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Abstract

We develop tools within the affine connection formalism for the control of underactuated
mechanical systems evolving on a principal fiber bundle. We present reduced formulations of
the Levi-Civita and the nonholonomic affine connections in the presence of symmetries and
nonholonomic constraints. Specialized controllability tests are developed, and the notion of
fiber configuration controllability is introduced. The results are illustrated in a planar blimp.

1 Introduction

In the area of control of mechanical systems, there is a newly emerging body of work that utilizes
their special Lagrangian structure to help focus the analysis [3, 4, 5, 7, 11, 12, 14]. This perspective,
where the dynamics is interpreted using affine connections, has led to new insights into both control
and motion planning for a number of underactuated mechanical systems. In this paper, we study
the effect of symmetries and constraints on the affine connection and the symmetric product.
There has been extensive work in the area of understanding the role of symmetries in mechanical

systems (e.g., see [2, 6, 13] and references therein). Lagrangian reduction provides powerful tools
for analyzing mechanical systems on principal fiber bundles. Generally, the Lie group describes
the position and orientation, while the remaining variables constitute an internal shape space. The
symmetries can be used to decouple the dynamics into two parts, vertical and horizontal, and
connect them with a principal connection [2, 10, 16]. Likewise, we can apply the same technique to
the covariant derivatives, and then use the Lie bracket and symmetric product to obtain simplified
tests of controllability. Our motivation for studying this class of systems comes from robotics,
where it has been noted that locomotion systems possess this structure [9, 16]. An important
notion here is that of fiber controllability, introduced in [9] for driftless, kinematic systems. This
concept stems from the fact that for many robotic systems, one only cares that the robot be able
to control its position and orientation, without regards to the configuration of its internal shape.
Thus, the emphasis is put on whether a system is controllable along the fiber. We extend this
notion to dynamic systems living on trivial principal fiber bundles.
The paper is organized as follows. In Section 2 we give some background on mechanical control

systems and symmetries. In Section 3 we study the reduced version of the Levi-Civita and the
nonholonomic affine connection for principal fiber bundles. In Section 4, we describe how these
results extend previous notions of configuration controllability, and introduce a new concept of fiber
controllability. We also demonstrate the use of these tools in the example of the planar blimp.
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2 Affine connections and mechanical control systems

Here we describe the geometric framework utilized in the study of mechanical control systems [11,
12]. A simple mechanical control system is defined by a tuple (Q,G, V,F), where Q is the config-
uration manifold, G is a Riemannian (kinetic energy) metric on Q, V ∈ C∞(Q) is the potential
function and F = {F 1, . . . , Fm} is a set of m linearly independent 1-forms on Q. The forced
Euler-Lagrange’s equations describe the dynamics of the system and can be expressed using the
Levi-Civita connection (see [10] for a comprehensive treatment on affine connections) as

∇G
ċ(t)ċ(t) = −gradV +

m∑
i=1

ui(t)Yi(c(t)) , (2.1)

where gradV = �G(dV ) and Yi = �G(F i), with �G = �−1
G and �G(X)(Y ) = G(X,Y ).

A constrained mechanical control system (Q,G, V,F ,D) is a simple mechanical control system
(Q,G, V,F) subject to the constraints given by the (n− l)-dimensional distribution D on Q. Letting
P : TQ −→ D, Q : TQ −→ D⊥ denote the complementary G-orthogonal projectors, we can define
the nonholonomic affine connection [1, 11, 17] by ∇XY = ∇G

XY + (∇G
XQ)(Y ) = P(∇G

XY ) +
∇G

X(Q(Y )), such that the nonholonomic control equations can be rewritten as

∇ċ(t)ċ(t) = −P(grad V ) +
m∑
i=1

ui(t)P(Yi(c(t))) , (2.2)

where ċ(0) ∈ D. Note that equations (2.1) and (2.2) have the same structure. For the rest of the
paper we will take V ≡ 0. The absence of the potential makes the picture considerably more clear
while capturing the essential aspects of the analysis. On the other hand, a potential function can
be incorporated to the controllability analysis along the lines of [12].
A key tool in the controllability analysis of mechanical control systems is the symmetric product

〈· : ·〉 associated to an affine connection ∇. Given X, Y ∈ X(Q), define 〈X : Y 〉 = ∇XY +∇Y X.

2.1 Mechanical systems with symmetry

Assume that a Lie group G acts on Q, Φ : G ×Q → Q, (g, q) �→ Φ(g, q) = Φg(q). If Φ is free and
proper, the quotient space Q/G ∼= M is a manifold and the projection π : Q → M is a surjective
submersion. Then, Q(M,G, π) is a principal fiber bundle [10]. The bundle of vertical vectors is
denoted by Vq = Tq(OrbG(q)), q ∈ Q. Throughout the paper, we treat trivial bundles, Q = G×M .
This is a situation often found in robotic locomotion [16], where a splitting exists between variables
describing position/orientation, g ∈ G, and variables describing the internal shape, r ∈ M .
A principal connection on Q(M,G, π) is a G-invariant distribution H on Q such that TqQ =

Hq ⊕ Vq, ∀q ∈ Q. The subspace Hq of TqQ is called the horizontal subspace at q. Alternatively,
a principal connection can be characterized by a g-valued 1-form A on Q (g is the Lie algebra of
G) satisfying: (i) A(ξQ(q)) = ξ, for all ξ ∈ g; (ii) A((Φg)∗X) = Adg(A(X)), for all X ∈ TQ. The
horizontal subspace at q is then given by Hq = {vq ∈ TqQ | A(vq) = 0}. Using (i) and (ii),

A(g, r, ġ, ṙ) = A(g(e, r, ξ, ṙ)) = AdgA(e, r, ξ, ṙ) = Adg(ξ +A(r)ṙ) ,

where A(r) is called the local form of A. For reasons of space, we refer the reader to [8, 10] for
other important concepts such as the curvature and the derivative along the connection.
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Assume that a mechanical control system (Q,G,F) is invariant under a Lie group G, that is,
Φ∗

gG = G and Φ∗
gF

i = F i, for 1 ≤ i ≤ m and all g ∈ G. In the reduction of mechanical systems,
the mechanical connection Amech plays a prominent role. One has Amech(q̇) = I(q)−1J(q̇), where
I is the locked inertia tensor and J is the natural momentum map. The invariance of the metric
implies that it can be represented in the space (r, ṙ, ξ) ∈ TQ/G, ξ = g−1ġ, by the reduced metric

Ĝ =
(

I(r) I(r)A(r)
A(r)T I(r) m(r)

)
.

Here, I andA denote the local form of the inertia tensor and the mechanical connection, respectively.
This reduced metric is block diagonalized in terms of the shape variables (r, ṙ) and the locked body
angular velocity, Ω = ξ +A(r)ṙ as G̃ = diag(I(r),∆(r)), with ∆(r) = m(r)−AT (r)I(r)A(r).
Assume that a constrained mechanical control system is invariant under a Lie group G, meaning

that both (Q,G,F) and the constraint distribution D are invariant. Assume that D + V = TQ.
Define the intersection S = V ∩D. The horizontal subspace at q ∈ Q of the nonholonomic principal
connection [2, 15] is given by Hq = S⊥

q ∩ Dq. Let gD → Q be a bundle whose fiber is given by
gq = {ξ ∈ g : ξQ(q) ∈ Sq}. The nonholonomic momentum map is defined as Jnh : TQ → gD∗,
Jnh(q, q̇)(ξq) = 〈∂L∂q̇ (q̇), ξqQ(q)〉. Consider the map Asym : TqQ → Sq, (q, q̇) �→ (Ĩ−1(q)Jnh(q, q̇))Q,
where Ĩ is the locked inertia tensor relative to gD. Additionally, let Akin : TqQ → S⊥

q be the
orthogonal projection. The nonholonomic connection 1-form is Anh = Akin +Asym. Useful for the
latter derivations will be fixing a basis {e1(r), . . . , es(r), es+1(r), . . . , ek(r)} of g such that the first
s elements span g(r,e) and both set of generators are orthogonal. We will denote ∂ei

∂rα =
∑k

a=1 γ
a
iαea.

3 Levi-Civita and nonholonomic affine connections under symmetry

This section presents decompositions of the Levi-Civita and the nonholonomic affine connections
according to the principal fiber bundle structure of the configuration spaceQ. These decompositions
will enable us to simplify the controllability tests for mechanical control systems with symmetry.

Proposition 3.1. Given G-invariant vector fields on Q, X = (gξ, v) and Y = (gη,w), with ξ(r),
η(r) ∈ g and v, w ∈ TM , the covariant derivative of Y along X can be expressed as

∇G
XY = g

{(
∇I

ΩΨ
∇∆

v w

)
− 1
2

(
I−1L
∆−1S

)}
, (3.3)

where

L = −D(IΩ)(·, w) −D(IΨ)(·, v) + I([Ω,Ψ]− [ξ, η] + ξrw − ηrv −A[v,w]) + 2 I(A(∇G
XY )M ) ∈ g∗ ,

S = I(Ω, B(w, ·)) + I(Ψ, B(v, ·)) +DI(·)(Ω,Ψ) ∈ T ∗M ,

and D, B denote, respectively, the local forms of the derivative along and the curvature of the
mechanical connection and Ω = ξ +Av, Ψ = η +Aw, ξr ≡ ∂ξ

∂r , ηr ≡ ∂η
∂r .

Proposition 3.2. Given G-invariant vector fields, X = (gξ, v) ∈ TQ, Y = (gη,w) ∈ D on Q,
with ξ(r), η(r) ∈ g and v, w ∈ TM the nonholonomic affine connection ∇ can be expressed as

∇XY = g

{(
Asym(∇I

Ω̄
Ψ̄)

∇∆̃
v w

)
− 1
2

(
Ĩ−1L̃+ 2A(∇XY )M

∆̃−1S̃

)}
, (3.4)
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where

L̃ = −D(IΩ̄)(·, w) − D(IΨ̄)(·, v) + I(Ãv, γ·w − [·, η]) + I(Ãw, γ·v − [·, ξ])
+ I([Ω̄, Ψ̄]− [ξ, η] + ξrw − ηrv − A[v,w]) ∈ gD∗

,

S̃ = I(Ψ̄, B(v, ·)) + I(Ω̄, B(w, ·)) + I(Ãw,B(v, ·)) + I(Ãv,B(w, ·)) −D(IΨ̄)(Ã·, v) −D(IΩ̄)(Ã·, w)
+DI(·)(Ω̄+ Ãv, Ψ̄+ Ãw)−DI(·)(Ãv, Ãw)− I([ξ, η], Ã·)− I(ηrv − ξrv, Ã·)− I(A[v,w], Ã·) ∈ T ∗M ,

and D, B denote, respectively, the local forms of the derivative along and the curvature of the
nonholonomic connection Anh and Ω̄ = ξ + Av, Ψ̄ = η + Aw.

The corresponding decompositions of the associated symmetric products can be obtained from
these propositions. We refer to [8] for the proofs and the explicit expressions.

4 Controllability analysis

Here we refine the controllability analysis of [12] for mechanical control systems evolving on principal
fiber bundles. The notions of local configuration accessibility (LCA) and controllability (STLCC),
along with that of good/bad symmetric products and degree are taken from [12]. Let

∇ċ(t)ċ(t) =
m∑
i=1

ui(t)Yi(c(t)) , (4.5)

where ∇ can be either the Levi-Civita or the nonholonomic affine connection. Assume that the
control system (4.5) is invariant under the action of a Lie group G. Denote by B = {B1, . . . , Bm}
the representants of the input vector fields Y = {Y1, . . . , Ym} at g× TM , i.e. Yi(r, g) = gBi(r, e) =
g(ξi(r), vi), 1 ≤ i ≤ m. Due to the invariance of the system we have that 〈Yi : Yj〉 = 〈gBi : gBj〉 ≡
g〈Bi : Bj〉 for all 1 ≤ i, j ≤ m. Note also that the Lie brackets [Yi, Yj ] can be written as

[Yi, Yj ] ≡ g[Bi, Bj ] = g

(
[ξi, ξj ]g +

∂ξj

∂r vi − ∂ξi
∂r vj

[vi, vj ]M

)

Theorem 4.1. Let the system (4.5) be invariant under the action of a Lie group G. Then it is

• LCA at q = (r, g) ∈ OrbG(r, e) if Lie(Sym(B))(r,e) = g× TrM .

• STLCC at q ∈ OrbG(r, e) if it is LCA at (r, e) and every bad symmetric product P at (r, e) in
B can be written as a linear combination of good symmetric products at (r, e) of lower degree.

where Sym(B) and Lie(B) denote, respectively, the symmetric and involutive closures of B.

These tests remove from the computations the dependence on G. Furthermore, the decompo-
sitions of the symmetric products can be used to compute the terms 〈Bi : Bj〉. An additional
simplification stems from the fact that many dynamic locomotion systems have the full tangent
bundle of M as the set of inputs, which corresponds to the observation that the system can adjust
its shape as desired. Then, one can prove [8] that the input vector fields have Ωi = 0, 1 ≤ i ≤ m.
Moreover, when constraints are present, their projections to D also have Ω̄i = 0, 1 ≤ i ≤ m.
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Another interesting aspect for this kind of mechanical control systems is the adaptation of the
concept of weak controllability for kinematic systems defined in [9]. This notion means controlla-
bility in the fiber, without regards to the intermediate or final positions of the shape variables. Let
V τ denote any subset of Q such that τ(V τ ) is an open subset of G, where τ : Q → G denotes the
natural projection. Take q0 ∈ Q and let U ⊂ Q be a neighborhood of q0. Define

RU
Q(q0, T ) = {q ∈ Q | ∃ (c, u) solving (4.5) with ċ(0) = 0q0 , c(t) ∈ U for t ∈ [0, T ] and ċ(T ) ∈ TqQ}

and denote by RU
Q(q0,≤ T ) = ∪0≤t≤TRU

Q(q0, t).

Definition 4.1. The system (4.5) is locally fiber configuration accessible (LFCA) (resp. small-
time locally fiber configuration controllable (STLFCC)) at q0 ∈ Q if there exists T > 0 such that
RU

Q(q0,≤ t) contains a non-empty subset V τ of Q (resp. RU
Q(q0,≤ t) contains a non-empty subset

V τ of Q and g0 ∈ τ(V τ )), for all neighborhoods U of q0 and all 0 ≤ t ≤ T .

Theorem 4.2. Let the system (4.5) be invariant under G. Then it is

• LFCA at q = (r, g) if τ∗Lie(Sym(B))(r,e) = g.

• STLFCC at q if it is LFCA at q and the projection through τ of every bad symmetric product
P at q in B, τ∗P , can be written as a linear combination of projections through τ of good
symmetric products at q of lower degree.

4.1 An example: the planar blimp

Consider a rigid body moving in SE(2) with a thruster to adjust its pose [8]. The control inputs
are the thruster force F 1 and a torque F 2 that actuates its orientation with respect to the body
axis {Xb, Y b}. The configuration of the blimp is determined by a tuple (x, y, θ, γ) ∈ SE(2) × S

1,
where (x, y) is the position of the center of mass, θ is the orientation with respect to the fixed
basis {Xf , Y f} and γ is the orientation of the thrust with respect to the body basis {Xb, Y b}. The
Riemannian metric is G = m(dx⊗dx+dy⊗dy)+(J1+J2)dθ⊗dθ+J2dγ⊗dγ+J2(dθ⊗dγ+dγ⊗dθ),
where m denotes the mass of the blimp, J1 is its moment of inertia and J2 is the inertia of the
thruster. The input forces are given by F 1 = cos(θ + γ)dx+ sin(θ + γ)dy − h sin γdθ, F 2 = dγ.
This mechanical control system is invariant under the left multiplication of the Lie group G =

SE(2). The reduced representation of the input vector fields at g× TM is given by

B1 =
1
m
cos γ

∂

∂x
+
1
m
sin γ

∂

∂y
− h

J1
sin γ

∂

∂θ
+

h

J1
sin γ

∂

∂γ
, B2 = − 1

J1

∂

∂θ
+

J1 + J2

J1J2

∂

∂γ
.

Resorting to the results presented in Section 3, we can compute the following symmetric brackets

〈B1 : B1〉G = h2

J2
1

sin(2γ) (0, 0,−1, 1) , 〈B2 : 〈B1 : B1〉G〉G = 2h
2

J2
1

J1 + J2

J1J2
cos(2γ) (0, 0,−1, 1) ,

〈B2 : B2〉G = 0 , 〈B1 : B2〉G =
(
− 1

mJ2
sin γ,

1
mJ2

cos γ,−h(J1 + J2)
J2

1J2
cos γ,

h(J1 + J2)
J2

1J2
cos γ

)
.

Note that {B1, B2, 〈B1 : B2〉G , 〈B1 : B1〉G , 〈B2 : 〈B1 : B1〉G〉G} span g × TM at every (e, r) and
hence the system is LCA. However, the bad bracket 〈B1 : B1〉G is not in general a combination of
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the lower order good brackets B1 and B2. Therefore, we can not conclude STLCC. In any case, at
γ = 0, 〈B1 : B1〉G(e, 0) = 0 and hence the system is STLCC at (g, 0), for all g ∈ G. However, for
fiber configuration controllability, we see that τ∗〈B1 : B1〉G ∈ span{τ∗B2}, which implies STLFCC.
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