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Summary. Consider n sites evolving within a convex polygon according to one of
the following interaction laws: (i) each site moves away from the closest other site or
polygon boundary, (ii) each site moves toward the furthest vertex of its own Voronoi
polygon, or (iii) each site moves toward a geometric center (centroid, circumcenter,
incenter, etc) of its own Voronoi polygon. These interaction laws give rise to strik-
ingly simple dynamical systems whose behavior remains largely unknown. Which are
their critical points? What is their asymptotic behavior? Are they optimizing any
aggregate function? In what way do these local interactions give rise to distributed
systems? Are they of any engineering use in robotic coordination problems and in
the design of mobile sensor networks? This paper addresses these questions.

1 Research challenges in network coordination

Coordination problems are becoming increasingly important in numerous en-
gineering disciplines. One fundamental capability of future networks of au-
tonomous vehicles will be the ability to perform spatially-distributed sens-
ing tasks including coverage, surveillance, exploration, target detection, and
search. These future mobile and tunable sensor networks will be able to adapt
to changing environments and dynamic situations, will provide guaranteed
fault-tolerant quality of service, and will operate via limited-bandwidth ad-hoc
communication links. To achieve these desirable capabilities, it is important
to design multi-vehicle coordination algorithms that are adaptive, distributed,
asynchronous, and verifiably correct. These constraints turn the coordination
problem into a formidable scientific endeavor. In other words, the key scientific
issues are encoded as requirements on the coordination algorithms.

From a broader perspective, research in multi-vehicle coordination requires
concepts and methods from systems theory, distributed algorithms, geometry,
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and algorithmic robotics. Of particular importance is the algorithms’ valida-
tion on multi-vehicle testbeds and on experimental architectures that include
embedded software architectures, signal processing methods, and ad-hoc com-
munication protocols.

Literature review

Cooperative control and sensing problems. Recent years have witnessed a
large research effort focused on cooperative motion planning and formation
control of multi-vehicle systems [17, 36, 41, 44]. Coverage algorithms (for
systems with binary, limited-range sensors) are surveyed in [12]. The work
in [34] proposes algorithms for an intelligent sensor array to climb gradients
of spatially-distributed signals. It is only recently, however, that truly dis-
tributed control laws for dynamic networks are being proposed. Examples of
control algorithms include [6, 15, 26, 43]; examples of communication and
consensus protocols include [27, 37]. Heuristic approaches to the design of in-
teraction rules and emerging behaviors have been throughly investigated in
the behavior-based robotics literature [2, 4, 5, 22, 32, 38]. Along this line of
research, algorithms have been designed for sophisticated cooperative tasks.
However, no formal results are currently available on how to design reactive
control laws, ensure their correctness, and guarantee their optimality with
respect to an aggregate objective.

Geometric optimization, facility location and systems theory. Geometric
optimization is a vast and exciting avenue of current research, see for exam-
ple [1, 8, 33]. In particular, we shall focus on facility location problems, in
which service sites are spatially allocated to fulfill a specified request [18, 35].
Relying on methods from computational geometry [16], certain resource allo-
cation problems can be solved via the notion of Voronoi partition [19].

An approach to formalizing behavioral control has been pursued using
tools from control theory and formal methods from computer science. Hybrid
models of motion control systems are introduced in [11], motion description
languages in [31], and hybrid automata are described in [20, 23]. An alterna-
tive set of useful tools comes from the “dynamical systems approach to algo-
rithms” [10, 25]. Distributed dynamical systems are to be designed as gradient
flows of appropriate aggregate functions. The approach taken in this paper is
to combine these ideas with nonsmooth and convex optimization [9, 13].

Distributed algorithms. The study of distributed algorithms is concerned
with providing mathematical models, devising precise specifications for their
behavior, and formally proving their correctness and complexity. Distributed
consensus, resource allocation, communication, and data consistency prob-
lems are treated via an automata-theoretic approach, see [30] and references
therein. Numerical distributed asynchronous algorithms as networking al-
gorithms, rate and flow control, and gradient descent flows are discussed
in [7, 29, 45]. These references do not typically address algorithms over ad-hoc
dynamically changing networks.
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Distributed coordination algorithms for coverage control

We propose an innovative technical approach that relies on non-smooth dis-
tributed descent algorithms and on aggregate utility functions that encode
optimal coverage and sensing policies. We characterize and optimize notions
of quality-of-service provided by an adaptive sensor network in a dynamic
environment. We consider that a multi-vehicle network with configuration
(p1, . . . , pn) provides optimal coverage of a domain of interest Q if (i) it min-
imizes the expected (according to certain density function φ) distance from
any event in the domain to one of the vehicle locations, or; (ii) it minimizes
the largest distance from any point in the domain to one of the vehicle loca-
tions, or; (iii) it maximizes the coverage of the domain in such a way that the
various sensing radius do not overlap or leave the environment. Accordingly,
we seek to extremize one of the multi-center functions

(i)

∫

Q

min
i∈{1,...,n}

‖q − pi‖
2φ(q)dq , (ii) max

q∈Q

[
min

i∈{1,...,n}
‖q − pi‖

]
,

(iii) min
i6=j∈{1,...,n}

{
1
2‖pi − pj‖,d(pi, ∂Q)

}
.

We study the differentiable properties of these functions via nonsmooth analy-
sis [13], and compute their (generalized) gradients. We show that their critical
points are center Voronoi configurations. We study the corresponding nons-
mooth gradient flows using the tools in [3, 21, 39]. We show that this flow
is not amenable to a distributed implementation for two of the multi-center
functions. Drawing connections with quantization theory [19, 24, 28], we then
consider two distributed coordination algorithms: a novel strategy based on
the generalized gradient and a strategy similar to the well-known Lloyd al-
gorithm. We investigate their asymptotic behavior and show that both algo-
rithms are guaranteed to continuously improve the network performance. A
detailed analysis of all results presented in this paper can be found in [14, 15].

2 Preliminaries and problem setup

Let ‖ · ‖ denote the Euclidean distance function on R
N and let v · w denote

the scalar product of v, w ∈ R
N . Let versus(v) denote the unit vector in the

direction of 0 6= v ∈ R
N , i.e., versus(v) = v/‖v‖. Given S ⊂ R

N , co(S) and
int(S) denote its convex hull and interior set, respectively. If S is convex, let
projS : R

N → S denote the orthogonal projection onto S and let dS : R
N → R

denote the distance function to S. For R > 0, BN (p,R) = {q ∈ R
N | ‖p−q‖ ≤

R} and BN (p,R) = int(BN (p,R)). Let Q be a convex polygon in R
2. We

denote by Ed(Q) = {e1, . . . , eM} and Ve(Q) = {v1, . . . , vL} the set of edges
and vertices of Q, respectively. Let P = (p1, . . . , pn) ∈ Qn ⊂ (R2)n denote
the location of n generators in Q. Finally, let πi : Qn → Q be the canonical
projection onto the ith factor.
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2.1 Voronoi partitions

We refer the reader to [16, 35] for comprehensive treatments on Voronoi dia-
grams. The Voronoi partition V(P ) = (V1(P ), . . . , Vn(P )) of Q generated by
the points (p1, . . . , pn) is defined by

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}.

For simplicity, we refer to Vi(P ) as Vi. Since Q is convex, the boundary of
each Vi is the union of a finite number of segments. If Vi and Vj share an edge,
then pi is a (Voronoi) neighbor of pj (and vice-versa). All Voronoi neighboring
relations are encoded in the map N : Qn × {1, . . . , n} → 2{1,...,n}, where
N (P, i) is the set of indexes of the Voronoi neighbors of pi. We often write N (i)
instead. A vertex v ∈ Ve(Vi(P )) is nondegenerate if it is determined by exactly
three elements (three generators, or to generators and an edge of Q, or one
generator and two edges of Q). Otherwise it is degenerate. The configuration P
is nondegenerate if all its vertices are nondegenerate, otherwise it is degenerate.

2.2 Multi-center functions as network performance measures

Let φ : Q → R+ be a distribution density function representing a probability
that some event take place over the domain Q. Because of noise and loss of
resolution, the sensing performance at point q taken from a sensor at the
position pi degrades with distance. Accordingly, ‖q − pi‖ gives a quantitative
assessment of how poor the performance is. Consider the following notions of
quality-of-service provided by a sensor network in a dynamic environment

HC(P ) =

∫

Q

min
i∈{1,...,n}

‖q − pi‖
2φ(q)dq , (1)

HDC(P ) = max
q∈Q

{
min

i∈{1,...,n}
‖q − pi‖

}
, (2)

HSP(P ) = min
i,j∈{1,...,n}

i6=j

{
1
2‖pi − pj‖,d(pi, ∂Q)

}
. (3)

The performance measure HC corresponds to the expected distortion scenario,
where the network tries to minimize the expected distance of any event in Q
to one of the generators’ locations given the information provided by φ , i.e.,

min
p1,...,pn

{∫

Q

min
i∈{1,...,n}

‖q − pi‖
2φ(q)dq

}
.

In this way, the network optimizes its sensing performance. This problem is
referred to as the p-median problem in [18]. Along the paper, we refer to it as
the multi-centroid problem. The function HC can be rewritten as

HC(P ) =

n∑

i=1

∫

Vi

‖q − pi‖
2φ(q)dq .
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Given a polytope W in R
N , its centroid, CM(W ), is the center of mass of W

with respect to the density function φ, i.e.,

CM(W ) =
1

M(W )

∫

W

qφ(q)dq , M(W ) =

∫

W

φ(q)dq .

Centroidal Voronoi configurations satisfy pi = CM(Vi(P )) for all i ∈ {1, . . . , n}.
The performance measure HDC corresponds to the worst case scenario, in

which no information is available on the events taking place in Q. The network
then tries to minimize the largest possible distance of any point in Q to one
of the generators’ locations, i.e.,

min
p1,...,pn

{
max
q∈Q

{
min

i∈{1,...,n}
‖q − pi‖

}}
.

This problem is referred to as the p-center problem in [18, 42]. Along the paper,
we refer to it as the multi-circumcenter problem. In terms of the Voronoi
partition, the function HDC admits the following alternative expression

HDC(P ) = max
i∈{1,...,n}

{
max
q∈Vi

‖q − pi‖

}
.

It is conjectured in [42] that the multi-circumcenter problem can be restated
as a disk-covering problem: how to cover a region with disks of minimum
radius. In Theorem 4 we provide a positive answer to this question. Given a
polytope W in R

N , its circumcenter, CC(W ), is the center of the minimum-
radius sphere that contains W . We say that P is a circumcenter Voronoi
configuration if pi = CC(Vi(P )), for all i ∈ {1, . . . , n}.

The performance measure HSP corresponds to the situation where the
network tries to maximize the coverage of Q so that the various sensing radius
do not overlap, i.e.

max
p1,...,pn



 min

i,j∈{1,...,n}
i6=j

{
1
2‖pi − pj‖,d(pi, ∂Q)

}


 .

We refer to this problem as the multi-incenter problem. In terms of the Voronoi
partition, the function HSP admits the following alternative expression

HSP(P ) = min
i∈{1,...,n}

{
min

q 6∈int(Vi)
‖q − pi‖

}
.

A similar conjecture to the one presented above is that the multi-incenter
problem can be restated as a sphere-packing problem: how to maximize the
coverage of a region with non-overlapping disks (contained in the region) of
minimum radius. In Theorem 5 we provide a positive answer to this question.
Given a polytope W in R

N , its incenter set, IC(W ), is the set of the centers of
maximum-radius spheres contained in W . We say that P ∈ Qn is an incenter
Voronoi configuration if pi ∈ IC(Vi(P )), for all i ∈ {1, . . . , n}. If P is an
incenter Voronoi configuration, and each Voronoi region Vi(P ) has a unique
incenter, IC(Vi(P )) = {pi}, then P is a generic incenter Voronoi configuration.
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2.3 Nonsmooth analysis

Here we review some facts on nonsmooth analysis [13]. The right and general-
ized directional derivative of f at x in the direction of v ∈ R

N are, respectively,

f ′(x, v) = lim
t→0+

f(x + tv) − f(x)

t
, fo(x; v) = lim sup

y→x

t→0+

f(y + tv) − f(y)

t
.

The first limits does not always exist and this motivates the next definition.

Definition 1. The function f : R
N → R is regular at x ∈ R

N if for all
v ∈ R

N , f ′(x; v) exists and fo(x; v) = f ′(x; v).

From Rademacher’s Theorem [13], locally Lipschitz functions are differen-
tiable a.e. If Ωf denotes the set of points in R

N where f fails to be differen-
tiable and S is any set of measure zero, the generalized gradient of f is

∂f(x) = co{ lim
i→+∞

df(xi) | xi → x , xi 6∈ S ∪ Ωf} .

A point x ∈ R
N with 0 ∈ ∂f(x) is a critical point of f .

Proposition 1. Let {fk : R
N → R | k ∈ {1, . . . ,m}} be locally Lipschitz

functions at x ∈ R
N . Then, f : x′ 7→ min{fk(x′) | k ∈ {1, . . . ,m}} is locally

Lipschitz at x, and if I(x′) is the set of indexes k such that fk(x′) = f(x′),

∂f(x) ⊂ co{∂fi(x) | i ∈ I(x)} , (4)

and if fi is regular at x for i ∈ I(x), then equality holds and f is regular at x.

Proposition 2. Let f be a locally Lipschitz function at x ∈ R
N . If f attains

a local minimum or maximum at x, then 0 ∈ ∂f(x), i.e., x is a critical point.

Let Ln : 2R
N

→ R be the map that associates to each convex set S ⊂ R
N

its least-norm element, Ln(S) = projS(0). For a locally Lipschitz function f ,
we consider the generalized gradient vector field Ln(∂f) : R

N → R
N given by

x 7→ Ln(∂f)(x) = Ln(∂f(x)).

Theorem 1. Let f be a locally Lipschitz function at x. Assume 0 6∈ ∂f(x).
Then, there exists T > 0 such that for all 0 < t < T

f(x − t Ln(∂f)(x)) ≤ f(x) −
t

2
‖Ln(∂f)(x)‖2 .

2.4 Stability analysis via nonsmooth Lyapunov functions

For differential equations with discontinuous right-hand sides, solutions are

defined in terms of differential inclusions [21]. Let F : R
N → 2R

N

be a set-
valued map. A solution to the differential inclusion ẋ ∈ F (x) on an interval
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[t0, t1] ⊂ R is defined as an absolutely continuous function x : [t0, t1] → R
N

such that ẋ(t) ∈ F (x(t)) for almost all t ∈ [t0, t1]. Now, consider the equation

ẋ(t) = X(x(t)) , (5)

where X : R
N → R

N is measurable and essentially locally bounded. Let

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(BN (x, δ) \ S)} , x ∈ R
N .

A Filippov solution of (5) on an interval [t0, t1] ⊂ R is defined as a solution
of the differential inclusion ẋ ∈ K[X](x). A set M is weakly invariant (resp.
strongly invariant) for (5) if for each x0 ∈ M , contains a maximal solution
(resp. all maximal solutions) of (5). Given a locally Lipschitz function f :
R

N → R, define the set-valued Lie derivative of f with respect to X at x as

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that ζ · v = a , ∀ζ ∈ ∂f(x)} .

For each x ∈ R
N , L̃Xf(x) is a closed and bounded interval in R, possibly

empty. The following result generalizes LaSalle Invariance Principle for differ-
ential equations of the form (5) with nonsmooth Lyapunov functions.

Theorem 2 (LaSalle Invariance Principle [3, 39]). Let f : R
N → R be a

locally Lipschitz and regular function. Let x0 ∈ R
N and let f−1(≤ f(x0), x0) be

the connected component of {x ∈ R
N | f(x) ≤ f(x0)} containing x0. Assume

either max L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅ for all x ∈ f−1(≤ f(x0), x0), and that
this set is bounded. Then f−1(≤ f(x0), x0) is strongly invariant for (5). Let

ZX,f = {x ∈ R
N | 0 ∈ L̃Xf(x)} .

Then, any solution x : [t0,+∞) → R
N of (5) starting from x0 converges to

the largest weakly invariant set M contained in ZX,f ∩ f−1(≤ f(x0), x0).

2.5 Nonsmooth gradient flows

Given a locally Lipschitz and regular function f , consider

ẋ(t) = −Ln(∂f)(x(t)) . (6)

Theorem 1 guarantees that, unless the flow is at a critical point, −Ln(∂f)(x) is
a direction of descent at x. In general, the vector field Ln(∂f) is discontinuous,
and therefore the solution of (6) must be understood in the Filippov sense.
Since f is locally Lipschitz, Ln(∂f) = df a.e. The following result guarantees
the convergence to the set of critical points of f .

Proposition 3. Let x0 ∈ R
N and f−1(≤ f(x0), x0) is bounded. Then, any so-

lution x : [t0,+∞) → R
N of eq. (6) starting from x0 converges asymptotically

to the set of critical points of f contained in f−1(≤ f(x0), x0).
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3 The 1-center problems

Here we consider the multi-center problems with a single generator in order
to gain insight into the general case. When n = 1, the function HC at p
corresponds to the polar moment of inertia of the polygon Q about the point
p, HC(p) = JQ,p. From the parallel axis theorem, one deduces that

HC(p) = HC(CM(Q)) + M(Q) ‖p − CM(Q)‖2 .

As a consequence, the minimization of HC consists of finding the centroid
of Q. In this case, the gradient of HC is simply

∂HC

∂p
(p) = 2M(Q)(p − CM(Q)) ,

and therefore, ∂HC/∂p (p) = 0 if and only if p = CM(Q)).
The minimization of HDC consists of finding the center of the minimum-

radius sphere enclosing the polygon Q. On the other hand, the maximization
of HSP corresponds to determining the center of the maximum-radius sphere
contained in Q. Let us therefore define the functions

lgQ(p) = max{‖q − p‖ | q ∈ Q} = max{‖v − p‖ | v ∈ Ve(Q)} ,

smQ(p) = min{‖q − p‖ | q 6∈ int(Q)} = min{de(p) | e ∈ Ed(Q)} . (7)

When n = 1, HDC = lgQ : Q → R and HSP = smQ : Q → R. Since the func-
tion lgQ is the maximum of a (finite) set of convex functions in p, it is also a
convex function [9]. Therefore, any local minimum of lgQ is also global. Fur-
thermore, one can show that the function lgQ has a unique global minimum,
which is the circumcenter of the polygon Q. The function smQ is the minimum
of a (finite) set of affine (hence, concave) functions defined on the half-planes
determined by the edges of Q, and hence it is also a concave function [9] on
the intersection of their domains, which is precisely Q. Therefore, any local
maximum of smQ is also global. However, this maximum is not unique in gen-
eral. One can prove that the incenter set of the polygon Q corresponds to the
set of maxima of the function smQ.

Proposition 4. The functions lgQ, smQ are locally Lipschitz and regular, and
their generalized gradients are given by

∂ lgQ(p) = co{versus(p − v) | v ∈ Ve(Q) , lgQ(p) = ‖p − v‖} , (8)

∂ smQ(p) = co{ne | e ∈ Ed(Q) , smQ(p) = de(p)} . (9)

Moreover, 0 ∈ ∂ lgQ(p) ⇐⇒ p = CC(Q), 0 ∈ ∂ smQ(p) ⇐⇒ p ∈ IC(Q), and,
if 0 ∈ int(∂ smQ(p)), then IC(Q) = {p}.

Next, let us study the generalized gradient flow arising from the 1-center
functions. Clearly, the gradient descent of the function HC converges asymp-
totically to the centroid CM(Q). On the other hand, as a consequence of
Propositions 3 and 4, we have the following result.
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Proposition 5. The gradient flows of the functions lgQ and smQ

ẋ(t) = −Ln(∂ lgQ)(x(t)) , (10)

ẋ(t) = Ln(∂ smQ)(x(t)) , (11)

converge asymptotically to the circumcenter CC(Q) and the incenter set
IC(Q), respectively. Moreover, if 0 ∈ int(∂ lgQ(CC(Q))), then the flow (10)
reaches CC(Q) in finite time. The flow (11) always reaches the set IC(Q) in
finite time.

Note that if 0 ∈ ∂ lgQ(CC(Q)) \ int(∂ lgQ(CC(Q))), then generically con-
vergence of (10) is achieved over an infinite time horizon. Fig. 1 shows an
example of the implementation of the gradient descent (10) and (11). Note
that if the circumcenter CC(Q) (respectively the incenter set IC(Q)) is first
computed offline, then the strategy of directly going toward it would converge
in a less “erratic” way.

{v1, v2}

{v1, v3}

{v1, v4}

v6

v7
v5

v2

v4

v1 v3

{v1, v4, v6}

{v2}

CC(Q)

e1 e2

e3

e4

e5
e6

e7

{e4, e7}

{e2, e4, e7}

{e5, e7}

{e5, e6}
{e5}

IC(Q)

Fig. 1. Illustration of the gradient descent of lgQ and smQ. The points where the
curve t 7→ p(t) fails to be differentiable correspond to points where there is a new
vertex v of Q such that ‖p(t)− v‖ = lgQ(p(t)) (respectively a new edge e of Q such
that de(p(t)) = smQ(p(t))). The circumcenter and the incenter are attained in finite
time according to Proposition 5.

4 Analysis of the multi-center functions

Here we analyze the locational optimization functions HC, HDC and HSP. We
characterize their smoothness properties, generalized gradients, and critical
points for an arbitrary numbers of generators.

4.1 Smoothness and generalized gradients

We start by studying the function HC. Because the map (q, P ) 7→ mini∈{1,...,n} ‖q−
pi‖ is locally Lipschitz in P with Lipschitz constant equal to 1, one can show
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that HC is locally Lipschitz on Qn with Lipschitz constant M(Q). Now, let
S = {P ∈ Qn | there exists i, j ∈ {1, . . . , n} s.t. pi = pj}. Over the set Qn \S,
one can show [19, 35] that for all i ∈ {1, . . . , n},

∂HC

∂pi

(P ) =

∫

Vi

∂

∂pi

‖q − pi‖
2φ(q)dq = 2M(Vi)(pi − CM(Vi)) , (12)

where P 7→ M(Vi(P )) and P 7→ CM(Vi(P )) are continuous functions of P .
Therefore, over Qn \ S, HC is continuously differentiable.

To study the properties of the functions HDC and HSP, let us consider the
following alternative expressions and useful quantities. Write

HDC(P ) = max
i∈{1,...,n}

Gi(P ) , HSP(P ) = min
i∈{1,...,n}

Fi(P ) ,

where we define

Gi(P ) = max
q∈Vi(P )

‖q − pi‖ , Fi(P ) = min
q 6∈int(Vi(P ))

‖q − pi‖ .

Note that Gi(P ) = lgVi(P )(pi) and Fi(P ) = smVi(P )(pi). Proposition 4 pro-
vides an explicit expression for the generalized gradients of lgVi

and smVi

when the Voronoi cell Vi is held fixed. Despite the slight abuse of notation, it
is convenient to let ∂ lgVi(P )(pi) denote ∂ lgV (pi)|V =Vi(P ), and let ∂ smVi(P )(pi)
denote ∂ smV (pi)|V =Vi(P ).

In contrast to this analysis at fixed Voronoi partition, the properties of the
functions Gi and Fi are strongly affected by the dependence on the Voronoi
partition V(P ). We characterize these properties in the following result.

Proposition 6. The functions Gi, Fi : Qn → R are locally Lipschitz and
regular. As a consequence, the locational optimization functions HDC,HSP :
Qn → R are locally Lipschitz and regular.

The generalized gradients of the functions of Gi and Fi can be described
in a very precise way by means of a careful analysis of the vertexes and
edges where their values are attained, and of the degenerate/nondegenerate
character of the Voronoi partition. We refer the interested reader to [14] for a
detailed discussion along these lines. Here, we will only highlight the fact that
the knowledge of the generalized gradients of Gi and Fi is key to describe the
generalized gradients of the functions HDC and HSP. This is a consequence of
Propositions 1 and 6, which imply

∂HDC(P ) = co{∂Gi(P ) | i ∈ I(P )} , ∂HSP(P ) = co{∂Fi(P ) | i ∈ I(P )} .

4.2 Critical points

Having characterized the (generalized) gradients of HC, HDC and HSP, we
now turn to studying their critical points.
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Theorem 3 (Minima of HC). Let P ∈ Qn be a local minimum of HC. Then
P is a centroidal Voronoi configuration.

Theorem 4 (Minima of HDC). Let P ∈ Qn be nondegenerate and 0 ∈
int(∂HDC(P )). Then, P is a strict local minimum of HDC, all generators are
active and P is a circumcenter Voronoi configuration.

Theorem 5 (Maxima of HSP). Let P ∈ Qn and 0 ∈ int(∂HSP(P )). Then,
P is a strict local maximum of HSP, all generators are active and P is a
generic incenter Voronoi configuration.

2

3

4
1

3

1 4

2

Fig. 2. Local extrema of HDC and HSP in a convex polygonal environment. The
configuration on the left corresponds to a local minimum of HDC with 0 ∈ ∂HDC(P )
and int(∂HDC(P )) = ∅. The configuration on the right corresponds to a local max-
imum of HSP with 0 ∈ ∂HSP(P ) and int(∂HSP(P )) = ∅. In both cases, the 4th
generator is inactive and non-centered.

Remark 1. Theorems 4 and 5 provide the interpretation of the multi-center
problems in Section 2.2: since all generators are active, they share the same
radius. Dropping the hypothesis that 0 belongs to the interior of the gener-
alized gradient gives rise to simple examples where P is a local minimum of
HDC (respectively a local maximum of HSP), and there are generators which
are inactive and non-centered, see Fig. 2.

5 Dynamical systems for the multi-center problems

Here, we describe three algorithms that (locally) extremize the multi-center
functions. We present continuous-time versions of the algorithms and discuss
their convergence properties. The generators’ location obeys a first order dy-
namical behavior described by

ṗi = ui(p1, . . . , pn) , i ∈ {1, . . . , n} . (13)

The dynamical system (13) is said to be centralized if there exists at least
an i ∈ {1, . . . , n} such that ui(p1, . . . , pn) cannot be written as a function of
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the form ui(pi, pi1 , . . . , pim
), with m < n − 1. The dynamical system (13) is

said to be Voronoi-distributed if each ui(p1, . . . , pn) can be written as a func-
tion of the form ui(pi, pi1 , . . . , pim

), with ik ∈ N (P, i), k ∈ {1, . . . ,m}. We
refer to [15] for more details on the distributed character of Voronoi neighbor-
hood relationships. Finally, the dynamical system (13) is said to be nearest-
neighbor-distributed if each ui(p1, . . . , pn) can be written as a function of the
form ui(pi, pi1 , . . . , pim

), with ‖pi − pik
‖ ≤ ‖pi − pj‖ for all j ∈ {1, . . . , n},

and k ∈ {1, . . . ,m}. A nearest-neighbor-distributed dynamical system is also
Voronoi-distributed.

5.1 Gradient dynamical systems

Consider the (signed) generalized gradient descent flow (6) for the locational
optimization functions HC, HDC and HSP,

Ṗ = −Ln(∂HC)(P ) , Ṗ = −Ln(∂HDC)(P ) , Ṗ = Ln(∂HSP)(P ) .

Alternatively, we may write for each i ∈ {1, . . . , n},

ṗi = −
∂HC

∂P
(p1, . . . , pn) = 2M(Vi) (CM(Vi) − pi) , (14)

ṗi = −πi(Ln(∂HDC)(p1, . . . , pn)) , (15)

ṗi = πi(Ln(∂HSP)(p1, . . . , pn)) . (16)

One can show that the set Qn \ S is positively invariant for the flow (14).
Therefore, this dynamical system corresponds to a standard gradient descent
flow. As noted in Section 2.4, the vector fields (15) and (16) are discontinuous,
and therefore their solution must be understood in the Filippov sense. One
needs to first compute the generalized gradients at P , ∂HDC(P ) and ∂HSP(P ),
then compute the least-norm element, and finally project to each of the n
components. Note that the least-norm element of convex sets can be computed
efficiently, see [9], however closed-form expressions are not available in general.
One can also see that the compact set Qn is strongly invariant for both vector
fields −Ln(∂HDC) and Ln(∂HSP) (cf. [14]).

Proposition 7. For the dynamical system (14) (respectively (15), (16)), the
generators’ location P = (p1, . . . , pn) converges asymptotically to the set of
critical points of HC (respectively, of HDC, HSP).

Remark 2. The gradient dynamical system (14) is Voronoi-distributed since
the partial derivative of HC with respect to the ith sensor location only de-
pends on its own position and the position of its Voronoi neighbors. On the
other hand, the gradient dynamical systems (15) and (16) enjoy convergence
guarantees, but their implementation is centralized because of two reasons.
First, all functions Gi(P ) (respectively Fi(P )) need to be compared in order
to determine which generator is active. Second, the least-norm element of the
generalized gradients depends on the relative position of the active generators
with respect to each other and to the environment.
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5.2 Nonsmooth dynamical systems based on distributed gradients

In this section, we propose a distributed implementation of the previous gra-
dient dynamical systems and explore their relation with behavior-based rules.
Consider the following variations of the gradient dynamical systems (15)-(16),

ṗi = −Ln(∂ lgVi(P ))(P ) , (17)

ṗi = Ln(∂ smVi(P ))(P ) , (18)

for i ∈ {1, . . . , n}. Note that the system (17) is Voronoi-distributed, since
Ln(∂ lgVi(P ))(P ) is determined only by the position of pi and of its Voronoi
neighbors N (P, i). On the other hand, the system (18) is nearest-neighbor-
distributed, since Ln(∂ smVi(P ))(P ) is determined only by the position of
pi and its nearest neighbors. For future reference, let Ln(∂ lgV)(P ) de-
note (Ln(∂ lgV1(P ))(P ), . . . ,Ln(∂ lgVn(P ))(P )), and let Ln(∂ smV)(P ) denote
(Ln(∂ smV1(P ))(P ), . . . ,Ln(∂ smVn(P ))(P )), and write

Ṗ = −Ln(∂ lgV)(P ) , Ṗ = Ln(∂ smV)(P ) .

As for the previous dynamical systems, note that these vector fields are dis-
continuous, and therefore their solutions must be understood in the Filippov
sense. One can see that the compact set Qn is strongly invariant for both
vector fields. This fact is a consequence of the expressions for the generalized
gradients of lg and sm in Proposition 4. Note that in the 1-center case, (15)
(respectively (16)) coincides with (17) (respectively with (18)).

Proposition 8. Let P ∈ Qn. Then the solutions of the dynamical sys-
tems (17) and (18) starting at P are unique.

Remark 3 (Relation with behavior-based robotics: move toward the furthest-
away vertex). The distributed gradient control law in the disk-covering set-
ting (17) has an interesting “behavioral” interpretation. For the ith generator,
if the maximum of lgVi(P ) is attained at a single vertex v of its Voronoi cell
Vi, then lgVi(P ) is differentiable at that configuration, and its derivative cor-
responds to versus(pi − v). Therefore, the control law (17) corresponds to the
behavior “move toward the furthest vertex in own Voronoi cell.” If there are
two or more vertexes of Vi where the value lgVi(P )(pi) is attained, then (17)
provides an average behavior by computing the least-norm element in the
convex hull of all versus(pi − v) such that ‖pi − v‖ = lgVi(P )(pi).

Remark 4 (Relation with behavior-based robotics: move away from the nearest
neighbor). The distributed gradient control law in the sphere-packing set-
ting (18) has also an interesting interpretation. For the ith generator, if the
minimum of smVi(P ) is attained at a single edge e, then smVi(P ) is differen-
tiable at that configuration, and its derivative is ne. The control law (18)
corresponds to the behavior “move away from the nearest neighbor” (where
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a neighbor can also be the boundary of the environment). If there are two
or more edges where the value smVi(P )(pi) is attained, then (18) provides an
average behavior in an analogous manner as before.

Proposition 9. For the dynamical system (17) (resp. the dynamical sys-
tem (18)), the generators’ location P = (p1, . . . , pn) converges asymptotically
to the largest weakly invariant set contained in the closure of ADC(Q) = {P ∈
Qn | i ∈ I(P ) =⇒ pi = CC(Vi)} (resp. the largest weakly invariant set con-
tained in the closure of ASP(Q) = {P ∈ Qn | i ∈ I(P ) =⇒ pi ∈ IC(Vi)}).

5.3 Distributed dynamical systems based on geometric centering

Here, we propose alternative distributed dynamical systems for the multi-
center functions. Our design is directly inspired by the results in Theorems 4
and 5 on the critical points of the functions HDC and HSP. For i ∈ {1, . . . , n},
consider the dynamical systems

ṗi = CC(Vi) − pi , (19)

ṗi ∈ IC(Vi) − pi . (20)

Alternatively, we write Ṗ = CC(V(P ))−P and Ṗ ∈ IC(V(P ))−P . Note that
both systems are Voronoi-distributed. The vector field (19) is continuous,
since the circumcenter of a polygon depends continuously on the location of
its vertexes, and the location of the vertexes of the Voronoi partition depends
continuously on the location of the generators; see [35]. However, eq. (20) is
a differential inclusion, since the incenter sets may not be singletons. Follow-
ing [21], the existence of solutions is guaranteed by the following result.

Proposition 10. Consider the set-valued map IC(V) − Id : Qn → 2(R2)n

given by P 7→ IC(V(P )) − P . Then IC(V) − Id is upper semicontinuous with
nonempty, compact and convex values.

One can also see that the compact set Qn is strongly invariant for the vec-
tor field CC(V) − Id and for the differential inclusion IC(V) − Id. Next, we
characterize the asymptotic convergence of these dynamical systems.

Proposition 11. For the dynamical system (19) (respectively (20)), the gen-
erators’ location P = (p1, . . . , pn) converges asymptotically to the largest
weakly invariant set contained in the closure of ADC(Q) (respectively in the
closure of ASP(Q)).

5.4 Simulations

To illustrate the performance of the distributed coordination algorithms,
we include some simulation results. The algorithms are implemented in
Mathematica as a single centralized program. We compute the bounded
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Voronoi diagram of a collection of points using the ComputationalGeometry

package. We compute the mass, centroid, and polar moment of inertia of
polygons via the numerical integration routine NIntegrate. We compute the
circumcenter of a polygon via the algorithm in [40] and the incenter set via
the LinearProgramming solver in Mathematica. Measuring displacements in
meters, we consider the domain determined by the vertexes

{(0, 0), (2.5, 0), (3.45, 1.5), (3.5, 1.6), (3.45, 1.7), (2.7, 2.1), (1., 2.4), (.2, 1.2)}.

In Fig. 3 we illustrate the performance of the dynamical system (14), in Figs. 4
and 5 we illustrate the performance of the dynamical systems (17) and (19),
and in Figs. 6 and 7 we illustrate the performance of the dynamical sys-
tems (18) and (20). Observing the final configurations in the four figures, one
can verify, visually and numerically, that the active sensors are asymptotically
centered as forecast by our analysis.

Fig. 3. “Move-toward-the-centroid” algorithm for 32 sensors in a convex polygonal
domain with Gaussian density function φ = exp(−x2−y2) centered at the larger ball.
The left (respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the network evolution.

Fig. 4. “Toward the furthest” algorithm for 16 sensors in a convex polygonal do-
main. The left (respectively, right) figure illustrates the initial (respectively, final)
locations and Voronoi partition. The central figure illustrates the network evolution.
After 2 sec., the multi-circumcenter function is approximately .39504 m.
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Fig. 5. “Move-toward-the-circumcenter” algorithm for 16 sensors in a convex polyg-
onal domain. The left (respectively, right) figure illustrates the initial (respectively,
final) locations and Voronoi partition. The central figure illustrates the network evo-
lution. After 20 sec., the multi-circumcenter function is approximately 0.43273 m.

Fig. 6. “Away-from-closest” algorithm for 16 sensors in a convex polygonal domain.
The left (respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the network evolution. After 2
sec., the multi-incenter function is approximately .26347 m.

Fig. 7. “Move-toward-the-incenter” algorithm for 16 sensors in a convex polygonal
domain. The left (respectively, right) figure illustrates the initial (respectively, final)
locations and Voronoi partition. The central figure illustrates the network evolution.
After 20 sec., the multi-incenter function is approximately .2498 m.
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6 Conclusions and future work

We have introduced multi-center functions that provide quality-of-service
measures for mobile networks. We have established that HC is locally Lips-
chitz on Qn and continuously differentiable on Qn\S, and that both HDC and
HSP are locally Lipschitz and regular, having computed their generalized gra-
dients. Furthermore, under certain technical conditions, we have characterized
their critical points as center (centroidal, circumcenter and incenter, respec-
tively) Voronoi configurations, and have shown their correspondence with the
solutions of expected distortion, disk-covering and sphere-packing problems
(see Table 1). We have also considered various algorithms that extremize the
multi-center functions. First, we considered the (nonsmooth) gradient flows
induced by their respective (generalized) gradients. Second, for the nonsmooth
multi-center functions, we devised a novel strategy based on the generalized
gradients of the 1-center functions of each generator. Third, we introduced and
characterized a geometric centering strategy. We have unveiled the remark-
able geometric interpretations of these algorithms, discussed their distributed
character and analyzed their asymptotic behavior using nonsmooth stability
analysis (see Tables 2 and 3).

Future directions of research include: (i) sharpening the asymptotic con-
vergence results for the proposed dynamical systems, (ii) considering the set-
ting of convex polytopes in R

N , for N > 2, (iii) investigating the effect of
measurement errors on the proposed algorithms and quantifying their closed-
loop robustness, and (iv) analyzing other meaningful geometric optimization
problems and their relations with cooperative behaviors.

Table 1. Nonsmooth analysis of the multi-center cost functions.

HC HDC HSP

smoothness continuously
differentiable∗

regular,
globally Lipschitz

regular,
globally Lipschitz

critical

points

Centroidal Voronoi
configurations

Circumcenter Voronoi
configurations∗∗

Incenter Voronoi
configurations∗∗

description expected distortion disk covering sphere packing
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