
Chapter 1

Vector-valued quadratic

forms in control theory

Francesco Bullo
Coordinated Science Laboratory
University of Illinois
Urbana-Champaign, IL 61801
United States
bullo@uiuc.edu

Jorge Cortés
Systems, Signals and Control
University of Twente
Enschede, 7500 AE
The Netherlands
j.cortesmonforte@utwente.nl

Andrew D. Lewis
Mathematics & Statistics
Queen’s University
Kingston, ON K7L 3N6
Canada
andrew@mast.queensu.ca

Sonia Mart́ınez
Institute of Mathematics & Physics
High Council of Scientific Research
Madrid, 28006
Spain
s.martinez@imaff.cfmac.csic.es

1.1 Problem statement and historical remarks

For finite dimensional R-vector spaces U and V we consider a symmetric bilinear
map B : U×U → V . This then defines a quadratic map QB : U → V by QB(u) =
B(u, u). Corresponding to each λ ∈ V ∗ is a R-valued quadratic form λQB on U

defined by λQB(u) = λ ·QB(u). B is definite if there exists λ ∈ V ∗ so that λQB

is positive-definite. B is indefinite if for each λ ∈ V ∗ \ ann(image(QB)), λQB is
neither positive nor negative-semidefinite, where ann denotes the annihilator.

Given a symmetric bilinear map B : U × U → V , the problems we consider are
as follows.

1. Find necessary and sufficient conditions characterizing when QB is sur-
jective.
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2. If QB is surjective and v ∈ V , design an algorithm to find a point u ∈
Q−1

B (v).

3. Find necessary and sufficient conditions to determine when B is indefinite.

From the computational point of view, the first two questions are the more
interesting ones. Both can be shown to be NP-complete, whereas the third
one can be recast as a semidefinite programming problem.1 Actually, our main
interest is in a geometric characterization of these problems. Section 1.4 below
constitutes an initial attempt to unveil the essential geometry behind these
questions. By understanding the geometry of the problem properly, one may be
lead to simple characterizations like the one presented in Proposition 3, which
turn out to be checkable in polynomial time for certain clases of quadratic
mappings.

Before we comment on how our problem impinges on control theory, let us
provide some historical context for it as a purely mathematical one. The classi-
fication of R-valued quadratic forms is well understood. However, for quadratic
maps taking values in vector spaces of dimension two or higher, the classifica-
tion problem becomes more difficult. The theory can be thought of as beginning
with the work of Kronecker, who obtained a finite classification for pairs of sym-
metric matrices. For three or more symmetric matrices, that the classification
problem has an uncountable number of equivalence classes for a given dimen-
sion of the domain follows from the work of Kac [12]. For quadratic forms,
in a series of papers Dines (see [8] and references cited therein) investigated
conditions when a finite collection of R-valued quadratic maps were simultane-
ously positive-definite. The study of vector-valued quadratic maps is ongoing.
A recent paper is [13], to which we refer for other references.

1.2 Control theoretic motivation

Interestingly and perhaps not obviously, vector-valued quadratic forms come up
in a variety of places in control theory. We list a few of these here.

Optimal control: Agračhev [2] explicitly realises second-order conditions for
optimality in terms of vector-valued quadratic maps. The geometric approach
leads naturally to the consideration of vector-valued quadratic maps, and here
the necessary conditions involve definiteness of these maps. Agračhev and
Gamkrelidze [1, 3] look at the map λ 7→ λQB from V ∗ into the set of vector-
valued quadratic maps. Since λQB is a R-valued quadratic form, one can talk
about its index and rank (the number of −1’s and nonzero terms, respectively,
along the diagonal when the form is diagonalised). In [1, 3] the topology of the
surfaces of constant index of the map λ 7→ λQB is investigated.

1We thank an anonymous referee for these observations.
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Local controllability: The use of vector-valued quadratic forms arises from
the attempt to arrive at feedback-invariant conditions for controllability. Basto-
Gonçalves [6] gives a second-order sufficient condition for local controllability,
one of whose hypotheses is that a certain vector-valued quadratic map be in-
definite (although the condition is not stated in this way). This condition is
somewhat refined in [11], and a necessary condition for local controllability is
also given. Included in the hypotheses of the latter is the condition that a
certain vector-valued quadratic map be definite.

Control design via power series methods and singular inversion: Nu-
merous control design problems can be tackled using power series and inversion
methods. The early references [5, 9] show how to solve the optimal regulator
problem and the recent work in [7] proposes local steering algorithms. These
strong results apply to linearly controllable systems, and no general methods
are yet available under only second-order sufficient controllability conditions.
While for linearly controllable systems the classic inverse function theorem suf-
fices, the key requirement for second-order controllable systems is the ability
to check surjectivity and compute an inverse function for certain vector-valued
quadratic forms.

Dynamic feedback linearisation: In [14] Sluis gives a necessary condition
for the dynamic feedback linearisation of a system

ẋ = f(x, u), x ∈ R
n, u ∈ R

m.

The condition is that for each x ∈ R
n, the set Dx = {f(x, u) ∈ TxR

n| u ∈ R
m}

admits a ruling , that is, a foliation of Dx by lines. Some manipulations with
differential forms turns this necessary condition into one involving a symmetric
bilinear map B. The condition, it turns out, is that Q−1

B (0) 6= {0}. This is
shown by Agračhev [1] to generically imply that QB is surjective.

1.3 Known results

Let us state a few results along the lines of our problem statement that are
known to the authors. The first is readily shown to be true (see [11] for the
proof). If X is a topological space with subsets A ⊂ S ⊂ X, we denote by
intS(A) the interior of A relative to the induced topology on S. If S ⊂ V , aff(S)
and conv(S) denote, respectively, the affine hull and the convex hull of S.

Proposition 1 Let B : U × U → V be a symmetric bilinear map with U and
V finite-dimensional. The following statements hold:

(i) B is indefinite if and only if 0 ∈ intaff(image(QB))(conv(image(QB)));

(ii) B is definite if and only if there exists a hyperplane P ⊂ V so that
image(QB) ∩ P = {0} and so that image(QB) lies on one side of P ;
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(iii) if QB is surjective then B is indefinite.

The converse of (iii) is false. The quadratic map from R
3 to R

3 defined by
QB(x, y, z) = (xy, xz, yz) may be shown to be indefinite but not surjective.

Agračhev and Sarychev [4] prove the following result. We denote by ind(Q)
the index of a quadratic map Q : U → R on a vector space U .

Proposition 2 Let B : U ×U → V be a symmetric bilinear map with V finite-
dimensional. If ind(λQB) ≥ dim(V ) for any λ ∈ V ∗\{0} then QB is surjective.

This sufficient condition for surjectivity is not necessary. The quadratic map
from R

2 to R
2 given by QB(x, y) = (x2 − y2, xy) is surjective, but does not

satisfy the hypotheses of Proposition 2.

1.4 Problem simplification

One of the difficulties with studying vector-valued quadratic maps is that they
are somewhat difficult to get ones hands on. However, it turns out to be possible
to simplify their study by a reduction to a rather concrete problem. Here we
describe this process, only sketching the details of how to go from a given
symmetric bilinear map B : U × U → V to the reformulated end problem. We
first simplify the problem by imposing an inner product on U and choosing an
orthonormal basis so that we may take U = R

n.
We let Symn(R) denote the set of symmetric n × n matrices with entries in

R. On Symn(R) we use the canonical inner product

〈A,B〉 = tr(AB).

We consider the map π : R
n → Symn(R) defined by π(x) = xx

t, where t denotes
transpose. Thus the image of π is the set of symmetric matrices of rank at most
one. If we identify Symn(R) ' R

n ⊗ R
n, then π(x) = x ⊗ x. Let Kn be

the image of π and note that it is a cone of dimension n in Symn(R) having
a singularity only at its vertex at the origin. Furthermore, Kn may be shown
to be a subset of the hypercone in Symn(R) defined by those matrices A in
Symn(R) forming angle arccos( 1

n
) with the identity matrix. Thus the ray from

the origin in Symn(R) through the identity matrix is an axis for the cone KN .
In algebraic geometry, the image of Kn under the projectivisation of Symn(R)
is known as the Veronese surface [10], and as such is well-studied, although
perhaps not along lines that bear directly on the problems of interest in this
article.

We now let B : R
n × R

n → V be a symmetric bilinear map with V finite-
dimensional. Using the universal mapping property of the tensor product, B

induces a linear map B̃ : Symn(R) ' R
n ⊗ R

n → V with the property that
B̃ ◦ π = B. The dual of this map gives an injective linear map B̃∗ : V ∗ →
Symn(R) (here we assume that the image of B spans V ). By an appropriate
choice of inner product on V one can render the embedding B̃∗ an isometric
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embedding of V in Symn(R). Let us denote by LB the image of V under this
isometric embedding. One may then show that with these identifications, the
image of QB in V is the orthogonal projection of Kn onto the subspace LB . Thus
we reduce the problem to one of orthogonal projection of a canonical object,
Kn, onto a subspace in Symn(R)! To simplify things further, we decompose
LB into a component along the identity matrix in Symn(R) and a component
orthogonal to the identity matrix. However, the matrices orthogonal to the
identity are readily seen to simply be the traceless n × n symmetric matrices.
Using our picture of Kn as a subset of a hypercone having as an axis the ray
through the identity matrix, we see that questions of surjectivity, indefiniteness,
and definiteness of B impact only on the projection of Kn onto that component
of LB orthogonal to the identity matrix.

The following summarises the above discussion.

The problem of studying the image of a vector-valued quadratic form can be
reduced to studying the orthogonal projection of Kn ⊂ Symn(R), the unprojec-
tivised Veronese surface, onto a subspace of the space of traceless symmetric
matrices.

This is, we think, a beautiful interpretation of the study of vector-valued
quadratic mappings, and will surely be a useful formulation of the problem.
For example, with it one easily proves the following result.

Proposition 3 If dim(U) = dim(V ) = 2 with B : U × U → V a symmetric
bilinear map, then QB is surjective if and only if B is indefinite.
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