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Abstract

This paper addresses the optimal control and selection of gaits in a class of dy-
namic locomotion systems that exhibit group symmetries. We study near-optimal
gaits for an underwater eel-like robot, though the tools and analysis can be ap-
plied more broadly to a large family of nonlinear control systems with drift. The
approximate solutions to the optimal control problem are found using a truncated
basis of cyclic input functions. This generates feasible paths that approach the op-
timal one as the number of basis functions is increased. We describe an algorithm
to obtain numerical solutions to this problem and present simulation results that
demonstrate the types of solutions that can be achieved. Comparisons are made
with experimental data using the REEL II robot platform.

1 Introduction

Biological organisms use an interesting and varied set of motion patterns, or gaits, to
move themselves through their environment. In fact, many organisms choose from a
finite, though parameterized, set of gaits, depending on several factors, including the
gait’s appropriateness for the terrain and its efficiency within a particular operating
regime [3, 24]. Many different forms of locomotion have been studied from both bi-
ological and robotic perspectives. Along with wheeled mobile platforms and legged
locomotion, other forms of robotic (and biological) locomotion that have been studied
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include snake-like motions [11, 25, 39], inchworm motions [26], and even the motion of
water-bugs [23] and paramecia [27, 29, 46]. In all these systems, the dynamics of the
system are subject to nonholonomic constraints and the system relies on oscillatory,
phased inputs to generate any desired (even uniform) motion. This class of undulatory

locomotion systems also includes less obvious forms of locomotion, such as the reori-
entation of a satellite using internal rotors [7, 31, 44, 56], the reorientation of a falling
cat [21, 42], finger gaiting (in grasping), and the movement of underwater and aerial
vehicles [10, 14, 34, 39, 58]. Such undulatory locomotion systems have many potential
applications, for example, in the actuation of underwater robots and micro-robots.

In the area of optimal controls, early work by Bailleuil [4] took a geometric viewpoint
in studying control and motion planning. Brockett [8, 9] derived the optimal controls
for a special class of driftless nonholonomic systems and showed that the optimal input
patterns can be described by sinusoidal and elliptical functions. Walsh, Montgomery,
and Sastry [52, 56] also studied the motion planning problem for nonholonomic systems,
by focusing on systems that evolve on a Lie group. More recently, Ostrowski [46] for
driftless systems, and Koon and Marsden [30] (see also Cortés and Mart́ınez [12]) for
dynamic systems, have investigated optimal control of nonholonomic mechanical sys-
tems that exhibit group symmetries and derived a set of simplified necessary conditions
for the control inputs.

Since it is very difficult to obtain analytical solutions for the optimal controls except
in extremely simple cases, it is beneficial to pursue numerical solution techniques. We
briefly survey some of the work in this area, specifically in the context of nonholonomic
locomotion systems. Some of the original work is due to Dubins [19] and Reeds and
Shepp [51] who studied the optimal motion of a car-like vehicle with and without a
forward velocity constraint, respectively (see also [5, 54] for interesting revisitations of
the problem). Laumond et al. [33] describe an algorithm for planning near minimum
distance trajectories for a nonholonomic car moving among obstacles. Work by Kumar
and others [18, 57] has studied optimal control techniques to determine the control
inputs for nonholonomic systems, while avoiding obstacles (modeled as inequality con-
straints) and optimizing a suitable cost function such as energy consumption. Since
these methods incorporate the full system dynamics, the optimal solutions include the
feedforward actuator force/torque inputs, as well as the state space trajectories. In [50],
Ostrowski, Desai, and Kumar studied the use of these techniques applied to robotic
locomotion systems, demonstrating their application to the snakeboard system. They
were able to show the possibility of gait transitions and motion planning for dynamic
nonholonomic systems; however, the computational cost of solving the optimal control
problem using these techniques is quite expensive.

Our current work seeks to strike a balance between generating the motion plans using
simple, un-optimized input sets and solving the full optimal control problem for a rela-
tively unrestricted class of inputs. Thus, the oft-cited work of Murray and Sastry [43]
is important, since this found an early use of sinusoids as sub-optimal inputs for solving
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the steering problem for nonholonomic systems. A similar setting is used by Leonard
and Krishnaprasad [35] to study the motion control and planning problem for systems
on Lie groups. Ostrowski and Burdick [49] (and later [40]) discuss a variety of control
plans for such systems by investigating different sinusoidal input motions of the shape
variables, which were termed “gaits”. These led to a set of open-loop, feedforward
motion primitives that can then be incorporated into a feedback control scheme [40].

Closest to the current work is that of Fernandes, Gurvits, and Li [21, 22], who solved
for near optimal solutions for the “locomotion” problem of the falling cat. They pro-
posed a mechanism for choosing the control input as a linear combination of smooth
orthonormal basis functions. This is the same principle which we have applied to the
current context, and we note that much of the analysis presented here fundamentally
is based on developing suitable extensions to [22] to deal with systems with drift. In
fact, although Fernandes et al. limited the applications they described to driftless non-
holonomic systems, the techniques can be seen to have a fairly broad application to
nonlinear control systems, including those with drift, in which the inputs can be chosen
to be cyclic in nature.

In this paper, we focus our attention on developing optimal controls for two large classes
of locomotion problems that can be described within the same unifying framework. On
the one hand, we consider locomotion systems whose interaction with the environment
is modeled by some linear constraints ω1, . . . , ωk such that the trajectories of the system
must satisfy ωj

a(q)q̇a = 0, for 1 ≤ j ≤ k. The example of the snakeboard mentioned
before [36, 45] is a paradigm of this large class of systems. On the other hand, we also
treat the problem of snake and eel-like robotic locomotion, where the interaction of
the system with the environment is via either viscous or fluid drag forces acting on the
body. In this respect, we discuss specifically anguilliform, or eel-like, locomotion. We
build on our previous work on locomotion [45, 49], where we used tools from differential
geometry to simplify the analysis of nonholonomic dynamic systems with group sym-
metries. We formulate the optimal control problem for these systems in a manner that
is easy to compute. There is a substantial body of literature in biological, undulatory
locomotion systems (see, for example, [2, 3, 16]) that suggests that such systems may
select gaits and switch between gaits in order to minimize the energy expended during
locomotion. Motivated by this, we study the optimal gaits that minimize the energy
expenditure for the system, in our case an eel robot. We also contrast the resulting
near-optimal solutions with those that have been generated previously in the literature
without regards to optimization, using constructive, open-loop techniques [39, 40].

The outline of the paper is the following. In Section 2, we describe the mathematical
formulation of nonholonomically constrained and eel-like robotic locomotion. As an
example, we introduce the underwater REEL II robot. In Section 3, we discuss the
unifying framework for both types of locomotion. In Section 4, we present the Basis
Algorithm for control systems with non-zero drift, as an extension of the work in [22],
to solve numerically the optimal control problem for these systems. Section 5 contains
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several simulations for the REEL II robot, where in some of them we have contrasted
this approach with previous work on open-loop gaits [39]. We also present experimental
results and based on our experience discuss the effectiveness of these techniques for use
in real experimental platforms. Finally, we have gathered in the Appendix the proof of
the convergence of the Basis Algorithm under Bounded Input, Bounded State (BIBS)
stability.

2 Lagrangian dynamics and the reduction process

Both nonholonomically constrained locomotion and eel-like robotic locomotion can nat-
urally be formulated in the context of dynamic mechanical systems, and so are governed
by Lagrange’s equations. In this section, we review the well-suited framework devel-
oped for them elsewhere. We refer the reader to [6, 39, 45, 49] for a more thorough
discussion on the derivation of the equations.

Let Q be an n-dimensional manifold, describing the set of all possible configurations
of the locomotion system. We assume the existence of a Lagrangian function, L(q, q̇),
governing the dynamics of the system, which is usually given by its kinetic energy.
When studying locomotion systems, it is important to note that the configuration
manifold, Q, can always be divided into two parts: the position (and orientation)
of the body and the internal shape of the system (see [26, 49]). The position space
of the body will generally be a Lie subgroup of SE(3); for example, SE(2) for a
snake or paramecium, SE(2) × R for a blimp, or SO(3) for a satellite or the falling
cat. The remaining configuration variables of the system represent the internal shape
and constitute the shape space M . In the standard mathematical nomenclature,
Q = M ×G is called a trivial principal fiber bundle with base space M and fiber

G. The configuration space Q is “trivial” because the product structure is global, and
it is a “principal” bundle because the fiber is a Lie group. The Lie group structure
(which is common to all locomotion systems) allows us to develop a systematic method,
called Lagrangian reduction, for reducing the equations of motion to a more compact
form [6, 45, 49].

In working with the Lie groups SE(2) and SE(3), we use a homogeneous matrix repre-
sentation, so that the group action becomes simply matrix multiplication. An element
g ∈ G thus represents the transformation between an inertial or ground frame and a
frame attached to the moving body. Associated with a Lie group, G, is its Lie algebra,
g, which can be identified with the tangent space at the identity, TeG. The elements
of the Lie algebra associated with SE(2) or SE(3) represent a reduced velocity, and
are the twists encountered in screw theory. In particular, we will be interested in body

velocities (that is, velocities taken in a body-fixed frame), where an element ξ ∈ g is
defined as ξ = g−1ġ. This is in contrast to spatial velocities, represented by ξs = ġg−1,
taken in an inertial frame. The distinction arises naturally due to the non-Abelian
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(non-commutative) nature of matrix multiplication on the Lie group. This fact can
also be observed in the nonvanishing of the so-called structural constants of the Lie
algebra, defined as follows: let e1, . . . , ek be a basis of g, then the structure constants
ccab are given by the equation

[ea, eb] = ccabec .

The relation between the body and the spatial velocities is given by ξs = ġg−1 =
g(g−1ġ)g−1 = gξg−1 = Adgξ, where Ad : G × g −→ g denotes the adjoint action of
the Lie group on its Lie algebra (see, for instance, [37]).

Conservation laws naturally arise when a Lagrangian remains fixed under the action
of a Lie group G and there is no external forcing. More formally, let the action of
g ∈ G on q = (r, h) ∈ M × G = Q be given as Φg(r, h) = (r, gh), where gh repre-
sents the multiplication of G. The Lagrangian function is said to be G-invariant if
L(Φg(q), DqΦgvq) = L(q, vq) for all g ∈ G and (q, vq) ∈ TQ. The physical interpretation
of G-invariance is that the Lagrangian is invariant with respect to changes in the body-
fixed frame (i.e., changes in the position and orientation of the body with respect to an
inertial frame). This property implies that we can consider the reduced Lagrangian

` given by `(r, ṙ, ξ) = L(r, e = g−1g, ṙ, ξ) = L(r, g, ṙ, gξ). The body momentum is then
defined by p = ∂`

∂ξ
, which is related to the spatial momentum ps via p = Ad∗gp

s, where
Ad∗g : g∗ −→ g∗ is the dual mapping of Adg, that is, < Ad∗g(µ), ξ >=< µ,Adg(ξ) > for
ξ ∈ g and µ ∈ g∗.

For all unconstrained systems that admit group symmetries, Noether’s theorem [1]
states that the invariance of the Lagrangian implies a momentum conservation law,
ṗs = 0. In other words, the system has a first integral, for example, conservation of
linear and angular momentum. Examples of “locomotion” systems that obey these
laws are the falling cat and the satellite with rotors [32, 42]. In body coordinates, it
can be shown [47, 45] that the reduced Lagrangian ` can be written as

` =
1

2
(ξT , ṙT )

(

I(r) I(r)A(r)
A

T (r)I(r) m(r)

)(

ξ
ṙ

)

,

and the equations of motion take the form

ξ = g−1ġ = −A(r)ṙ + I−1(r)p , (1)

ṗ = ad∗ξp , (2)

M(r)r̈ = −C(r, ṙ) +N(r, ṙ, p) . (3)

Here ad : g× g −→ g denotes the adjoint action of the Lie algebra onto itself, adeaeb =
ccabec and ad∗ : g × g∗ −→ g∗ corresponds to the associated dual map, ad∗ea

eb = cbace
c,

where e1, . . . , ek is the dual basis of e1, . . . , ek. A(r) is called the “local form” of the
mechanical connection and I is the locked inertia tensor. I(r) describes the total
inertia of the system when all joints are frozen at configuration r. The mechanical
connection plays a central role in understanding locomotion [49]. Its importance stems
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from the fact that it determines the robot’s motion as a combination of momentum, p,
and internal shape changes, (r, ṙ). Hence, the connection will determine how internal

shape changes create a net robot motion. Notice also that the term A(r) is a function
of the shape, r, only. In fact, the symmetries imply that g factors out of the system
completely, since this variable enters only once, on the left-hand side of Eq. 1. Note
also that if we write ξ = ξaea, p = pae

a, then Eq. 2 takes the form ṗ = ξacbacpbe
c, and

further substituting ξa by −A
a
αṙ

α + Iabpb (cf. Eq. 1), we get

ṗ = ṙα
(

−A
a
αc

b
ace

c
)

pb + pd

(

Iadcbace
c
)

pb . (4)

In anguilliform locomotion external forces have to be taken into account. In fact,
the ability to locomote is generated through the frictional force terms. The choice of
friction models allows us to model different types of snake-like (land-based or aquatic)
locomotion. Using a fluid drag model, we can simulate the effect of an eel swimming.
Using a viscous friction model, we can approximate the motion of a snake traveling
over a smooth surface. We do not enter here into the details of modeling the different
types of frictional forces. The interested reader is referred to [20, 39] for a complete
discussion. A key observation is that for both of these models, the frictional forces F
are invariant under the action of the Lie group, thus allowing us to incorporate them
into the reduction process. Denoting τ(r, ṙ, ξ) = F (r, g−1g, ṙ, g−1ġ), the momentum
equation takes the form

ṗ = ad∗ξp+ τ(r, ṙ, ξ) .

Expanding ad∗ξp as we did in Eq. 4, one can find that the equations of motion read

g−1ġ = −A(r)ṙ + I−1(r)p , (5)

ṗ = pTσpṙ(r)ṙ +
1

2
pTσpp(r)p+ τ(r, ṙ, ξ) , (6)

M(r)r̈ = −C(r, ṙ) +N(r, ṙ, p) + τr , (7)

where τr corresponds to the actuators that act internally to change the shape of the
system.

We also note that for nonholonomically constrained locomotion systems, the conserva-
tion laws must be modified to account for the effect of constraint forces. These effects
are seen in examples such as the snakeboard [36, 45, 48], which can build up momen-
tum even though the forces of constraint do no work on the system. The equations
that result from the reduction process [6] are analogous with those seen in the uncon-
strained case, with the exception that the momentum is no longer fixed, but may vary,
depending on the internal shape. If we further assume that forces only act internally
to change the shape of the system, the reduced equations of motion are

g−1ġ = −A(r)ṙ + I
−1(r)p , (8)

ṗ =
1

2
ṙTσṙṙ(r)ṙ + pTσpṙ(r)ṙ +

1

2
pTσpp(r)p , (9)

M(r)r̈ = −C(r, ṙ) +N(r, ṙ, p) + τr . (10)
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The derivation of Eq. 9, known in the literature as nonholonomic momentum equa-

tion, is beyond the scope of this paper (see [6]). Roughly speaking, we can say that
the right-hand side of Eq. 9 contains the expression for ad∗ξp obtained in Eq. 4, plus
several terms related to the interaction between the constraints and the symmetry di-
rections. Eq. 10 describes the control inputs required to produce changes in the shape
variables. An important part of this formulation is the definition of a nonholonomic

momentum, p, that describes the momentum of the system along the unconstrained
directions. Eq. 9, called the nonholonomic momentum equation [6], models the
evolution of the nonholonomic momentum with changes in the shape space. Finally,
Eq. 8 describes the changes in position (and orientation) of the locomotion system.
The nonholonomic connection, A, plays a similar role as above by formally ex-
pressing the intuitive relationships between internal shape changes ṙ and their effect
on locomotion ξ = g−1ġ.

Geometric methods for developing optimal controls for systems of the form given by
Eq. 8–10 are discussed in [12, 30, 46]. In this paper, we shall address the optimal control
problem from a numerical perspective, as we outline in Section 4. In contrast to [50],
which also used a numerical approach, we study optimal gaits generated by means of
a fixed, finite basis.

2.1 The robotic eel

The robotic eel, or REEL II, robot [39] consists of five rigid links with servo-motors
as the joint actuators. The set of joint angles is transmitted to the robot by radio
control and the REEL II is untethered and contained in waterproof casing, see Fig. 1.
The robot was built to be used as a platform to test various locomotive gaits, such as
forward, backward, turning in place and coiling gaits (see [39]) and to provide a tool
for the further study of the motion planning problem for undulatory locomotion.

Figure 1: The REEL II robot.

We have performed the simulations presented in Section 5 for the five link model of the
eel, since it is the one which corresponds to the REEL II robot. The model consists of a
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planar, serial chain of 5 identical links of length 2d, massm and inertia J (Fig. 2A). Each
joint is assumed to be independently actuated. All quantities are taken in reference to
an inertial frame.

A
F

F

(x ,y )τ

B

φ
4

m,J
2

(x  ,y  )

(x  ,y  )

4

55

4
φ

1

φ
2

φ
5d

1(x ,y )1
(x  ,y  )

−θ

(x,y)

i

iy

ix

i i

2

Figure 2: A. Model of the eel as a planar, serial chain of links. B. Forces and torques
on link i.

The configuration space is thus Q = SE(2)×S
1×S

1×S
1×S

1. The variables (x, y, θ) ∈
SE(2) describe the position and orientation of the middle link, whereas the joint angles
(φ1, φ2, φ4, φ5) stand for the shape variables. The Lagrangian of the system is the kinetic
energy

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Jθ̇2 +

1

2
J
∑

i6=3





i
∑

j=h(i)

φ̇j + θ̇





2

+
1

2
m
∑

i 6=3

(

ẋ2
i + ẏ2

i

)

,

where (xi, yi) is a short-hand notation to denote

(

xi

yi

)

=

(

x
y

)

+ sg(i)d

(

cos θ
sin θ

)

+ sg(i)d

i
∑

k=h(i)

f(i, k)

(

cos(θ +
∑k

j=h(i) φj)

sin(θ +
∑k

j=h(i) φj)

)

.

The functions sg, f , and h are given by

sg(i) =

{

−1 if i < 3
1 if i > 3

f(i, k) =

{

2 if i 6= k
1 if i = k

h(i) =

{

2 if i < 3
4 if i > 3

In fact, (xi, yi) corresponds to the coordinates of the center of the ith link1. A straight-
forward computation shows that L is SE(2)-invariant. Before writing the expression
for the reduced Lagrangian `, we introduce a scaling to nondimensionalize the variables.
Let

x̄ =
x

d
, ȳ =

y

d
, θ̄ = θ , p̄ =

p

md
, φ̄i = φi , J̄ =

J

md2
. (11)

1We remark that although the formulae are written explicitly for the 5-link case, the equations are
easily generalized to an n-link robot (n odd), with θ measured at the center link.
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Then we have that

` =
1

2
(ξT , ṙT )

(

I(r) I(r)A(r)
A

T (r)I(r) m(r)

)(

ξ
ṙ

)

,

where

I =





5 0 3(s2 − s4) + s12 − s45
0 5 3(c4 − c2) + c45 − c12

3(s2 − s4) + s12 − s45 3(c4 − c2) + c45 − c12 I33



 ,

IA =





s12 s12 + 3s2 −(s45 + 3s4) −s45
−c12 −(c12 + 3c2) c45 + 3c4 c45

1 + 2c1 + c12 + J̄ (IA)32 (IA)33 1 + 2c5 + c45 + J̄



 ,

m =









1 + J̄ 1 + J̄ + 2c1 0 0
1 + J̄ + 2c1 6 + 2J̄ + 4c1 0 0

0 0 6 + 2J̄ + 4c5 1 + J̄ + 2c5
0 0 1 + J̄ + 2c5 1 + J̄









.

and I33 = 4c1 +6c2 +2c12 +4c5 +6c4 +2c45 +16+5J̄ , (IA)32 = 6+4c1 +3c2 + c12 +2J̄ ,
(IA)33 = 6+4c5 +3c4 +c45 +2J̄ . The notation ci = cos φ̄i, si = sin φ̄i, cij = cos(φ̄i+ φ̄j)
and sij = sin(φ̄i + φ̄j) is understood. Eq. 5 then reads as

ξ = g−1ġ = −A(r)ṙ + I−1(r)p .

For the modeling of the frictional forces acting on each link (see Fig. 2B), we assume
that pressure differentials in the directions parallel to the moving body are decoupled
from pressure differentials perpendicular to the body. For the fluid drag model, this
yields forces acting at each point on the body as

F
‖
i = −µ‖wsgn(v

‖
i ) · (v

‖
i )

2 , F⊥
i = −µ⊥wsgn(v⊥i ) · (v⊥i )2 , (12)

where µ
‖
w and µ⊥w are drag coefficients for the water depending on the effective area of

the link, its shape and the density of the water, and v
‖
i , v

⊥
i are the projections of the

vector (ẋi, ẏi) along the direction parallel and perpendicular to the link, respectively.
The discontinuity in sgn(v) implies that this expression is not very tractable for use in
calculations. For the purposes of simulation, we limit our attention to a linear, viscous
force approximation. This can be thought of as a first-order approximation to the
quadratic drag forces described in Eq. 12, which we note are also odd functions of the
velocity. In general, for systems with periodic behavior, viscous forces approximations
can be used, provided coefficients of friction are chosen to dissipate an equal amount
of energy over one cycle of motion [17].

Using this approximation, we have a linear expression for the friction forces of the form

F
‖
approx = −µ‖v‖, F⊥

approx = −µ⊥v⊥, where µ‖ and µ⊥ are defined by a least squares
fit of Eq. 12 over some small range around v = 0. For the viscous friction model, we
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assume that a force exists developing frictional forces proportional to the parallel and
perpendicular velocities of link i as:

F
‖
i = −µ‖vv

‖
i , F⊥

i = −µ⊥v v⊥i , (13)

where µ
‖
v, µ⊥v are coefficients of viscous drag.

With this in mind, the derivation of the expression for the frictional forces for the eel is
straightforward, though not trivial, and requires some care in tracking the appropriate
transformations. One can find that

τ‖ = −νCHTH















ḡ−1 ˙̄g
˙̄φ1
˙̄φ2
˙̄φ4
˙̄φ5















, τ⊥ = −λCGTG















ḡ−1 ˙̄g
˙̄φ1
˙̄φ2
˙̄φ4
˙̄φ5















,

with µ̄‖ = µ‖/m, µ̄⊥ = µ⊥/m,

C =





1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0



 ,

H =













c12 s12 −(2s1 + s12) 0 −2s1 0 0
c2 s2 −s2 0 0 0 0
1 0 0 0 0 0 0
c4 s4 s4 0 0 0 0
c45 s45 2s5 + s45 0 0 2s5 0













, and

G =













−s12 c12 −(1 + 2c1 + c12) −1 −(1 + 2c1) 0 0
−s2 c2 −(1 + c2) 0 −1 0 0
0 1 0 0 0 0 0

−s4 c4 1 + c4 0 0 1 0
−s45 c45 1 + 2c5 + c45 0 0 1 + 2c5 1













.

Then, the equation for the momentum, Eq. 6, takes the form





ṗ1

ṗ2

ṗ3



 =





ξ3p2

−ξ3p1

ξ2p1 − ξ1p2



+ τ‖ + τ⊥ .

In order to obtain a numerical solution for the path of the eel as a function of time,
we will assume that we have full control of the shape variables φi, i 6= 3, that is,
ui = φ̇i. The assumption of full control of the shape is reasonable since the REEL II
has actuators at each joint. A typical example of the motion of the eel can be seen in
Fig. 3.
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Figure 3: An illustration of the motion of the eel during the forward gait obtained
in [39] using traveling waves. The path followed by the robot in the (x, y)-plane is
given by the dashed curve in the figure on the left. Several snapshots of the eel’s shape
are superimposed on the path at times 4.0, 4.25, 4.5 and 4.75. A plot of one cycle of
the joint angles is given in the figure on the right.

3 A common setting for Robotic Locomotion

Given the discussion of the previous section, we can consider the following set of equa-
tions as an equally valid description of the dynamics of the two classes of locomotion
systems we are treating:

g−1ġ = −A(r)ṙ + I
−1(r)p , (14)

ṗ =
1

2
ṙTσṙṙ(r)ṙ + pTσpṙ(r)ṙ +

1

2
pTσpp(r)p+ ρṙ(r)ṙ + ρp(r)p , (15)

r̈ = w . (16)

Observe that Eq. 15 includes the full set of terms to take into account the presence
of both nonholonomic constraints and linear forcing functions. Note also that, since
we assume full control of the shape variables, we have recast to our convenience Eq. 7
(respectively, Eq. 10) as Eq. 16.

These equations can be put into the standard form of a nonlinear control system with
affine inputs. If the matrix σṙṙ ≡ 0 (as is the case for the eel), we take as states
z = (g, p, r) ∈ G × R

s ×M , where s denotes the dimension of the unconstrained fiber
directions (which coincides with k = dimG for anguilliform locomotion). Define the
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nonzero drift term

f(z) =





g I
−1(r)p

1
2p

Tσpp(r)p+ ρp(r)p
0



 ,

and consider the vectors

Bi(z) =





−gA(r)ei

(pTσpṙ(r) + ρṙ(r))ei
ei



 , 1 ≤ i ≤ dim(M) = m,

where ei is an m-vector having a 1 in the ith row and 0 otherwise. Putting B = (Bi(z)),
we can rewrite Eqs. 14–16 as

ż(t) = f(z) +B(z)u , (17)

where u(t) ∈ R
m is considered to be the input vector, defined by ui(t) = w̄i(t), with

w̄i(t) ≡
∫ t

0 wi(s)ds, i.e. u is a velocity. In the case that σṙṙ(r) 6≡ 0 (as is the case, for
example, with the snakeboard), we must use the full, dynamically extended system, so
that the state variable is now z = (g, p, r, ṙ) ∈ G× R

s × TM , the input is u = w (that
is, an acceleration), and the quantities in Eq. 17 are redefined as

f(z) =









−gA(r)ṙ + gI−1(r)p
1
2 ṙ

Tσṙṙ(r)ṙ + pTσpṙ(r)ṙ + 1
2p

Tσpp(r)p+ ρṙ(r)ṙ + ρp(r)p
ṙ
0









,

Bi(z) =









0
0
0
ei









, 1 ≤ i ≤ dim(M) = m.

In the following, we will denote by d the dimension of the state space, which will
correspond to either d = n+ s or d = n+ s+m, depending on the case considered.

Let us assume that the system described by Eqs. 14–16 is controllable. This means
that given initial and final states, z0 and zf , with zf sufficiently close to z0, there exists
a control input u∗(t) such that the solution z∗(t) of Eq. 17 with z∗(0) = z0 satisfies
z∗(T ) = zf . The examples of the snakeboard and the robotic eel are both controllable
systems [39, 48]. For general systems of the form given by Eq. 17, there exist some
computable criteria to verify this property developed elsewhere [53], and further refined
for nonholonomically constrained systems with symmetry in [48].
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4 The optimal control problem: The Basis Algorithm

Having established Eqs. 14–16 as a common setting for nonholonomically constrained
and anguilliform locomotion, we are next interested in determining what the best set of
inputs is to generate a given motion. For instance, for the eel this would imply effecting
the desired motion without spending “too much” energy. Since our main concern is
to obtain gaits or cyclic paths in the shape variables resulting in a net motion of the
system, we will restrict our attention to the following class of input functions

U = {u : [0, T ] −→ R
m |u(t) is piecewise differentiable andu(0) = u(T )} .

Then, we would like to find the solution to the following Optimal Control Problem
(OCP).

OCP1: Let z0, zf be initial and final states. Determine the control inputs u ∈ U
steering the system defined in Eq. 17 from z0 to zf after time T > 0 while minimizing
the cost functional

J (u) =

∫ T

0

(

u1(t)
2 + · · · + um(t)2

)

dt =

∫ T

0
〈u , u〉dt .

Note that u is regarded as a function in L2([0, T ]; Rm) ≡ L2([0, T ]) with associated
norm ‖u‖2

2 , J (u).

In answering a similar question for driftless control systems, in [21, 22] it was observed
that, because of the form of the functional J , the OCP1 can be reformulated as an
infinite dimensional problem in l2. In fact, let {ei(t)}∞i=1 be an orthonormal basis for
L2[0, T ]. Then, the inputs u(t) can be expressed as u(t) =

∑∞
i=1 αiei(t) for some

sequence α = (αi)
∞
i=1 ∈ l2 and the OCP1 can be rephrased as follows,

OCP2: Given initial and final states, z0 and zf , and the equations

ż = f(z) +B(z)u , u(t) =
∞
∑

i=1

αiei(t) , (18)

find α ∈ l2 of minimum cost, J (α) =
∑∞

i=1 α
2
i , ‖α‖2

l2
, such that the solution of Eq. 18

starting from z0 reaches zf at time t = T .

Obviously, finding one exact solution of this infinite dimensional problem, if such a so-
lution exists, would imply great computational difficulties. However, following the idea
of Ritz Approximation Theory, one can alternatively try to approximate the solutions
of the finite dimensional problems that arise from the truncation of Eq. 18 to the first
N basis elements. That is, for N > 0 we restrict the set of inputs to

UN =

{

u ∈ U | u(t) =
N
∑

i=1

αiei(t) , α = (α1, . . . , αN ) ∈ R
N

}

.
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Due to the nature of undulatory locomotion systems, the method proposed in [22] with
the basis induced by {sinnt, cosnt}∞n=1 is very appropriate for treating these systems
with nonzero drift. In this way, we focus on a subclass of periodic inputs and look for
suboptimal solutions producing near-optimal gaits. Furthermore, the examples we
have tested so far show precisely that the modes playing the most important roles are
those corresponding to low frequencies, so it is not unreasonable at all to restrict the
controls to the first basis elements. The general issue of whether the system is still
controllable using this truncated basis is a subtle one. However, it has been shown that
undulatory locomotion systems, such as the snakeboard [36, 45], are locally controllable
using such a class of inputs. We are also confident, based on series expansions for several
classes of nonlinear control systems, that the same can be said for most controllable
systems given a sufficient number of input basis elements.

In the sequel, we briefly discuss the Basis Algorithm developed in [21, 22] and its
adaptation for control equations with nonzero drift. For the technical details of the
algorithm we refer the reader to the cited articles.

4.1 Basis Algorithm

Let N be a nonzero integer and define the m×N matrix Φ = (e1, . . . , eN ). Truncating
Eq. 18 to the first N basis elements we get

{

ż = f(z) +B(z)ΦαT

z(0) = z0 .
(19)

A given input u ∈ UN , or equivalently α = (α1, . . . , αN ) ∈ R
N , determines a solution

z(t, α) of Eq. 19. Clearly, since f(z) and B(z) are differentiable, the terminal point of
this solution z(T, α) will vary smoothly with α. Define then the function g : R

N −→ R
d

by g(α) = z(T, α) and let zf be the final state where we want to steer the system. Let
‖ · ‖Rd denote the Euclidean norm of R

d. Now, we approximate the original OCP2 in
l2 by the finite-dimensional problem PN,γ in R

N defined as follows:

PN,γ : Given N ∈ N and γ > 0, determine the solutions (z∗N,γ , α
∗
N,γ) of Eq. 19 that

minimize

JN,γ(α) = 〈α, α〉 + γ‖g(α) − zf‖2
Rd ,

N
∑

i=1

α2
i + γ‖g(α) − zf‖2

Rd .

Note that g(α∗
N,γ) = z∗N,γ(T ).

In the following, we describe a procedure to numerically approximate the solutions of

PN,γ . Put σ =
1

γ
and alternatively consider

JN,σ(α) = σ〈α, α〉 + ‖g(α) − zf‖2
Rd .
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Assume that αk is an approximation of α∗
N,σ, the global minimum of JN,σ. If g(α) is

known, we can utilize ideas from quadratic programming to find a modified Newton’s
rule, given by

αk+1 = αk − µ(σI +ATA)−1(σαk +AT (g(αk) − zf )) , (20)

to update αk. Here, I denotes the identity matrix, A =
∂g

∂α
(αk) and 0 < µ < 1 is

a parameter. In order to save computational time, the inverse of the positive definite
matrix I+ATA can be replaced by the inverse of ATA when σ � 1. We may also vary
µ, increasing its value from 0 to 1 as αk reaches α∗

N,σ, to speed up the convergence of
the algorithm.

Since g is smooth, it can be shown that there exists a σ0 such that ∀0 < σ ≤ σ0,
JN,σ(α) is locally convex near a solution of our truncated problem. Thus, we can
guarantee the convergence of the sequence {αk} to α∗

N,σ whenever we start from a close
enough α0 and σ is small enough. Accordingly, we always took a very small σ in our
simulations. We first looked for a α0 approximately steering the system from z0 to
zf based on the perturbation analysis described in [38, 39] and ran the algorithm to
obtain a solution α. We checked that running the algorithm with several different initial
conditions α0 we obtained the same optimal solution. That led us to reasonably assume
that the algorithm was not giving a local minima, but the true optimal solution. Of
course, a more thorough analysis on the region of convergence of the algorithm would
be necessary, but will not be treated here.

In order to implement the method we need to compute g(αk) and its Jacobian A. If
g(α) is not known, the following numerical method can be used. Consider the function

Y (t) =
∂z

∂α
(t). It is clear that Y (T ) = A. Note also that Y (0) = limt→0 Y (t) = 0. A

differential equation for Y (t), obtained from Eq. 19, is given by

Ẏ (t) =
d

dt

∂z

∂α
=
∂ż

∂α
=

∂

∂α

(

f(z) +B(z)ΦαT
)

=
∂f

∂z

∂z

∂α
+

m
∑

i=1

∂Bi

∂α
ui +BΦ =

(

∂f

∂z
+

m
∑

i=1

∂Bi

∂z
ui

)

Y +BΦ .

Thus, in order to update αk, the following differential equations must be integrated
from 0 to T ,











ż = f(z) +B(z)ΦαT
k , z(0) = z0 ,

Ẏ =

(

∂f

∂z
+

m
∑

i=1

∂Bi

∂z
ui

)

Y +BΦ , Y (0) = 0 ,
(21)

so we can set g(αk) = z(T ) and A = Y (T ).

We have summarized this procedure in terms of the algorithm described in Table 1.
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Input:

Initial and final states z0, zf ∈ R
d.

Vector fields f(z) and Bi(z), 1 ≤ i ≤ m.

Step 0:

(i) Choose N > 0 and define Φ = (e1, . . . , eN ).
(ii) Initialize with α ≡ α0.

Step 1:

(i) Choose 0 < γ and 0 < µ < 1.

Step 2:

(i) Solve the set of differential equations given by Eq. 21.
(ii) Set g(α) = z(T ) and A = Y (T ).
(iii) Update α according to the modified Newton’s rule (cf. Eq. 20).

Step 3:

(i) Examine ‖g(α) − zf‖Rd and |JN,γ(αupdt) − JN,γ(α)|.
(ii) If the results are satisfactory enough, exit. Else if they verify a

certain tolerance dependent on γ and µ, go to Step 1, increasing
the value of γ and/or µ. Otherwise, repeat Step 2.

Output:

Approximation to the optimal control input u(t), t ∈ [0, T ], linking
z0 and zf .

Table 1: Basis Algorithm
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Remark 4.1. Note that for driftless control equations it is necessary to choose α0 6= 0
to initiate the algorithm, but this is not the case when z0 is not an equilibrium point
of the nonzero drift vector field f . In our simulations for the eel, we made use of the
perturbation analysis described in [38, 39] to choose α0 with a few nonzero entries to
let the algorithm develop smoothly by itself the coefficients of the optimal solution α∗

N .

Remark 4.2. When running the Basis Algorithm, it is convenient to increase γ and
µ from smaller to bigger values as α comes close to the solution (which is determined
by the desired configuration zf and the actual one z(T ), and the fact that the cost
ceases to decrease). As a result, the robustness and performance of the algorithm are
improved. This procedure is based on the observation made in [22] in the sense that
when α is far from its solution, by choosing µ small we can always make the cost
function decrease. This can easily be extended from driftless systems to the class of
systems under consideration.

Remark 4.3. In the computations for our examples, we have always taken N = 2fm,
where m = dimM is the number of input functions and f is the maximum frequency
we want to consider at each input, which in our simulations was f ≤ 5. The open-
loop control of several undulatory locomotion systems [39, 36, 49] shows that the modes
playing the most important roles are those corresponding to low frequencies, so it seems
reasonable to restrict the controls to the first basis elements. The addition of higher
modes (that is, increasing f) slightly modifies the solution, in accordance with the
analysis of Section 4.2, which shows that by increasing N and γ, we get closer to the
optimal solution of OCP2. We note, though, that the main role in this optimal solution
is still played by the first modes.

We have chosen then the following orthonormal basis of L2[0, 2π],

e1 =
1√
π

sin t e1 , e2 =
1√
π

cos t e1 ,

...

e2f−1 =
1√
π

sin(ft) e1 , e2f =
1√
π

cos(ft) e1 ,

...

eN−2f+1 =
1√
π

sin t em , eN−2f+2 =
1√
π

cos t em ,

...

eN−1 =
1√
π

sin(ft) em , eN =
1√
π

cos(ft) em ,

where recall that ei, 1 ≤ i ≤ m denotes the standard ith basis element, as defined
above.
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4.2 Correctness of the Basis Algorithm

As was mentioned earlier, the idea underlying the method is that by making γ and N
tend to infinity, we will obtain solutions (zN,γ , uN,γ) of PN,γ which tend to solutions
(z∗, u∗) of the original problem. In fact, the type of convergence found in [21, 22]
for driftless systems can be readily extended to systems with nonzero drift that are
bounded input, bounded state (BIBS) stable. That is,

Assumption 1. There exists a continuous function φ(δ, z0), δ ≥ 0 such that if ‖u‖2 ≤ δ
then the corresponding solution z(t) of Eq. 17 verifies ‖z‖C[0,T ] = supt∈[0,T ]‖z(t)‖Rd ≤
φ(δ) <∞ .

Under this assumption, we have the following result.

Theorem 4.4. Let S∗ ⊆ C[0, T ] ⊕ L2[0, T ] be the set of optimal solutions (z∗, u∗) of

the original system OCP2 with optimal cost J∗, and let SN,γ ⊂ C[0, T ] ⊕ L2[0, T ] be

the set of optimal solutions (zN,γ , uN,γ) of the approximated problem PN,γ with optimal

cost JN,γ. Then, {SN,γ} converge to S∗ in the sense

lim
γ→∞

lim
N→∞

d(SN,γ , S∗) = 0 ,

and {JN,γ} converges to J∗ in the sense

lim
γ→∞

lim
N→∞

JN,γ = J∗ .

Here, the measure d of C[0, T ] ⊕ L2[0, T ] is defined as

d(X,Y ) = sup
{(z,u)∈X}

inf
{(z̄,ū)∈Y }

(

‖z − z̄‖C[0,T ] + ‖u− ū‖2

)

,

for X, Y ⊂ C[0, T ] ⊕ L2[0, T ].

The proof of Theorem 4.4 for systems with nonzero drift is similar to that of the driftless
case developed in [21], taking into account the next two simple lemmas:

Lemma 4.5. Let {uk}∞k=1 be a sequence of inputs in L2[0, T ] such that ‖uk − u‖2 →
0, for some u ∈ L2[0, T ], and let {zk}, z be the corresponding solutions of Eq. 17,

respectively. Then, for a fixed γ > 0, there exists k0 > 0 such that for all k ≥ k0,

‖zk‖C[0,T ] < γ + φ(δ) , if ‖u‖2 < δ .

Lemma 4.6. Let {uk}∞k=1 be a sequence of inputs in L2[0, T ] such that ‖uk − u‖2 →
0, for some u ∈ L2[0, T ], and let {zk}, z be the corresponding solutions of Eq. 17,

respectively. Assume that both f and B are at least C 1. Then, for all γ0 > 0, there

exists k0 > 0 such that for all k ≥ k0,

‖zk − z‖C[0,T ] ≤ L‖uk − u‖2 , if ‖u‖2 < δ ,

where L is a constant depending on γ0 and ‖u‖2.
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We refer to the appendix for the proof of these results.

Remark 4.7. In other words, Theorem 4.4 ensures that given a sequence of solutions
{

(zN,γp , uN,γp) ∈ SN,γp

}

there exists a subsequence {(zNk ,γpl
, uNk ,γpl

)}∞k,l=1 and a solu-
tion (z∗, u∗) ∈ S∗ such that

‖uNk,γpl
− u∗‖2 −→ 0

‖zNk ,γpl
− z∗‖C[0,T ] −→ 0 ,

as Nk, γpl
tend to infinity.

Remark 4.8. For the example of the eel, taking into account that the friction term
ρp(r)p+ ρṙ(r)ṙ always opposes its motion, we can consider that the physical solutions
(z(t), u(t)) are such that ‖p(t)‖ ≤ C < ∞, for sufficiently large C � 0. With this
hypothesis on the solutions one can easily prove BIBS stability.

5 Simulations for the eel

In all the simulations shown below, we have used the nondimensional equations de-
scribing the motion of the robotic eel. Thus, the axes on the plots are all unitless. The
friction coefficients µ̄⊥ and µ̄‖ are set to 18 and 1.8, respectively. The non-dimensional
inertial parameter J̄ is taken to be 0.37. These values are taken to match experimental
data taken in previous work [41]. The cost to optimize is then

J =

∫ T

0

(

φ̇2
1 + φ̇2

2 + φ̇2
4 + φ̇2

5

)

dt ,

which corresponds to the energy expenditure of the joint actuators. The final time is
T = 2π, and the initial and final values of the orientation angle θ and of the joint angles
are set to zero, except when making comparisons with the traveling wave simulations
and where otherwise specified. Also, the maximum frequency considered is always
f = 5 in each input function.

5.1 Forward motion

In this section, we present three different optimal gaits for the eel, all of them having
in common a forward displacement.

Forward motion with zero initial and final momentum

We first ran the Basis Algorithm setting (x0, y0) = (0, 0) and (xf , yf ) = (3, 0). The
optimal motion of the eel can be observed in Fig. 4. Roughly speaking, it seems that

19



the eel tries to execute a traveling wave, adjusting at the same time the initial and final
configurations that we have specified.

More precisely, it can be observed in the figure that the eel starts from a straight
position and quickly evolves to the first peak in the (x, y)-plot, where the links acquire
a shape ready for a traveling wave. This leads to a sort of “bursting” behavior – the eel
first coils up in the proper way and then springs forward in a way that generates the
most momentum gain possible. During this bursting period, the eel moves through to
the largest value in y, creating at the same time the largest value of the p1 component
of the momentum. The traveling wave continues further in time, until in the last part
of this cycle the eel adjusts itself to the final state, while at the same time allowing the
friction forces to dissipate the momentum down to its final value.
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Figure 4: Forward motion of the eel, with zero initial and final momentum. The initial
and final points for the shape trajectories are marked with a “o” and the evolution
directions are depicted with arrows. The cost is J = 4.72435.

Building up momentum

In this case, we ran the Basis Algorithm setting (x0, y0) = (0, 0) and (xf , yf ) = (3, 0),
and the final momentum p1 was set equal to 2. As a consequence, this gait is similar
to the former one, except for the fact that the eel does not let the friction dissipate all
its momentum.

Note in Fig. 5 the same coiling behavior at the beginning. After that, the eel smoothly
evolves in a kind of traveling wave, with the amplitudes of the angles φ1 and φ5 smaller
than the other two. We note that this makes sense since the motion of the two outer
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Figure 5: Forward motion of the eel building up momentum. The initial and final
points for the shape trajectories are marked with a “o” and the evolution directions
are depicted with arrows. The cost is J = 4.1058.

links will generate less propulsive effect than those more central to the body. This is
partially seen in biological eels, where the head generally moves less than the rest of
the body, though clearly this may be for different reasons than optimization of energy.

The fast transition to the traveling wave in both this gait and the former one can be
seen in the joint angle plots of Figs. 4 and 5. The graphs quickly “escape” from the
initial and final point (0, 0), to reach the traveling wave.

Traveling wave versus optimal motion

In this simulation, we compare the optimal gaits generated using the Basis Algorithm
method with the open-loop gaits proposed in [39], some of which are motivated by
biological observations [25]. In this and subsequent comparisons, the initial and final
states for the optimal solutions are chosen to match those found in the corresponding
traveling wave approach, so that a direct comparison can be made. For this reason, the
optimal gaits and the associated costs are different than in the previous cases, where
the initial and final states are chosen with a fully extended configuration (φi = 0).

The path described in the (x, y)-plane by the eel under both simulations look quite
similar (see Fig. 6). The optimal gait in the shape variables seems to be a kind of
deformation of the traveling wave, just the one needed to generate almost the same time
evolution (just a little larger) in the forward momentum, p1, and in the components,
p2 and p3 (just a little smaller).
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Figure 6: Comparison between a traveling wave (shown dashed) as used in [39] and the
optimal approach (shown solid) of the forward motion of the eel building up momentum.
The costs are J = π3/9 ≈ 3.44514 and J = 2.9, respectively. The initial and final
points for the shape trajectories are marked with a “o” and the evolution directions
are depicted with arrows.
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Figure 7: The first five harmonics of the optimal forward motion of Fig. 6.

It is interesting to note that the magnitudes of the joint angles φ1 and φ5 are quite
smaller than in the traveling wave, whereas with the other two angles, φ2 and φ4,
they are quite similar. Indeed, the optimal gait seems to be a traveling wave with
smaller amplitudes in the head and tail of the eel. This is supported by looking at the
coefficients for the higher harmonics, as shown in Fig. 7, which are basically negligible
in comparison to the fundamental frequency. Also, in relation to the other comparisons
presented below, this comparison is the one that presents the smallest saving of energy.

22



This suggests that the traveling wave approach used in [39] is actually very appropriate
to drive the eel.

5.2 Turning motion

In this section we show the comparison of the optimal approach with the traveling wave
approach for the rotation gait.

Traveling waves versus optimal motion

As said before, the initial and final states for the optimal solutions are chosen to match
those found in the corresponding traveling wave gait. Note that in this comparison the
shape plots are quite different between the two gaits (see Fig. 8). The relative saving of
energy is also much larger than in the comparison of the forward motion. This gait had
very interesting behaviors when tested experimentally, as we will show in Section 5.4.
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Figure 8: Comparison between the traveling waves (shown dashed) as used in [39] and
the optimal approach (shown solid) of the turning in place motion of the eel. The costs
are J = π3/9 ≈ 3.44514 and J = 1.4414, respectively. The initial and final points for
the shape trajectories are marked with a “o” and the evolution directions are depicted
with arrows.
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5.3 Lateral motion (parallel parking)

In this section, we present two parallel parking gaits (that is, gaits that generate motion
in the direction perpendicular to the forward direction pointed by the eel robot). The
first one has zero initial and final momentum, whereas the second one is a comparison
with the traveling wave approach.

Lateral motion with zero initial and final momentum

In this case, we ran the Basis algorithm with (x0, y0) = (0, 0) and (xf , yf ) = (0, 2). The
motion of the eel during the execution of the gait can be observed in Fig. 9. Note that
the effect of this gait in the (x, y) plane is similar in nature to that one of the optimal
lateral (or parallel parking) gait found in another dynamic robotic locomotion system,
the snakeboard system [13, 50]. It is interesting to notice that the maximum values of
the forward and lateral momentum occur almost simultaneously and are located in the
(x, y) plot around x = −0.6.
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Figure 9: Lateral motion of the eel, with zero final momentum. The cost is J = 7.9147.

Unfortunately, the optimal inputs for the shape angles drive them to values near 180◦

(there is a significant amount of “coiling”), so it was impossible to test this gait in our
real experiments.

Traveling waves versus optimal motion

Note in the comparison with the traveling wave gait that the motion in the variable
x is practically unnoticeable (see Fig. 10). As in the turning gait, the shape plots are
quite different. Observe also the relative saving of energy.
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J = π3/9 ≈ 3.44514 and J = 2.05, respectively. The initial and final points for
the shape trajectories are marked with a “o” and the evolution directions are depicted
with arrows.

The magnitudes of the joint angles φ1 and φ5 in the optimal gait are half the size of
those found in the traveling waves, again suggestive of the biological observation that
the head (and sometimes the tail) of the eel tend to move less than the rest of the body.
We again could not implement this gait in real experiments, due to the limitations on
the maximum joint angles for the REEL II robot.

5.4 Comparison with experimental motions

We have implemented in the REEL II robot several optimal gaits. The experimental set-
up is the following. The robot shape is radio-controlled. A PC ground station calculates
the shape variables (joint angles) corresponding to each of them, which are transmitted
using an off-the-shelf radio controller and a custom built, PIC microcontroller-based
PC/RC converter to a receiver in the nose of the robot. Using off-the-shelf RC com-
ponents, control of the robot is possible to depths of approximately 1m, although our
system is designed to operate only on the surface. The joint actuators are position
controlled, medium-torque servo-motors with a specified maximum angular velocity of
315◦/sec, and an maximum angular velocity in water (observed) of 45◦/sec, which en-
ables 0.5 Hz operation for the robot. The robot operates for approximately 20 minutes
using a 600mAh battery.
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Once the optimal gaits were computed, we store their shape trajectories in the PC.
These gaits were radio-transmitted to the eel. We perform our optimal experiments
using a fixed, digital camera to record the behavior of the robot in a pool of still
water. Image processing is performed off-line, in real-time using the Matrox Imagining
Library by a custom-designed multi-tasking software system based on the LiveObject

architecture for mobile robotics, presented in [15]. We use edge detection, followed by a
closing operation to locate the robot as a single blob in the image. The robot’s position
and orientation in the image plane are determined from the centroid and orientation
of this blob. Once data is available in the image plane, the position of fixed landmarks
in the image yields a homography that we use to map the position and orientation of
the robot from image plane coordinates into a real-world coordinate frame.
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Figure 11: Matching of the optimal forward motion of Fig. 4 with experimental data

Our mathematical model of the eel in water leads to three non-dimensional parameters
that influence the dynamics in water: the inertia parameter, J̄ , and the drag parameters
corresponding to the perpendicular and parallel friction forces, µ̄⊥ and µ̄‖ respectively.
We tuned these drag parameters using data from one experiment until our simulations
matched the observed data. We estimated the dimensional parameters to be µ⊥ = 0.35
and µ‖ = 0.15. We were then able to use these same values for the drag parameters
to match the observed data from all experiments, except for one case (turning in place
swimming) which we will describe below.

An important limitation we have found in the implementation of several optimal gaits
has been that the REEL II cannot surpass ±45o or ±π/4 radians in any of its joint angles
due to technical reasons related with the mounting of the individual joint motors, a fact
that directly eliminates the possibility of implementing in the pool several of the gaits
proposed above. The matching of both simulations and experiments, however, yielded
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Figure 12: Matching of the optimal forward motion of Fig. 5 with experimental data
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Figure 13: Matching of the optimal forward motion of Fig. 6 with experimental data

quite satisfactory results. We carried out experiments for the optimal gaits found
in Section 5.1: forward motion with zero initial and final momentum gait (Fig. 11),
building up momentum gait (Fig. 12) and the comparison with the traveling wave gait
(Fig. 13), and in Section 5.2: the comparison with the traveling wave (Fig. 14), although
we could not test the gait in Fig. 8 because it violated the 45o actuator limits, so we
implemented instead one of the gaits found during the iteration of the Basis Algorithm.
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Figure 14: Matching of the one of the spinning gaits found in the iteration to obtain
the optimal one (see Fig. 8) with experimental data

It should be noted that since the process of extracting experimental data from video
images captures the centroid and the orientation of the major axis of the body of the
eel, we do not expect exact overlap of the data. Generally, the simulation results, which
show the position and orientation of the center of the mass of the middle link only, will
generally fluctuate more, centered on the experimental data.

The only gait that showed a marked mismatch between experiment and simulation
was the pure rotation gait, as shown in Fig. 14. The rotation accomplished in the
experiment turned out to be larger than predicted by the model. We attribute the gain
in the experimental data to added mass effects of the water that we did not take into
account in our model for the eel.

6 Discussion and Conclusion

We have proposed and demonstrated in practice a simple computational procedure for
generating near-optimal inputs for an eel-like robot. These techniques have good poten-
tial for use in other dynamic robotic locomotion systems, as well as general nonlinear
control systems with drift. We have focused on using a truncated basis of sinusoidal
inputs so that the optimal energy over this class of inputs can easily be computed. We
also showed that in the limit as this basis is made complete, the solution found by our
procedure approaches the true optimal solution. Although we have not shown that our
truncated basis can necessarily generate any desired final state, we have found in prac-
tice that solutions can be obtained using very few terms, and often only one sinusoid
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for each joint angle was necessary. Further research in this area would be necessary to
understand more completely what the minimal basis should be in order to guarantee
this for any given system.

In general our experimental work showed good agreement with the simulations. We
were able to implement both the forward motion and the rotational motions in the
eel. These matched qualitatively the simulations quite well, and we note particularly
that the optimal inputs for the turning in place motions were much better than those
generated using the analytic approach of [39]. Of course, since we are using a model-
based approach to optimize the system, we expect that the experimental results will
only be as good as our model. With the very crude fluid drag and actuator model that
is used, some potential limitations may arise. For example, we note that we did not
have good success in implementing optimal solutions that had significant high frequency
components. This is due to the fact that the actuators on the eel could not always track
the fastest motions of the inputs. For this reason, we also tested the optimal inputs
with fewer harmonics, with generally good results. Also, the effect of changing the
parallel frictional parameter can have a significant impact on the shape of the input
motions. Thus, if this parameter is not correct (or inappropriately models the effect
of parallel drag), the resulting near-optimal solutions will not be correct. However, we
found that the experimental results using our estimated parameters were close to those
predicted by the model.

We note that although this computational approach is generally easier to implement
and has better convergence properties than our previous work [50], there do appear to
be certain limitations to this method. For example, it is unlikely that these tools could
be applied to general motion planning procedures involving inequality constraints, such
as those found in obstacle avoidance or given by actuator constraints. This was seen in
our attempts to implement the lateral motions in our experiments, where the necessary
input angles for the eel far exceeded the limitations of the REEL II robot. Limiting
joint angles could most likely be incorporated into the optimization routines (e.g., by
placing conservative limits on the α’s), but we have not attempted to do so here.

It is important to emphasize, though, that the implementation and real-time solution
of these near-optimal gaits was much more readily done, even for the complex dynamics
of the five-link eel, than through other methods we have explored in the past. These
techniques thus provide an excellent method for solving for unconstrained motion plans
for complex dynamic systems. They can also be used to generate discrete modes, such
as forward, rotation, etc., that could be used by a higher level planner in a hierarchical
motion planning strategy.
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Appendix

Proof of Lemma 4.5

Take γ > 0. Since φ(δ) is continuous, there exits ε > 0 such that for all ε ≤ ε0,
‖φ(δ + ε) − φ(δ)‖ < γ. Then, φ(δ + ε0) < γ + φ(δ). Assume ‖u‖2 < δ. For ε0, there
exists k0 such that if k ≥ k0, ‖uk‖2 ≤ ‖u‖2 +ε0 < δ+ε0. Thus, from the BIBS stability,
we deduce that

‖zk‖C[0,T ] < φ(δ + ε0) < γ + φ(δ) , ∀k ≥ k0 .

QED

Proof of Lemma 4.6

Denote by z̄k(t) the difference z̄k(t) = zk(t) − z(t). We have

˙̄zk(t) = f(zk(t)) − f(z(t)) +B(zk(t)) (uk(t) − u(t)) + (B(zk(t)) −B(z(t))) u(t) ,

which implies

‖ ˙̄zk(t)‖Rd ≤ ‖f(zk(t)) − f(z(t))‖Rd + ‖B(zk(t))‖Rd×m‖uk(t) − u(t)‖Rm

+ ‖B(zk(t)) −B(z(t))‖Rd×m‖u(t)‖Rm . (22)

By the mean value theorem (see [28]), we have that

|f i(zk) − f i(z)| =
∣

∣

∣

∂f i

∂z
(cik) · (zk − z)

∣

∣

∣
≤
∥

∥

∥

∂f i

∂z
(cik)

∥

∥

∥

Rd
‖zk − z‖Rd , 1 ≤ i ≤ d ,
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where cik(t) belongs to the segment in R
d joining zk(t) and z(t). Then,

‖f(zk) − f(z)‖Rd ≤
√
d max

1≤i≤d

∥

∥

∥

∂f i

∂z
(cik)

∥

∥

∥

Rd
‖zk − z‖Rd .

Now,

‖cik(t)‖Rd ≤ max
1≤i≤d

‖cik(t)‖Rd ≤ max
1≤i≤d

{‖zk(t)‖Rd , ‖z(t)‖Rd}

≤ max
1≤i≤d

{

‖zk(t)‖C[0,T ], ‖z(t)‖C[0,T ]

}

≤ γ0 + φ(δ) , ∀k ≥ k0 ,

where we have used Lemma 4.5 in the last inequality. Otherwise said, we have that

for k ≥ k0, the cik(t) belong to the compact set B(0, γ0 + φ(δ)) for all i. Since ∂f i

∂z
is

continuous for 1 ≤ i ≤ d, we have that ‖ ∂f i

∂z
‖Rd < Ki over B(0, γ0 + φ(δ)) for some

constant Ki. Therefore

‖f(zk) − f(z)‖Rd ≤ C1‖zk − z‖Rd , ∀k ≥ k0 ,

with C1 =
√
d max

1≤i≤d
Ki.

Similarly, we can prove that there exist constants C2, C3 > 0 such that

‖B(zk) −B(z)‖Rd×m ≤ C2‖zk − z‖Rd ,

‖B(zk)‖Rd×m ≤ C3 ,

for all k ≥ k0. Substituting in Eq. 22, we get

‖ ˙̄zk(t)‖Rd ≤ C1‖z̄k(t))‖Rd + C2‖z̄k(t))‖Rd‖u(t)‖Rm + C3‖uk(t) − u(t)‖Rm

= (C1 + C2‖u(t)‖Rm) ‖z̄k(t))‖Rd + C3‖uk(t) − u(t)‖Rm , ∀k ≥ k0 .

Denote by ψ1(t) = C1 + C2‖u(t)‖Rm and ψ2(t) = C3‖uk(t) − u(t)‖Rm , and for each
k ≥ k0 let us set up the equation:

{

q̇k = ψ1(t)qk + ψ2(t)
qk(0) = 0 .

By Lemma 2.5 in [28], we conclude that ‖z̄k(t)‖Rd ≤ qk(t). Integrating the equation
for qk(t), applying Hölder inequality and taking the maximum in t ∈ [0, T ], we finally
obtain

‖zk(t) − z(t)‖C[0,T ] ≤ L‖uk − u‖2 , ∀k ≥ k0 ,

where L is a constant depending on γ0 and ‖u‖2. QED

Proof of Theorem 4.4

As we see below, the proof of the theorem in [22] remains valid under the application
of the precedent lemmas. For the sake of completeness we review it here.
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The proof consists of two parts. First, consider the following problems

P∞,γ : ż = f(z) +B(z)u , z0 , zf ∈ R
d , u(t) =

∞
∑

i=1

αiei(t) ,

with cost function and minimum cost, respectively

J∞,γ(α) =
∞
∑

i=1

α2
i + γ‖z(T ) − zf‖2

Rd , J∞,γ = min
α

(J∞,γ(α)) .

Now, we are going to prove that

J∞,γ −→ J∗ , d(S∞,γ , S∗) −→ 0 , as γ → +∞ .

In fact, consider the sequence of solutions {(zp, up) ∈ S+∞,γp} associated to {γp}+∞
p=1

such that γp → +∞ as p→ +∞. Then, it can be checked that

‖up‖2
2 ≤ J∞,γp ≤ J∞,∞ ≡ J∗ < +∞ , (23)

γp‖zp(T ) − zf‖2
Rd ≤ J∗ < +∞ , ∀p . (24)

Since L2[0, T ] is a reflexive space and because of Eq. 23, there exists a subsequence
{upl

}∞l=1 ⊆ {up}∞p=1 which is weakly convergent to some u ∈ L2[0, T ] with ‖u‖2
2 ≤ J∗,

(see Th. 10.6 in [55]). In fact, since J∗ is a minimum, necessarily ‖u‖2
2 ≡ J∗ and then

‖upl
− u‖2 → 0, as l → ∞. By Lemma 4.6, we deduce

‖zpl
− z‖C[0,T ] −→ 0 , as l → ∞ ,

where z is the solution of Eq. 17 corresponding to u. On the other hand, using Eq. 23
and the convergence seen for {upl

}, {zpl
}, we have that z(T ) = zf and J∞,γpl

→ J∗ as
l → +∞. In particular, (z, u) ∈ S∗ and d(S∞,γpl

, S∗) → 0 as l → +∞.

To complete the proof, it remains to show that JN,γ → J∞,γ and d(SN,γ , S∞,γ) → 0 as
N → ∞ and γ remains fixed.

It is clear that JN+1,γ ≤ JN,γ ≤ J1,γ , for all N , and thus

lim
N→∞

JN,γ ≥ J∞,γ .

Let (z, u) be a solution in S∞,γ , where u(t) =
∑∞

i=1 αiei(t). Define for each k ∈ N

uk(t) =
k
∑

i=1

αiei(t) ,

and consider the solutions of żk = f(zk)+B(zk)uk, zk(0) = z0. By how we have chosen
the inputs uk(t), it is straightforward that ‖uk − u‖2 → 0 as k → ∞. Then, again by
Lemma 4.6,

‖zk − z‖C[0,T ] → 0 , as k → ∞ .
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Since
Jk,γ ≤ Jk,γ(zk, uk) ≤ J∞,γ + δk ,

where δk = γ‖zk(T ) − zf‖2
Rd → 0 as k → ∞, we have that limk→∞Jk,γ = J∞,γ.

Finally, take any sequence {(zN , uN ) ∈ SN,γ}∞N=1. Since {uN}∞N=1 is bounded in
L2[0, T ] (cf. Eq. 23), there exists a subsequence {(zNk

, uNk
)}∞k=1 such that uNk

→ u
weakly as k → ∞. Reasoning as in the first part of the proof we have that ‖uNk

−u‖2 →
0 and, by the use of Lemma 4.6, there exists z ∈ C[0, T ] such that

ż = f(z) +B(z)u , z(0) = z0 , and ‖zNk
− z‖C[0,T ] → 0 , as k → ∞ .

Now,

‖u‖2
2 + γ‖z(T ) − zf‖2

Rd = lim
k→∞

(

‖uNk
‖2
2 + γ‖zNk

(T ) − zf‖2
Rd

)

= lim
Nk→∞

JNk,γ = J∞,γ ,

and then (z, u) ∈ S∞,γ. QED

36


