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Abstract. Given a general nonlinear affine control system with outputs and a torsion-free affine con-
nection defined on its state space, we investigate the gradient realization problem: we give necessary and
sufficient conditions under which the control system can be written as a gradient control system corre-
sponding to some pseudo-Riemannian metric whose Levi-Civita connection is equal to the given affine
connection. The results rely on a suitable notion of compatibility of the system with respect to the given
affine connection, and on the output behavior of the prolonged system and the gradient extension. The
symmetric product associated with an affine connection plays a key role throughout the discussion.
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1. Introduction. A physically motivated class of nonlinear systems are gradient
control systems, see [4, 9, 21, 22, 23, 24, 25] and the references quoted therein. These
systems are described in the following way: they are nonlinear affine control sys-
tems, which are endowed with a pseudo-Riemannian metric on the state-space man-
ifold. The drift vector field of the system is the gradient vector field associated with
an internal potential function with respect to the pseudo-Riemannian metric, and the
input vector fields are the gradient vector fields associated with the output functions
of the system. Examples of gradient control systems include nonlinear electrical RLC
networks, and dissipative systems where the inertial effects are neglected. In the case
of RL or RC networks, the pseudo-Riemannian metric is positive-definite, and thus is
a usual Riemannian metric, while for general RLC networks the metric is indefinite.
We refer to [4, 9, 23, 24] for more background on the modeling of nonlinear networks
as gradient systems.

Another relevant class of nonlinear systems is the family formed by the Hamil-
tonian control systems. In this case, the state-space manifold is equipped with a sym-
plectic form. The drift vector field and the input vector fields are the Hamiltonian
vector fields associated, respectively, to an internal energy function and the output
functions of the system with respect to the symplectic form. Hamiltonian equations
are of central importance in the modeling of physical systems as they are the start-
ing point to describe the dynamics of a very large class of phenomena, including
mechanical, electrical and electromagnetic systems.

Apart from their physical and engineering importance, gradient and Hamilto-
nian systems also possess very peculiar mathematical properties. For instance, an

∗Submitted on March 27, 2003, revised version on May 12, 2004. A short version of this paper was
presented as [8] in the IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control,
Seville, Spain, 2003.

†Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W. Main St.,
Urbana, IL 61801, United States, Ph. +1 217 244-8734, Fax. +1 217 244-1653, jcortes@uiuc.edu,
http://motion.csl.uiuc.edu/˜jorge

‡Department of Applied Mathematics, University of Twente, PO Box 217, 7500 AE Enschede, The
Netherlands, Ph. +31 53 489-3449, Fax +31 53 434-0733, a.j.vanderschaft@math.utwente.nl,
http://www.math.utwente.nl/˜twarjan

§Department of Electrical and Computer Engineering, Arizona State University, Tempe, AZ
85287, United States, Ph. +1 480 965-1722, Fax. +1 480 965-2267, peter.crouch@asu.edu,
http://www.eas.asu.edu/˜sserc/people/crouch/crouch.html

1



2 J. Cortés, A.J. van der Schaft, P.E. Crouch

observable and controllable linear input-state-output system is a Hamiltonian con-
trol system [5] (respectively a gradient control system [25]) if and only if its impulse
response matrix W (t) satisfies W (t) = −W T (−t) (respectively W (t) = W T (t)). Al-
though they are typically not amenable to linearization techniques, their rich geo-
metric structure makes possible to combine powerful tools from Nonlinear Control
Theory, Differential Geometry and Classical Mechanics in the study of a variety of
problems including stability and stabilization, input-output decoupling, structural
synthesis and interconnection.

Their theoretical and practical relevance, together with their meaningful geo-
metric properties and the wide range of results available for them, make the classes
of Hamiltonian and gradient systems distinct within the family of nonlinear affine
control systems. This explains the interest in identifying those systems that can be
written as either Hamiltonian or gradient. This characterization problem is motivated
by the Realization Problem in Systems Theory and the Inverse Problem in Mechan-
ics. The Realization Problem addresses the question of when the input-output map
of a system can be realized as the external behavior of a Hamiltonian (respectively
gradient) input-output system. The Inverse Problem, which has a longstanding his-
tory in mathematical physics, poses the question of when a second-order differential
equation can be realized as the Euler-Lagrange equations corresponding to certain
Lagrangian function. For further reference on these problems, the reader is referred
to [10, 14, 19, 20].

In [11, 12], necessary and sufficient conditions were given under which a min-
imal nonlinear affine control system with an equal number of inputs and outputs
is a Hamiltonian control system with respect to some symplectic structure, which
turned out to be unique. As we discuss below, there are a number of key differences
in the treatment of the characterization problem for the Hamiltonian and the gradi-
ent case, which make the latter more involved. A fundamental observation is that,
while every input-state-output system admits a natural extension to a Hamiltonian
system living on the cotangent bundle of its state space, the construction of a gradi-
ent extension on the cotangent bundle relies on the selection of a torsion-free affine
connection on the state space. This is why our starting point in the gradient setting
is the selection of an appropriate torsion-free affine connection. This appropriateness
is defined in terms of a novel compatibility condition of the given nonlinear system
with the selected affine connection, guaranteeing an appropriate choice of the latter
one. The compatibility condition is expressed as a relation of the symmetric products
of the drift vector field and the input vector fields with the output functions of the
system. As a further remark, the role played in the Hamiltonian setting by the Lie
bracket and the Hamiltonian vector fields is taken here by the symmetric product
associated with the given affine connection and the gradient vector fields.

The question solved by the main result of this paper (cf. Theorem 5.4 below) is
the following: given a torsion-free affine connection which is compatible with the
nonlinear control system, find necessary and sufficient conditions under which the
system is gradient with respect to a pseudo-Riemannian metric whose Levi-Civita
connection is the given affine connection. The question that still remains to be ad-
dressed in order to solve the full characterization problem for gradient control sys-
tems is the following: given a nonlinear control system, when does it exist an affine
connection such that these necessary and sufficient conditions are satisfied?

The paper is organized as follows. In Section 2 we present the class of nonlinear
systems considered along the paper. We also introduce the notions of prolongation
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and gradient extension of a nonlinear system. The observability properties of these
systems, studied in Section 3, together with the concept of (weakly) externally equiv-
alent systems, introduced in Section 4, turn out to be key in establishing Theorem 5.4.
In Section 5, we introduce the important notion of compatibility between a nonlin-
ear system and a given affine connection. At this point, we are ready to state and
prove the main result of the paper, namely the characterization of when a general
nonlinear control system is gradient. This characterization can be roughly described
as follows: under certain technical conditions, a nonlinear affine control system is
gradient if and only if its prolongation and its gradient extension behave similarly
(i.e., have the same input-output behavior). In Section 6 we investigate the unique-
ness (up to isometry) of gradient realizations with the same input-output behavior
and we give an alternative proof of a result in [1, 2]. We present our conclusions in
Section 7. Finally, an appendix in Section 8 contains a simplifying result concerning
the checkability of the compatibility condition for a nonlinear affine control system.

2. Setting. Let M be an n-dimensional (real-)analytic manifold. We will denote
by TM , T ∗M the tangent and cotangent bundles of M , by X(M) the set of analytic
vector fields on M , by Ω1(M) the set of analytic one-forms on M , and by Cω(M)
the set of analytic functions on M . Consider a nonlinear control system Σ with state
space M , affine in the inputs, and with an equal number of inputs and outputs,

Σ :











ẋ = g0(x) +

m
∑

j=1

ujgj(x) ,

yj = Vj(x) , j = 1, . . . ,m ,

(2.1)

where x ∈ M , x(0) = x0 and u = (u1, . . . , um) ∈ U ⊂ R
m. The vector fields

g0, g1, . . . , gm on M are assumed to be complete and V1, . . . , Vm are real-valued func-
tions on M . The set U is the control space, which for simplicity is assumed to be an
open subset of R

m, containing 0. The function t 7→ u(t) = (u1(t), . . . , um(t)), that we
will commonly denote as u(·), belongs to a certain class of functions of time, denoted
by U , called the admissible controls. For our purposes, we may restrict the admissible
controls to be the piecewise constant right continuous functions.

An important subclass of the family of nonlinear systems (2.1) is formed by the
Hamiltonian control systems, see [12]. Here, we will instead focus our attention on
the family of gradient control systems. Let G be a pseudo-Riemannian metric on M ,
i.e. a non-degenerate symmetric (0,2)-tensor onM (not necessarily positive definite).
Consider the ‘musical’ isomorphisms associated with G, [G : X(M) → Ω1(M), ]G :
Ω1(M) → X(M) defined by

[G(X)(Y ) = G(X,Y ) , ]G(µ) = [−1
G (µ) ,

where X,Y ∈ X(M) and µ ∈ Ω1(M). The gradient vector field associated with a
function V ∈ Cω(M) is given by gradG V = ]G(dV ). Reciprocally, a vector field
X ∈ X(M) is said to be locally gradient if the one-form [G(X) is closed. By Poincaré’s
lemma, this is equivalent to saying that there exists a locally defined function V ∈
Cω(M) such that [G(X) = dV . If this equality holds globally, X is called gradient and
will be denoted by X = gradG V . Along the paper, we will drop the subindex when
it is clear from the context the pseudo-Riemannian metric with respect to which the
gradient vector field is computed. If we fix coordinates (x1, . . . , xn) on M , then the
pseudo-Riemannian metric can be locally expressed as G = Gabdx

a ⊗ dxb, where
(Gab = G( ∂

∂xa ,
∂
∂xb )) is a symmetric matrix. The musical isomorphisms are then given
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by [G = Gabdx
a ⊗ dxb, ]G = Gab ∂

∂xa ⊗ ∂
∂xb , where (Gab) is the inverse matrix of (Gab).

Finally, the gradient vector field associated with V reads

gradG V = Gab
∂V

∂xb
∂

∂xa
.

Now, assume that the state space M in (2.1) is a pseudo-Riemannian manifold,
(M,G). Furthermore, assume that the drift vector field g0 is locally gradient and
the input vector fields gj , j = 1, . . . ,m are gradient with respect to the functions
V1, . . . , Vm, i.e. gj = gradG Vj , j = 1, . . . ,m. Then, the resulting system

Σ :











ẋ = g0(x) +

m
∑

j=1

uj(t) gradG Vj(x) ,

yj = Vj(x) , j = 1, . . . ,m ,

(2.2)

is called a locally gradient control system on M . If the drift g0 is a gradient vector field,
then the system is called a gradient control system on M .

Given an affine connection on M , our objective is to characterize when a nonlin-
ear system of the form (2.1) is a locally gradient control system (2.2), i.e. find neces-
sary and sufficient conditions for the existence of a pseudo-Riemannian metric G on
the state space M whose Levi-Civita connection is the given affine connection such
that the system (2.1) equals system (2.2). These conditions will be given in terms of
the output behavior of the so-called prolonged system and the gradient extension
of Σ, which we describe next.

2.1. The prolongation of a nonlinear system. Given an initial state x(0) = x0,
take a coordinate neighborhood ofM containing x0. Let t ∈ [0, T ] 7→ x(t) be the solu-
tion of (2.1) corresponding to the input function t ∈ [0, T ] 7→ u(t) = (u1(t), . . . , um(t))
and the initial state x(0) = x0, such that x(t) remains within the selected coordinate
neighborhood. Denote the resulting output by t ∈ [0, T ] 7→ y(t) = (y1(t), . . . , ym(t)),
with yj(t) = Vj(x(t)). Then the variational system along the input-state-output trajec-
tory t ∈ [0, T ] 7→ (x(t), u(t), y(t)) is given by the following time-varying system,

v̇(t) =
∂g0
∂x

(x(t))v(t) +

m
∑

j=1

uj(t)
∂gj
∂x

(x(t))v(t) +

m
∑

j=1

upjgj(x(t)) ,

ypj (t) =
∂Vj
∂x

(x(t))v(t) , j = 1, . . . ,m , (2.3)

where v(0) = v0 ∈ R
n, and up = (up1, . . . , u

p
m), yp = (yp1 , . . . , y

p
m) denote the in-

puts and the outputs of the variational system. The reason behind the terminology
‘variational’ comes from the following fact: let (x(t, ε), u(t, ε), y(t, ε)), t ∈ [0, T ] be a
family of input-state-output trajectories of (2.1) parameterized by ε ∈ (−δ, δ), with
x(t, 0) = x(t), u(t, 0) = u(t) and y(t, 0) = y(t), t ∈ [0, T ]. Then, the infinitesimal
variations

v(t) =
∂x

∂ε
(t, 0) , up(t) =

∂u

∂ε
(t, 0) , yp(t) =

∂y

∂ε
(t, 0) ,

satisfy equation (2.3). Additionally, if the initial state is the same for the whole family
of trajectories, x(0, ε) = x0, then the variational state v(0) at time 0 is necessarily 0.
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The prolongation or prolonged system of (2.1) corresponds to considering together
the original system (2.1) and the variational system,

ẋ = g0(x) +

m
∑

j=1

ujgj(x) ,

v̇(t) =
∂g0
∂x

(x(t))v(t) +

m
∑

j=1

uj(t)
∂gj
∂x

(x(t))v(t) +

m
∑

j=1

upjgj(x(t)) ,

yj = Vj(x) , ypj (t) =
∂Vj
∂x

(x(t)) v(t) , j = 1, . . . ,m , (2.4)

with inputs uj , u
p
j , outputs yj , y

p
j and state (x, v). To state a coordinate-free defi-

nition of the prolonged system (2.4) on the whole tangent space TM , we need to
introduce the notions of vertical and complete lifts of functions and vector fields.
We do this following [26]. Given a function V on M , the complete lift of V to TM ,
V C : TM → R is defined by V C(v) = 〈dV, v〉. In the induced local coordinates on
TM , (x1, . . . , xn, v1, . . . , vn), this reads

V C(x, v) =

n
∑

a=1

∂V

∂xa
(x) va .

The vertical lift of V to TM , V V : TM → R, is defined by V V = V ◦ τM , where τM
denotes the tangent bundle projection. Given a vector field X on M , the complete lift
of X to TM , XC ∈ X(TM) is defined as the unique vector field verifying X C(f C) =
(Xf)C, for any f ∈ Cω(M). Alternatively, if Φt : M → M , t ∈ [0, ε) denotes the flow
of X , then we can define XC as the vector field whose flow is given by (Φt)∗ : TM →
TM . In local coordinates,

XC(x, v) =
n
∑

a=1

Xa(x)
∂

∂xa
+

n
∑

a,b=1

∂Xa

∂xb
(x)vb

∂

∂va
. (2.5)

The vertical lift of X to TM , XV ∈ X(TM) is the unique vector field such that
XV(f C) = (Xf)V, for any f ∈ Cω(M). In local coordinates,

XV(x, v) =

n
∑

a=1

Xa(x)
∂

∂va
. (2.6)

The following definition provides an intrinsic way of pasting together the sys-
tem (2.1) with the variational systems associated with its input-state-output trajecto-
ries.

DEFINITION 2.1. The prolonged system Σp of a nonlinear system Σ of the form (2.1) is
defined by

Σp :











ẋp = gC
0 (xp) +

m
∑

j=1

uj(t)g
C
j (xp) +

m
∑

j=1

upj (t)g
V
j (xp)

yj = V V
j (xp) , ypj = V C

j (xp) , j = 1, . . . ,m ,

(2.7)

where xp = (x, v) ∈ TM , and xp(0) = (x0, v0).
One can easily check that in the induced tangent bundle coordinates, the local

expression of the system (2.7) is precisely (2.4).
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REMARK 2.2. In the same way as we have presented above, one can also in-
troduce the notions of adjoint variational system and Hamiltonian extension of the
nonlinear system (2.1). These notions play a key role in the characterization of when
a general system admits a Hamiltonian description, see [12]. •

2.2. The gradient extension of a nonlinear system. When dealing with the
Hamiltonian extension of a nonlinear system, one relies on the fact that the cotangent
bundle is endowed with a canonical symplectic structure. However, this is not the
case when treating gradient systems, since a canonical pseudo-Riemannian structure
on the cotangent bundle does not exist. In order to define the gradient extension of a
nonlinear system of the form (2.1), we will first select a torsion-free affine connection
∇ on M , and then consider its Riemannian extension to T ∗M (cf. [18]).

Let us briefly present some basic notions on affine connections and Riemannian
geometry. An affine connection [15] on a manifold M is defined as an assignment

∇ : X(M) × X(M) −→ X(M)
(X,Y ) 7−→ ∇XY

which is R-bilinear and satisfies ∇fXY = f∇XY and ∇X(fY ) = f∇XY + X(f)Y ,
for any X , Y ∈ X(M), f ∈ Cω(M). This implies that ∇XY (x) only depends on X(x)
and the value of Y along a curve which is tangent to X at x. Let c : t ∈ [t0, t1] 7→
c(t) = (x1(t), . . . , xn(t)) ∈ M be a curve on M and W a vector field along c, i.e. a
map W : [t0, t1] → TM such that τM (W (t)) = c(t) for all t ∈ [a, b]. Let V be a vector
field that satisfies V (c(t)) = W (t). The covariant derivative of W along c is defined by

DW (t)

dt
= ∇ċ(t)W (t) = ∇ċ(t)V (x)

∣

∣

x=c(t)
.

This definition makes sense because of the defining properties of the affine connec-
tion. Now, we may take W (t) = ċ(t) and set up ∇ċ(t)ċ(t) = 0. This equation is called
the geodesic equation, and its solutions are termed the geodesics of ∇. In local coordi-
nates, this condition can be expressed as ẍa + Γabc(x)ẋ

bẋc = 0, 1 ≤ a ≤ n, where the
Γabc(x) are the Christoffel symbols of the affine connection, defined by

∇ ∂

∂xb

∂

∂xc
= Γabc(x)

∂

∂xa
.

The vector field S on TM describing the geodesic equation is called the geodesic spray
associated with the affine connection ∇. In local coordinates,

S = va
∂

∂xa
− Γabc(x)v

bvc
∂

∂va
.

Therefore, the integral curves of the geodesic spray S are the solutions of the geodesic
equation. The torsion tensor of an affine connection is defined by

T : X(M) × X(M) −→ X(M)
(X,Y ) 7−→ ∇XY −∇YX − [X,Y ] ,

Locally, we have

T
( ∂

∂xa
,
∂

∂xb

)

= (Γcab − Γcba)
∂

∂xc
,
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An affine connection is torsion-free if T is identically zero. Given an affine connec-
tion, the symmetric product [17] of two vector fields X,Y ∈ X(M) is defined by the
operation

〈X : Y 〉 = ∇XY + ∇YX .

The geometric meaning of the symmetric product is the following [16]: a distribution
D on M is geodesically invariant (meaning that each geodesic of ∇ whose initial
velocity is in D has all its velocities in D) if and only if 〈X : Y 〉 ∈ D, for all X , Y ∈ D.
The symmetric product plays a crucial role within the so-called affine connection
formalism for mechanical control systems in the study of a variety of aspects such
as controllability, series expansions, motion planning and optimal control [6]. Note
that if the affine connection ∇ is torsion-free, then ∇XY = 1

2 (〈X : Y 〉 + [X,Y ]) for
all X,Y ∈ X(M), i.e., there is a one-to-one correspondence between the covariant
derivative and the symmetric product.

Associated with th‘e metric G there is a natural affine connection, called the Levi-
Civita connection. The Levi-Civita connection ∇G is determined by the formula

2G(∇G
XY,Z) = X(G(Y,Z)) + Y (G(Z,X)) − Z(G(X,Y ))

+ G(Y, [Z,X]) − G(X, [Y,Z]) + G(Z, [X,Y ]) , X, Y, Z ∈ X(M) .

One can compute the Christoffel symbols of ∇G to be

Γabc =
1

2
Gad

(

∂Gdb
∂xc

+
∂Gdc
∂xb

−
∂Gbc
∂xd

)

. (2.8)

The Levi-Civita connection is torsion-free, that is T (X,Y ) = 0, for anyX , Y ∈ X(M).
Therefore, a pseudo-Riemannian metric on M defines a unique affine torsion-

free connection on M . The converse is, however, not true. Also, note that given an
affine torsion-free connection which is the Levi-Civita connection corresponding to
some pseudo-Riemannian metric, then there exist many more metrics that give rise to
the same affine connection. For instance, any constant metric on the Euclidean space
gives rise to the affine connection with Christoffel symbols Γabc = 0, 1 ≤ a, b, c ≤ n.

Given a pseudo-Riemannian metric G onM , we can define the so-called Beltrami
bracket [9, 21] of functions on M ,

{f : g}G = G(gradG f, gradG g) , f, g ∈ Cω(M) .

In local coordinates, one has the expression,

{f : g}G =
∂f

∂xa
Gab

∂g

∂xb
.

It is interesting to note that the mapping

gradG : (Cω(M), {· : ·}G) → (X(M), 〈· : ·〉∇G )

is a homomorphism of symmetric algebras, i.e., gradG{f : g}G = 〈gradG f : gradG g〉∇G ,
for all f, g ∈ Cω(M).

REMARK 2.3. The latter observation is the gradient analog of the following fact
in the Hamiltonian setting: consider the mapping (Cω(M), {·, ·}) → (X(M), [·, ·])
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(where {·, ·} denotes the Poisson bracket and [·, ·] denotes the Lie bracket), associ-
ating to each function f its Hamiltonian vector field Xf . Then this mapping is a
homomorphism of Lie algebras, i.e. X{f,g} = [Xf , Xg]. •

Let us now turn our discussion to the cotangent bundle ofM . First, we introduce
the construction that associates to each vector field X on M , a function V X on T ∗M ,
defined by V X(p) = 〈p,X〉. In the induced local coordinates (x1, . . . , xn, p1, . . . , pn)
on T ∗M , this reads V X(x, p) =

∑n
a=1 paXa(x). The complete lift of X to T ∗M , XC ∈

X(T ∗M) is defined as the Hamiltonian vector field (with respect to the canonical
symplectic form on T ∗M ) associated with the function V X . In local coordinates,

XC(x, p) =

n
∑

a=1

Xa

∂

∂xa
−

n
∑

a,b=1

∂Xb

∂xa
(x)pb

∂

∂pa

The notion of vertical lift of a function V on M to a function V V on T ∗M is given
by V V = V ◦ πM , where πM is the cotangent bundle projection. An object which
will play a key role in the subsequent discussion is the Riemannian extension [18, 26]
of a torsion-free affine connection. Let ∇ be a torsion-free affine connection on M .
Then, ∇ defines a pseudo-Riemannian metric on T ∗M , denoted G∇, as the unique
(0,2)-tensor on T ∗M which satisfies

G∇(XC, Y C) = −V 〈X:Y 〉 .

The fact that this single equality completely determines the Riemannian extension
G∇ is a consequence of the result in Proposition 4.2 in Chapter VII of [26], which
asserts that any (0, s)-tensor field on T ∗M is univocally defined by its action on the
complete lifts of vector fields of M . The matrix representations of the musical iso-
morphisms defined by G∇ in local coordinates are given by

[G∇ ≡

(

−2pcΓ
c
ab In

In 0

)

, ]G∇ ≡

(

0 In
In 2pcΓ

c
ab

)

. (2.9)

As for the gradient vector fields associated with the functions V X , V V ∈ Cω(T ∗M),
X ∈ X(M), V ∈ Cω(M), one has the local expressions

gradG∇ V X = Xa ∂

∂xa
+ pa

(

∂Xa

∂xb
+ 2ΓabcX

c

)

∂

∂pb
, gradG∇ V V =

∂V

∂xa
∂

∂pa
. (2.10)

Given a metric G on M , one can also verify that the pseudo-Riemannian metric on
T ∗M defined by G∇G

corresponds to the pullback by ]G of the complete lift GC to TM
of G, i.e., G∇G

= ]∗G(GC) (see [26]).
DEFINITION 2.4. The gradient extension Σe of a nonlinear system Σ of the form (2.1)

with respect to a torsion-free affine connection ∇ on M is given by

Σe :











ẋe = gradG∇ V g0(xe) +

m
∑

j=1

uj(t) gradG∇ V gj (xe) +

m
∑

j=1

uej(t) gradG∇ V V
j (xe) ,

yj = V V
j (xe) , yej = V gj (xe) , j = 1, . . . ,m ,

(2.11)
where xe = (x, p) ∈ T ∗M , xe(0) = (x0, p0), u = (u1, . . . , um) ∈ U ⊂ R

m, and ue =
(ue1, . . . , u

e
m) ∈ R

m.
REMARK 2.5. Note that the gradient extension Σe is itself a gradient control

system. •
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3. Observability of the prolongation and the gradient extension. In this sec-
tion, we investigate the observability properties of the prolonged system and the
gradient extension of a nonlinear system. Roughly speaking, the observability prop-
erties of a given system determine to what extent one can observe the actual state
of the system from its input-output behavior, i.e., to what extent the knowledge of
the input-output response allows us to infer things about the evolution of the state.
This study will later be key in establishing the characterization of when a nonlinear
control system can be written as a gradient control system.

We start by briefly reviewing some notions such as distinguishable points and
local observability. Let Y denote the space of absolutely continuous functions de-
fined on R+ = [0,+∞) with values in R

m. For a nonlinear system of the form (2.1),
the input-output map RΣ : M × U → Y , RΣ(x0, u(·)) = y(·) is defined by assigning
to each initial condition x0 ∈ M and any admissible control u ∈ U the output of the
system,

y(·) = (V1(x(·, x0, u(·))), . . . , Vm(x(t, x0, u(·)))) ,

where x(·, x0, u(·)) denotes the solution of ẋ(t) = g0(x(t)) +
∑m
j=1 uj(t)gj(x(t)) start-

ing at x0. Now, two points x1, x2 ∈ M are said to be indistinguishable, x1 ∼ x2, if
RΣ(x1, u(·)) = RΣ(x2, u(·)) for any u(·) ∈ U .

DEFINITION 3.1. A system Σ is observable if for any x1, x2 ∈ M , one has that
x1 ∼ x2 ⇒ x1 = x2. Alternatively, for any x1 6= x2, there exists an admissible control such
that the output functions resulting from the initial conditions x(0) = x1, resp. x(0) = x2,
are different. The system is locally observable at x0 if there exists a neighborhood N of x0

such that this holds for points in N .
Denote by H the R-linear space in Cω(M) spanned by the functions of the form

LX1
LX2

. . .LXs
Vj , with {Xr}

s
r=1 ⊂ {gi | i = 0, 1, . . . ,m}, and j ∈ {1, . . . ,m}. Al-

ternatively, we may take Xr to be arbitrary elements of the accessibility algebra cor-
responding to the vector fields g0, g1, . . . , gm. H is called the observation space of Σ.
It follows from the analyticity assumption that the system is observable if and only
if H distinguishes points in M , i.e. for every x1, x2 ∈ M with x1 6= x2, there exists
V ∈ H such that V (x1) 6= V (x2), cf. [13].

PROPOSITION 3.2 ([12]). Consider a nonlinear system Σ of the form (2.1), with
observation space H. Then, the observation space Hp of the prolongation Σp is given by
Hp = HC + HV, where HC = {V C | V ∈ H} and HV = {V V | V ∈ H}.

The following corollary is a modified statement of Corollary 3.3 in [12].
COROLLARY 3.3. Assume the codistribution dH is of constant rank. Then the system

Σ is (locally) observable if and only if its prolongation is (locally) observable.
Proof. Following [13], Σ is locally observable if and only rk(dH) = dimM . In

addition, the codistribution dH on M has constant rank if and only if the codistri-
bution dHp on TM has constant rank. Therefore, rk(dH) = dimM if and only if
rk(dHp) = dimTM if and only if Σp is locally observable. The statement regarding
observability is proved as in Corollary 3.3 in [12].

Let us turn our attention to the observability properties of the gradient extension
of a nonlinear system of the form (2.1). The following lemma will be most helpful.

LEMMA 3.4. Let ∇ be a torsion-free affine connection on a manifold M , and let G∇

denote its Riemannian extension to T ∗M . Then, for any vector fields X , Y ∈ X(M), and
any functions f , g ∈ Cω(M), the following identities hold

(i) (gradG∇ V X)(V Y ) = {V X : V Y }G∇ = V 〈X:Y 〉 = −G∇(XC, Y C).
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(ii) (gradG∇ V X)(f V) = (gradG∇ f V)(V X) = {V X : f V}G∇ = X(f)V.
(iii) (gradG∇ f V)(gV) = {f V : gV}G∇ = 0.
Proof. The first equality in (i) is the definition of the Beltrami bracket associated

with G∇. For the second one, we resort to the local expressions in (2.9) to compute

{V X : V Y }G∇ =

(

pa
∂Xa

∂xb
, Xb

)(

0 I
I 2peΓ

e
cd

)(

pa
∂Y a

∂xb
, Y b

)T

= pa

(

∂Xa

∂xb
Y b +

∂Y a

∂xb
Xb + 2ΓabcX

bY c
)

= V 〈X:Y 〉 .

The third equality corresponds to the definition of G∇. The first and second equalities
in (ii) follow again by definition. As for the third one, note that

gradG∇ f V(V X) =
∂f

∂xa
∂

∂pa
(pbX

b) =
∂f

∂xa
Xa = X(f)V

Finally, the equalities in (iii) are straightforward.
Denote by S0 the R-linear space in X(M) spanned by the vector fields of the

form 〈X1 : 〈X2 : 〈. . . : 〈Xs : gj〉〉 . . .〉〉, with {Xr}
s
r=1 ⊂ {gi | i = 0, 1, . . . ,m},

and j ∈ {1, . . . ,m}. Alternatively, one can define S0 as the smallest subspace of
X(M) such that (i) g1, . . . , gm ∈ S0; and (ii) if X ∈ S0, then 〈gi : X〉 ∈ S0 for all
i = 0, 1, . . . ,m. We denote by S0 the distribution on M generated by the space S0,

S0(x) = span{X(x) | X ∈ S0} , x ∈M . (3.1)

PROPOSITION 3.5. Consider a nonlinear system Σ of the form (2.1), with observation
space H. Let ∇ be a torsion-free affine connection on M . Then, the observation space He of
the gradient extension Σe is given by He = V S0 + (H + h)V, where V S0 = {V X | X ∈
S0} and h is spanned by LX1

LX2
. . .LXs

LXVj , with Xr, r = 1, . . . , s, equal to gi, i =
0, 1, . . . ,m, X ∈ S0 and j = 1, . . . ,m.

Proof. The observation space of the gradient extension of Σ is spanned by

LX1
LX2

. . .LXs
V V
j , LX1

LX2
. . .LXs

V gj ,

where Xr, r = 1, . . . , s is equal to gradG∇ V gi , gradG∇ V V
j , i = 0, 1, . . . ,m, j =

1, . . . ,m. Now, using Lemma 3.4, we have that

Lgrad
G∇ V giV V

j = (Lgi
Vj)

V , Lgrad
G∇ V giV gj = V 〈gi:gj〉 ,

Lgrad
G∇ V V

j
V V
k = 0 , Lgrad

G∇ V V
j
V gk = (Lgk

Vj)
V ,

with i = 0, 1, . . . ,m and j, k = 1, . . . ,m. Considering the next step of Lie derivatives
yields

Lgrad
G∇ V ghV 〈gi:gj〉 = V 〈gh:〈gi:gj〉〉 , Lgrad

G∇ V gh (Lgi
Vj)

V = (Lgh
Lgi

Vj)
V ,

Lgrad
G∇ V V

k
V 〈gi:gj〉 = (L〈gi:gj〉Vk)

V , Lgrad
G∇ V V

k
(Lgi

Vj)
V = 0 ,

with h = 0, 1, . . . ,m. Further iterating this process, we get to the desired result.
COROLLARY 3.6. Consider a nonlinear system Σ of the form (2.1), with observation

space H. Assume the codistribution dH is of constant rank. Let ∇ be a torsion-free affine
connection onM and further assume that the distribution S0 is full-rank. Then, Σ is (locally)
observable implies that Σe is (locally) observable.
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Proof. Since the codistribution dH has constant rank, Σ is locally observable if
and only if dim dH(x) = dimM . Since S0 is full-rank, it is clear that Σ locally ob-
servable implies that He has constant maximal rank, and therefore Σe is locally ob-
servable. With respect to observability, let (x1, p1), (x2, p2) ∈ T ∗M and assume that
V e(x1, p1) = V e(x2, p2) for all V e ∈ He. Since HV ⊂ He, this yields V (x1) = V (x2)
for any V ∈ H. So, under observability of Σ, we conclude that x1 = x2 = x. Then, we
have that V X(x, p1) = V X(x, p2), for all X ∈ S0, which finally implies that p1 = p2.

4. Externally equivalent systems. In this section we introduce the notion of
(weakly) externally equivalent systems, which will be instrumental in the statement
of the main result in Section 5. Consider two nonlinear systems α = 1, 2, of the form,

Σα :











ẋα = gα0 (xα) +

m
∑

j=1

ujg
α
j (xα) , xα ∈Mα ,

yj = V αj (xα) , j = 1, . . . ,m , u = (u1, . . . , um) ∈ U ⊂ R
m .

Denote by Hα, α = 1, 2, the associated observation spaces. Take a function H1 ∈
H1, H1 = LX1

. . .LXs
V 1
j , with Xr = g1

ir
, ir ∈ {0, 1, . . . ,m}, r = 1, . . . , s and j ∈

{1, . . . ,m}. Consider the function in H2 defined by H2 = LY1
. . .LYs

V 2
j , with Yr =

g2
ir

, r = 1, . . . , s. Then we say that H1 and H2 formally correspond to each other. This
notion is useful to define the concept of weakly externally equivalent systems.

DEFINITION 4.1. The systems Σ1 and Σ2 are weakly externally equivalent if and only
if for all x1 ∈ M1, there exists x2 ∈ M2 such that H1(x1) = H2(x2) for all corresponding
H1 ∈ H1, H2 ∈ H2, and reciprocally, for all x2 ∈ M2, there exists x1 ∈ M1 such that
H1(x1) = H2(x2) for all corresponding H1 ∈ H1, H2 ∈ H2.

DEFINITION 4.2. The systems Σ1 and Σ2 are externally equivalent if and only if for all
x1 ∈ M1, there exists x2 ∈ M2 such that the input-output maps corresponding to x1 and
x2 coincide, i.e. RΣ1(x1, u(·)) = RΣ2(x2, u(·)), for all u(·) ∈ U , and reciprocally, for all
x2 ∈M2, there exists x1 ∈M1 such that RΣ1(x1, u(·)) = RΣ2(x2, u(·)), for all u(·) ∈ U .

Equivalently, Σ1 and Σ2 are externally equivalent if and only if their behaviors
are equal. Clearly, if two systems are externally equivalent, then they are weakly
externally equivalent.

PROPOSITION 4.3. Assume that Σ1 and Σ2 are weakly externally equivalent, observ-
able and that the codistributions dHα, α = 1, 2, have constant rank. Then there exists a
unique diffeomorphism ϕ : M1 →M2 with ϕ∗(H2) = H1.

Proof. Let x1 ∈ M1. By definition, there exists x2 ∈ M2 such that H1(x1) =
H2(x2) for all corresponding H1 ∈ H1, H2 ∈ H2. Since H2 distinguishes points
in M2, it follows that x2 is unique. Define ϕ : M1 → M2, ϕ(x1) = x2. Using
dim dH2 = dimM2 and the inverse function theorem, it follows that ϕ is smooth.
Indeed, for each x2 ∈ M2, there exists a neighborhood V of M 2 at x2 and dimM2

independent functions H2
1 , . . . , H

2
dimM2 on V , such that ϕ is given by

x2 = (H2
1 , . . . , H

2
dimM2)−1(H1

1 , . . . , H
1
dimM2)(x1) .

Analogously, we can construct the inverse mapping ϕ−1 : M2 →M1, making use of
the fact that Σ1 is observable, which concludes the proof.

COROLLARY 4.4. Let the systems Σ1 and Σ2 be observable and the codistributions
dHα, α = 1, 2, have constant rank. Then Σ1 and Σ2 are weakly externally equivalent if and
only if they are externally equivalent.
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Proof. We already know that if the systems are externally equivalent, then they
are weakly externally equivalent. Conversely, assume that Σ1 and Σ2 are weakly
externally equivalent. From Proposition 4.3, we have that there exists a diffeomor-
phism ϕ : M1 → M2 with ϕ∗(H2) = H1. Using this latter fact, and since the vector
fields gi0, gij are determined by their action as derivations on Hα, α = 1, 2, we con-
clude that ϕ∗g

1
0 = g2

0 , ϕ∗g
1
j = g2

j , j = 1, . . . ,m.
REMARK 4.5. The map ϕ in the previous proof is called a state-space diffeomor-

phism. •

5. Gradient realization of a nonlinear control system. This section contains
the main result of the paper. Under certain technical conditions, Theorem 5.4 below
characterizes when a nonlinear control systems admits a gradient realization. Before
stating this result, we need to introduce the novel notion of compatibility between a
nonlinear system and an affine connection.

DEFINITION 5.1 (Compatibility). Let ∇ be an affine connection on M . A nonlinear
control system Σ of the form (2.1) is compatible with ∇ if and only if the following two
conditions hold:

(a) For all vector fields X1, . . . , Xs1 , Y1, . . . , Ys2 ∈ {g0, g1, . . . , gm}, and all indexes
j, k = 1, . . . ,m,

L〈X1:〈X2:〈...:〈Xs1
:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
]

= L〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉

[

LX1
LX2

. . .LXs1
Vj
]

.

(b) For all vector fields X1, . . . , Xs1 , Y1, . . . , Ys2 , Z1, . . . , Zs3 ∈ {g0, g1, . . . , gm}, and
all indexes j, k, l = 1, . . . ,m,

L〈〈X1:〈X2:〈...:〈Xs1
:gj〉〉...〉〉:〈Y1:〈Y2:〈...:〈Ys2

:gk〉〉...〉〉〉

[

LZ1
LZ2

. . .LZs3
Vl
]

= L〈Z1:〈Z2:〈...:〈Zs3
:gl〉〉...〉〉

[

L〈X1:〈X2:〈...:〈Xs1
:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
]

]

.

REMARK 5.2. In case the distribution S0 (cf. equation (3.1)) is full-rank, note that
property (b) in the above definition implies property (a) up to a constant on each
connected component of M . To see this, one can use the symmetry of the symmetric
product to deduce from (b) that

L〈Z1:〈Z2:〈...:〈Zs3
:gl〉〉...〉〉

[

L〈X1:〈X2:〈...:〈Xs1
:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
]

]

= L〈Z1:〈Z2:〈...:〈Zs3
:gl〉〉...〉〉

[

L〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉

[

LX1
LX2

. . .LXs1
Vj
]

]

.

Now, one concludes the result from the full-rankness of S0. Another interesting ob-
servation in this case is that the checkability of the compatibility condition can be
performed taking a basis of vector fields in S0 as we discuss later in Lemma 8.1. •

REMARK 5.3. Note that a locally gradient control system of the form (2.2) is
compatible with the Levi-Civita connection associated with the pseudo-Riemannian
metric G. Indeed, let 〈· : ·〉, {· : ·} denote, respectively, the symmetric product and the
Beltrami bracket corresponding to ∇G and G. Take Xr1 = gradVαr1

, Yr2 = gradVβr2
,
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Zr3 = gradVγr3
, ri ∈ {1, . . . , si} (which can always be written at least locally), then

L〈X1:〈X2:〈...:〈Xs1
:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
]

= Lgrad{Vα1
:{Vα2

:{...:{Vαs1
:Vj}}...}}

[

{Vβ1
: {Vβ2

: {. . . : {Vβs2
: Vk}} . . .}}

]

= Lgrad{Vβ1
:{Vβ2

:{...:{Vβs2
:Vk}}...}}

[

{Vα1
: {Vα2

: {. . . : {Vαs1
: Vj}} . . .}}

]

= L〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉

[

LX1
LX2

. . .LXs1
Vj
]

,

and

L〈〈X1:〈X2:〈...:〈Xs1
:gj〉〉...〉〉:〈Y1:〈Y2:〈...:〈Ys1

:gk〉〉...〉〉〉

[

LZ1
LZ2

. . .LZs3
Vl
]

= Lgrad{{Vα1
:{Vα2

:{...:{Vαs1
:Vj}}...}}:{Vβ1

:{Vβ2
:{...:{Vβs2

:Vk}}...}}}
[

{Vγ1 : {Vγ2 : {. . . : {Vγs3
: Vl}} . . .}}

]

= Lgrad{Vγ1
:{Vγ2

:{...:{Vγs3
:Vl}}...}}

[

{{Vα1
: {Vα2

: {. . . : {Vαs1
: Vj}} . . .}} : {Vβ1

: {Vβ2
: {. . . : {Vβs2

: Vk}} . . .}}}
]

= L〈Z1:〈Z2:〈...:〈Zs3
:gl〉〉...〉〉

[

L〈X1:〈X2:〈...:〈Xs1
:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
]

]

,

as claimed. •
Now, we come to the main result of the paper.
THEOREM 5.4. Let Σ be a nonlinear control system of the form (2.1). Let ∇ be a torsion-

free affine connection defined on the state manifold M . Assume Σ is observable with dim dH
constant, compatible with ∇ and that the distribution S0 is full-rank. Then, Σ is a locally
gradient control system with respect to a pseudo-metric whose Levi-Civita connection is ∇
if and only if its prolonged system Σp and its gradient extension Σe are weakly externally
equivalent.

Proof. ⇒) Consider a locally gradient control system Σ on (M,G) (cf. (2.2)), to-
gether with its prolongation Σp on TM and its gradient extension Σe on T ∗M . Recall
that in the induced bundle coordinates (xa, va) on TM , (xa, pa) on T ∗M , the musi-
cal isomorphisms associated with G read [G(xa, va) = (xa,Gabv

b) and ]G(xa, pa) =
(xa,Gabpb). We are going to show that [G is actually an isomorphism between the
prolongation and the gradient extension, i.e. we will prove that [G(xp(·)) = xe(·)
along the solutions of (2.7) and (2.11) respectively. This will be a consequence of the
following equalities

([G)∗g
C
i = gradG∇ V gi ◦ [G , V gj ◦ [G = V C

j ,
([G)∗g

V
j = gradG∇ V V

j ◦ [G , V V
j ◦ [G = V V

j ,
(5.1)

for all i = 0, 1, . . . ,m, j = 1, . . . ,m. In order to show (5.1), we will make use of the
following identities,

([G)∗

(

∂

∂xa

)

=
∂

∂xa
+
∂Gcb
∂xa

vb
∂

∂pc
, ([G)∗

(

∂

∂va

)

= Gab
∂

∂pb
.

Let g ∈ X(M). In local coordinates, g = ga∂/∂xa. Using (2.5), we get

([G)∗
(

gC
)

= ga
∂

∂xa
+

{

gc
∂Gab
∂xc

+ Gac
∂gc

∂xb

}

vb
∂

∂pa
.
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On the other hand, we have that

gradG∇ V g ◦ [G = ga
∂

∂xa
+

{

Gbc
∂gc

∂xa
+ 2GbcΓ

c
adg

d

}

vb
∂

∂pa
.

Now, suppose that g is a locally gradient vector field. In local coordinates, this
means that Gacg

c = ∂V/∂xa, for a certain function V , which in turn implies that
∂{Gacg

c}/∂xb = ∂{Gbcg
c}/∂xa, that is

Gac
∂gc

∂xb
=
∂Gbc
∂xa

gc + Gbc
∂gc

∂xa
−
∂Gac
∂xb

gc .

Substituting into the above expression for ([G)∗ (gC),

([G)∗
(

gC
)

= ga
∂

∂xa
+

{

gc
∂Gab
∂xc

+
∂Gbc
∂xa

gc + Gbc
∂gc

∂xa
−
∂Gac
∂xb

gc
}

vb
∂

∂pa

= ga
∂

∂xa
+

{

gc
(

∂Gab
∂xc

+
∂Gbc
∂xa

−
∂Gac
∂xb

)

+ Gbc
∂gc

∂xa

}

vb
∂

∂pa

= ga
∂

∂xa
+

{

2gcGbdΓ
d
ac + Gbc

∂gc

∂xa

}

vb
∂

∂pa
= gradG∇ V g ◦ [G .

Therefore, the first equality in (5.1) holds for every i = 0, 1, . . . ,m. The equality
([G)∗g

V
j = gradG∇ V V

j ◦ [G , j = 1, . . . ,m, follows by considering (2.6) and the fact that
the vector fields gj are gradient by hypothesis,

([G)∗ (gV) = Gabg
b ∂

∂pa
=
∂V

∂xa
∂

∂pa
= gradG∇ V V ◦ [G .

As for V gj ◦ [G = V C
j , for each v ∈ TxM , we compute V gj ◦ [G(v) = Gabv

bgaj =

∂Vj/∂x
b · vb =< dVj , v >= V C

j (v). The last equality follows trivially. Consequently,
the prolongation and the gradient extension of a nonlinear system Σ which is itself
gradient are externally equivalent, in particular weakly externally equivalent sys-
tems.

To prove the converse implication, we need some intermediate steps that we
describe in what follows.

LEMMA 5.5. Let Σ be a nonlinear system of the form (2.1). Under the hypothesis of
Theorem 5.4, assume that the prolongation Σp and the gradient extension Σe are weakly
externally equivalent. Then there exists a unique diffeomorphism ϕ : TM → T ∗M such
that

(ϕ)∗g
C
i = gradG∇ V gi ◦ ϕ , V gj ◦ ϕ = V C

j ,
(ϕ)∗g

V
j = gradG∇ V V

j ◦ ϕ , V V
j ◦ ϕ = V V

j ,
(5.2)

for all i = 0, 1, . . . ,m, j = 1, . . . ,m. Moreover, ϕ is a bundle morphism over the identity
IdM : M → M , i.e. in natural coordinates ϕ(x, v) = (x, φ(x, v)), for certain map φ :
TxM → T ∗

xM , x ∈M .
Proof. By Proposition 3.2 and Corollary 3.6, we have that both the prolongation

and the gradient extension are observable systems. Since they are also weakly ex-
ternally equivalent by assumption, Corollary 4.4 ensures that there exists a unique
diffeomorphism ϕ : TM → T ∗M verifying (5.2). Applying now Corollary 4.4 to
Σ1 = Σ = Σ2, we deduce that there exists a unique diffeomorphism from M to M
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mapping the original nonlinear system to itself, namely the identity mapping. Us-
ing uniqueness and the fact that ϕ satisfies (5.2), it then follows that ϕ is of the form
ϕ(x, v) = (x, φ(x, v)), for certain map φ : TxM → T ∗

xM , x ∈M .
LEMMA 5.6. Under the same assumptions as in Lemma 5.5, there exists a unique

pseudo-Riemannian metric G onM such that [G = ϕ, i.e. [G(v) = φ(x, v) for all v ∈ TxM .
Proof. It follows from V gj ◦ ϕ = V C

j (cf. equation (5.2)) and the structure of the
diffeomorphism ϕ that

< φ(x, v), gj(x) >=< dVj(x), v > , ∀v ∈ TxM , j = 1, . . . ,m .

Furthermore, from (ϕ)∗g
C
i = gradV gi ◦ ϕ (see eq. (5.2)), it follows that

LgradV giV gj ◦ ϕ = LgC
i
V C
j , i = 0, 1, . . . ,m , j = 1, . . . ,m .

Using now Lemma 3.4 (i), we get < φ(x, v), 〈gi : gj〉(x) >=< d (Lgi
Vj) (x), v >. In

general for all v ∈ TxM ,

< φ(x, v), 〈X1 : 〈X2 : 〈X3, . . . : 〈Xs : gj〉〉 . . .〉〉(x) >=

=< d (LX1
LX2

. . .LXs
Vj) (x), v > , (5.3)

with the Xr, r = 1, . . . , s equal to some gi, i = 0, 1, . . . ,m. Since the right-hand
side of this equation is linear in v and the distribution generated by the space S0 is
full-rank by hypothesis, it follows that for each x ∈ M there exists a unique matrix
G(x) such that φ(x, v) = G(x)v. Since ϕ is a diffeomorphism, G(x) is non-singular for
every x and depends smoothly on the base point. Consider the adjoint mapping of
ϕ, ϕT : TM → T ∗M , defined by < ϕ(v), w >=< v, ϕT (w) >, v, w ∈ TxM , x ∈ M .
Then, ϕT (x, v) = (x,GT (x)v). It follows from (5.3) that G(x) satisfies

ϕT (〈X1 : 〈X2 : 〈X3, . . . : 〈Xs : gj〉〉 . . .〉〉(x)) = d (LX1
LX2

. . .LXs
Vj) (x) , (5.4)

with the Xr as above. Let us see now that G(x) = GT (x). Note that in local coordi-
nates (ϕ)∗g

V
j = gradG∇ V V

j ◦ ϕ yields,

(

I 0
∂
∂x

(G(x)v) G(x)

)(

0
gj(x)

)

=

(

0
(

∂Vj

∂x

)T

(x)

)

,

or, equivalently, G(x)gj(x) = (∂Vj/∂x)
T

(x), j = 1, . . . ,m, which in intrinsic terms,
can be written as ϕ(gj) = dVj . Now,

< ϕ (〈X1 : 〈X2 : 〈X3, . . . : 〈Xs1 : gj〉〉 . . .〉〉) , 〈Y1 : 〈Y2 : 〈Y3, . . . : 〈Ys2 : gk〉〉 . . .〉〉 >

=< 〈X1 : 〈X2 : 〈X3, . . . : 〈Xs1 : gj〉〉 . . .〉〉, ϕ
T (〈Y1 : 〈Y2 : 〈Y3, . . . : 〈Ys2 : gk〉〉 . . .〉〉) > .

Using (5.4), the latter is equal to

< 〈X1 : 〈X2 : 〈X3, . . . : 〈Xs1 : gj〉〉 . . .〉〉, dLY1
LY2

. . .LYs2
Vk >

=< dLX1
LX2

. . .LXs1
Vj , 〈Y1 : 〈Y2 : 〈. . . : 〈Ys2 : gk〉〉 . . .〉〉 > ,

where in the last equality we have used the property (a) of the compatibility defini-
tion between the nonlinear system Σ and the affine connection ∇. Finally,

< ϕ (〈X1 : 〈X2 : 〈X3, . . . : 〈Xs1 : gj〉〉 . . .〉〉) , 〈Y1 : 〈Y2 : 〈Y3, . . . : 〈Ys2 : gk〉〉 . . .〉〉 >

=< ϕT (〈X1 : 〈X2 : 〈X3, . . . : 〈Xs1 : gj〉〉 . . .〉〉) , 〈Y1 : 〈Y2 : 〈. . . : 〈Ys2 : gk〉〉 . . .〉〉 > ,
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By the assumption on the full-rankness of the distribution S0, we conclude that

ϕ (〈X1 : 〈X2 : 〈X3, . . . : 〈Xs1 : gj〉〉 . . .〉〉) =

= ϕT (〈X1 : 〈X2 : 〈X3, . . . : 〈Xs1 : gj〉〉 . . .〉〉) ,

which in turn implies that ϕ(x) = ϕT (x), i.e., the matrix G(x) is symmetric.
LEMMA 5.7. Under the same assumptions as in Lemma 5.5, the torsion-free affine con-

nection ∇ is the Levi-Civita connection corresponding to the pseudo-Riemannian metric G.
Proof. First of all, note that

< V 〈〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉:〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉〉, d(LZ1

LZ2
. . .LZs3

Vl) >

= L〈〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉:〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉〉

[

LZ1
LZ2

. . .LZs3
Vl
]

= L〈Z1:〈Z2:〈...:〈Zs3
:gl〉〉...〉〉

[

L〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
]]

(5.5)

=<
(

L〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
])C

◦ ϕ−1, d(LZ1
LZ2

. . .LZs3
Vl) >,

where in the second equality we have used the property (b) of the compatibility
definition between the nonlinear system Σ and the affine connection ∇. Since the
observation space of the nonlinear system Σ is generated by the functions of the
form LZ1

LZ2
. . .LZs3

Vl, and Σ is observable by hypothesis, we conclude that

V 〈〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉:〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉〉 ◦ ϕ =

=
(

L〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
])C

.

Given the structure of the mapping ϕ (cf. Lemmas 5.5 and 5.6), and equation (5.4),
this equality can be rewritten as,

G(〈〈X1 : 〈X2 : 〈. . . : 〈Xs : gj〉〉 . . .〉〉 : 〈Y1 : 〈Y2 : 〈. . . : 〈Ys2 : gk〉〉 . . .〉〉〉, ·)

= d < ϕ(〈Y1 : 〈Y2 : 〈. . . : 〈Ys2 : gk〉〉 . . .〉〉), 〈X1 : 〈X2 : 〈. . . : 〈Xs : gj〉〉 . . .〉〉 >

= d
(

G(gradG

(

LY1
LY2

. . .LYs2
Vk
)

, gradG (LX1
LX2

. . .LXs
Vj))

)

= d{LY1
LY2

. . .LYs2
Vk : LX1

LX2
. . .LXs

Vj}G .

Since gradG{f : g}G = 〈gradG f : gradG g〉∇G , we conclude

〈〈X1 : 〈X2 : 〈. . . : 〈Xs : gj〉〉 . . .〉〉 : 〈Y1 : 〈Y2 : 〈. . . : 〈Ys2 : gk〉〉 . . .〉〉〉 =

= 〈〈X1 : 〈X2 : 〈. . . : 〈Xs : gj〉〉 . . .〉〉 : 〈Y1 : 〈Y2 : 〈. . . : 〈Ys2 : gk〉〉 . . .〉〉〉G .

Using the fact that S0 is full-rank, we deduce that 〈X : Y 〉 = 〈X : Y 〉G for all X ,
Y ∈ X(M). Finally, using the fact that ∇ is torsion-free, we compute

∇XY =
1

2
(〈X : Y 〉 + [X,Y ]) =

1

2
(〈X : Y 〉G + [X,Y ]) = ∇G

XY , ∀X,Y ∈ X(M) ,

which concludes the result.
We are now ready to conclude the proof of Theorem 5.4.
Proof of Theorem 5.4. ⇐) Assume the prolongation Σp and the gradient extension

Σe are weakly externally equivalent. From Lemmas 5.5, 5.6 and 5.7, we deduce the
existence of a pseudo-Riemannian metric G on M such that ∇ = ∇G and the unique
diffeomorphism between TM and T ∗M relating Σp and Σe and verifying (5.2) is [G .
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From ([G)∗g
V
j = gradG∇ V V

j ◦ [G , we deduce [G(gj) = dVj , and hence gradG Vj =
gj , j = 1, . . . ,m. Finally, we show that g0 is a locally gradient vector field. From
([G)∗g

C
0 = gradG∇ V g0 ◦ [G and the local expression (2.8) of the Christoffel symbols of

the Levi-Civita connection ∇G , we deduce that

∂

∂xb
(Gacg

c
0) =

∂

∂xa
(Gbcg

c
0) , ∀a, b = 1, . . . , n ,

which implies that the one-form [G(g0) is closed.
EXAMPLE 5.8. Consider a linear input-state-output system Σ on M = R

n, i.e.,
ẋ = Ax + Bu, y = Cx, x ∈ R

n, with A a (n × n)-matrix, B a (n × m)-matrix and
C a (m × n)-matrix. Assume Σ is observable and controllable. Consider the trivial
connection ∇ on R

n whose Christoffel symbols are given by Γabc = 0, 1 ≤ a, b, c ≤
n. One can easily verify that Σ is compatible with ∇, and, using the hypothesis of
controllability, that the distribution S0 has full rank. The prolonged system consists
of the system itself together with the variational equations v̇ = Av + Bup, yp = Cv,
and the gradient extension consists of the system itself together with the equations
ṗ = AT p+CTue, ye = BT p. Hence the prolonged system and the gradient extension
are weakly externally equivalent if and only if the impulse responses of v̇ = Av+Bup,
yp = Cv and ṗ = AT p + CTue, ye = BT p are equal, that is, W (t) = W T (t), with
W (t) := CeAtB. Thus from Theorem 5.4 we recover the classical result (see e.g. [25])
that an observable and controllable linear system is a gradient system (with respect
to the trivial connection) if and only if W (t) = W T (t). •

REMARK 5.9. Note that, given the torsion-free affine connection ∇, the pseudo-
Riemannian metric G obtained in the proof of Theorem 5.4 is unique such that Σ is
locally gradient with respect to it. In Section 6 below, we investigate the uniqueness
(up to isometry) of gradient realizations with the same input-output behavior. •

REMARK 5.10. In general, we cannot ensure that the drift vector field g0 is glob-
ally gradient, unless we impose some additional conditions on the topology of the
state spaceM (for instance, that the first Betti number ofM is zero). This is analogous
to the situation in the Hamiltonian setting [12]. •

REMARK 5.11. As noted in Section 2.2, one can verify that the pseudo-Riemannian
metric on T ∗M defined by G∇ corresponds to the pullback by ]G of the complete lift
GC to TM of the original metric G on M . •

REMARK 5.12. A different way to prove the same result which indeed keeps a
closer parallelism with the proof for the Hamiltonian case [12] would be the follow-
ing. Once one has proved Lemmas 5.5 and 5.6, instead of proving Lemma 5.7, one
can show that

(ϕ)∗〈X1 : 〈X2 : 〈. . . : 〈Xs : gj〉〉 . . .〉〉
C = gradV 〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉 ◦ ϕ , (5.6)

for any j ∈ {1, . . . ,m} and Xr ∈ {g0, g1, . . . , gm}, r = 1, . . . , s. This can be done by
considering the following vector fields on T ∗M ,

Z1 = (ϕ)∗〈X1 : 〈X2 : 〈. . . : 〈Xs : gj〉〉 . . .〉〉
C ◦ ϕ−1 ,

Z2 = gradV 〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉 ,

and showing that their action on the observation space He of Σe is the same. To see
this, recall from Proposition 3.5 that He = V S0 + (H + h)V. Consider a function of
the form LX1

LX2
. . .LXs

Vj , with Xr, r = 1, . . . , s, equal to gi, i = 0, 1, . . . ,m, and
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j = 1, . . . ,m. Then,

LZ1
[(LX1

LX2
. . .LXs

Vj)
V] =

=
(

L〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉C [(LX1
LX2

. . .LXs
Vj)

V ◦ ϕ]
)

◦ ϕ−1 =

=
(

L〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉 [LX1
LX2

. . .LXs
Vj ]
)V

,

where we have used twice the fact that ϕ is the identity mapping on the base mani-
fold M . On the other hand,

LZ2
[(LX1

LX2
. . .LXs

Vj)
V] =

(

L〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉 [LX1
LX2

. . .LXs
Vj ]
)V

,

using property (ii) in Lemma 3.4. The same argument also guarantees that the action
of Z1 and Z2 is the same over the vertical lifts of the functions spanning h. Finally,
let 〈Y1 : 〈Y2 : 〈. . . : 〈Ys2 : gk〉〉 . . .〉〉 ∈ S0 and consider the corresponding function on
T ∗M , V 〈Y1:〈Y2:〈...:〈Ys2

:gk〉〉...〉〉. Then,

LZ1

[

V 〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉

]

=

=
(

L〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉C

[

V 〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉 ◦ ϕ

])

◦ ϕ−1 =

=
(

L〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉C

[

(LY1
LY2

. . .LYs2
Vk)

C
])

◦ ϕ−1

=
(

L〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
])C

◦ ϕ−1 , (5.7)

where we have used equation (5.4). In addition,

LZ2

[

V 〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉

]

= V 〈〈X1:〈X2:〈...:〈Xs:gj〉〉...〉〉:〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉〉 , (5.8)

where we have used property (i) in Lemma 3.4. Now, equation (5.5) implies that (5.7)
and (5.8) coincide. Therefore, Z1 and Z2 coincide over He, and this concludes the
proof of (5.6).

Now, one can proceed by taking local coordinates (x1, . . . , xn) in M such that
every coordinate function xi is of the form LX1

. . .LXs
Vj for a certain j ∈ {1, . . . ,m}

and certain vector fields Xr ∈ {g0, g1, . . . , gm}, r = 1, . . . , s. It follows from (5.4) that
there exists n independent vector fields k1, . . . , kn of the form 〈X1 : 〈X2 : 〈. . . : 〈Xs :
gj〉〉 . . .〉〉 such that [G(ki) = dxi. Finally, spelling out eq. (5.6) for the vector fields ki

and making use of the symmetry of G, one obtains that the Christoffel symbols of the
affine connection ∇ are precisely given by (2.8), which concludes the result. •

6. Uniqueness of the gradient realization. In this section, we investigate the
gradient analog of the following well-known result for Hamiltonian systems: if two
minimal Hamiltonian systems have the same input-output map, then they are sym-
plectomorphic [3, 21]. We will see how the setting of Theorem 5.4 also provides
sufficient conditions under which a similar result holds for gradient realizations.

In [23], P. Varaiya conjectured that if there exists a state-space diffeomorphism
between two locally controllable gradient systems, then the diffeomorphism is actu-
ally an isometry between the underlying pseudo-Riemannian manifolds (see also [24]).
Subsequently, in [1, 2], J. Basto Gonçalves produced an example of two locally con-
trollable and observable gradient systems living on the same state space with state-
space diffeomorphism given by the identity mapping, where however the Rieman-
nian metrics are different; thus providing a counterexample to the conjecture by
Varaiya. For the sake of completeness, we review it in the following.
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EXAMPLE 6.1 ([1, 2]). Consider two gradient systems Σ1 and Σ2 on M1 = M2 =
R

4 with Riemannian metrics G1 and G2 given respectively by

G1(x1, x2, x3, x4) = dx1 ⊗ dx1 + e−x4dx2 ⊗ dx2 + e−x1dx3 ⊗ dx3 + e−x3dx4 ⊗ dx4 ,

G2(x1, x2, x3, x4) = dx1 ⊗ dx1 + e−x4dx2 ⊗ dx2 + (e−x1 + ex3)dx3 ⊗ dx3

+ e−x3(1 + e2x1)dx4 ⊗ dx4 − ex1(dx3 ⊗ dx4 + dx4 ⊗ dx3) .

Furthermore, let Σ1 and Σ2 have both zero drift vector fields and the same output
functions given by

y1 = V1(x) := x1 , y2 = V2(x) := x2 + x3 + x4 .

From the definition of G1 and G2, it easily follows that the input vector fields of both
systems are the same, i.e.,

gradG1 V1 = gradG2 V1 =
∂

∂x1
,

gradG1 V2 = gradG2 V2 = ex4
∂

∂x2
+ ex1

∂

∂x3
+ ex3

∂

∂x4
.

Therefore, Σ1 and Σ2 are externally equivalent with state-space diffeomorphism
given by the identity mapping Id : R

4 → R
4. However, the metrics G1 and G2 are

different, and hence the identity mapping is not an isometry. It should also be noted
that Σ1 and Σ2 are both controllable and observable. •

The following result shows that, under the hypotheses of Theorem 5.4, a state-
space diffeomorphism linking two gradient systems is an isometry, provided the state-
space diffeomorphism is already known to respect the affine connections determined
by their respective pseudo-Riemannian metrics. A similar statement is already con-
tained in [1, 2]. Here we make use of an argument given in [12], p. 58 for the case of
Hamiltonian systems.

PROPOSITION 6.2. Let Σ1 and Σ2 be two gradient systems with state spaces
(

M1,G1
)

and
(

M2,G2
)

, respectively. For i = 1, 2, assume that Σi is observable with dim dHi con-
stant, and that the distribution S i0 is full-rank. Furthermore, let Σ1 and Σ2 be externally
equivalent with the corresponding state-space diffeomorphism ψ : M 1 →M2 satisfying

ψ∗(∇
G1

X Y ) ◦ ψ−1 = ∇G2

ψ∗X◦ψ−1(ψ∗Y ◦ ψ−1) , for all X,Y ∈ X(M1) . (6.1)

Then ψ∗G2 = G1, that is, ψ is an isometry.
Proof. By Lemmas 5.5 and 5.6, the map ϕi = [Gi is the unique diffeomorphism

satisfying (5.2) for system Σi, i = 1, 2. It is easily checked that since Σ1 and Σ2 are
externally equivalent with state-space diffeomorphism ψ, then their prolongations
Σ1p and Σ2p are externally equivalent with uniquely determined state-space diffeo-
morphism given by ψ∗ : TM1 → TM2. Furthermore, it can be readily checked
that the gradient extensions Σ1e and Σ2e are externally equivalent with state-space
diffeomorphism ψ∗ : T ∗M2 → T ∗M1, provided ψ satisfies (6.1). This is because

equation (6.1) implies that ψ∗ respects the Riemannian extensions G∇G1

and G∇G2

determined, respectively, by the affine connections ∇G1

and ∇G2

. Therefore, by the
uniqueness of all these state-space diffeomorphisms, we obtain the following com-
mutative diagram
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TM1 TM2

T ∗M1 T ∗M2�

-

? ?

ψ∗

ϕ2ϕ1

ψ∗

that is,

ψ∗ ◦ ϕ2 ◦ ψ∗ = ϕ1 . (6.2)

Recalling that ϕi = [Gi , i = 1, 2, it is readily seen that (6.2) is equivalent to

ψ∗G2 = G1 . (6.3)

that is, ψ :
(

M1,G1
)

→
(

M2,G2
)

is an isometry.
REMARK 6.3. Note that in Example 6.1 the torsion-free connections determined

by G1 and G2 are different, and hence the identity map does not respect them. •
REMARK 6.4. Since eq. (6.2) is equivalent to eq. (6.3), one may also conclude that

under the conditions of Theorem 5.4, the state-space diffeomorphism ψ : M 1 → M2

is an isometry if and only if ψ∗ : T ∗M2 → T ∗M1 is a state-space diffeomorphism
between Σ1e and Σ2e. •

7. Conclusions. We have discussed necessary and sufficient conditions for a
nonlinear control system to be realizable as a gradient control system with respect to
a pseudo-Riemannian metric whose Levi-Civita connection coincides with a given
affine connection. The results rely on a suitable notion of compatibility of the sys-
tem with respect to the given affine connection, and on the input-output behavior
of the prolonged system and the gradient extension. The symmetric product as-
sociated with an affine connection plays a key role in the discussion. We believe
that the developments in this paper do not only give insight in the system-theoretic
properties of the physically motivated class of gradient control systems, but also
shed light on the differential-geometric properties of gradient and Lagrangian con-
trol systems. Future work will include the investigation of necessary and sufficient
conditions that guarantee the existence of an affine connection such that the hypoth-
esis of Theorem 5.4 are satisfied, the development of equivalent characterizations in
terms of the input-output behavior of the original nonlinear system and the study of
the application of the results to specific classes of nonlinear systems, such as bilinear,
homogeneous, and polynomial systems.
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8. Appendix. In this appendix we present a simplifying result concerning the
compatibility hypothesis in the statement of Theorem 5.4. In general, checking con-
ditions (a) and (b) in the definition of compatibility between the affine connection ∇
and the nonlinear system Σ cannot be performed for every possible choice of vec-
tor fields in {g0, g1, . . . , gm} and {V1, . . . , Vm}. The following result shows that it is
enough to check the compatibility condition on a basis of vector fields and the corre-
sponding associated functions once we know that the prolongation and the gradient
extension of Σ are weakly externally equivalent.

LEMMA 8.1. Let ∇ be a torsion-free affine connection. Assume Σ is observable with
dim dH constant, and that the distribution S0 is full-rank. Assume the prolongation Σp and
the gradient extension Σe of Σ are weakly externally equivalent. Then Σ is compatible with
∇ if and only if properties (a) and (b) are verified by a basis of vector fields in S0.

Proof. Let R1, . . . , Rn be linearly independent vector fields of the form Ri =
〈Xi

1 : 〈Xi
2 : 〈. . . : 〈Xi

si
: gji〉〉 . . .〉〉, i = 1, . . . , n. Let VRi

denote the function on
M given by LXi

1

. . .LXi
si
Vji . From equation (5.4), we know that ϕT (Ri) = dVRi

.
Assume properties (a) and (b) in the definition of the compatibility condition (cf.
Definition 5.1) are verified by any combination of the vector fields R1, . . . , Rn and
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the functions VR1
, . . . , VRn

. Let X = 〈X1 : 〈X2 : 〈. . . : 〈Xs : gk〉〉 . . .〉〉 be any element
of S0, and VX = LX1

LX2
. . .LXs

Vk the associated function on M . Since S0 is full-
rank, we have that X =

∑n
i=1 f

i
XRi. Then,

dVX = dLX1
LX2

. . .LXs
Vk = ϕT (X) =

n
∑

i=1

f iXϕ
T (Ri) =

n
∑

i=1

f iXdVRi
.

Now, let us see that properties (a) and (b) are naturally verified by all possible choices
of vector fields in S0 and generating functions in H. First,

L〈X1:〈X2:〈...:〈Xs1
:gj〉〉...〉〉

[

LY1
LY2

. . .LYs2
Vk
]

=

n
∑

i=1

f iY dVRi





n
∑

j=1

f jXRj



 =

n
∑

i,j=1

f iY f
j
XdVRj

(Ri) =

n
∑

j=1

f jXdVRj

(

n
∑

i=1

f iXRi

)

= L〈Y1:〈Y2:〈...:〈Ys2
:gk〉〉...〉〉

[

LX1
LX2

. . .LXs1
Vj
]

,

where we have used that condition (a) is verified by the vector fields R1, . . . , Rn and
the functions VR1

, . . . , VRn
. Secondly,

L〈〈X1:〈X2:〈...:〈Xs1
:gj〉〉...〉〉:〈Y1:〈Y2:〈...:〈Ys2

:gk〉〉...〉〉〉

[

LZ1
LZ2

. . .LZs3
Vl
]

=

n
∑

i=1

f iZdVRi





n
∑

j=1

f j〈X:Y 〉Rj



 =

n
∑

i,j=1

f iZf
j

〈X:Y 〉dVRj
(Ri)

=

n
∑

j=1

f j〈X:Y 〉dVRj

(

n
∑

i=1

f iZRi

)

=<

n
∑

j=1

f j〈X:Y 〉dVRj
, Z > . (8.1)

Let us compute the coefficients f j〈X:Y 〉. We have

〈〈X1 : 〈X2 : 〈. . . : 〈Xs1 : gj〉〉 . . .〉〉 : 〈Y1 : 〈Y2 : 〈. . . : 〈Ys2 : gk〉〉 . . .〉〉〉 =
n
∑

i,j=1

〈f iXRi : f jYRj〉 =

n
∑

i,j=1

(

f iXf
j
Y 〈Ri : Rj〉 + f iXRi[f

j
Y ]Rj + f jYRj [f

i
X ]Ri

)

=
n
∑

k=1





n
∑

i,j=1

f iXf
j
Y f

k
〈Ri:Rj〉

+
n
∑

i=1

f iXRi[f
k
Y ] +

n
∑

j=1

f jYRj [f
k
X ]



Rk .

Now, note that
∑n
k=1 < fk〈Ri:Rj〉

dVRk
, Rl >=

∑n
k=1 < fk〈Ri:Rj〉

dVRl
, Rk > using

condition (a) for the vector fields R1, . . . , Rn and the functions VR1
, . . . , VRn

. More-
over, using condition (b),

∑n
k=1 < fk〈Ri:Rj〉

dVRl
, Rk >=< dVRl

, 〈Ri : Rj〉 >=<

d(dVRi
[Rj ]), Rl >. Hence,

∑n
k=1 f

k
〈Ri:Rj〉

dVRk
= d(dVRi

[Rj ]). On the other hand,

f iXRi[f
k
Y ]dVRk

= f iX < dfkY , Ri > dVRk

= f iX < dVRk
, Ri > dfkY + f iX

(

dfkY ∧ dVRk

)

(Ri, ·)

Since f iX
(

dfkY ∧ dVRk

)

(Ri, ·) = f iX
(

d
(

fkY dVRk

))

(Ri, ·) = f iX (d (dVY )) (Ri, ·) = 0, we
have

f iXRi[f
k
Y ]dVRk

= f iX < dVRk
, Ri > dfkY .
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Analogously, one can see that f jYRj [f
k
X ]dVRk

= f jY < dVRk
, Rj > dfkX . Finally,

n
∑

k=1

fk〈X:Y 〉dVRk
=

n
∑

k=1





n
∑

i,j=1

f iXf
j
Y f

k
〈Ri:Rj〉

+
n
∑

i=1

f iXRi[f
k
Y ] +

n
∑

j=1

f jYRj [f
k
X ]



 dVRk

=

n
∑

i,j=1

f iXf
j
Y d(dVRi

[Rj ]) +

n
∑

i,j=1

f iX < dVRj
, Ri > df jY +

n
∑

i,j=1

f jY < dVRi
, Rj > df iX

= d





n
∑

i,j=1

f iXf
j
Y dVRi

[Rj ]



 = d(LY [VX ]) .

Plugging this equality in (8.1), we get the desired result.


