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1. Introduction

The reduction theory of time-independent nonholonomic systems with symmetry has
already been discussed at great length in the literature, at least for the case where the
symmetry is defined in terms of a regular (i.e. free and proper) Lie group action: see
e.g. [2, 3, 5, 8, 9, 11, 12, 15, 21]. In [6], this theory was reconsidered in the framework of
a general model for constrained dynamical systems on a symplectic manifold.

The purpose of the present paper is to extend the symmetry and reduction theory
of nonholonomic mechanics to the time-dependent setting, where the constraints as well
as the Lagrangian (or Hamiltonian) may exhibit an explicit time-dependence. We will
thereby consider the general case of constraints with a possibly nonlinear dependence
on the velocities. A natural geometric environment for dealing with time-dependent
mechanics is provided by cosymplectic geometry. In analogy with the treatment of the
autonomous case in [6], we will propose a general model for constrained systems on
a cosymplectic manifold which covers, in particular, the description of time-dependent
nonholonomic mechanics. The reduction theory of time-dependent nonholonomic systems
with symmetry will then be discussed in terms of this general model. This work can be
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seen as an extension of the cosymplectic reduction procedure described in [1], to time-
dependent systems with constraints.

The scheme of the paper is as follows. In Section 2 we recall some general aspects
on cosymplectic structures and their reduction under symmetry. In Section 3 we then
propose a model for constrained systems on a cosymplectic manifold, and discuss the
existence and uniqueness of a constrained dynamics. Sections 4 and 5 are devoted to the
general theory of symmetry and reduction of this model. Finally, in Section 6, a particular
case is considered of symplectic reduction under a 1-parameter group of symmetries.

Throughout this paper, all geometric structures and maps are supposed to be of
class C∞. We will make no notational distinction between a vector bundle over a manifold
and the module of its smooth sections: if π : F → N denotes a vector bundle over a
manifold N and X is a C∞-section of π, we will simply denote this by X ∈ F . From
the context it should always be clear whether we are referring to a point (vector) of the
bundle, or to a section. The tangent map of a smooth map f between manifolds will be
denoted by Tf .

2. Cosymplectic structures

For more details about the concepts and properties mentioned in this section, we refer
to the paper by C. Albert [1] (see also [4]).

A cosymplectic vector space is given by a triple (V,Ω, η) consisting of a (2n + 1)-

dimensional real linear space V (with n ≥ 1), an exterior 2-form Ω ∈
∧2

V ∗ and a 1-form
(co-vector) η ∈ V ∗ such that Ωn ∧ η 6= 0.

A cosymplectic manifold is a triple (M,Ω, η), where

• M is a (2n+ 1)-dimensional real smooth manifold (n ≥ 1);

• Ω is a closed 2-form and η a closed 1-form on M (i.e. dΩ = 0 and dη = 0);

• (TmM,Ωm, ηm) is a cosymplectic vector space for all m ∈M .

From the definition it immediately follows that Ωn ∧ η 6= 0 everywhere, i.e. Ωn ∧ η is a
volume form on M . Moreover, it is not difficult to check that a cosymplectic structure
induces a linear bundle isomorphism

χ
Ω,η

: TM −→ T ∗M, v ∈ TmM 7−→ ivΩm + ηm(v)ηm . (1)

On a cosymplectic manifold there exists a distinguished vector field, called the Reeb
vector field, defined by R = χ−1

Ω,η
◦ η or, equivalently, by

iRΩ = 0 , iRη = 1 .

One can prove that in a neighbourhood of each point of a cosymplectic manifold (M,Ω, η),
one can define canonical coordinates (t, qi, pi) (with i = 1, . . . , n) in terms of which Ω, η
and R read (cf. [1]):

Ω = dqi ∧ dpi , η = dt , R =
∂

∂t
.
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Next, with any smooth function f ∈ C∞(M) one can associate a Hamiltonian vector
field Xf , defined by

iXf
η = 0 , iXf

Ω = df −R(f)η . (2)

In terms of canonical coordinates, this vector fields is of the form

Xf =
∂f

∂pi

∂

∂qi
−
∂f

∂qi

∂

∂pi

.

Note that, in spite of the denomination, Xf does not represent the dynamics of a time-
dependent Hamiltonian system with Hamiltonian f . The latter is described instead by
the so-called evolution vector field Ef = Xf +R (see e.g. [4]).

For later use we still introduce the following notation: given a subbundle U ⊂ TM ,
denote the cosymplectic orthogonal complement by,

U⊥ = χ−1
Ω,η

(Uo), (3)

where Uo denotes the annihilator of U in T ∗M .
We now turn to the symmetry and reduction theory for cosymplectic structures. Let

(M,Ω, η) be a cosymplectic manifold, with Reeb vector field R. Let G be a Lie group,
with Lie algebra g, and assume there exists an action Φ of G on M by automorphisms
of the cosymplectic structure, i.e. Φ : G ×M → M defines a smooth Lie group action
such that for all g ∈ G, with Φg := Φ(g, .), we have

Φ∗
gΩ = Ω and Φ∗

gη = η.

We will call such an action Φ a cosymplectic action. For any vector ξ ∈ g, the corre-
sponding infinitesimal generator of Φ on M will be denoted by ξM .

A cosymplectic action Φ is said to admit a momentum map if there exists a smooth
map J : M −→ g∗, with g∗ the dual space of the Lie algebra g, such that

ξM = XJξ
,∀ξ ∈ g and R(J) = 0 , (4)

where Jξ := 〈ξ, J〉 ∈ C∞(M) and XJξ
is the corresponding Hamiltonian vector field. One

can show that if Φ admits a momentum map J , one can always define a representation
ψ of G on g∗ such that J is equivariant with respect to Φ and ψ (cf. [1], Proposition 6).
If ψ = Ad∗ (i.e. the coadjoint action of G on g∗), we will say that J is Ad∗-equivariant.

Assume now we have a cosymplectic action Φ on (M,Ω, η) which is free and proper,
admitting a momentum map J which is equivariant with respect to Φ and a representation
ψ of G on g∗. Let µ ∈ g∗ be a (weakly) regular value of J and Gµ the isotropy group of
ψ in µ, then J−1(µ) is fibred over the orbit space J−1(µ)/Gµ, with projection denoted
by πµ : J−1(µ) → J−1(µ)/Gµ. Putting jµ : J−1(µ) ↪→ M , the natural injection, we
arrive at the following result.

Theorem 1. (Cosymplectic reduction theorem [1]). Under the above assumptions
there exists a cosymplectic structure (Ωµ, ηµ) on the orbit space J−1(µ)/Gµ, which is
uniquely determined by

j∗µΩ = π∗
µΩµ , j∗µη = π∗

µηµ .
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Under some conditions, it may also be possible to find a reduction of a cosymplectic
manifold (M,Ω, η) to a symplectic manifold. In its simplest form this may come about
as follows. Assume there exists a complete vector field T on M satisfying

iT Ω = dH , iT η = 1 ,

for some H ∈ C∞(M). In particular, T induces a cosymplectic action of R on M . Define
the following 2-form on M :

Ω0 = Ω − dH ∧ η .

Note, in passing, that (Ω0, η) is again a cosymplectic structure onM (see [7], Lemma 5.5).
Assume, in addition, that M/R is a smooth manifold. It is easily verified that both Ω0

and H are projectable onto M/R, with projections denoted by, respectively, Ω̃0 and H̃.

Theorem 2. (Symplectic reduction theorem [1]). The 2-form Ω̃0 defines a sym-
plectic structure on M/R, and the Reeb vector field R of (M,Ω, η) projects onto the

Hamiltonian vector field X
H̃

on the symplectic quotient space (M/R, Ω̃0).

3. A general model for time-dependent constrained systems

In the recent literature one can find various approaches to the geometric formulation
of time-dependent nonholonomic mechanics (see e.g. [7, 10, 13, 14, 16, 17, 18, 19, 20]).
We will give a very brief outline of such a formulation, mainly as a motivation for the
general model we are going to present subsequently.

Consider a mechanical system described by a regular Lagrangian L, defined on the first
jet bundle J1π of a fibred manifold π : E → R (the ‘space-time’ manifold of the system).
Local bundle coordinates on E, resp. J1π, will be denoted by (t, qA), resp. (t, qA, q̇A).
On J1π, there exists a canonical type-(1,1) tensor field S (the ‘vertical endomorphism’)
which in coordinates reads: S = (dqA − q̇Adt) ⊗ (∂/∂q̇A). The Poincaré-Cartan 2-form
associated with L is given by ΩL = −d(Ldt + S∗(dL)), and one can show that reg-
ularity of L is equivalent to (ΩL, dt) defining a cosymplectic structure on J1π. Now,
assume the system is subjected to some, possibly nonlinear, nonholonomic constraints,
represented by a submanifold C of J1π. To preclude the existence of ‘holonomic’ con-
straints, we require that π1,0(C) = E, where π1,0 : J1π → E is the natural projection.
When adopting the so-called Chetaev approach to nonholonomic mechanics, it follows
that the bundle of ‘constraint (or reaction) forces’ along C is given by the co-distribution
S∗(TCo) (cf. [13, 16, 20]). It is customary to make the following admissibility assump-
tion: dim(S∗(TCo)) = dim(TCo). The nonholonomic problem then consists in finding a
section X of TJ1π|C such that the following relations hold (see e.g. [7, 14]):

(iXΩL)|C ∈ S∗(TCo) , iXdt|C = 1 , X ∈ TC . (5)

This is an intrinsic way of representing the classical constrained Euler-Lagrange equa-
tions: 




d

dt

(
∂L

∂q̇A

)
−

∂L

∂qA
=

∑

i

λi ∂φi

∂q̇A
,

φi(t, q
A, q̇A) = 0 ,



[Author and title] 5

where the λi are the Lagrange multipliers and φi are some independent constraint func-
tions, locally defining C. Finally, in case L is ‘hyperregular’ we can pass from the
Lagrangian to an equivalent (global) Hamiltonian description of the given nonholonomic
system, which exhibits a structure similar to (5). For details, see [14, 19, 20].

In view of the above description of time-dependent nonholonomic mechanics, we now
propose a general model for time-dependent constrained systems, similar to the one
considered in [6] for the autonomous case. This model is built on the following ingredients:

• a cosymplectic manifold (M,Ω, η);

• a closed embedded submanifold C of M (the constraint submanifold);

• a smooth distribution F on M of constant rank, defined along C; i.e. F is a vector
subbundle of TM|C .

For simplicity, both M and C will always be assumed to be connected. We are then
interested in the following problem: find a smooth section X of the restricted tangent
bundle TM|C → C, such that 




(iXΩ)|C ∈ F o ,
(iXη)|C = 1 ,
X ∈ TC ,

(6)

with F o the annihilator of F in T ∗M|C . In particular, we see that X, if it exists, induces
a vector field on C. The Lagrangian (and Hamiltonian) description of nonholonomic
mechanics is indeed recovered as a special case, as is readily seen upon comparing (5)
and (6).

With R denoting the Reeb vector field associated to (Ω, η), we immediately have that
for any solution X of (6), (iXΩ)|C(R|C) = 0. Since (iXΩ)|C ∈ F o, this justifies the
following additional condition we will impose on the given model:

R|C ∈ F . (7)

Note that this condition is fulfilled in the case of nonholonomic mechanics.
The following proposition now characterises the existence and uniqueness of a solution

of the constrained problem (6).

Proposition 1. A general time-dependent constrained system of the form (6) ad-
mits a solution X if and only if η|C ∈ (F ∩ TC⊥)o. In addition, this solution will be

unique if and only if F⊥ ∩ TC = 0.

Proof: Suppose that X ∈ TM|C is a solution of (6). For any Y ∈ TC⊥ we then
have, by definition, that

0 = χ
Ω,η

(Y )(X) = Ω(Y,X) + iY η .

Hence, (η − iXΩ)|C ∈ (TC⊥)o, from which it follows that η|C ∈ (TC⊥)o + F o = (F ∩

TC⊥)o. Conversely, if η|C belongs to (F ∩ TC⊥)o, then there exists a β ∈ F o such that
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η|C − β ∈ (TC⊥)o. Consider the section W = χ−1
Ω,η

◦ (β + η|C) of TM|C . Taking into
account (7), contraction of the 1-form χ

Ω,η
(W ) with R gives η(W ) = χ

Ω,η
(W )(R|C) =

(β + η)(R|C) = 1. Consequently, (iW Ω)|C = β ∈ F o. In addition, we have that

χ
Ω,η

(Y )(W ) = Ω(Y,W ) + η(Y ) = (η − β)(Y ) = 0 , ∀Y ∈ TC⊥ .

Since, by definition, χ
Ω,η

(TC⊥) = TCo, this implies that W ∈ TC and, therefore, W is
a solution of (6).

To prove uniqueness, consider two solutions X1, X2 of (6). Then, for all Z ∈ F , we
have that χ

Ω,η
(X1 −X2)(Z) = 0, that is, X1 −X2 ∈ F⊥ ∩ TC. Hence, if F⊥ ∩ TC = 0,

the solution to (6) is unique. For the converse, we will prove that in case F⊥ ∩ TC 6= 0,
a solution of (6), if it exists, will not be unique. Indeed, let X be a solution of (6)
and take any 0 6= X̂ ∈ F⊥ ∩ TC. Then, η(X̂) = χ

Ω,η
(X̂)(R) = 0 and, therefore,

(iX̂Ω)|C = χ
Ω,η

(X̂) ∈ F o. It follows that X + X̂(6= X) is also a solution of (6). QED

Remark 1: If for a given constrained system we have that dimF o = dimTCo, which
is sometimes called the ‘admissibility condition’ in nonholonomic mechanics (see above),
it readily follows that F⊥ ∩ TC = 0 implies TM|C = F⊥ ⊕ TC. From the latter we

deduce that F ∩ TC⊥ = 0 or, equivalently, (F ∩ TC⊥)o = T ∗M . Consequently, if the
admissibility condition holds, Proposition 1 tells us that F⊥ ∩ TC = 0 is the necessary
and sufficient condition for the existence of a unique solution of (6).

Remark 2: If a nonholonomic system (5) admits a unique solution X, the latter
satisfies the second-order equation condition, i.e. S(X)(x) = 0 at each point x ∈ C
(cf.[7, 14, 20]). From this property one can then easily deduce that X ∈ F (since
F o = S∗(TCo) is spanned by certain linear combinations of the contact forms dqA−q̇Adt).

4. Symmetry and reduction

In the sequel we always consider a constrained system (M,Ω, η, C, F ), as introduced
in the previous section, satisfying the additional condition (7). Let there be given a
cosymplectic action Φ : G ×M −→ M of a Lie group G on the cosymplectic manifold
(M,Ω, η) (cf. Section 2), such that the constraint submanifold C and the vector subbundle
F of TM|C are G-invariant, i.e. for all g ∈ G we have:

• Φ∗
gΩ = Ω, Φ∗

gη = η;

• Φg(C) ⊆ C;

• TΦg(Fx) = FΦg(x) for all x ∈ C.

If the constrained problem (6) admits a solution X, it is routine to verify that Φ∗
gX

will also be a solution for each g ∈ G. This still means that at each point x ∈ C,
(Φ∗

gX)(x)−X(x) ∈ F⊥
x ∩TxC. In particular, in case (6) has a unique solution, the latter

will automatically be G-invariant. For the further analysis we confine ourselves to the
case where G is connected and Φ is free and proper.

We will first present a general reduction scheme which is the analogue of the one
established by Bates and Śniatycki [2] for autonomous nonholonomic Hamiltonian sys-
tems with symmetry. Although some of the subsequent results also hold under weaker
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assumptions, for the sake of clarity and conciseness we will always assume that:
(i) the given problem (6) admits a unique solution X, (such that, in particular, the con-
ditions of Proposition 1 hold);
(ii) X is a section of F (i.e. X ∈ F ).
From the remarks at the end of the previous section it follows that, at least from the point
of view of nonholonomic mechanics, both assumptions are not very restrictive. From the
above we then also learn that X is G-invariant.

Since Φ is assumed to be a free and proper action, the orbit space M̄ = M/G is a
differentiable manifold and ρ : M → M̄ is a principal fibre bundle with structure group
G, whereby ρ denotes the natural projection. We will denote by V the subbundle of TM
whose fibres are the tangent spaces to the G-orbits, i.e. Vx = Tx(Gx) or, equivalently,
V = kerTρ. The assumed invariance of C under the given action implies, in particular,
that Vx ⊂ TxC for all x ∈ C, i.e. V|C ⊂ TC.

We now define a generalised distribution U on M along C by putting for each x ∈ C:

Ux = {v ∈ Fx ∩ TxC | Ω(v, ξ̃) = 0 , for all ξ̃ ∈ Vx ∩ Fx} (8)

In the sequel, we will always tacitly assume that U has constant rank, determining
a genuine vector bundle over C. It is readily seen that U is G-invariant and, hence,
projects onto a subbundle Ū of TM̄|C̄ .

Let us now denote by ΩU the restriction of Ω to (sections of) U . Clearly, ΩU is also
G-invariant and since, moreover, iξ̃ΩU = 0 for all ξ̃ ∈ V ∩ U , the 2-form ΩU reduces to

a 2-form ΩŪ on Ū (i.e. ΩŪ only acts on vectors belonging to Ū). In order to complete
the reduction procedure, we have to make the additional assumption that η|V∩F = 0.
Together with the G-invariance of η, this implies that the restriction of η to U can also be
pushed forward under ρ to a 1-form ηŪ on Ū . Note that neither ΩŪ nor ηŪ are genuine
differential forms on C̄: they are exterior forms on the vector bundle Ū over C̄, with
smooth dependence on the base point.

Under the previous assumptions we can now prove the following reduction result.

Theorem 3. The G-invariant solution X of (6) projects onto C̄, and its projection
X̄ is a section of Ū satisfying the equations

{
iX̄ΩŪ = 0 ,
iX̄ηŪ = 1 .

(9)

Proof: From (6) we have that

(iXΩ)|C = β , (iXη)|C = 1 ,

for some β ∈ F o. It follows that for any section ξ̃ of V ∩ F , we have β(ξ̃) = 0 and,
therefore, we can indeed conclude that X ∈ U . Hence, we have iXΩU = 0, and the
remainder of the proof now readily follows from the symmetry assumptions and from
previous considerations. QED

Remark 3: In case dimF o = dimTCo one can show, taking into account the proper-
ties described above (cf. Remark 1), that the reduced structure (ΩŪ , ηŪ ) is nondegenerate



[Author and title] 8

in the following sense: if v̄ ∈ Ūx̄ (for some x̄ ∈ C̄) satisfies ΩŪ (v̄, w̄) + ηŪ (v̄)ηŪ (w̄) = 0
for all w̄ ∈ Ūx̄, then v̄ = 0. Together with (9) this implies that for each x̄ ∈ C̄, the triple
(Ūx̄,ΩŪ (x̄), ηŪ (x̄)) is a cosymplectic vector space, with Reeb vector X̄(x̄). In particular,
in this case X̄ is uniquely determined by (9).

5. A classification of constrained systems with symmetry

We again consider a constrained system (6) with symmetry, verifying the assumptions
of the previous section. For each infinitesimal generator ξM of the given cosymplectic
action on M , its restriction to C is precisely the infinitesimal generator ξC of the induced
action on C. If ξC is a section of V ∩ F , we will call it a horizontal symmetry of the
given constrained system [2, 3, 6]. The following classification of constrained systems
with symmetry, which is similar to the one introduced by Bloch et al [3] for autonomous
nonholonomic systems with linear or affine nonholonomic constraints, is based on the
relative positioning of the subspaces Vx and Fx.

1. The purely kinematic (or ‘principal’) case: Vx ∩ Fx = {0} and TxC = Vx + (Fx ∩
TxC), for all x ∈ C.

2. The case of horizontal symmetries: Vx∩Fx = Vx, for all x ∈ C (which is equivalent
to Vx ⊆ Fx, for all x ∈ C).

3. The general case: {0} ⊂ Vx ∩ Fx ⊂ Vx (with strict inclusions) for all x ∈M .

5.1. The purely kinematic case

The assumptions of the purely kinematic case imply that TxC = Vx ⊕ (Fx ∩ TxC).
In other words, observing that in this case U = F ∩ TC, we have TC = V|C ⊕ U . Since
the bundle U is G-invariant, this decomposition defines a principal connection Υ on the
principal G-bundle ρ|C : C → C̄, with horizontal subspace Ux at x ∈ C. In what follows
we let X again denote a fixed G-invariant solution of (6) which, moreover, belongs to F .
This still means that X is horizontal, i.e. X ∈ U .

Denote by h : TC → U and v : TC → V|C the horizontal and vertical projectors
associated with the decomposition TC = V|C ⊕ U . The curvature of Υ is the type-(1,2)
tensor field on C given by

Λ =
1

2
[h,h] ,

where [ , ] denotes the Nijenhuis bracket of type (1,1) tensor fields. Taking into account
that in the present case Ū = T C̄, and applying the method developed in Section 4., we
obtain that the forms ΩŪ and ηŪ now become genuine differential forms on C̄, denoted
by Ω̄ and η̄, respectively, and such that the projection X̄ of X verifies

{
iX̄Ω̄ = 0 .
iX̄ η̄ = 1 .

(10)

It should be emphasised that the reduced forms Ω̄ and η̄ in general need not be closed,
as demonstrated by the following lemma.
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Lemma 1. For arbitrary vector fields Y1, Y2, Y3 on C̄, we have

1. dΩ̄(Y1, Y2, Y3) = Ω(Y h
1 ,Λ(Y h

2 , Y
h
3 )) + Ω(Y h

2 ,Λ(Y h
3 , Y

h
1 )) + Ω(Y h

3 ,Λ(Y h
1 , Y

h
2 )),

2. dη̄(Y1, Y2) = −η(Λ(Y h
1 , Y

h
2 )),

where Y h
i denotes the horizontal lift of Yi with respect to the connection Υ.

(The proof of the lemma follows by straightforward computation, using the properties of
a principal connection.)

Assume for the remainder of this section that dimF o = dimTCo holds. Then, it
follows from Remark 3 that the pair (Ω̄, η̄) defines what we may call an ‘almost cosym-
plectic’ structure on C̄. Under the stronger assumption for the given G-action that
η|V = 0, and assuming the 2-form Ω on M is exact, one can construct another form of
the reduced equations, equivalent to (10), but now in terms of a pair of closed forms
defining a genuine cosymplectic structure on C̄. Again, this is similar to the situation
encountered in the autonomous (symplectic) case (see e.g. [6, 9]).

Assume Ω = dθ for some 1-form θ on M . Denote by θ′ the 1-form on C defined by
θ′ = j∗Cθ, where jC : C ↪→ M is the canonical inclusion. By means of the given solution
X of (6) we can construct a 1-form αX on C as follows:

αX = iX(dh∗θ′ − h∗dθ′) . (11)

We then have the following interesting result.

Theorem 4. If the given action Φ leaves the 1-form θ invariant, then the 1-forms
h∗θ′ and αX are projectable, with projections denoted by θ̄′h and αX , respectively. More-
over, the reduced 1-form η̄ is closed and the projection X̄ of X satisfies the system

{
iX̄dθ̄

′
h = αX ,

iX̄ η̄ = 1 .
(12)

Proof: The projectability of the 1-forms h∗θ′ and αX is easily established by showing
that each infinitesimal generator ξC is a characteristic vector field of both forms. In view
of the assumption, η|V = 0, Lemma 1 immediately implies that η̄ is closed. The derivation
of the reduced equations of motion (12) proceeds as follows.

Recall that X satisfies an equation of the form iXdθ = β, for some β ∈ F o. Putting
β′ = j∗Cβ and taking into account that X is tangent to C, we can take the pull-back
of that equation to C, i.e. iXdθ

′ = β′. Since X is horizontal, i.e. hX = X, it follows
that h∗(iXdθ

′) = iXh∗dθ′. Furthermore, it is readily seen that h∗β′ = 0. The horizontal
projection of the equation of motion on C therefore becomes iXh∗dθ′ = 0. In view of the
definition of the 1-form αX , we then obtain iXdh

∗θ′ = αX . All objects in this equation
are projectable onto C̄, and since we already have that iX̄ η̄ = 1, the reduced dynamics
indeed satisfies (12). QED

In terms of mechanics, Theorem 4 describes a situation where a time-dependent non-
holonomic system with symmetry admits a reduction to an unconstrained time-dependent
system (12), but with an additional “nonconservative force” given by αX .
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5.2. The case of horizontal symmetries

The symmetry assumption now is that Vx ∩ Fx = Vx, for all x ∈ C or, equivalently,
V|C ⊂ F . In particular, every infinitesimal generator of the given group action is a
horizontal symmetry, in the sense defined at the beginning of this section.

For the further analysis of this case we assume that the given cosymplectic action Φ
on M admits an Ad∗-equivariant momentum map J : M → g∗. Let µ ∈ g∗ be a (weakly)
regular value of J , such that we can apply Theorem 1, i.e. (Mµ := J−1(µ)/Gµ,Ωµ, ηµ) is
a cosymplectic manifold, with Ωµ and ηµ uniquely determined by π∗

µΩµ = j∗µΩ , π∗
µηµ =

j∗µη.
It follows from the definition of the momentum map that ξM = χ−1

Ω,η
(dJξ). Taking into

account that in the case under consideration V|C ⊂ F , we find that, along the constraint
submanifold C, the solution X of (6), satisfies

X(Jξ) = 0 ,

i.e. the components of the momentum mapping are conserved quantities for the con-
strained dynamics. This is a version of Noether’s theorem for time-dependent constrained
systems. (For the analogous result in the case of time-independent nonholonomic me-
chanics, see e.g. [3, 6, 21]).

Imposing a condition of clean intersection of C and J−1(µ), we have that C ′ =
C ∩ J−1(µ) is a submanifold of J−1(µ) which is Gµ-invariant. Passing to the quotient
we then obtain a submanifold Cµ = C ′/Gµ of Mµ. Next, we can define a distribution F ′

on M along C ′ by putting

F ′
x′ = Tx′(J−1(µ)) ∩ Fx′ , ∀x′ ∈ C ′ .

We now make the further simplifying assumption that F ′ has constant rank. It is then
obvious that F ′ is a Gµ-invariant subbundle of TP|C′ and, hence, it projects onto a
subbundle Fµ of TMµ along Cµ.

Theorem 5. Suppose that X is a G-invariant solution of (6). Then, X induces a
section Xµ of (TMµ)|Cµ

, such that





(iXµ
Ωµ)|Cµ

∈ F o
µ ,

(iXµ
ηµ)|Cµ

= 1 ,
Xµ ∈ TCµ .

(13)

Proof: First of all, notice that X ′ = X|C′ is everywhere tangent to C ′, since both
J−1(µ) and C are invariant submanifolds of X. Pulling back (6) to J−1(µ), we find that
X ′ satisfies {

(iX′j∗µΩ)|C′ = β ,
(iX′j∗µη)|C′ = 1 ,

for some section β of F ′o. Since X is G-invariant, and taking into account the other
symmetry assumptions, it follows that both X ′ and β are Gµ-equivariant sections of
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TC ′ and F ′o, respectively. Moreover, from the fact that we are dealing with horizontal
symmetries we may deduce that for all ξ ∈ gµ (= the Lie algebra of Gµ), (ξM )|C′ is a
section of F ′. Therefore, β projects onto a section of F o

µ . Using a standard argument, it
now readily follows that X ′ projects onto a vector field on Cµ for which (13) holds.

QED

In the case of horizontal symmetries we have thus proved that, under the appropri-
ate assumptions, the given constrained problem defined by (M,Ω, η, C, F ) reduces to a
constrained problem of the same type, defined by (Mµ,Ωµ, ηµ, Cµ, Fµ), i.e. the reduction
process preserves the category of constrained cosymplectic systems.

5.3. The general case

We now consider the case where, along C, {0} 6= Vx ∩ Fx 6= Vx. To study this
case, we assume again that the 2-form Ω is exact: Ω = dθ. It is known that the given
cosymplectic action then admits a Ad∗-equivariant momentum map J : M → g∗, defined
by< J(x), ξ >= −θx(ξM (x)). It is no longer true, however, that J is a conserved quantity
for the constrained dynamics. In fact, we will see that, as in the time-independent case
[3, 6], only the symmetries ‘compatible’ with the constraints provide relevant information
about the dynamics.

For each x ∈ C, consider the vector subspace of g,

gx = {ξ ∈ g | ξC(x) ∈ Fx} .

The disjoint union gC =
⊔

x∈C gx of all these subspaces determines a generalised vector
bundle over C. Henceforth, we assume that gC is of constant rank, i.e. it determines a
genuine vector bundle over C.

We now consider only the momentum components provided by the symmetry direc-
tions along the vector bundle F . That is, we define

Jc : C −→ g∗
C

x 7−→ Jc(x) : gx → R

ξ 7→ < J(x), ξ > .

If ξ̄ : C → gC is a global section of the bundle gC → C, we can define a function
Jc

ξ̄
: C → R by Jc

ξ̄
=< Jc, ξ̄ >. Moreover, associated to ξ̄, there is a ‘fundamental vector

field’ which has a double dependence on the base point, namely: Ξ(x) = (ξ̄(x))C(x) ∈ Fx,
x ∈ C. With all these ingredients we are now able to derive the following nonautonomous
version of the so-called momentum equation (cf. [3, 6]).

Proposition 2. If ξ̄ : C −→ gC is a global section of gC −→ C, then

X(Jc
ξ̄
) = −(LΞθ)(X) . (14)

Proof: We have that

X(Jc
ξ̄
) = dJc

ξ̄
(X) = −iXdiΞj

∗θ = iX iΞj
∗Ω − iXLΞj

∗θ .
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Since j∗Ω(Ξ, X) = −(iXΩ)(Ξ) and Ξ ∈ F this further becomes

X(Jc
ξ̄
) = −iXLΞj

∗θ = i[Ξ,X]j
∗θ − LΞiXj

∗θ = −(LΞθ)(X) .

QED

For nonholonomic Lagrangian systems, we have that θ = Ldt+ S∗(dL) and X satis-
fies the second-order equation condition. As a consequence, (LΞθ)(X) can be obtained
without having to compute explicitly the dynamics X.

In the last section, we will briefly consider the possibility of reducing a cosymplectic
constrained system with a 1-parameter symmetry group, to a constrained Hamiltonian
system on a symplectic manifold.

6. Symplectic reduction

Starting again, as before, with a constrained system (M,Ω, η, C, F ) for which (6)
admits a unique solution X belonging to F , we now assume that there exists a free and
proper cosymplectic action Φ of R on M such that for all t ∈ R

Φt(C) ⊂ C , TΦt(Fx) = FΦt(x) , ∀x ∈ C .

We then know that Φ defines a symmetry of X. In addition, we assume that the in-
finitesimal generator T of Φ satisfies

iT η = 1 , iT Ω = dH ,

for some H ∈ C∞(M). We can now distinguish two cases, depending on whether or not
T|C is a horizontal symmetry.

(i) If T|C ∈ F , we can invoke Theorem 2. In particular, recall that the cosymplectic

manifold (M,Ω, η) reduces to a symplectic manifold (M̃ := M/R, Ω̃0), where Ω̃0 is the
projection of the closed 2-form Ω0 = Ω − dH ∧ dt. It is now rather straightforward
to check that, in view of the given symmetry assumptions, the constraint manifold C
projects onto a submanifold C̃ of M̃ . Moreover, due to the fact that T is a horizontal
symmetry, it easily follows that the subbundle F of TM|C projects onto a subbundle F̃

of TM̃|C̃ . Finally, it is routine to verify that the projection X̃ of X verifies

{
(i

X̃
Ω̃0 − dH̃)|C̃ ∈ F̃ o

X̃
C̃

∈ TC̃ ,

where H̃ denotes the projection of H on M̃ . The reduced system therefore takes the
form of a constrained Hamiltonian system on a symplectic manifold, as described in [6].

(ii) If T|C is not a section of F , we have to apply the general reduction procedure for
the purely kinematic case, as developed in Subsection 5.1.
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