g on Q and V is a potential energy, we know (see [20]) that the

nonholonomic lagrangian system fulfills the compatibility condition. Making use of the

metric g, we can define a natural connection, to be called the mechanical connection, on

the principal fiber bundle ςµ : Q −→ Q/Gµ. This is as follows: we take Vςµ = kerTςµ and

consider H = V⊥
ςµ , the orthogonal complement of Vςµ with respect to the metric g. We define

γmech as the connection on Q −→ Q/Gµ whose horizontal subspace is H.

We know that FH(αq) = α]
q, where H is defined from EL through the Legendre transforma-

tion and ] denotes the natural pairing of vectors and co-vectors of Q induced by the metric

g. Again, we can rewrite (i’) in the following form:

(i’) ξ(t) = γmech(q(t))(FH(d(t))) = γmech(q(t))(d(t)
]) ,

with q(t) = τ(d(t)).

If we define for each q ∈ Q the µ-locked inertia tensor (see [28]), Iµ(q) : gµ −→ g∗
µ, by

〈Iµ(q)ζ, η〉 = 〈ζQ(q), ηQ(q)〉, we can verify γmech(vq) = I−1
µ (q)J(v[

q), with vb
q the co-vector

associated to vq through the metric. We then rewrite (i’) as,

(i’) ξ(t) = γmech(q(t))(d(t)
]) = I−1

µ (q(t))(µ) .

Compare this result with those in [4].

7 A special subcase of the general case

Now we are going to consider the case in which the bundle gF is trivial, that is, gx = g0 , ∀x ∈
M . Following [7], we can prove:
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Proposition 7.1 g0 is an ideal of g which is invariant with respect to the adjoint represen-

tation.

Next we consider G0, the normal connected subgroup of G with Lie algebra g0 and Φ0 :

G0 × P −→ P , the restricted action to G0. For this action, it is clear that V0|M ⊂ F ∩ TM ,

so we are in the case of horizontal symmetries. Now we are going to proceed in the way

described above.

As before, we can assume that Φ0 on P is a hamiltonian action, this is, it admits an Ad∗-

equivariant momentum mapping J : P −→ g∗
0, such that for all ξ ∈ g0, iξP

ω = dJξ. Let

µ ∈ g∗
0 be a regular value of J and suppose that G0

µ, its isotropy group in G0, acts freely

and properly on the level set J−1(µ). Under these conditions, (Pµ = J−1(µ)/G0
µ, ωµ) is a

symplectic manifold. We also suppose that M and J−1(µ) have a clean intersection, M ′ =

M ∩J−1(µ), which is a G0
µ-invariant submanifold of J−1(µ). We then consider Mµ = M ′/G0

µ.

We can define a distribution F ′ on P along M ′ by putting F ′
x′ = Tx′(J−1(µ))∩Fx′ ,∀x′ ∈M ′

and in addition assume that F ′ has constant rank. Again, F ′ is G0
µ-invariant and it projects

onto a subbundle Fµ of TPµ along Mµ. Finally, with the function Hµ induced by the

restriction of the hamiltonian H to J−1(µ), we have all the ingredients to apply Theorem

6.1 and obtain the following reduced constrained problem on (Pµ, ωµ):

{

(iXµωµ − dHµ)|Mµ ∈ F o
µ ,

Xµ ∈ TMµ .
(22)

So far, we have reduced the constrained problem by the horizontal symmetries and have

obtained again a constrained problem. We will investigate now what happens with the

symmetries we have not used yet. In the following, we are going to take them into account.

For this purpose, we consider the action Ψ : Gµ · G0/G0 × Pµ −→ Pµ defined by Ψ(ḡ, p̄) =

Φ(g, p). Note that this action is well defined because we are not treating with all the

remaining symmetries G/G0, but only with the adequate ones to Pµ. Indeed, we prove the

following:

Lemma 7.2 The mapping Ψ is well defined.

Proof: We must verify that given ḡ, h̄ ∈ Gµ ·G0/G0 and p̄, q̄ ∈ Pµ so that ḡ = h̄ and p̄ = q̄,

we have Ψ(ḡ, p̄) = Ψ(h̄, q̄). Since Gµ ·G0/G0
∼= Gµ/Gµ∩G0 = Gµ/G

0
µ, we can consider ḡ, h̄ as

elements of this latter group, so we have that h−1g ∈ Gµ∩G0. We also have that there exists

i ∈ G0
µ such that p = iq. Then gp = giq = gih−1hq. Moreover, gih−1 = (ih−1g)g−1 ∈ G0,

because i and h−1g are in G0, and this group is normal in G. Clearly gih−1 ∈ Gµ, so finally

we have that gih−1 ∈ G0
µ. We have obtained gp = hq, i.e., Ψ(ḡ, p̄) = Ψ(h̄, q̄). QED

In a similar way, we can check easily that Ψ is a symplectic action on Pµ and that Mµ, Fµ

and Hµ are all Gµ/G
0
µ-invariant. We denote ρµ : Pµ −→ P̄µ the canonical projection for Ψ

and Vµ = kerTρµ.
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Our aim is to prove that, under the assumption TMµ = (Fµ∩TMµ)+Vµ|Mµ
, the constrained

hamiltonian problem with symmetries on (Pµ, ωµ) fits in the purely kinematic case. For this

purpose, we identify now the fundamental vector fields for the action Ψ.

Lemma 7.3 Let ζ + gµ ∩ g0 be an element of gµ/gµ ∩ g0, the Lie algebra of Gµ/G
0
µ. Then

(ζ + gµ ∩ g0)Pµ(p̄) = TπµζJ−1(µ)(p) , ∀p ∈ J−1(µ) ,

where πµ : J−1(µ) −→ Pµ is the projection mapping associated to the action of G0
µ on J−1(µ)

and ζJ−1(µ) is the fundamental vector field corresponding to the action of Gµ on J−1(µ).

Proof: We have

(ζ + gµ ∩ g0)Pµ(p̄) =

(

d

dt

)

|t=0

Ψ(exp(tζ + gµ ∩ g0), p̄) =

(

d

dt

)

|t=0

Ψ(expµtζ, p̄)

=

(

d

dt

)

|t=0

(expµtζ · p) = TπµζJ−1(µ)(p).

QED

Now, we are at disposal of proving the former statement:

Proposition 7.4 If TMµ = (Fµ∩TMµ)+Vµ|Mµ
, the reduced constrained hamiltonian system

(22), considered with the action Ψ on Pµ, fits in the purely kinematic case.

Proof: We must prove that (Vµ)x̄∩(Fµ)x̄ = {0} , ∀x̄ ∈Mµ. Suppose that (ζ+gµ∩g0)Pµ(x̄) ∈
(Fµ)x̄ for some x̄ ∈ Mµ. Recall that Fµx̄ = TπµF

′
x. Then, we have that there exists Y ∈ F ′

x

such that Tπµ(Y ) = (ζ + gµ ∩ g0)Pµ(x̄) = Tπµ(ζJ−1(µ)(x)) which, in turn, implies there exists

ξ ∈ g0
µ = gµ∩g0 such that ζJ−1(µ)(x) = Y +ξJ−1(µ)(x). Therefore, (ζ−ξ)J−1(µ)(x) = Y , which

gives ζ − ξ ∈ gx = g0. Obviously, ζ − ξ ∈ gµ. Then, ζ + gµ ∩ g0 = ξ + gµ ∩ g0 = 0 + gµ ∩ g0.

QED

Next, we proceed as in Section 5.1. We obtain a principal connection Υ on the principal

(Gµ/G
0
µ)-bundle ρµ|Mµ

: Mµ −→ M̄µ, with horizontal subspace Ux̄ = (Fµ)x̄ ∩ Tx̄Mµ at each

point x̄ ∈Mµ.

If we assume again that (P, ω) is an exact symplectic manifold, with ω = dθ, we can define

in a natural manner θµ so that ωµ = dθµ. Obviously, θµ is Gµ/G
0
µ-invariant. Let θ′µ = j∗Mµ

θµ,

where jMµ : Mµ ↪→ Pµ is the canonical inclusion. Then Proposition 5.1 applies to the reduced

constrained hamiltonian problem (22) to give:

iX̄µ
ω̄ = dH̄µ − αXµ , (23)

where αXµ is the projection of αXµ , with αXµ = iXµ(h∗dθ′µ − dh∗θ′µ), and ω̄ = d(θ̄′µ)h, with

(θ̄′µ)h the projection of h∗θµ.
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Remark 7.5 In general, the condition “gx does not depend on x ∈ M” seems to be quite

restrictive. In [35], Śniatycki defined g′ ⊂ g by

g′ = {ξ′ ∈ g | there exists a constant section ξ̄ of gF with ξ̄(x) = ξ′ , ∀x ∈M} .

In other words, g′ consists of those elements of g such that its corresponding infinitesimal

generator of the induced action on M is a horizontal symmetry. If gx does not depend on

x ∈M , it is clear that g0 = g′.

Śniatycki claims that g′ is an ideal of g and then he considers the normal connected subgroup

G′ of G with Lie algebra g′. The reduction process is parallel to the one done here until we

reach Proposition 7.4, which will not be true in general.

As we have seen for the reduction, the reconstruction of the dynamics would be a two-

step process. First, to implement a purely kinematic-type reconstruction and secondly, an

horizontal-type one.

7.1 The nonholonomic free particle modified

We are going to treat next the example of the nonholonomic free particle, but with a different

constraint. As before, we have a particle moving in space, subject to the non-holonomic

constraint

φ = ż − xẋ .

The lagrangian function is

L =
1

2

(

ẋ2 + ẏ2 + ż2
)

,

and the constraint submanifold is defined through the distribution

M =<
∂

∂x
+ x

∂

∂z
,
∂

∂y
> .

Consider the Lie group G = R2 and its action on Q:

ϕ : G×Q −→ Q

((r, s), (x, y, z)) 7−→ (x, y + r, z + s) .

If we consider the lifted action Φ of ϕ to TQ, given by Φg = Tϕg, then the infinitesimal

generators of this action are

{ ∂
∂y
,
∂

∂z
} .

It is a simple verification to see that L and M are G-invariant. Choose local coordinates

(x, y, z, ẋ, ẏ) on M . We find that the distribution F|M is generated by the vectors fields:

{ ∂
∂x

+ x
∂

∂z
,
∂

∂y
,
∂

∂ẋ
,
∂

∂ẏ
,
∂

∂ż
} .
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We realize that for each m = (x, y, z, ẋ, ẏ) ∈M , we have

Vm ∩ Fm =

〈

∂

∂y

〉

.

Note that the fiber (R2)m does not depend on the base pointm ∈M . Then, the bundle (R2)F

is trivial and we are just in the special subcase of the general case treated in this section.

With the notations we have been using, g0 = R × {0} and G0 = R × {0}. Let {e1, e2} be

the standard basis of R2 and {e1, e2} its dual basis. Now, consider Φ0, the restricted action

of Φ to G0. Φ0 is hamiltonian, with momentum mapping:

J : TR3 −→ R∗

(x, y, z, ẋ, ẏ, ż) 7−→ ẏe1

Let µ = ae1 ∈ R∗. We have that G0
µ = R and J−1(µ) = {(x, y, x, ẋ, ż)}. Therefore,

(TR3)µ = {(x, z, ẋ, ż)} , (ωL)µ = dx ∧ dẋ+ dz ∧ dż .

We note that M and J−1(µ) have a clean intersection M ′ = {(x, y, z, ẋ)} so that

Mµ = {(x, z, ẋ)} .

After some computations, we find that

Fµ =

〈

∂

∂x
+ x

∂

∂z
,
∂

∂ẋ
,
∂

∂ż

〉

,

Fµ ∩ TMµ =

〈

∂

∂ẋ
+ x

∂

∂ż
,
∂

∂x
+ x

∂

∂z
+ ẋ

∂

∂ż

〉

.

Finally, we obtain (EL)µ = 1
2
(ẋ2 + ż2 +a2). With all these ingredients, we pose the following

constrained problem (22) on ((TR3, (ωL)µ)):

{

(i(ΓL,M )µ(ωL)µ − d(EL)µ)|Mµ ∈ F o
µ ,

(ΓL,M)µ ∈ TMµ .
(24)

Now, we are going to investigate what happens with the symmetries we have not used yet.

We have that Gµ = R2 and consequently (Gµ +G0)/G0
∼= R. Consider then the action

Ψ : (Gµ +G0)/G0 × (TR3)µ −→ (TR3)µ

(s, (x, z, ẋ, ż)) 7−→ (x, z + s, ẋ, ż) .

The canonical projection ρµ is given by

ρµ : (TR3)µ −→ (TR3)µ

(x, z, ẋ, ż) 7−→ (x, ẋ, ż) ,
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and its restriction to Mµ is

ρµ|Mµ
: Mµ −→ M̄µ

(x, z, ẋ) 7−→ (x, ẋ) .

The vertical bundle of the action Ψ is

Vµ =

〈

∂

∂z

〉

.

For each mµ ∈Mµ we have that

(Vµ)mµ ∩ (Fµ)mµ = {0} .

Moreover, TMµ = Fµ|Mµ
∩ TMµ + Vµ|Mµ

. Therefore, the constrained system (24) on

((TR3)µ, (ωL)µ) fits in the purely kinematic case, that is, we obtain a principal connec-

tion Υ on the principal R-bundle ρµ|Mµ
: Mµ −→ M̄µ, with horizontal subspace Umµ =

(Fµ)mµ ∩ TmµMµ at each point mµ ∈Mµ. The connection one-form is

Υ = (dz)e ,

where {e} is the canonical basis of the Lie algebra (gµ +g0)/g0
∼= R. We have that (TR3, ωL)

is an exact symplectic manifold, so we can define

θµ = −ẋdx− żdz ,

and (ωL)µ = dθµ. We check that θ′µ = j∗Mµ
θµ = −ẋ(dx + xdz). Next, we calculate the

one-form α(ΓL,M )µ on Mµ defined by the prescription α(ΓL,M )µ = i(ΓL,M )µ(h∗dθ′µ − dh∗θ′µ).

First, we have that

h∗dθ′µ = dh∗θ′µ = (1 + x2)dẋ ∧ dx ,
and consequently α(ΓL,M )µ = 0. Projecting onto M̄µ, we obtain that

ω̄ = (1 + x2)dx ∧ dẋ ,

(EL)µ =
1

2
(ẋ2(1 + x2) + a2) .

Now, following (23), we can write from the constrained problem (24), the reduced uncon-

strained system

i(ΓL,M )
µ
ω̄ = d(EL)µ . (25)

¿From a straightforward computation we have that the solution (ΓL,M)µ of equation (25) is

the vector field

(ΓL,M)µ = ẋ
∂

∂x
− xẋ2

1 + x2

∂

∂ẋ
.

38



Acknowledgements

This work was partially supported by grant DGICYT (Spain) PB97-1257. J. Cortés wishes

to thank Spanish Ministerio de Educación y Cultura for a FPU grant. We would like to

thank F. Cantrijn, D. Mart́ın de Diego, S. Mart́ınez and J.C. Marrero for helpful comments

and suggestions.

References

[1] R. Abraham, J. E. Marsden: Foundations of Mechanics. 2nd ed., Benjamin-Cummings,

Reading (Ma), 1978.

[2] L. Bates, H. Graumann, C. MacDonnell: Examples of gauge conservation laws in non-

holonomic systems. Rep. Math. Phys. 37 (3) (1996), 295-308.

[3] L. Bates, J. Śniatycki: Nonholonomic reduction. Rep. Math. Phys. 32 (1) (1992), 99-

115.

[4] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden, R.M. Murray: Nonholonomic Mechan-

ical Systems with Symmetry. Arch. Rational Mech. Anal. 136 (1996), 21-99.

[5] F. Cantrijn, M. de León, D. Mart́ın de Diego: The momentum equation for non-

holonomic systems with symmetry. In: Proceedings of the National Conference on

Theoretical and Applied Mechanics (Leuven, 22-23 May 1997), pp. 31-34.

[6] F. Cantrijn, M. de León, D. Mart́ın de Diego: On almost-Poisson structures in nonholo-

nomic mechanics. Nonlinearity. (1999).

[7] F. Cantrijn, M. de León, J. C. Marrero, D. Mart́ın de Diego: Reduction of nonholo-

nomic mechanical systems with symmetries. In: Proceedings of the Workshop on Non-

Holonomic Constraints in Dynamics (Calgary, 26-30 August 1997), Rep. on Math. Phys.

42 (1/2) (1998), 25-45.

[8] F. Cantrijn, M. de León, J.C. Marrero, D. Mart́ın de Diego: Reduction of Constrained

Systems with Symmetries. J. Math. Phys. 40 (1999), 795-820.
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