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1. Introduction

Discrete mechanics has become a field of intensive research activity in the last years.

The increasing interest in the subject is mainly due to its dual character. On the one

hand, discrete mechanics allows for the construction of integration schemes, the so-called

mechanical integrators, that turn out to be numerically competitive in many situations.

On the other hand, many of the geometric properties of mechanical systems in the

continuous case admit an appropriate counterpart in the discrete setting, which makes

it a rich area to be explored. Both aspects of discrete mechanics mutually interact, since

the geometric properties of the discrete model play a key role in the explanation of the

good behaviour of the integrators derived from it in a number of situations.

Mechanical integrators preserve some of the invariants of the mechanical system,

such as energy, momentum or the symplectic form. It is well known that if the energy

and the momentum map include all integrals belonging to a certain class (see [11]), then

one cannot create constant time step integrators that are simultaneously symplectic,

energy preserving and momentum preserving, unless they integrate the equations exactly

up to a time reparametrization. (Recently, it has been shown that the construction

of energy-symplectic-momentum integrators is indeed possible if one allows varying

time steps [15]). This justifies the focus on mechanical integrators that are either

symplectic-momentum or energy-momentum preserving (although other types may also

be considered, such as methods preserving reversing symmetries).

Based on certain applications, such as molecular dynamics simulation, the necessity

of treating holonomic constraints in discrete mechanics has also been discussed

in the literature. For example, the popular Verlet algorithm for unconstrained

mechanical systems was adapted to handle holonomic constraints, resulting in the

Shake algorithm [30] and the Rattle algorithm [1] (see [21] for a discussion of the

symplectic character of these methods). The case of general Hamiltonian systems

(i.e. not necessarily mechanical) subject to holonomic constraints has also been

studied [14, 31, 32]. A different approach, based on the Dirac theory of constraints to find

unconstrained formulations in which the constraints appear as invariants, may be found

in [20]. Energy-momentum integrators derived from discrete directional derivatives and

discrete versions of Hamiltonian mechanics have also been recently adapted to deal with

holonomic constraints [12, 13].

Variational integrators are symplectic-momentum mechanical integrators derived

from a discretization of Hamilton’s principle [2, 28, 34, 35]. This discrete variational

principle leads to the obtention of the discrete Euler-Lagrange (DEL) equations.

Different discrete Lagrangians result in different variational integrators, including the

Verlet algorithm and the whole family of Newmark algoritms [16] used in structural

mechanics. Variational integrators handle constraints in a simple and efficient manner by

using Lagrange multipliers [36]. It is worth mentioning that, when treated variationally,

holonomic constraints do not affect the symplectic or conservative nature of the

algorithms, while other techniques can run into trouble in this regard [20].
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In this paper, we address the problem of constructing integrators for mechanical

systems with nonholonomic constraints. This problem has been stated in a number

of recent papers [8, 36], including the presentation of open problems in symplectic

integration given in [27]. In nonholonomic Lagrangian mechanics, the symplectic form

constructed from the Lagrangian is no longer preserved as in the unconstrained case.

Moreover, in the case of a nonholonomic system with symmetry, the momentum map is

not conserved in general, due to the presence of the constraint force. However, one can

consider a nonholonomic momentum map along the symmetry directions compatible

with the constraints, and verify that its evolution along the integral curves of the

constrained system is given by the nonholonomic momentum equation [4, 7, 29]. On the

other hand, at least in the case of linear (or, more generally, homogeneus) constraints,

the energy is still a conservation law for the system. Consequently, two of the three

cornerstones on which the construction of mechanical integrators for unconstrained

systems relies (i.e. preservation of symplectic structure and momentum) are lacking

in the nonholonomic case.

Our starting point to develop integrators in the presence of nonholonomic

constraints is the introduction of a discrete version of the Lagrange-d’Alembert principle.

This follows the idea that, by respecting the geometric structure of nonholonomic

systems, one can create integrators capturing the essential features of this kind of

systems. Indeed, we show that the nonholonomic integrators derived from this discrete

principle preserve the structure of the evolution of the symplectic form along the

trajectories of the system. We also prove that, for nonholonomic systems with symmetry,

the nonholonomic integrators give rise to a discrete version of the nonholonomic

momentum equation. Moreover, in the presence of horizontal symmetries, the discrete

flow exactly preserves the associated momenta. We also treat the case where no

nonholonomic momentum map exists, due to the absence of symmetry directions

fulfilling the constraints. This situation, known in the literature as the vertical or

purely kinematic case [4, 7, 10, 18], allows one to reduce the continuous flow to that of

an unconstrained system with a nonconservative force. We show that the nonholonomic

integrator also passes to the discrete reduced space, yielding a generalized variational

integrator in the sense of [16]. In case the nonconservative force vanishes, we prove that

the reduced nonholonomic integator is indeed a variational integrator.

The paper is organised as follows. In Section 2, we give a brief review of variational

integrators. This serves as a motivation to introduce the discrete Lagrange-d’Alembert

principle in Section 3, from which we derive the discrete Lagrange-d’Alembert (DLA)

equations. In case the constraints are holonomic, we show that the DLA algorithm is

just a variational integrator. Section 4 deals with the construction of integrators, by

way of appropriate discretizations of the Lagrangian and the constraints. Generalizing

a theorem presented in [36], we prove that if the configuration manifold Q can be

embedded into a linear space V , then the DLA algorithm on Q is equivalent to the DLA

algorithm on V subject to the nonholonomic constraints plus the holonomic ones defining

Q as a subspace of V . As expected, the equations resulting from the nonholonomic
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integrator inherit some of the geometric characteristics of the continuous system. This

is investigated in Section 5, where we study the invariance properties related to the

nonholonomic momentum equation and to the kinematic case, providing complementary

insights into the geometric structure of discrete nonholonomic mechanics. Finally, in

Section 6, we present some numerical tests in the examples of a nonholonomic particle

with a quadratic potential and a mobile robot with fixed orientation, illustrating the

good performance of the method when compared to the standard 4th order Runge-Kutta.

2. Variational Integrators

Mechanical integrators based on the Veselov discretization technique [28, 34, 35] have

been studied intensively in the last years and are by now well known [5, 15, 16, 26, 36].

We briefly review here the main ideas of this approach.

Let Q be a n-dimensional configuration manifold and Ld : Q × Q −→ R a

smooth map playing the role of a discrete Lagrangian. The action sum is the map

S : QN+1 −→ R defined by

S =
N−1
∑

k=0

Ld(qk, qk+1) , (1)

where qk ∈ Q for k ∈ {0, 1, . . . , N} and k is the discrete time. The discrete variational

principle states that the evolution equations extremize the action sum, given fixed end

points q0, qN . This leads to the discrete Euler-Lagrange (DEL) equations:

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0 . (2)

Under appropriate regularity assumptions on the discrete Lagrangian Ld, the DEL

equations define a map Φ : Q × Q −→ Q × Q, Φ(qk−1, qk) = (qk, qk+1) which describes

the discrete time evolution of the system.

Now, define the fiber derivative or discrete Legendre transform corresponding to Ld

by

FLd : Q×Q −→ T ∗Q

(q, q′) 7−→ (q′, D2Ld(q, q
′)) ,

and the 2-form ΩLd
on Q × Q by pulling back the canonical 2-form ΩQ = −dΘQ from

T ∗Q,

ΩLd
= FL∗

d(ΩQ) .

The alternative discrete fiber derivative F̃Ld(q, q
′) = (q,−D1Ld(q, q

′)) may also be

used and the results obtained will be essentially unchanged. A fundamental fact is

that the algorithm Φ exactly preserves the symplectic form ΩLd
, that is, Φ∗ΩLd

= ΩLd

(see [36]). If we further assume that the discrete Lagrangian is invariant under the

action of a Lie group G on Q, one can prove that the associated discrete momentum

map, Jd : Q×Q −→ g
∗ (where g

∗ denotes the dual of the Lie algebra g of G) defined by

〈Jd(q, q
′), ξ〉 = 〈D2Ld(q, q

′), ξQ(q′)〉 ,
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is exactly preserved by the algorithm Φ [36]. Here, ξQ denotes the fundamental vector

field corresponding to the element ξ ∈ g. Moreover, when regarding the discrete

mechanical model as an approximation to a continuous system, one can verify that the

constant value of the discrete momentum map approaches the value of its continuous

counterpart, as the time step decreases.

Consequently, variational integrators are symplectic-momentum integrators.

3. Discrete Lagrange-d’Alembert Principle

In this section, we propose a discrete version of the Lagrange-d’Alembert principle

for nonholonomic systems. Before doing so, we first recall the general picture in the

continuous case.

Consider a distribution D on the configuration space Q, describing some kinematic

constraints imposed on a Lagrangian system. We say that a curve q(t) in Q satisfies

the constraints if q̇(t) ∈ Dq(t) for all t. The dynamics of the nonholonomic system is

determined by a Lagrangian L : TQ −→ R through the application of the Lagrange-

d’Alembert principle, which states that a curve q(t) is an admissible motion of the

system if

δJ = δ

∫ b

a

L(q(t), q̇(t))dt = 0 ,

for all variations such that δq(t) ∈ Dq(t), a ≤ t ≤ b, and if it satisfies the constraints.

It is worth noting that the Lagrange-d’Alembert principle is not variational, since we

impose the constraints on the curve after extremizing the functional J . The inverse

procedure, that is, imposing the constraints before extremizing J , results in a different

set of equations (this time truly variational) termed vakonomic.

Some straightforward manipulations show that the principle holds precisely when

−δL =

(

d

dt

∂L

∂q̇i
−
∂L

∂qi

)

δqi = 0 ,

for all the variations δq ∈ Dq(t). If {ωa = ωa
i dq

i}m
a=1 is a set of m independent 1-forms

defining the annihilator Do of D, we arrive at the equations describing the nonholonomic

dynamics

d

dt

∂L

∂q̇i
−
∂L

∂qi
= λaω

a
i , (3)

ωa
i q̇

i = 0 , (4)

where λa, a ∈ {1, . . . ,m}, is a set of Lagrange multipliers. The right-hand side of

equation (3) represents the force of constraint.

If we introduce coordinates qi = (rα, sa) on Q, where α ∈ {1, . . . , n−m}, in terms

of which ωa takes the form

ωa(q) = dsa + Aa
α(r, s)drα ,
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then the Lagrange multipliers are exactly given by

λa =
d

dt

∂L

∂ṡa
−
∂L

∂sa
,

and the constraint force reads

F =

(

d

dt

∂L

∂ṡa
−
∂L

∂sa

)

ωa .

Now, we turn to the discrete version of nonholonomic mechanics. Consider as before

a discrete Lagrangian Ld : Q×Q −→ R and the associated action sum

S =
N−1
∑

k=0

Ld(qk, qk+1) , (5)

where qk ∈ Q and k ∈ {0, 1, . . . , N} is the discrete time. In the unconstrained discrete

mechanics case (cf. Section 2), we have seen that one extremizes the action sum with

respect to all possible sequences ofN−1 points, given fixed end points q0, qN . This means

that at each point q ∈ Q, the allowed variations are given by the whole tangent space

TqQ. However, in the nonholonomic case, we must restrict the allowed variations. These

are exactly given by the distribution D. In addition, we will consider a discrete constraint

space Dd ⊂ Q×Q with the same dimension as D and such that (q, q) ∈ Dd for all q ∈ Q.

This discrete constraint space imposes constraints on the solution sequence {qk}, namely,

(qk, qk+1) ∈ Dd. Later, when regarding the discrete principle as an approximation of

the continuous one, we shall impose more conditions on the selection of Dd in order to

obtain a consistent discretization of the continuous equations of motion.

Consequently, to develop the discrete nonholonomic mechanics, one needs three

ingredients: a discrete Lagrangian Ld, a constraint distribution D on Q and a discrete

constraint space Dd. Notice that the discrete mechanics can also be seen within this

framework, where D = TQ and Dd = Q×Q.

Then, we define the discrete Lagrange-d’Alembert principle to be the extremization

of (5) among the sequence of points (qk) with given fixed end points q0 and qN , where

the variations must satisfy δqk ∈ Dqk
and (qk, qk+1) ∈ Dd, for all k ∈ {0, . . . , N − 1}.

This leads to the set of equations

(D1Ld(qk, qk+1) +D2Ld(qk−1, qk))i δq
i
k = 0 , 1 ≤ k ≤ N − 1 ,

where δqk ∈ Dqk
, along with (qk, qk+1) ∈ Dd. If ωa

d : Q × Q → R, a ∈ {1, . . . ,m}, are

functions whose annihilation defines Dd, what we have got is the following discrete

Lagrange-d’Alembert (DLA) algorithm
{

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = λaω
a(qk)

ωa
d(qk, qk+1) = 0 .

(6)

Notice that the discrete Lagrange-d’Alembert principle is not truly variational, as

the continuous principle. Alternatively, we will refer to the DLA algorithm (6) as a

nonholonomic integrator, by analogy with the unconstrained case. Note also that,

under appropriate regularity assumptions, the implicit function theorem ensures us that
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we have obtained a well-defined algorithm Φ : Q×Q −→ Q×Q, Φ(qk−1, qk) = (qk, qk+1).

In fact, this is guaranteed if the matrix
(

D1D2Ld(qk, qk+1) ωa(qk)

D2ω
a
d(qk, qk+1) 0

)

(7)

is invertible for each (qk, qk+1) in a neighbourhood of the diagonal of Q×Q.

Remark 3.1 Assume we are given a continuous nonholonomic problem with data

L : TQ −→ R and D ⊂ TQ. In the following section, we shall discuss some types

of discretizations of this problem. To guarantee that the DLA algorithm approximates

the continuous flow within a desired order of accuracy, one should select the discrete

Lagrangian Ld : Q×Q −→ R and the discrete constraint space Dd in a consistent way.

This essentially means that if ω1, . . . , ωm are 1-forms on Q whose annihilation locally

define the constraint distribution D, one performs the same type of discretization of

both the Lagrangian L : TQ −→ R and the 1-forms (interpreted as functions linear

in the velocities, ωa : TQ −→ R). For instance, if Ld is constructed by means of a

discretization mapping Ψ : Q×Q −→ TQ defined on a neighbourhood of the diagonal

of Q × Q, that is, Ld = L ◦ Ψ, then Dd must locally be defined by the annihilation of

the functions ωa
d = ωa ◦ Ψ. Stated otherwise, Dd should be such that Ψ(Dd) = D.

Remark 3.2 Consider the continuous nonholonomic problem given by L and D, and

let Ld and Dd be appropriate discrete versions of them. Then, if the matrix
(

D1D2Ld(qk, qk) ωa(qk)

D2ω
a
d(qk, qk) 0

)

is invertible for each qk ∈ Q, a sufficiently small stepsize h guarantees that the matrix

(7) is also nonsingular and hence the DLA algorithm is solvable for qk+1.

Remark 3.3 (The holonomic case) Let us examine the nonholonomic integrator

when the constraints are holonomic, that is, the case when the distribution D is

integrable. Assume that there exists a function g : Q −→ R
l whose level surfaces are

precisely the integral manifolds of D, i.e. for each r ∈ R
l, Nr = g−1(r) is a submanifold

of Q such that TqNr = Dq for all q ∈ Nr. Then, we can consider as constraint space the

following subspace of Q×Q,

Dd = ∪
r∈R

lNr ×Nr .

Observe that if we take q0 ∈ N0, then (q0, q1) ∈ Dd is equivalent to q1 ∈ N0. We then

find that the nonholonomic integrator for an initial pair q0, q1 ∈ N0 becomes
{

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = λaDg
a(qk)

g(qk+1) = 0 ,
(8)

where ga : Q −→ R denotes the a component of g. Notice that (8) is just a variational

integrator [36]. It is known that for an appropriate discrete Lagrangian, one recovers the

Shake algorithm [21, 30], written in terms of position variables. The Shake algorithm is

very useful in molecular dynamics simulation.
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4. Construction of integrators

In the unconstrained case [36], there are mainly two ways of constructing mechanical

integrators, depending on whetherQ is seen as a manifold in its own right (the “intrinsic”

point of view) or as being embedded in a larger space (the “extrinsic” point of view).

Assume that we have a continuous nonholonomic problem given by L : TQ −→ R and

D ⊂ TQ.

When adopting the intrinsic point of view, one makes use of coordinate charts on

Q to construct the discrete Lagrangian. Let ϕ : U ⊂ Q −→ R
n be a local chart whose

coordinate domain U contains qk and asume that qk+1 ∈ U (a condition guaranteed by

a sufficiently small timestep h). A choice of discrete Lagrangian is the following

Lα
d (qk, qk+1) = L

(

ϕ−1((1 − α)ϕ(qk) + αϕ(qk+1)), (ϕ
−1)∗

(

ϕ(qk+1) − ϕ(qk)

h

))

, (9)

where 0 ≤ α ≤ 1 is an interpolation parameter and the differential (ϕ−1)∗ is taken at

the point x = (1 − α)ϕ(qk) + αϕ(qk+1). Of course there are other possible choices of

discretizations, as for instance,

Lsym,α
d (qk, qk+1) =

1

2
L

(

ϕ−1((1 − α)ϕ(qk) + αϕ(qk+1)), (ϕ
−1)∗

(

ϕ(qk+1) − ϕ(qk)

h

))

(10)

+
1

2
L

(

ϕ−1(αϕ(qk) + (1 − α)ϕ(qk+1)), (ϕ
−1)∗

(

ϕ(qk+1) − ϕ(qk)

h

))

.

In the unconstrained case, the choice (10) always yields second order accurate numerical

methods, whereas in general this is only guaranteed for the discretization (9) if α = 1
2

(although for natural Lagrangians of the form L = 1
2
q̇Mq̇ − V (q), (9) also gives second

order numerical methods [16]).

This approach is called the Generalized Coordinate Formulation.

Remark 4.1 In general, this viewpoint is necessarily local, since the discretizations

are only valid in the coordinate domain U of ϕ. If we choose an atlas of charts

covering the whole manifold Q, we cannot guarantee that the construction of the

discrete Lagrangian Ld will coincide on the chart overlaps. There are certain cases,

however, in which this is indeed possible. For example, if we can find an atlas {(Us, ϕs)}

such that for any two overlapping charts, ϕs1
and ϕs2

, the local diffeomorphism

ϕs1s2
= ϕs1

◦ ϕ−1
s2

verifies ϕs1s2
((1 − α)x + αy) = (1 − α)ϕs1s2

(x) + αϕs1s2
(y), for any

x, y ∈ ϕs2
(Us2

) and (ϕs1s2
)∗ = id, then it is easy to see that one can “paste” the

local constructions (9) (respectively (10)) to have a well-defined discrete Lagrangian

on a neighbourhood of the diagonal of Q × Q. [A simple example of this situation is

given by the manifold S
1, with the local charts ϕ1(z1, z2) = arcsin(z2/z1) ∈ (0, 2π) and

ϕ2(z1, z2) = arcsin(z2/z1) ∈ (−π, π)].

Remark 4.2 Another way of constructing a well-defined discrete Lagrangian on a

neighbourhood of the diagonal of Q × Q is the following. Assume that there exist

a q0 ∈ Q and a differentiable mapping Υ : Q −→ Diff(Q) such that Υ(q)(q) = q0, for
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all q ∈ Q. In this case, we can define Ld for each (q, q′) according to either (9) or (10) by

means of ϕ = ϕ0 ◦Υ(q), where ϕ0 is a local chart whose coordinate domain contains q0.

It is important to note that in this construction the mapping ϕ0 ◦ Υ(q) varies with the

pair (q, q′). This is the case for instance of finite dimensional Lie groups Q = G, where

one can take q0 = e, the identity element, Φ(g) = Lg−1 for each g ∈ G and ϕ0 = exp−1
e

(see [26]). We shall make use of this construction in Section 5.3.3.

The extrinsic point of view assumes that Q is embedded in some linear space V

and that we have a Lagrangian L : TV −→ R such that L|TQ = L. In addition, it is

assumed that there exists a vector valued constraint function g : V −→ R
l, such that

g−1(0) = Q ⊂ V , with 0 a regular value of g. According to (9) and (10), we can define

the following discrete Lagrangians on V × V

Lα
d (vk, vk+1) = L

(

(1 − α)vk + αvk+1,
vk+1 − vk

h

)

, (11)

and

Lsym,α
d (vk, vk+1) =

1

2
L

(

(1 − α)vk + αvk+1,
vk+1 − vk

h

)

(12)

+
1

2
L

(

αvk + (1 − α)vk+1,
vk+1 − vk

h

)

.

In this way, we can sum and subtract points in Q because we are regarding them as

vectors in V by means of the natural inclusion j : Q ↪→ V . Of course, we must ensure

that the points obtained by the algorithm all belong to Q. Then, the solution sequence

(vk) will extremize the action sum S =
∑N−1

k=0 Ld(vk, vk+1) subject to the holonomic

constraints imposed by g. This leads to the discrete equations
{

D1Ld(vk, vk+1) +D2Ld(vk−1, vk) = λlDg
l(vk)

g(vk+1) = 0 .

This approach is called the Constrained Coordinate Formulation.

Both formulations are shown to be equivalent in the domain of definition of the

local chart ϕ selected in the Generalized Coordinate Formulation (see [36]), whereby

the following identification is understood: Ld(qk, qk+1) = Ld(j(qk), j(qk+1)), which

is valid for choices of the chart (U, ϕ) in the definition of Ld such that the map

J = j ◦ ϕ−1 : ϕ(U) ⊂ R
n −→ V is linear. Notice that this assumption is not at

all restrictive, since j is an injective immersion and such a chart (U, ϕ) can always be

chosen.

In the nonholonomic case, we can construct an appropriate adaptation of both

formulations. In the Generalized Coordinate Formulation, we introduce Dd as follows.

Take a local basis of 1-forms of the annihilator of the constraint distribution D,

{ω1, . . . , ωm} ∈ Do. These 1-forms can be intrepreted as functions linear in the velocities,

locally defined on TQ. Then, we discretize them according to the previous discretizations

of the Lagrangian, that is, we take either

ωa
d(qk, qk+1) = ωa

(

ϕ−1((1 − α)ϕ(qk) + αϕ(qk+1)), (ϕ
−1)∗

(

ϕ(qk+1) − ϕ(qk)

h

))

, (13)
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or

ωa
d(qk, qk+1) =

1

2
ωa

(

ϕ−1((1 − α)ϕ(qk) + αϕ(qk+1)), (ϕ
−1)∗

(

ϕ(qk+1) − ϕ(qk)

h

))

(14)

+
1

2
ωa

(

ϕ−1((1 − α)ϕ(qk) + αϕ(qk+1)), (ϕ
−1)∗

(

ϕ(qk+1) − ϕ(qk)

h

))

.

In this way we obtain the functions ωa
d : Q × Q −→ R whose annihilation defines

Dd ⊂ Q×Q. As in the unconstrained case, it is not hard to prove that the discretization

(10) together with(14) yields second order accurate approximations to the continuous

flow, whereas this is only guaranteed for the discretization (9), (13) if α = 1
2
.

In the Constrained Coordinate Formulation, we assume that there exist local 1-

forms on V defining Do, {ω̃1, . . . , ω̃m} such that ω̃a(q)|TqQ = ωa(q) for q ∈ Q. Then, we

discretize them according to

ω̃a
d(vk, vk+1) = ω̃a

(

(1 − α)vk + αvk+1,
vk+1 − vk

h

)

, (15)

and

ω̃a
d(vk, vk+1) =

1

2
ω̃a

(

(1 − α)vk + αvk+1,
vk+1 − vk

h

)

+
1

2
ω̃a

(

αvk + (1 − α)vk+1,
vk+1 − vk

h

)

. (16)

Observe that we can identify ωa
d(qk, qk+1) = ω̃a

d(j(qk), j(qk+1)) in the same way as we have

done for the discrete Lagrangians. Then, the discrete Lagrange-d’Alembert principle

with the holonomic constraints g and the nonholonomic constraints ω̃1, . . . , ω̃m leads us

to the equations










D1Ld(vk, vk+1) +D2Ld(vk−1, vk) = λlDg
l(vk) + µaω̃

a(vk)

g(vk+1) = 0

ω̃a
d(vk, vk+1) = 0 .

(17)

The following theorem, analogous to the one presented in [36], ensures that both

formulations (6) and (17) are indeed equivalent in the same sense as before, as one

might expect. We prove it for the discretizations (9), (13). The proof for the symmetric

discretizations (10), (14) is analogous.

Theorem 4.3 Let ϕ : U ⊂ Q −→ R
n be a local chart of Q such that J = j ◦ ϕ−1

is linear. Identify U with ϕ(U) and j|U with J|U through ϕ. Let qk−1, qk be two initial

points in the coordinate chart and let vk−1 = J(qk−1), vk = J(qk). Then, the Generalized

Coordinate Formulation (6) has a solution (qk+1, µ
(k)
a ) if and only if the Constrained

Coordinate Formulation (17) has a solution (vk+1, λ
(k)
l , µ̄

(k)
a ). Indeed, vk+1 = J(qk+1)

and µ̄
(k)
a = µ

(k)
a .

Proof: To establish the equivalence, we first expand equations (6) and (17) in

terms of L and the 1-forms {ω̃a}m
a=1. Let (v, v̇) denote the canonical coordinates of TV .
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Equations (6) become, when written in matrix form,






















DTJ(qk)

{

1

h

[

∂L

∂v̇
(ak, bk) −

∂L

∂v̇
(ak+1, bk+1)

]

+ (1 − α)
∂L

∂v
(ak+1, bk+1)

+ α
∂L

∂v
(ak, bk) + µ(k)

a ω̃a(J(qk))

}

= 0

ω̃a
d(J(qk), J(qk+1)) = ω̃a(ak+1, bk+1) = 0 ,

(18)

where ak = αJ(qk) + (1 − α)J(qk−1) and bk =
1

h
(J(qk) − J(qk−1)). Note that we are

using the identifications ωa
d = (ω̃a

d)|Q×Q, (Lα
d )|Q×Q = Lα

d and ω̃a
|TQ = ωa. If ω̃a = ω̃a

l dv
l

and ωa = ωa
i dq

i, we have that

ωa
i (qk)dq

i = J∗(ω̃a
l dv

l)(qk) =
∂J l

∂qi
(qk)ω̃

a
l (J(qk))dq

i ,

which can be written in a more compact way as ωa(qk) = DTJ(qk)ω̃
a(J(qk)). Here and

in the following the superscript T refers to the transpose of a matrix.

On the other hand, equation (17) can be written as






































1

h

[

∂L

∂v̇

(

vk−1+α,
vk − vk−1

h

)

−
∂L

∂v̇

(

vk+α,
vk+1 − vk

h

)]

+ (1 − α)
∂L

∂v

(

vk+α,
vk+1 − vk

h

)

+ α
∂L

∂v

(

vk−1+α,
vk − vk−1

h

)

+ µ̄(k)
a ω̃a(vk) = λ

(k)
l Dgl(vk)

g(vk+1) = 0

ω̃a
d(vk, vk+1) = ω̃a

l (vk+α)

(

vk+1 − vk

h

)l

= 0 ,

(19)

where the shorthand notation vk+α = (1 − α)vk + αvk+1 is used. Now, assume that

(vk+1, λ
(k)
l , µ̄

(k)
a ) is a solution of (19) with vk = J(qk) and vk−1 = J(qk−1). The fact

that g(vk+1) = 0 implies that vk+1 belongs to the image of J . Let qk+1 = J−1(vk+1).

Multiplying the first equation of (19) by DTJ(qk) and making the corresponding

substitutions, one obtains for the pair (qk+1, µ̄
(k)
a ) just the first equation of (18), since

the term DTJ(qk)D
Tg(vk) cancels due to g ◦ J = 0.

Conversely, if (qk+1, µ
(k)
a ) is a solution of (18), then one can find Lagrange multipliers

λ
(k)
l , such that (vk+1 = J(qk+1), λ

(k)
l , µ

(k)
a ) is a solution of (19) as follows. The second

and the third equation of (19) are automatically satisfied because of vk+1 ∈ Q and

taking into account the second equation of (18). Moreover, as DJ(qk) and Dg(qk) are

assumed to have full rank, we have that Tvk
V = R(DJ(qk)) ⊕ N (DTJ(qk)), where

R(DJ(qk)) and N (DTJ(qk)) refer to the range and the kernel, respectively, of the

operator under consideration. Since R(DTg(qk)) ⊂ N (DTJ(qk)) and dimR(DTg(qk)) =

dimN (DTJ(qk)), we can write Tvk
V = R(DJ(qk)) ⊕ R(DTg(qk)). Now, the left-hand

side of the first equation of (19) can be decomposed into a part belonging to R(DJ(qk))

and a part belonging to R(DTg(qk)). But the part in R(DJ(qk)) is zero, because of the

first equation of (18). Consequently, the entire expression belongs to R(DTg(qk)), and

thus there exist some λ
(k)
l such that

1

h

[

∂L

∂v̇

(

vk−1+α,
vk − vk−1

h

)

−
∂L

∂v̇

(

vk+α,
vk+1 − vk

h

)]

+ (1 − α)
∂L

∂v

(

vk+α,
vk+1 − vk

h

)
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+ α
∂L

∂v

(

vk−1+α,
vk − vk−1

h

)

+ µ̄(k)
a ω̃a(vk) = λ

(k)
l Dgl(vk) ,

which is precisely the first equation of (19). QED

The relevance of Theorem 4.3 becomes apparent when handling concrete examples.

Generally, it is easier to treat the nonholonomic integrator following the Constrained

Coordinate Formulation, since points in Q can be treated as points in some R
s, and

this is a definite advantage for the numerical implementation. On the other hand, the

geometric study of the properties of discrete nonholonomic mechanics is carried out

from the “intrinsic” point of view, so things are proved for the Generalized Coordinate

Formulation.

5. Geometric invariance properties

In the unconstrained case, one can study discrete mechanics by itself, starting from a

given discrete Lagrangian Ld and investigating the geometric properties that the discrete

flow enjoys, such as the preservation of the symplectic form or of the momentum in the

presence of symmetry. Furthermore, when one regards a discrete mechanical system

as an approximation of a continuous one, it turns out that the symplectic-momentum

nature of the variational integrators makes the difference in capturing the essential

features of Lagrangian systems.

In the following, we provide some geometric arguments for the good performance of

the DLA algorithm when compared to other standard higher order numerical methods,

such as the 4th order Runge-Kutta, as will be shown in Section 6. Of course, a more

thorough error analysis would be of interest, but here we focus our attention on the

invariance properties that the discrete nonholonomic mechanics possesses, as a sign of

its appropriateness for approximating the continuous counterpart.

As we have mentioned above, in nonholonomic mechanics the symplectic form is not

preserved by the flow of the system, so one can not expect the discrete version to preserve

it. However, we will show in Section 5.1 that the discrete flow preserves the structure of

the evolution of the symplectic form along the trajectories of the system. This property

generalizes the symplectic character of variational integrators systems and, in fact, one

precisely recovers the preservation of the symplectic form in the absence of constraints.

Moreover, under the action of a Lie group G on the configuration manifold Q,

leaving invariant the Lagrangian L : TQ −→ R and the constraints D ⊂ TQ,

the associated momentum J : TQ −→ g
∗ in general will not be conserved either.

The development of the reduction theory of nonholonomic Lagrangian systems with

symmetry has drawn on a careful examination of the compatibility of the symmetry

directions and the constraints, which is encoded in the intersection V ∩ D. Koiller [18]

started with the so-called vertical or purely kinematic case, V ∩D = 0, and subsequent

works [4, 7, 10, 29] have treated the horizontal, V ⊂ D, and the general cases

0 ⊆ V ∩ D ⊆ V (other relevant contributions make use, among others, of the

Hamiltonian formalism [3] or of Poisson methods [19, 25], among others). An important
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geometric object in this reduction theory is the so-called nonholonomic momentum map,

which corresponds to the usual momentum map restricted to the symmetry directions

compatible with the constraints. This momentum map can be used to “augment”

the constraints and provide a principal connection on Q −→ Q/G, the nonholonomic

principal connection, a fact with important applications, for instance, to the control of

nonholonomic systems [29]. In addition, one can measure the evolution of this mapping

along the integral curves of the Lagrange-d’Alembert equations. This “measurement”

constitutes the nonholonomic momentum equation [4]. We shall show in Section 5.2

that the DLA algorithm satisfies a discrete version of the nonholonomic momentum

equation. In addition, in the presence of horizontal symmetries, we shall show that the

associated momenta are actually conservation laws.

In the vertical or purely kinematic case, there are no symmetry directions lying

in the constraint distribution and one does not have any nonholonomic momentum.

Nonholonomic systems of Chaplygin type form the most representative class of systems

falling into this category. In Section 5.3, we will discuss how, for Chaplygin systems,

the DLA algorithm passes to the reduced space Q/G and yields a variational integrator

in the sense of [16]. In some cases (in agreement with the continuous counterpart), this

reduced formulation exactly yields a standard variational integrator.

5.1. The symplectic form

In this section, we investigate the behaviour of the DLA algorithm with respect to

the discrete symplectic form ΩLd
defined in Section 2. In doing so, we first recall

the properties of the continuous flow in this regard, and then show that the discrete

algorithm follows the same pattern.

The nonholonomic equations of motion (3) can be written in a coordinate free

form [22] in a symplectic context. To do so, we need to introduce some geometric objects.

In terms of the tangent bundle coordinates (qA, q̇A), let us denote by ∆ = q̇A ∂
∂q̇A the

dilation or Liouville vector field on TQ (see [24]) and by S = dqA ⊗ ∂
∂q̇A the canonical

vertical endomorphism (see [23]). The action of S on a 1-form will be denoted by S∗.

Then we can define the Poincaré-Cartan 1-form and 2-form, corresponding to a given

Lagrangian L, by ΘL = S∗dL and ΩL = −dΘL, respectively. We further have that

EL = ∆L − L represents the energy function of the system. If the Lagrangian L is

regular, which will always be tacitly assumed in the sequel, ΩL is symplectic. The

equations of motion for the nonholonomic system are then given by
{

(iXΩL − dEL)|D ∈ S∗((TD)o) ,

X|D ∈ TD .
(20)

The integral curves of the dynamical vector field X satisfy precisely the nonholonomic

equations (3).

From (20), we can write iXΩL = dEL + β, with β ∈ S∗((TD)o). This implies that

the evolution of the symplectic form along the trajectories of the system is given by

LXΩL = iXdΩL + diXΩL = dβ , (21)
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where L denotes the Lie derivative.

The DLA algorithm also preserves this structure for the evolution of the discrete

symplectic form ΩLd
. Indeed we have that

Φ∗ΩLd
= − Φ∗FL∗

ddΘQ = −d(FLd ◦ Φ)∗ΘQ = −d(F̃Ld ◦ Φ)∗ΘQ

= − d(FLdΘQ − βd) ,

where βd ∈ Do and in the last equality we have used the definition of the discrete

principle (6). Finally, we get

Φ∗ΩLd
= ΩLd

+ dβd , (22)

which is the discrete version of Eq. (21). Note that in the absence of constraints, we

precisely recover the conservation of the discrete symplectic form.

5.2. The momentum

In nonholonomic mechanics, the momentum associated to a symmetry group G of the

system in general is not a conserved quantity. Instead, one considers a nonholonomic

momentum map Jnh, which is the usual one restricted to the symmetry directions

compatible with the constraints, and derives a momentum equation describing the

evolution of Jnh. What we develop in the following is a discrete version of the

nonholonomic momentum map and we show that the nonholonomic integrator (6) fulfills

a discrete version of the momentum equation.

Let us briefly recall how the theory is developed in the continuous picture [4, 7].

Consider a Lie groupG acting on the configuration manifoldQ, such that the Lagrangian

L : TQ −→ R and the constraints D ⊂ TQ are G-invariant. For each q ∈ Q, the

following subspace of the Lie algebra of G,

gq = {ξ ∈ g / ξQ(q) ∈ Dq} ,

is introduced, where ξQ denotes the fundamental vector field associated to the element

ξ ∈ g. Denote by g
D the disjoint union of all such subspaces, g

D = ∪q∈Qgq. Then, we

have a generalized bundle g
D −→ Q which captures at each point q ∈ Q the symmetry

directions which lie in the constraint distribution. Define then

Jnh : TQ −→ g
D∗

vq 7−→ Jnh(vq) : gq −→ R

ξ 7−→ 〈Jnh(vq), ξ〉 = 〈FL(vq), ξQ(q)〉 .

Note in passing that the nonholonomic momentum map coincides with the usual

momentum map along the bundle g
D.

Assume we have a smooth section ξ̃ of the bundle g
D −→ Q and consider the

function Jnh
ξ̃

: TQ −→ R given by Jnh
ξ̃

= 〈Jnh, ξ̃〉. By means of the Lagrange-d’Alembert

principle one can now prove the following
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Theorem 5.1 [4] Any solution q(t) of the Lagrange-d’Alembert equations for the

nonholonomic system must satisfy the momentum equation

d

dt

(

Jnh
ξ̃

)

=

〈

FL(q̇(t)),

(

d

dt
ξ̃(q(t))

)

Q

〉

=
∂L

∂q̇i

[

d

dt
ξ̃(q(t))

]i

Q

. (23)

In some cases, it can happen that an element ξ of the Lie algebra belongs to gq,

for all q ∈ Q. This then defines a constant section ξ̃ of the bundle g
D and ξ is called a

horizontal symmetry. As a consequence of the momentum equation (23), we get

Corollary 5.2 If ξ is a horizontal symmetry, then Jnh
ξ̃

is a conservation law.

Next, we investigate these issues for the discrete Lagrange-d’Alembert principle

developed in Section 3. First, given the discrete Lagrangian Ld : Q × Q −→ R, define

the discrete momentum map by

Jnh
d : Q×Q −→ g

D∗

(qk−1, qk) 7−→ Jnh
d (qk−1, qk) : gq −→ R

ξ 7−→ 〈D2Ld(qk−1, qk), ξQ(qk)〉 .

Take, as in the continuous case, a smooth section ξ̃ of the bundle g
D and consider the

function (Jnh
d )ξ̃ on Q×Q. Then, one finds that the nonholonomic integrator fullfils the

following discrete version of the momentum equation.

Theorem 5.3 The flow (qk−1, qk) 7−→ (qk, qk+1) of the discrete Lagrange-d’Alembert

equations verifies

(Jnh
d )ξ̃(qk, qk+1) − (Jnh

d )ξ̃(qk−1, qk) = D2Ld(qk, qk+1)
(

ξ̃(qk+1) − ξ̃(qk)
)

Q
(qk+1) . (24)

Proof: The invariance of the discrete Lagrangian Ld implies that

L(exp(sξ̃(qk))qk, exp(sξ̃(qk))qk+1) = L(qk, qk+1) .

Differentiating with respect to s and setting s = 0 yields

D1Ld(qk, qk+1)
(

ξ̃(qk)
)

Q
(qk) +D2Ld(qk, qk+1)

(

ξ̃(qk)
)

Q
(qk+1) = 0 . (25)

On the other hand, the discretization of the Lagrange-d’Alembert principle (6) implies

that

D1Ld(qk, qk+1)
(

ξ̃(qk)
)

Q
(qk) +D2Ld(qk−1, qk)

(

ξ̃(qk)
)

Q
(qk) = 0 . (26)

Subtracting equation (25) from equation (26), we find that

D2Ld(qk, qk+1)
(

ξ̃(qk)
)

Q
(qk+1) = D2Ld(qk−1, qk)

(

ξ̃(qk)
)

Q
(qk) . (27)

Finally, the result follows from (27) since

(Jnh
d )ξ̃(qk, qk+1)− (Jnh

d )ξ̃(qk−1, qk) =

= D2Ld(qk, qk+1)
(

ξ̃(qk+1)
)

Q
(qk+1) −D2Ld(qk−1, qk)

(

ξ̃(qk)
)

Q
(qk)

= D2Ld(qk, qk+1)
(

ξ̃(qk+1)
)

Q
(qk+1) −D2Ld(qk, qk+1)

(

ξ̃(qk)
)

Q
(qk+1) .
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QED

In the presence of horizontal symmetries we find that the algorithm (6) exactly

preserves the associated components of the momentum.

Corollary 5.4 If ξ is a horizontal symmetry, then (Jnh
d )ξ̃ is conserved by the

nonholonomic integrator.

5.3. Chaplygin systems

Consider the situation in which the action of the Lie group G has no symmetry direction

lying in D, i.e. V ∩ D = 0, where V denotes the vertical bundle of the projection

π : Q −→ Q/G. Under the common assumption that Dq + Vq = TqQ for all q ∈ Q

(dimension assumption), one has indeed a splitting of the tangent bundle at each

point q ∈ Q, TqQ = Dq ⊕ Vq. The distribution D being G-invariant, this situation

corresponds precisely to the notion of a principal connection on the principal fiber bundle

π : Q −→ Q/G. Such systems are known in the literature as generalized Chaplygin

systems [6, 18].

It is known that one of the peculiarities of nonholonomic Chaplygin systems is that,

after reduction by the Lie group G, they take on the form of an unconstrained system,

subject to an “external” force of a special type. In the following, we briefly review these

facts for the sake of clarity of the exposition.

5.3.1. Reduction in the continuous case In the Chaplygin case, reduction can be

achieved as follows. Consider the lifted action of the Lie group G on TQ and denote by

ρ : TQ −→ TQ the associated projection. Define by F the subbundle of TTQ along D

whose annihilator is given by S∗((TD)o). Then, V ∩D = 0 implies that F ∩Vρ = 0 and

therefore

TD = (F ∩ TD) ⊕ Vρ .

This means that on the principal bundle ρ|D : D −→ D ≡ T (Q/G) we have another

principal connection. Denote by h : TD −→ F ∩ TD and v : TD −→ Vρ the horizontal

and vertical projectors, respectively. Then, we consider the 1-form

α = iX(h∗di∗ΘL − dh∗i∗ΘL) ,

where i : D ↪→ TQ is the canonical inclusion.

On the other hand, the Lagrangian L induces a Lagrangian L∗ : T (Q/G) −→ R by

L∗(q̄, vq̄) = L(q, vh
q̄ ) ,

where π(q) = q̄ and vh
q̄ denotes the unique vector in Dq such that π∗(v

h
q̄ ) = vq̄. This

function is well-defined because of the G-invariance of L. Then, one can prove that the

solution X of (20) is ρ-projectable and that the projected dynamics X = ρ∗(X) satisfies

iXωL∗ = dEL∗ + α , (28)
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where α is the projection of the 1-form α. Moreover, one can show that the contraction

of α with X vanishes, that is, iXα = 0. Hence, the nonconservative force represented by

α is of “gyroscopic” type. This implies in particular that the energy EL∗ is a conserved

quantity of the reduced dynamics.

Alternatively, a principal connection can be characterized by a g-valued 1-form A

on Q (the connection 1-form) satisfying A(ξQ(q)) = ξ for all ξ ∈ g and A(φg∗X) =

Adg(A(X)) for all X ∈ TQ. The constraint distribution is precisely given by the

horizontal space Dq = {vq ∈ TqQ : A(vq) = 0}. The principal bundle structure implies

that the configuration manifold Q can be locally seen as Q/G×G. In the sequel, we will

not make a notational distinction between (r, g) considered as a point on the product

manifold and considered as the corresponding adapted coordinates. In each case, the

precise meaning should be clear from the context.

In terms of adapted bundle coordinates, the G-action on Q reads φh(r, g) = (r, hg)

and the projection π : Q −→ Q/G is given by π(r, g) = r. The coordinate expression

for the connection 1-form then reads A(r, g)(ṙ, ġ) = Adg(g
−1ġ + A(r, e)ṙ), so that the

constraint 1-forms become ω = g−1dg + A(r, e)dr. If we fix a basis {e1, . . . , em} of the

Lie algebra g, then we can write

ω = g−1dg + Ab
β(r)drβeb . (29)

The G-invariance of the Lagrangian yields L(r, g, ṙ, ġ) = L(r, e, ṙ, g−1ġ). Denote then

by `(r, ṙ, ξ) the projection of L onto TQ/G. It follows that the reduced Lagrangian L∗

on T (Q/G) is given by L∗(r, ṙ) = `(r, ṙ,−Ab
β(r)ṙβeb). The gyroscopic 1-form can be

locally written as

α = −

(

∂`

∂ξa

)∗(∂Aa
β

∂rγ
−
∂Aa

γ

∂rβ
+ cabcA

b
βA

c
γ

)

ṙγdrβ ,

where the * on the right-hand side indicates that, after computing the derivative of

` with respect to ξb, one replaces the ξa everywhere by −Aa
β(r)ṙβ. The constants cbac

appearing in the last term on the right-hand side are the structure constants of g with

respect to the chosen basis, i.e. [eb, ec] = cabcea. Note in passing that the expressions
∂Ab

β

∂rγ
−
∂Ab

γ

∂rβ
+ cbacA

a
βA

c
γ are the coefficients of the curvature of the principal connection

A in local form. Consequently, the integral curves of the projected solution X̄ verify

the equations

d

dt

(

∂L

∂ṙβ

)

−
∂L

∂rβ
= −αβ ,

where β ∈ {1, . . . , n−m}.

5.3.2. Reduction of the discrete principle Next, we examine the possibility of passing

the discrete nonholonomic principle to the reduced space Q/G. Consider a discrete

Lagrangian Ld : Q × Q −→ R and a discrete space Dd, described by the annihilation

of some constraint functions ωa
d : Q × Q −→ R, a ∈ {1, . . . ,m}. Assume that both
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the Lagrangian and the constraints are G-invariant under the diagonal action of the Lie

group on the manifold Q×Q. The DLA algorithm then becomes
{

D1Ld(rk, gk, rk+1, gk+1) +D2Ld(rk−1, gk−1, rk, gk) = λaω
a(rk, gk)

ωa
d(rk, gk, rk+1, gk+1) = 0 ,

(30)

where it should be recalled that D1 denotes the derivative with respect to qk = (rk, gk).

These equations can be rewritten, using the expression (29) for the constraint 1-forms,

in the following form






















∂Ld

∂rβ
k

(rk, gk, rk+1, gk+1) +
∂Ld

∂rβ
k

(rk−1, gk−1, rk, gk) =

=

(

∂Ld

∂gk

(rk, gk, rk+1, gk+1) +
∂Ld

∂gk

(rk−1, gk−1, rk, gk)

)

Ab
β(rk)Lgk∗eb

ωa
d(rk, gk, rk+1, gk+1) = 0 ,

(31)

where Lg denotes the left multiplication by g in G. It must be noted that in the right-

hand side of the first equation, a shorthand notation is used to denote the natural pairing

between tangent vectors and covectors on G.

Observe that Dd can be locally identified with Q/G×Q/G×G via the assignement

(rk, gk, rk+1, gk+1) ∈ Dd 7−→ (rk, gk, rk+1) ,

since gk+1 is uniquely determined by the equations ωa
d(rk, gk, rk+1, gk+1) = 0, a ∈

{1, . . . ,m}. In addition, the G-invariance of the constraint functions implies that

gk+1(rk, gk, rk+1) = gk · gk+1(rk, e, rk+1).

Let us consider the restriction of Ld : Q × Q −→ R to Dd, L
c
d : Dd −→ R. The

G-invariance of Ld and Dd implies the G-invariance of Lc
d. Define a discrete Lagrangian

L∗
d on the reduced manifold as

L∗
d : Q/G×Q/G −→ R

(rk, rk+1) 7−→ Lc
d(rk, e, rk+1) .

Now, we shall write the DLA algorithm (31) in terms of the constrained discrete

Lagrangian Lc
d and then examine the possibility of passing the equations to Q/G, in

terms of the reduced discrete Lagrangian L∗
d. First, we have that

∂Lc
d

∂rβ
k

=
∂Ld

∂rβ
k

+
∂Ld

∂gk+1

∂gk+1

∂rβ
k

,

∂Lc
d

∂rβ
k+1

=
∂Ld

∂rβ
k+1

+
∂Ld

∂gk+1

∂gk+1

∂rβ
k+1

.

Secondly, we also have

0 =
∂Lc

d

∂gk

=
∂Ld

∂gk

+
∂Ld

∂gk+1

∂gk+1

∂gk

=
∂Ld

∂gk

+R∗
gk+1

∂Ld

∂gk+1

,

where Rg denotes the right multiplication in the Lie group by the element g ∈ G.

In view of this, we see that the nonholonomic integrator can be expressed in the

following way

D1L
c
d(rk, gk, rk+1) +D2L

c
d(rk−1, gk−1, rk) = F−(qk, qk+1) + F+(qk−1, qk) ,
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where

F−(qk, qk+1) =
∂Ld

∂gk+1

∂gk+1

∂rβ
k

+
∂Ld

∂gk

(rk, gk, rk+1, gk+1)A
b
β(rk)Lgk∗eb

=

(

∂Ld

∂gk+1

∂gk+1

∂rβ
k

(rk, rk+1) +
∂Ld

∂gk

Ab
β(rk)

)

Lgk∗eb ,

F+(qk−1, qk) =
∂Ld

∂gk

∂gk

∂rβ
k

+
∂Ld

∂gk

(rk−1, gk−1, rk, gk)A
b
β(rk)Lgk∗eb

=
∂Ld

∂gk

∂gk

∂rβ
k

(rk−1, rk)Lgk−1∗
eb −

∂Ld

∂gk−1

Ab
β(rk)Lgk−1∗

Adgk(rk−1,rk)eb .

Note that both discrete forces, F− and F+, are G-invariant. This can be seen as follows.

As Ld is G-invariant, we have that Ld(rk, gk, rk+1, gk+1) = Ld(rk, e, rk+1, g
−1
k gk+1) =

`d(rk, rk+1, fk,k+1), where we use the shorthand notation fk,k+1 = g−1
k gk+1. From here,

one can derive that

∂Ld

∂gk

(rk, gk, rk+1, gk+1) = − L∗
g−1

k

R∗
fk,k+1

∂`d
∂fk,k+1

∂Ld

∂gk+1

(rk, gk, rk+1, gk+1) = L∗
g−1

k

∂`d
∂fk,k+1

.

Moreover, if (rk, gk, rk+1, gk+1) ∈ Dd, then fk,k+1 = g−1
k gk+1 = gk+1(rk, rk+1). Therefore,

substituting in the expressions for the discrete forces, one verifies that

F−(qk, qk+1) =
∂`d

∂fk,k+1

(rk, rk+1, fk,k+1)
∂gk+1

∂rβ
k

(rk, rk+1)

− R∗
fk,k+1

∂`d
∂fk,k+1

(rk, rk+1, fk,k+1)A
b
β(rk)eb ,

F+(qk−1, qk) =
∂`d

∂fk−1,k

∂gk

∂rβ
k

(rk−1, rk)

+ Lgk(rk−1,rk)
∂`d

∂fk−1,k

(rk−1, rk, fk−1,k)A
b
β(rk)eb .

Therefore, we can write a well-defined algorithm on Q/G of the form

D1L
∗
d(rk, rk+1) +D2L

∗
d(rk−1, rk) = F−(rk, rk+1) + F+(rk−1, rk) . (32)

Equation (32) belongs to the type of discretization generalizing variational

integrators for systems with external forces developed in [16]:

δ
∑

Ld(qk, qk+1) +
∑

(F−
d (qk, qk+1)δqk + F+

d (qk, qk+1)δqk+1) = 0 , (33)

where F−
d , F+

d are the left and right discrete friction forces. Equation (33) defines an

integrator (qk−1, qk) 7−→ (qk, qk+1) given implicitly by the forced discrete Euler-Lagrange

equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) + F−
d (qk, qk+1) + F+

d (qk−1, qk) = 0 . (34)

We summarize the above discussion in the following result.
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Theorem 5.5 Consider a discrete nonholonomic problem with data Ld : Q×Q −→ R,

a distribution D on Q and a discrete constraint space Dd. Let G be a Lie group acting

freely and properly on Q, leaving D invariant and such that TqQ = Dq ⊕ Vq, for all

q ∈ Q, where V denotes the vertical bundle of the G-action. Assume further that both

Ld and Dd are invariant under the diagonal action of a Lie group G on the manifold

Q × Q. Then, the DLA algorithm (31) passes to the reduced space Q/G, yielding a

generalized variational integrator in the sense of [16]. We call the algorithm on Q/G

the reduced discrete Lagrange-d’Alembert algorithm (RDLA).

So far, we have obtained that the DLA algorithm respects the structure of the

evolution of the symplectic form along the flow of the system (cf. Eq (22)) and

that, in the presence of symmetries, it satisfies a discrete version of the nonholonomic

momentum equation. In addition, we have been able to establish in the two extremal

cases (horizontal and vertical) Corollary 5.4 and Theorem 5.5, respectively. These

results are important, both from a geometrical and from a numerical perspective. On

the one hand, they show interesting interactions between the discrete unconstrained

and nonholonomic mechanics, similar to those occuring in the continuous case. On the

other hand, when regarding the discrete version of mechanics as an approximation of the

continuous one, they provide good arguments to consider the proposed DLA algorithm

(6) as an appropriate (in a symplectic-momentum sense) discretization of the continuous

flow.

It is worth noting, though, that when regarding the discrete nonholonomic

mechanics as an approximation of the continuous one, one cannot expect the diagram

LA RLA

DLA RDLA-

-

?

to be commutative in general, because the two horizontal arrows symbolize

processes that are of a different mathematical nature (discrete and continuous,

respectively). For instance, there exist some special situations in which the reduced

Chaplygin system admits a Hamiltonian description, that is, the gyroscopic force F

vanishes [6]. But in general, the RDLA will not be a standard variational integrator.

In the following section we show that, under strong assumptions on the linearity of

the geometric operations involved, the midpoint RDLA algorithm [which corresponds

to take α = 1/2 in Eq. (9) (or in Eq. (10), since in this case both discretizations

coincide)] yields indeed a variational integrator, i.e. the diagram is commutative. The

hypothesis on the linearity are justified by the fact that the diagram involves both

discrete and continuous systems. This result provides an additional reason (since we

already know that this type of discretization always guarantees a second order accurate

numerical approximation to the continuous flow) to consider the midpoint rule as a

reliable integrator.
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5.3.3. The midpoint RDLA algorithm Consider a nonholonomic Chaplygin system,

with the following data: a principal G-bundle π : Q −→M = Q/G, associated to a free

and proper action Ψ of G on Q, a Lagrangian L : TQ −→ R which is G-invariant with

respect to the lifted action on TQ, and linear nonholonomic constraints determined by

the horizontal distribution D of a principal connection γ on π. In this section, we will

focus our attention on the midpoint RDLA algorithm.

For each q = (rk, gk) ∈ Q, take a product chart ϕ = ϕ1 ×ϕ2, given by a chart ϕ1 in

Q/G and a chart ϕ2 in G. For the latter, we take (see [26]): ϕ2 = exp−1 ◦Lg−1

k
, which

is defined in a neighbourhod of gk, where exp : g −→ G is the exponential mapping.

Denote by

η =
1

2
ϕ2(gk) +

1

2
ϕ2(gk+1) =

1

2
log(g−1

k gk+1) ,

ζ =
ϕ2(gk+1) − ϕ2(gk)

h
=

log(g−1
k gk+1)

h
.

We assume that Q/G is itself a linear space, so that we can always take the identity

chart ϕ1 = idQ/G. With this type of charts, we can construct the discrete Lagrangian

and the discrete constraint distribution as explained in Remark 4.2.

The discrete Lagrangian then reads

L
1

2

d (rk, gk, rk+1, gk+1) = L

(

rk+ 1

2

, ϕ−1
2 (η),

rk+1 − rk

h
, (ϕ−1

2 )∗(ζ)

)

,

and the discrete nonholonomic constraints

ζ + Ab
β(rk+ 1

2

)

(

rk+1 − rk

h

)β

eb = 0 .

As before, the shorthand notation rk+ 1

2

=
1

2
rk +

1

2
rk+1 is understood. The above

discretizations of the Lagrangian and of the constraints are G-invariant under the

diagonal action of the Lie group on the manifold Q×Q.

Here, we will make a different identification between Dd and Q/G × Q/G × G,

taking into account the specific structure of the constraint functions. More precisely,

we identify Dd with Q/G×Q/G×G via the assignment

(rk, gk, rk+1, gk+1) ∈ Dd 7−→ (rk, rk+1, ĝ) ,

where

ĝ = ϕ−1
2 (η) = Lgk

exp(
1

2
hζ) = gk exp(−

1

2
A(rk+ 1

2

)(rk+1 − rk)) .

The inverse mapping (rk, rk+1, ĝ) 7−→ (rk, gk, rk+1, gk+1) ∈ Dd is given by

gk+1 = ĝ exp(
1

2
hζ) , gk = ĝ exp(−

1

2
hζ) . (35)

Consider the restriction of L
1

2

d : Q × Q −→ R to Dd, L
c
d : Dd −→ R. Define, as

before, the discrete Lagrangian L∗
d on the reduced manifold as

L∗
d : Q/G×Q/G −→ R

(rk, rk+1) 7−→ Lc
d(rk, rk+1, e) .
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Then, we have that

∂Lc
d

∂rβ
k

=
∂L

1

2

d

∂rβ
k

+
∂L

1

2

d

∂gk

∂gk

∂rβ
k

+
∂L

1

2

d

∂gk+1

∂gk+1

∂rβ
k

,

where, from (35),

∂gk

∂rβ
k

= −
1

2

(

Ab
β(rk+ 1

2

) −
1

2

∂Ab
γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k)

)

Lgk∗eb ,

∂gk+1

∂rβ
k

=
1

2

(

Ab
β(rk+ 1

2

) −
1

2

∂Ab
γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k)

)

Lgk+1∗
eb .

Analogously, we see that

∂Lc
d

∂rβ
k+1

=
∂L

1

2

d

∂rβ
k+1

+
∂L

1

2

d

∂gk

∂gk

∂rβ
k+1

+
∂L

1

2

d

∂gk+1

∂gk+1

∂rβ
k+1

,

where

∂gk

∂rβ
k+1

= −
1

2

(

−Ab
β(rk+ 1

2

) −
1

2

∂Ab
γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k)

)

Lgk∗eb ,

∂gk+1

∂rβ
k+1

=
1

2

(

−Ab
β(rk+ 1

2

) −
1

2

∂Ab
γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k)

)

Lgk+1∗
eb .

Secondly, we also have

0 =
∂Lc

d

∂ĝ
=
∂L

1

2

d

∂gk

∂gk

∂ĝ
+

∂L
1

2

d

∂gk+1

∂gk+1

∂ĝ
= R∗

exp(− 1

2
hζ)

∂L
1

2

d

∂gk

+R∗
exp( 1

2
hζ)

∂L
1

2

d

∂gk+1

. (36)

Now, we expand the term
∂L

1

2

d

∂gk

(rk, gk, rk+1, gk+1) on the right-hand side of the first

equation in the DLA algorithm (31) as

∂L
1

2

d

∂gk

(rk, gk, rk+1, gk+1) =
1

2

∂L
1

2

d

∂gk

(rk, gk, rk+1, gk+1) +
1

2

∂L
1

2

d

∂gk

(rk, gk, rk+1, gk+1) ,

and then make use of (36) to get the expression

∂L
1

2

d

∂gk

(rk, gk, rk+1, gk+1) =
1

2

∂L
1

2

d

∂gk

(rk, gk, rk+1, gk+1) −
1

2
R∗

exp(hζ)

∂L
1

2

d

∂gk+1

(rk, gk, rk+1, gk+1) .

Analogously, we find for the other term

∂L
1

2

d

∂gk

(rk−1, gk−1, rk, gk) =
1

2

∂L
1

2

d

∂gk

(rk−1, gk−1, rk, gk) −
1

2
R∗

exp(−hζ)

∂L
1

2

d

∂gk−1

(rk−1, gk−1, rk, gk) .

Then, the discrete forces in the RDLA algorithm take the form

F−(qk, qk+1) =
∂L

1

2

d

∂gk

∂gk

∂rβ
k

+
∂L

1

2

d

∂gk+1

∂gk+1

∂rβ
k

+
∂L

1

2

d

∂gk

(rk, gk, rk+1, gk+1)A
b
β(rk)Lgk∗eb

=
1

2

∂L
1

2

d

∂gk

(

−Ab
β(rk+ 1

2

) +
1

2

∂Ab
γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k) + Ab
β(rk)

)

Lgk∗eb
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+
1

2

∂L
1

2

d

∂gk+1

((

Ab
β(rk+ 1

2

) −
1

2

∂Ab
γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k)

)

Lgk+1∗
eb

− Ab
β(rk)Lgk+1

Adexp(−hζ)eb

)

,

F+(qk−1, qk) =
∂L

1

2

d

∂gk−1

∂gk−1

∂rβ
k

+
∂L

1

2

d

∂gk

∂gk

∂rβ
k

+
∂L

1

2

d

∂gk

(rk−1, gk−1, rk, gk)A
b
β(rk)Lgk∗eb

=
1

2

∂L
1

2

d

∂gk−1

((

Ab
β(rk− 1

2

) +
1

2

∂Ab
γ

∂rβ
(rk− 1

2

)(rγ
k − rγ

k−1)

)

Lgk−1∗
eb

− Ab
β(rk)Lgk−1

Adexp(hζ)eb

)

+
1

2

∂L
1

2

d

∂gk

(

−

(

Ab
β(rk− 1

2

) +
1

2

∂Ab
γ

∂rβ
(rk− 1

2

)(rγ
k − rγ

k−1)

)

+ Ab
β(rk)

)

Lgk∗eb .

By the linear dependence of A(r) on r, we have that

Ab
β(rk) = Ab

β(rk+ 1

2

) −
1

2

∂Ab
β

∂rγ
(rk+ 1

2

)(rγ
k+1 − rγ

k) ,

Ab
β(rk) = Ab

β(rk− 1

2

) +
1

2

∂Ab
β

∂rγ
(rk− 1

2

)(rγ
k − rγ

k−1) .

Substituting into the expressions for the discrete forces, we get

F−(qk, qk+1) =
1

2

∂Ld

∂gk

(

−
1

2

∂Ab
β

∂rγ
(rk+ 1

2

)(rγ
k+1 − rγ

k) +
1

2

∂Ab
γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k)

)

Lgk∗eb

+
1

2

∂Ld

∂gk+1

((

Ab
β(rk+ 1

2

) −
1

2

∂Ab
γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k)

)

Lgk+1∗
eb

− Ab
β(rk)Lgk+1∗

(eb − [hζ, eb])
)

=
1

4

∂Ld

∂gk

(

−
∂Ab

β

∂rγ
(rk+ 1

2

)(rγ
k+1 − rγ

k) +
∂Ab

γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k)

)

Lgk∗eb

+
1

4

∂Ld

∂gk+1

(

∂Ab
β

∂rγ
(rk+ 1

2

)(rγ
k+1 − rγ

k) −
∂Ab

γ

∂rβ
(rk+ 1

2

)(rγ
k+1 − rγ

k)

− 2Aa
β(rk)A

c
γ(rk+ 1

2

)cbca(r
γ
k+1 − rγ

k)
)

Lgk+1∗
eb ,

F+(qk−1, qk) =
1

2

∂Ld

∂gk−1

((

Ab
β(rk− 1

2

) +
1

2

∂Ab
γ

∂rβ
(rk− 1

2

)(rγ
k − rγ

k−1)

)

Lgk−1∗
eb

− Ab
β(rk)Lgk−1∗

(eb + [hζ, eb])
)

+
1

2

∂Ld

∂gk

(

−
1

2

∂Ab
γ

∂rβ
(rk− 1

2

)(rγ
k − rγ

k−1) +
1

2

∂Ab
β

∂rγ
(rk− 1

2

)(rγ
k − rγ

k−1)

)

Lgk∗eb

=
1

4

∂Ld

∂gk−1

(

−
∂Ab

β

∂rγ
(rk− 1

2

)(rγ
k − rγ

k−1) +
∂Ab

γ

∂rβ
(rk− 1

2

)(rγ
k − rγ

k−1)
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+ 2Aa
β(rk)A

c
γ(rk− 1

2

)cbca(r
γ
k − rγ

k−1)
)

Lgk−1∗
eb

+
1

4

∂Ld

∂gk

(

−
∂Ab

γ

∂rβ
(rk− 1

2

)(rγ
k − rγ

k−1) +
∂Ab

β

∂rγ
(rk− 1

2

)(rγ
k − rγ

k−1)

)

Lgk∗eb ,

where the cbca are the structure constants of the Lie algebra g, [ec, ea] = cbcaeb.

From the G-invariance of the continuous Lagrangian, one can derive that

∂Ld

∂gk

= −
1

h
L∗

g−1

k

∂`

∂ξ
,

∂Ld

∂gk+1

=
1

h
L∗

g−1

k+1

∂`

∂ξ
.

Therefore, we find that the discrete forces can be rewritten as

F−(qk, qk+1) = −
1

4

∂`

∂ξ

(

rγ
k+1 − rγ

k

h

)

(

−
∂Ab

β

∂rγ
(rk+ 1

2

) +
∂Ab

γ

∂rβ
(rk+ 1

2

)

)

eb

+
1

4

∂`

∂ξ

(

rγ
k+1 − rγ

k

h

)

(

∂Ab
β

∂rγ
(rk+ 1

2

) −
∂Ab

γ

∂rβ
(rk+ 1

2

) − 2Aa
β(rk)A

c
γ(rk+ 1

2

)cbca

)

eb

=
1

2

∂`

∂ξ

(

rγ
k+1 − rγ

k

h

)

(

∂Ab
β

∂rγ
(rk+ 1

2

) −
∂Ab

γ

∂rβ
(rk+ 1

2

) − Aa
β(rk)A

c
γ(rk+ 1

2

)cbca

)

eb ,

F+(qk−1, qk) = −
1

4

∂`

∂ξ

(

rγ
k − rγ

k−1

h

)

(

−
∂Ab

β

∂rγ
(rk− 1

2

) +
∂Ab

γ

∂rβ
(rk− 1

2

) + 2Aa
β(rk)A

c
γ(rk− 1

2

)cbca

)

eb

+
1

4

∂`

∂ξ

(

rγ
k − rγ

k−1

h

)

(

−
∂Ab

γ

∂rβ
(rk− 1

2

) +
∂Ab

β

∂rγ
(rk− 1

2

)

)

eb

=
1

2

∂`

∂ξ

(

rγ
k − rγ

k−1

h

)

(

∂Ab
β

∂rγ
(rk− 1

2

) −
∂Ab

γ

∂rβ
(rk− 1

2

) − Aa
β(rk)A

c
γ(rk− 1

2

)cbca

)

eb ,

Note that the sum of both forces F−(qk, qk+1) + F+(qk−1, qk) is a discretization of the

continuous force

F = −
∂`

∂ξa
ṙγBa

βγ = −
∂`

∂ξa
ṙγ

(

∂Aa
γ

∂rβ
−
∂Aa

β

∂rγ
− cabcA

c
βA

b
γ

)

around the point qk. Now, we are in a position to prove the following

Theorem 5.6 Consider a nonholonomic Chaplygin system with data: a free and proper

action Ψ : G × Q −→ Q, a G-invariant Lagrangian L : TQ −→ R and a G-

invariant distribution D on Q. Assume that Q/G is a linear space, the Lie group G

is abelian and the constraints have a linear dependence on the base point. Then, if the

reduced continuous Chaplygin system is Hamiltonian, the midpoint RDLA algorithm is

a variational integrator.

Proof: If the Lie group is abelian, then the structural constants vanish, ca
bc = 0.

Therefore, we can see the discrete forces as

F−(qk−1, qk) = F (
rk−1 + rk

2
,
rk − rk−1

h
)

F+(qk, qk+1) = F (
rk + rk+1

2
,
rk+1 − rk

h
) .
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As a consequence, the vanishing of F implies the vanishing of the discrete forces and

hence the RDLA algorithm takes the form

D1L
∗
d(rk, rk+1) +D2L

∗
d(rk−1, rk) = 0 ,

which is the variational integrator derived from the discrete Lagrangian L∗
d : Q/G ×

Q/G −→ R. QED

6. Some Numerical Examples

To illustrate the performance of the algorithms obtained from the nonholonomic

integrator, we consider in this section two examples: a nonholonomic particle with

a quadratic potential and a mobile robot with fixed orientation.

6.1. Nonholonomic particle

Let a particle of unit mass be moving in space, Q = R
3, with Lagrangian L : TQ −→ R

L = K − V =
1

2

(

ẋ2 + ẏ2 + ż2
)

− (x2 + y2) ,

and subject to the constraint

Φ = ż − yẋ = 0 .

The constraint distribution is then given by

D = span

{

∂

∂x
+ y

∂

∂z
,
∂

∂y

}

.

Note that this system is a Chaplygin system, as defined above. In fact, consider

the Lie group G = R and its trivial action by translation on Q,

Ψ : G×Q −→ Q

(a, (x, y, z)) 7−→ (x, y, z + a)

Now, D is the horizontal subspace of the principal connection A = (dz − ydx)e, where

e denotes the generator of the Lie algebra.

As can be easily verified, in the present example the energy is a conserved quantity

of the nonholonomic system. We are interested here in the extent to which the

different integration schemes actually preserve this quantity, as well as the constraint.

Energy is commonly used when dealing with symplectic integrators as a fairly reliable

indicator [9, 33].

The tested algorithms are the following:

• Nonholonomic integrator: Lα
d and ωd,α with α =

1

2
• Runge-Kutta: 4th order, time step fixed

• Benchmark: Matlab 5.1 ODE 113 (Predictor-Corrector)
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The 4th order Runge-Kutta method is a classical integrator which does not make

use of the mechanical nature of the system. To implement it, we have first eliminated

the Lagrange multiplier from the nonholonomic equations, so that one gets second order

equations in (x, y, z), amenable to integration by RK4.

On the other hand, the nonholonomic integrator has been designed taking into

account the special structure of the problem.
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Runge−Kutta   
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Figure 1. Energy behaviour of integrators for the nonholonomic particle with

a quadratic potential. Note the long-time stable behaviour of the nonholonomic

integrator, as opposed to classical methods such as Runge Kutta.

The two algorithms are run with the same stepsize, h = 0.2 to provide a reasonable

comparison between them. The Benchmark algorithm is a high order, multi-step,

predictor-corrector method which has been carried out with a very small stepsize. It

can be regarded as the true solution for this example.

The results are shown in the figures. In Figure 1, we have plotted the energy

behaviour of the integrators for a short time, but the same pattern is observed if we carry

out the simulation for arbitrarily long periods of time. It is immediately apparent that

the nonholonomic integrator and the Runge-Kutta method have qualitatively different

behaviours. We take as a good indication the fluctuating energy behaviour of the

nonholonomic integrator, since this property is also observed in symplectic methods.

The extent to which the three algorithms respect the constraints is plotted in

Figure 2. Notice that the results from the Benchmark algorithm and the nonholonomic

integrator are indistinguishable, whereas the behaviour of the Runge-Kutta technique

is much less satisfactory.
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Figure 2. Illustration of the extent to which the tested algorithms respect the

constraint. The Runge Kutta technique does not take into account the special nature

of nonholonomic systems which explains its bad behaviour in this regard.

6.2. Mobile robot with fixed orientation with a potential

Consider a planar mobile robot with three wheels which roll whithout slipping with a

fixed orientation [17]. Let (x, y) ∈ R
2 denote the position of the center of the body,

θ ∈ S
1 the orientation angle of the wheels, which are controlled by means of a drive

mechanism, and ψ ∈ S
1 the rotation angle of the wheels. The configuration space for

this system is Q = R
2 × S

1 × S
1. The kinetic energy of the robot is given by

K =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

3

2
Iωψ̇

2 ,

where m is the mass of the robot, I its moment of inertia and Iω the axial moment

of inertia of each wheel, respectively. We have introduced an artificial potential

V = 10 sinψ in order to “force” the behaviour of the numerical methods. The

Lagrangian of the system is then L = K − V .

The constraints, induced by the conditions of no lateral sliding and rolling without

sliding of the wheels, are ẋ − R cos θψ̇ = 0, ẏ − R sin θψ̇ = 0, where R is the radius of

the wheels.

This system is again a Chaplygin system with Lie group G = (R2,+),

Φ : G×Q −→ Q

((a, b), (x, y, θ, ψ)) 7−→ (x+ a, y + b, θ, ψ) ,

and principal connection A = (x − R cos θdψ)e1 + (dy − R sin θdψ)e2. The constraint

distribution D is given by the horizontal subspace of A. As the constraints are linear,

the energy is a conserved quantity for the continuous system.
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Figure 3. Energy behaviour of integrators for a mobile robot with fixed orientation.
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Figure 4. Illustration of the extent to which the tested algorithms respect the

constraints ω1 = 0 and ω2 = 0. The behaviour of the nonholonomic integrator and the

Benchmark algorithm is indistinguishable.

It can be immediately checked that the reduced system on Q/G = S
1 × S

1 is the

free system determined by the reduced Lagrangian

L∗ =
1

2
Iθ̇2 +

1

2
(3Iω +mR2)ψ̇2 − 10 sinψ .
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From the discussion in Section 5.3.2, we know that the midpoint DLA scheme can

be passed to Q/G and that the RDLA algorithm is indeed variational in the sense

defined in [16]. However, the hypotheses of Theorem 5.6 are not fulfilled, and hence we

cannot assure that the RDLA is a variational integrator. Nevertheless, the comparison

of the DLA algorithm with the 4th order Runge-Kutta method in the approximation of

the energy and the constraints turns out to be very satisfactory (see Figures 3 and 4).

Again, the 4th order Runge-Kutta method is implemented by elimination of the Lagrange

multipliers, while the DLA scheme is implemented using the Newton-Raphson technique.

The stepsize employed is h = 0.2.
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