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Abstract

A wide class of robotic locomotion systems share a rich unifying geome-
tric framework where notions such as cyclic rectification, coupling and
motions induced by the interaction with the environment have a proper
mathematical formulation. In this paper, we show how the modeling of
robotic systems based on Lagrangian reduction techniques enables us to
approach the optimal control problem in a way where locomotion con-
cepts are naturally introduced. We propose an algorithm to numerically
solve this optimal control problem and explore its convergence properties.
Finally, several simulations and comparisons with experimental motions
are shown for the robotic eel mechanism REEL II.
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1 Introduction

In the recent decades, the field of robotics has experimented a spectacular
growth and robots are nowadays common tools in different scenerios of in-
dustry, space exploration and medicine, to name a few. Due in part to their
mythification by the entertainment industry, robots have enjoyed a great deal
of popularity and social impact. Since they first appeared in Capek’s play
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Rossum’s Universal Robot (R. U. R.), where human-like robots worked tire-
lessly to relieve their human creators from the hardest tasks, the idea of robots
as tools with endless possibilities has excited our minds and given rise to a
new technology of specialized machines.

A first classification of the many robots that there exist may be given on
the basis of its mobility. Fixed robots constitute the major type of industrial
robot that usually consists of a programmable arm with several degrees of
freedom. These robots are capable of very complex tasks that may require
high accuracy and velocity such as circuits or engine assembly, car welding
and painting, or other tasks of the automotive industry.

On the other hand, mobile robots were designed with the aim of obtaining
machines that could operate in unreachable or hazardous environments. For
example, here we find the wide class of autonomous vehicles mainly employed
in space and submarine exploration. These programmable vehicles include
wheeled or tracked cars, underwater vehicles or aircrafts which are in some
cases provided with robotic arms to carry out their tasks.

In searching for more efficient and robust solutions to problems of locomo-
tion, roboticists have turned their attention to biological or biomimetic robots.
The biomimetic approach uses biology as a model for the development of new
systems, and has already inspired other branches of engineering such as com-
puter vision and artificial intelligence. For example, an area which has been
widely investigated is that of walking. Contrary to what happens with wheeled
systems, walking or hopping robots would be better adapted to rough or un-
even terrain, or even able to climb stairs and ladders. In this way, hexapods
and other four and two-legged robots [11, 15] have been developed trying to
reproduce walking motion patterns or gaits.

Along with wheeled mobile platforms and legged locomotion, other forms
of robotic (and biological) locomotion that have been studied are related to the
area of swimming, including snake-like motions [2, 7], inchworm motions [8],
and even the motion of water-bugs and paramecia [6, 10, 17]. As opposed to
underwater vehicles that rely on propellers or similar devices to move, fish-like
swimmers propulse themselves by the vorticity produced in their tail that they
deform. This makes fishes very agile and capable of high accelerations [14]. Fi-
nally, in the area of flapping mode flying systems, there have been some recent
advances [18], though the problem of stabilizing a flapping system presents an
additional difficulty.

A wide class of locomotion systems possess common features that allows
a description within the same unifying geometric framework [8, 21]. This
has made possible the general treatment of the controllability analysis and
the motion planning problems for general locomotion systems. In this paper
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we shall explore this topic reviewing some of the ideas developed in [19, 21].
In particular we will discuss extensively the optimal control problem for the
REEL robot [3, 13, 16].

2 Modeling and Lagrangian reduction

When studying locomotion systems (see for instance [8, 21]), two fundamental
characteristics appear to be common to a number of them. The first one,
which accounts for the term locomotion, is that they involve motion from one
place to another in R

2 or R
3. Usually, if the environment where the motion

takes place is of an homogeneous nature, the system will exhibit rotational
and/or translational symmetries. On the other hand, another common feature
is observed in the way in which motion is achieved: a wide range of systems
rely on the cyclic rectification of their shape and their interaction with the
environment to effectively move.

As an example of this, consider a person walking on the floor. If the floor
is more or less horizontal, this person will not change his/her way of walking
independently of his/her position and orientation on the ground. In this way,
(s)he will exhibit traslational and rotational symmetry. On the other hand, the
person moves his/her legs cyclically and it is due to the friction forces between
his/her feet with the ground that (s)he moves forward without slipping.

In view of this, one could employ the following ingredients in the modeling
of locomotion systems,

• an n-dimensional manifold Q describing the set of all the possible confi-
gurations of the system,

• a Lagrangian function L : TQ −→ R which governs the dynamics of the
system, and

• a differentiable distribution D : Q −→ TQ modeling certain constraints
of kinematic type (1-forms of Pfaffian type) or interaction with the en-
vironment.

When examining many locomotion systems a natural splitting in the con-
figuration space occurs, q = (g, r) ∈ Q = G × M , where g ∈ G stands for the
position (and orientation) of the body, and r ∈ M denotes the internal shape
of the system (see example below). We will refer to G as the pose space (from
position and orientation) and M as shape space, following standard termino-
logy in locomotion [3, 8, 13, 16, 19].

In this way Q becomes a trivial principal fiber bundle [9] with base space
M and fiber space G. Denote by Φ : G × Q → Q the action of G on Q and
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π : Q → M the projection of Q onto M . The sets OrbG(q) = {Φ(g, q) | g ∈ G}
become the vertical fibers of π and the spaces TqOrbG(q) ≡ VqQ ≤ TqQ define
the vertical subbundle V Q of TQ.

Since the system will exhibit symmetry with respect to the Lie group, L

and D are to be compatible with the structure of Q as follows,

L(Φg(q), TqΦg(q̇)) = L(q, q̇) , TqΦg(Dq) ⊆ DΦg(q) .

The equations of motion of the system can now be written with the help
of a principal connection A, which takes into account the symmetry properties
of the system. A principal connection A : TQ −→ g provides a G-invariant
horizontal subbundle complementary to V Q in TQ. That is,

HqQ = {vq ∈ TqQ |A(q)vq = 0} , HqQ ⊕ VqQ = TqQ , ∀q ∈ Q .

A is given in different ways depending on the type system under considera-
tion. For example, the mechanical connection [22] is used for modeling un-
constrained systems. In this case, the equations of motion may be written
as

ξ = g−1ġ = −A(r)ṙ + I−1(r)p ,

ṗ = ad∗ξp ,

M(r)r̈ = −C(r, ṙ) + N(r, ṙ, p) + τr .

Here ad∗ : g× g
∗ → g

∗ is the dual map of the adjoint action of the Lie algebra
onto itseft, A(r) is called the “local form” of the mechanical connection and
I is the locked inertia tensor [1, 19]. I(r) describes the total inertia of the
system when the shape is frozen at r.

The nonholonomic connection [1] is used for modeling constrained sys-
tems. This situation is richer and the connection’s definition depends upon
the compatibility of constraints and symmetries, described by the intersection
D ∩ V Q.

• The kinematic case corresponds to D ∩ V Q = 0. In this case the equa-
tions describing the system are simply

ξ = g−1ġ = −A(r)ṙ ,

M(r)r̈ = −C(r, ṙ) + τr .

Observe that we can rewrite the second equation as r̈ = u, if we assume
total control of the shape by applying appropriate torques τr. Integrating
this equation once, we can reduce the system to a first order or kinematic
system.
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• The mixed (dynamic) case occurs when D ∩ V Q 6= 0. The equations
of motion include now the nonholonomic momentum equation, which
makes the system dynamic,

g−1ġ = −A(r)ṙ + I−1(r)p ,

ṗ =
1

2
ṙT σṙṙ(r)ṙ + pT σpṙ(r)ṙ +

1

2
pT σpp(r)p ,

M(r)r̈ = −C(r, ṙ) + N(r, ṙ, p) + τr .

Observe that in all the above-exposed systems, the local form of the connection
determines the system’s motion in G and Q as a combination of the momen-
tum, p, and the internal shape changes (r, ṙ), which are actuated through
the torques τr. Closed curves or gaits in the shape space M couple with the
environment through the principal connection to induce motions in the pose
space G. Thus, the principal connection is precisely the geometric object that
synthesizes the process of locomotion. This fact has been found to be very
useful for control analysis purposes and even as an instrument to tackle motion
planning problems [8, 19, 20].

3 The robotic eel REEL II

The eel robot of Figure 1 is an example of underactuated robotic locomotion
system. It was studied in [16] to test various locomotive gaits. The robotic eel
gets to move in a wet environment by effecting a traveling wave down its body
by means of torques applied at its joints. The dynamic effects of the robot are
not negligible and thus the motion planning problem (MPP) for the eel is not
trivial. Usually, the MPP is decoupled into two phases. First, in a low level

Figure 1: The REEL II robot manufactured in the GRASP lab.

problem, a path in Q is generated mainly using techniques from computational
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geometry. And after that, in a high level problem, feedback control laws are
designed so that the system tracks the trajectory obtained in the low level
problem. A first inconvenience of this method is that the dynamics of the
real system is not taken into account. The robot may not move in arbitrary
directions and the method could give rise to non-differentiable solutions which
are very costly to implement in the real system. In this regard, the new
approach employed with the REEL in [16] tries to solve the MPP in a single
step, taking into account the real dynamics.

The model of the REEL (see Figure 2) consist of a planar, serial chain
of 5 identical links of length 2d, mass m and inertia J , and each joint is
assumed to be independently actuated. All of the eel possible configurations
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Figure 2: A. Model of the eel as a planar, serial chain of links. B. Forces and
torques on link i.

are determined by (x, y, θ) ∈ SE(2), giving the position and orientation of the
middle link, and (φ1, φ2, φ4, φ5) ∈ S

1×S
1×S

1×S
1, denoting the angles of each

joint. Thus, the configuration space becomes Q = SE(2)× S
1 × S

1 × S
1 × S

1.
The G-invariant Lagrangian of the system is defined as the kinetic energy
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1
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1
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,

by means of (xi, yi), the coordinates of the center of the ith link, which can be



S. Mart́ınez, J. Cortés 7

specified as

(

xi

yi

)

=

(

x

y

)

+ sg(i)d

(

cos θ

sin θ

)

+ sg(i)d
i
∑

k=h(i)

f(i, k)

(

cos(θ +
∑k

j=h(i) φj)

sin(θ +
∑k

j=h(i) φj)

)

,

where

sg(i) =

{

−1 if i < 3
1 if i > 3

f(i, k) =

{

2 if i 6= k

1 if i = k
h(i) =

{

2 if i < 3
4 if i > 3

The interaction of the robot with the environment will be modeled by frictional
forces. By taking different expressions for these, we can model different types
of locomotion systems such as the eel in water or on dry land. Based on
previous work [4], the following expression for the drag forces were taken
in [16]. Approximately,

|Fi| ≈ µwv2
i

opposing the velocity vi and it was assumed that pressure differentials in the
directions parallel to the moving body decoupled from pressure differentials
perpendicular to the body. This yields

F
‖
i = −µ‖

wsgn(v
‖
i ) · (v

‖
i )

2 , F⊥
i = −µ⊥

wsgn(v⊥i ) · (v⊥i )2 , (1)

where µ
‖
w and µ⊥

w are drag coefficients for the water and v
‖
i , v⊥i are the projec-

tions of the vector (ẋi, ẏi) along the direction parallel and perpendicular to the
link, respectively. For the purposes of simulation, we will limit our attention
to a linear, viscous force approximation of the form,

F
‖
i = −µ‖

vv
‖
i , F⊥

i = −µ⊥
v v⊥i ,

where µ
‖
v, µ⊥

v are coefficients of viscous drag. This can be thought of as a first-
order approximation to the quadratic drag forces described in equation (1),
which we note are also odd functions of the velocity. In general, for systems
with periodic behavior, viscous forces approximations can be used, provided
coefficients of friction are chosen to dissipate an equal amount of energy over
one cycle of motion. Frictional forces are G-invariant. We denote

τ‖(r, ṙ, ξ) = F ‖(r, g−1g, ṙ, g−1ġ) , τ⊥(r, ṙ, ξ) = F⊥(r, g−1g, ṙ, g−1ġ) .

With this in mind the derivation of the expression for the frictional foces for
the eel is straighforward though not trivial. We refer to [3] for the explicit
expression of these as well as of the equations of motion.
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Now, following a Lagrangian reduction procedure as described before we
can obtain the equations of motion for the eel as

g−1ġ = −A(r)ṙ + I−1(r)p ,

ṗ = pT σpṙ(r)ṙ +
1

2
pT σpp(r)p + τ(r, ṙ, ξ) , (2)

M(r)r̈ = −C(r, ṙ) + N(r, ṙ, p) + τr = M(r)w ,

⇐⇒ r̈ = w =⇒ ṙ = u ,

where τr corresponds to the torques that act internally and τ are the drag
forces of the environment. The connection that is being used here is the
mechanical connection. Observe that we are assuming full control of the shape
variables ui = φ̇i, which is reasonable, since the eel robot has actuators at each
joint.

Observe that equations (2) can be put into the standard form of an affine-
input nonlinear control system

ż = f(z) + B(z)u ,

where the states are z = (g, p, r) ∈ G × R
s × M , the non-zero drift is

f(z) =





g I−1(r)p
1
2pT σpp(r)p + ρp(r)p

0



 ,

and B = (Bi(z)), the control matrix, becomes

Bi(z) =





−gA(r)ei

(pT σpṙ(r) + ρṙ(r))ei

ei



 , 1 ≤ i ≤ dim(M) = m .

Here ei denotes an m-vector having a 1 in the ith row and 0 otherwise. The
input vector u(t) ∈ R

m is defined to be ui(t) = w̄i(t), where

w̄i(t) ≡
∫ t

0
wi(s)ds , w = r̈ ,

that is, u is a velocity input.

4 The optimal control problem: Basis Algorithm

In [16], the equations of the eel in the form of (2) were used to solve the motion
planning problem for the REEL by means of a perturbative approach. It was
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found that the eel was a controllable system by showing how different gaits
gave rise to forward, turning-in-place and parallel motions. The next question
that seems natural to be addressed is how to choose the input functions in a
way that is optimal with regards to some criterion. That is, we are interested
in solving the following optimal control problem,

OCP1: Given z0, zf , determine u ∈ U such that the solution of

{

ż = f(z) + B(z)u
z(0) = z0

satisfies z(T ) = zf ,

after time T > 0 while minimizing the cost functional

J (u) =

∫ T

0

(

u1(t)
2 + · · · + um(t)2

)

dt .

Here,

U =

{

u : [0, T ] −→ R
m u(t) is piecewise differentiable and

u(0) = u(T ) T -periodic

}

,

corresponding to the fact that we search for closed curves (gaits) in the shape
space M .

In trying to solve this problem for driftless systems a numerical approach
was taken in [5] based on the following observation. Note that U ⊂ L2[0, T ]
and J (u) , ‖u‖2

L2
. Taking {ei(t)}∞i=1 an orthonormal basis for L2[0, T ], we

can write u(t) =
∑∞

i=1 αiei(t) for some α = (αi)
∞
i=1 ∈ l2 and then the OCP1

can be rephrased as an infinite dimensional problem in l2,

OCP2: Given z0 and zf , determine α ∈ l2 find of minimum cost,
J (α) =

∑∞
i=1 α2

i , ‖α‖2
l2
, such that the solution

{

ż = f(z) + B(z)(
∑∞

i=1 αiei(t))
z(0) = z0

satisfies z(T ) = zf .

Finding an analytical solution of the OCP1 or the infinite-dimensional
OCP2 turns out to be very difficult in general. One possible idea to overcome
this problem is approximate numerically the solutions of OCP2 that arise from
the truncation of the series to the first basis elements. That is, by restricting
the set of inputs to

UN =

{

u ∈ U u(t) =
N
∑

i=1

αiei(t) , α = (α1, . . . , αN ) ∈ R
N

}

,
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for some N > 0. In this way, we will look for sub-optimal solutions or near-
optimal gaits. Based on previous work [5, 21], it is reasonable to choose
{sin(nt) , cos(nt)}∞n=1 for treating undulatory locomotion systems with non-
zero drift. The issue of whether the system is still controllable using this
truncated basis is a subtle one. However, it has been shown that undulatory
locomotion systems [12, 19] such as the eel system, are locally controllable
using such a class of inputs. In the following, we discuss the basis algorithm
developed in [5], which was adapted in [3] to control systems with non-zero
drift. For the technical aspects and a more detailed exposition we refer the
reader to [3].

Basis Algorithm

First, we take an N ∈ N and define Φ = (e1, . . . , eN ). Truncating the OCP2
to the first N basis elements we get

{

ż = f(z) + B(z) Φ αT

z(0) = z0 .
(3)

A given u ∈ UN or α = (α1, . . . , αN ) ∈ R
N determines a solution z(t, α) of (3).

Clearly, as f(z) and B(z) are taken to be smooth, z(T, α) will vary smoothly
with α and so will do the function

g : R
N −→ R

d

α 7−→ z(T, α) .

Choose now a γ ∈ R+. Then, we approximate the OCP2 by the following
finite-dimensional problems.

PN,γ: Given N ∈ N and γ > 0, determine the solutions
(z∗N,γ , α∗

N,γ) of (3) that minimize

JN,γ(α) = 〈α, α〉 + γ‖g(α) − zf‖2
Rd ,

N
∑

i=1

α2
i + γ‖g(α) − zf‖2

Rd .

Finally, we approximate the solutions of PN,γ numerically. This is done
by obtaining a sequence {αk} that eventually will tend to α∗

N,γ . To do this,
we used a modified Newton’s rule [3].

Correctness of the Basis Algorithm

In [3] we proved that under the following assumption,
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Bounded Input Bounded State stability: There exists a continuous φ(δ, z0),
δ ≥ 0 such that if ‖u‖2 ≤ δ then the corresponding solution z(t) ver-
ifies ‖z‖C[0,T ] = supt∈[0,T ]‖z(t)‖Rd ≤ φ(δ) < ∞,

the solutions of PN,γ will tend to solutions of OCP2 as N , γ −→ ∞ in the
following sense.

Theorem 4.1. Let S∗ ⊆ C[0, T ] ⊕ L2[0, T ] be the set of optimal solutions
(z∗, u∗) of the original system OCP2 with optimal cost J∗, and let SN,γ ⊂
C[0, T ] ⊕ L2[0, T ] be the set of optimal solutions (zN,γ , uN,γ) of the problem
PN,γ with optimal cost JN,γ. Then, {SN,γ} converge to S∗ in the sense

lim
γ→∞

lim
N→∞

d(SN,γ , S∗) = 0 ,

and {JN,γ} converges to J∗ in the sense

lim
γ→∞

lim
N→∞

JN,γ = J∗ .

Here, the measure d of C[0, T ] ⊕ L2[0, T ] is defined as

d(X, Y ) = sup
{(z,u)∈X}

inf
{(z̄,ū)∈Y }

(

‖z − z̄‖C[0,T ] + ‖u − ū‖2

)

,

for X, Y ⊂ C[0, T ] ⊕ L2[0, T ].

In other words, Theorem 4.1 ensures that given a sequence of solutions
{

(zN,γp
, uN,γp

) ∈ SN,γp

}

there exists a subsequence {(zNk,γpl
, uNk,γpl

)}∞k,l=1 and
a solution (z∗, u∗) ∈ S∗ such that

‖uNk,γpl
− u∗‖2 −→ 0

‖zNk,γpl
− z∗‖C[0,T ] −→ 0 ,

as Nk, γpl
tend to infinity.

5 Simulations and experiments for the REEL II

In the simulations shown below obtained through the Basis Algorithm, we
have used the nondimensional equations describing the motion of the robotic
eel. Thus the axes on the plots are all unitless. The friction coefficients µ̄⊥ and
µ̄‖ are set to 18 and 1.8, respectively. The non-dimensional inertial parameter
J̄ is taken to be 0.37. These values are taken to match experimental data
taken in previous work [16]. The cost to optimize is

J =

∫ T

0

(

φ̇2
1 + φ̇2

2 + φ̇2
4 + φ̇2

5

)

dt ,
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which corresponds to the energy expenditure of the joint actuators after time
T = 2π. Also, for each input we consider the truncated basis

1√
π

sin(ft) ,
1√
π

cos(ft) , 1 ≤ f ≤ 5 .

In the following, we will compare some of the optimal gaits presented in [3]
using this method with the open-loop gaits proposed in [16], some of which are
motivated by biological observations [7]. In this and subsequent comparisons,
the initial and final states for the optimal solutions are chosen to match those
found in the corresponding traveling wave approach, so a direct comparison
can be made.
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Figure 3: Comparison between a traveling wave (shown dashed) and the op-
timal approach (shown solid) of the forward motion of the eel building up
momentum. The costs are J = 3.45 and J = 2.9, respectively.

Forward motion

The path described in Figure 3 by the eel to move forward by using a traveling
wave and the optimal motion look quite similar. The optimal gait in the
shape variables seems to be a kind of deformation of the traveling wave, just
the one needed to generate almost the same time evolution in the forward
momentum, p1, and in the components, p2 and p3. It is interesting to note
that the magnitudes of the joint angles φ1 and φ5 are quite smaller than in the
traveling wave, whereas with the other two angles, φ2 and φ3, they are quite
similar. Indeed, the optimal gait seems to be a traveling wave with smaller
amplitudes in the head and tail of the eel. In relation to the other comparisons
presented below, this comparison is the one that presents the smallest saving
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of energy. This suggests that the traveling wave approach is actually very
appropriate to drive the eel.
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Figure 4: Comparison between a traveling wave (shown dashed) and the op-
timal approach (shown solid) of the turning in place motion of the eel. The
costs are J = 3.443 and J = 1.4414, respectively

Turning motion

The gait in Figure 4 corresponds to a turning in place motion. Note that in
this comparison the shape plots are quite different between the two gaits. The
relative saving of energy is also quite large.
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Figure 5: Matching of the optimal forward motion of Fig.5 with experimental
data.
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Comparison with experimental motion

In Figures 5 and 6, we show some comparisons of the motions obtained in
the simulations and those implemented in the robotic eel whose experimental
data was extracted with a video camera. The process of extracting data from
video images captures the centroid and the orientation of the major axis of the
body of the eel, so we do not expect an overlap of both curves. Generally, the
simulation results, which show the position and orientation of the center of
the mass of the middle link only, will generally fluctuate more, centered on the
experimental data. In general this shows good agreement of the simulations
with the experimental motions obtained in the real robot.
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Figure 6: Matching of the optimal turning motion of Fig.6 with experimental
data.

The only gait that showed a marked mismatch between experiment and
simulation was the pure rotation gait, as shown in Figure 6. The rotation
accomplished in the experiment turned out to be larger than predicted by the
model. We attribute the gain in the experimental data to added mass effects
of the water that we did not take into account in our model for the eel.
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