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Abstract. This paper introduces various geometric optimization problems and explores their re-
lationship with motion coordination algorithms for networks of mobile agents. For each problem,
the objective is the optimization of an appropriate multi-center function encoding the sensing task
to be achieved by the mobile network in a dynamic environment. We present five different sce-
narios: the expected value scenario, the expected value scenario with limited range interactions,
the area scenario, the worst-case scenario and the non-interference scenario. We carefully analyze
the smoothness properties and gradient information of the multi-center functions. Based on this
investigation, we propose distributed motion coordination algorithms specifically tailored for each
scenario. The multi-center functions play the role of network aggregate cost functions certifying the
validity of the coordination algorithms. Various numerical simulations illustrate the results.
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1. INTRODUCTION

Consider the following scenario: let (p1, . . . , pn) denote the location of n mobile agents
in a convex polygonal environment Q. Assume that the agents have the ability to sense
its immediate environment, communicate with other agents, process the received data,
and plan its own motions accordingly. Furthermore, assume that certain events of interest
are taking place in the environment Q that the mobile network has to take care of. How
should the mobile network plan its motion in order to optimize the coverage of the
environment? More precisely, we aim at designing motion coordination algorithms that,
implemented over each mobile agent, will achieve the objective of optimally positioning
the agents in the environment with respect to the desired sensing task.

Since the initial works from the graphics and ecology communities on distributed
coordination on swarms and flocking [1, 2], the design of coordination algorithms has
been studied extensively by the behavioral control and the control theory communities
(see [3–10] and references therein). In this paper, we describe an innovative techni-
cal approach that relies on non-smooth distributed descent algorithms and on aggregate



utility functions that encode optimal coverage and sensing policies. We introduce vari-
ous notions of quality-of-service provided by an adaptive mobile network in a dynamic
environment. We refer to these notions as multi-center functions. We set up five different
geometric optimization problems: the expected value scenario, the expected value sce-
nario with limited range interactions, the area scenario, the worst-case scenario and the
non-interference scenario. We carefully investigate the smoothness properties and the
(generalized) gradient information of the multi-center functions. Building on this analy-
sis, we design coordination algorithms implementable by a mobile network with sensing,
communication and motion capabilities that optimize the multi-center functions.

When designing motion coordination algorithms, we take into careful consideration
all constraints present on the mobile network. In particular, the coordination algorithms
should be: (i) adaptive, in order to provide the network with the ability to address chang-
ing environments, sensing task, and network topology (due to agents departures, arrivals,
or failures); (ii) distributed, in the sense that the behavior of each agent depends only on
the location of its neighbors. They should typically not require a fixed-topology com-
munication graph, i.e., allow for the neighborhood relationships to change as the net-
work evolves. The advantages of distributed algorithms are scalability and robustness;
(iii) verifiable asymptotically correct, i.e., guarantee monotonic optimization of the cost
function encoding the sensing task. Asymptotically, the evolution of the mobile network
should be guaranteed to converge to the critical points of the optimal sensor coverage
problem. The importance of formal verification proofs increases with the dimension and
complexity of vehicle networks; and (iv) amenable to asynchronous implementation,
meaning that the algorithms should be implementable in a network composed of agents
evolving at different speeds, with different computation and communication capabilities.
In such a case, no global synchronization is required and convergence properties are pre-
served even if information about neighboring vehicles propagates with some delay.

The organization of the paper is as follows. In Section 2, we introduce some basic
concepts from computational geometry [11, 12] and present the model of synchronous
mobile network considered throughout the paper. Section 3 introduces various geometric
optimization problems in which service sites are spatially allocated to fulfill a specified
request [13–16]. We propose different notions of quality-of-service to measure the net-
work performance, depending on the specific sensing task, the capabilities of the agents
and the information about the distribution of events taking place in the environment. We
state the differentiable properties of these functions and the expressions of their (gen-
eralized) gradients via nonsmooth analysis [17]. We show that their critical points are
center Voronoi configurations. Finally, Section 4 presents distributed motion coordina-
tion algorithms for each of the scenarios introduced in Section 3. Using the stability tools
in [18–20], we propose novel strategies based on the nonsmooth generalized gradients
of the aggregate cost functions. We investigate their asymptotic behavior and show that
the algorithms are guaranteed to continuously improve the corresponding network per-
formance measure. A detailed analysis of all results presented in this paper can be found
in [7, 21, 22].



2. PRELIMINARIES

Let ‖ · ‖ denote the Euclidean distance function on R
N , N ∈ N, and let v · w denote

the scalar product of v,w ∈ R
N . Let versus(v) denote the unit vector in the direction of

0 6= v ∈ R
N , i.e., versus(v) = v/‖v‖. Given S ⊂ R

N , co(S) and intS denote its convex
hull and interior set, respectively. Let 1S : R

N →{0,1} be the indicator function defined
by 1S(q) = 1 if q ∈ S, and 1S(q) = 0 if q 6∈ S. If S is convex, let projS : R

N → S denote
the orthogonal projection onto S and let DS : R

N → R denote the distance function to
S. For p ∈ R

N and r ∈ R+ = [0,+∞), let Br(p) = {q ∈ R
N | ‖q− p‖ ≤ r} denote the

closed ball in R
N centered at p of radius r. Let nBr(p)

(q) denote the unit outward normal

to Br(p) at q ∈ ∂Br(p).
Let Q be a simple convex polygon in R

2. We denote by Ed(Q) = {e1, . . . ,eM} and
Ve(Q) = {v1, . . . ,vL} the set of edges and vertices of Q, respectively. If e ∈ Ed(Q), we
let ne denote the unit normal to e pointing toward int(Q). The diameter of Q is defined
as diam(Q) = maxq,p∈Q ‖q− p‖. Let P = (p1, . . . , pn) ∈ Qn ⊂ (R2)n denote the location
of n generators in Q.

2.1. Voronoi partitions and proximity graphs

In this section, we review the notion of Voronoi partition generated by sets of points on
the Euclidean plane; we refer the reader to [11, 12] for comprehensive treatments. Next,
we shall present some relevant concepts on proximity graph functions. This notion is an
extension of the notion of proximity graph as explained in the survey article [23].

A covering of R
2 is a collection of subsets of R

2 whose union is R
2; a partition of R

2

is a covering whose subsets have disjoint interiors. Let P be a set of n distinct points
{p1, . . . , pn} in R

2. The Voronoi partition of R
2 generated by P with respect to the

Euclidean norm is the collection of sets {Vi(P)}i∈{1,...,n} defined by

Vi(P) = {q ∈ R
2 | ‖q− pi‖ ≤ ‖q− p j‖ , for all p j ∈ P}.

It is customary and convenient to refer to Vi(P) as Vi. The boundary of each set Vi is the
union of a finite number of segments and rays. A vertex v∈Ve(Vi(P)) is nondegenerate if
it is determined by exactly three elements. Otherwise it is degenerate. The configuration
P is nondegenerate if all its vertices are nondegenerate, otherwise it is degenerate.

Let Σn be the set of permutations of n elements. A map f : X n → 2X×X is Σn-
equivariant if for all (x1, . . . ,xn) ∈ Xn and σ ∈ Σn, (xi,x j) ∈ f (x1, . . . ,xn) implies
(xσ(i),xσ( j)) ∈ f (xσ(1)

, . . . ,xσ(n)
). A proximity graph function associates to a set of

n distinct points P = {p1, . . . , pn} in R
2 a graph with vertex set P and edge set

E (p1, . . . , pn), where E : (R2)n → 2R
2×R

2
is a Σn-equivariant map with the property that

E (p1, . . . , pn) ⊆ P2 = {p1, . . . , pn}
2 = {p1, . . . , pn}×{p1, . . . , pn}. Note that, since the

map E is Σn-equivariant, the value of E (p1, . . . , pn) is independent of the ordering of the
elements (p1, . . . , pn), and therefore, we will write it as {p1, . . . , pn}= P 7→ E (P), and
refer to it as the proximity edge function corresponding to the proximity graph function



P 7→ G (P). To each proximity graph function G , one can associate the set of neigh-
bors map N

G
: R

2 × 2R
2
→ 2R

2
, defined by N

G
(p,P) = {q ∈ P | (p,q) ∈ E

G
(P)}.

We will often write N
G ,p(P) to denote N

G
(p,P). For r ∈ R+, we have the following

proximity graph functions:

(i) the Delaunay graph P 7→ GD(P) = (P,ED(P)) with edge set

ED(P) = {(pi, p j) ∈ P
2 \diag(P2) | Vi(P)∩V j(P) 6= /0} ;

(ii) the r-disk graph P 7→ Gdisk(P,r) = (P,Edisk(P,r)) with edge set

Edisk(P,r) = {(pi, p j) ∈ P
2 \diag(P2) | ‖pi − p j‖ ≤ r} ;

(iii) the r-limited Delaunay (or, limited-range Delaunay) graph P 7→ GLD(P,r) =
(P,ELD(P,r)) consists of the edges (pi, p j) ∈ P2 \diag(P2) with the property

(

Vi(P)∩B r
2
(pi)

)

∩
(

V j(P)∩B r
2
(p j)

)

6= /0 . (1)

There are other important proximity graphs such as the Gabriel graph or the Euclidean
Minimum Spanning Tree. We refer to [22, 23] for further details.

Note that in the previous definitions we have emphasized the fact that the points
{p1, . . . , pn} are distinct. Occasionally though, we will consider ordered sets of possibly
coincident points. In this case, it is useful to adopt the following notation: given a
tuple (p1, . . . , pn)∈ (R2)n, we let {p1, . . . , pn}, or equivalently P , denote the associated
point set that only contains the corresponding distinct points. The cardinality of P =
{p1, . . . , pn} is less than or equal to n. More precisely, if S denotes the set

S = {(p1, . . . , pn) ∈ (R2)n | pi = p j for some i, j ∈ {1, . . . ,n}, i 6= j} , (2)

then #P < n if (p1, . . . , pn)∈S and #P = n if (p1, . . . , pn) 6∈S . The Voronoi covering
V (p1, . . . , pn) = {Vi(p1, . . . , pn)}i∈{1,...,n} generated by the tuple (p1, . . . , pn) is defined
by assigning to each point pi its corresponding Voronoi cell in the Voronoi partition
generated by P . Note that coincident points in the tuple (p1, . . . , pn) have the same
Voronoi cell.

We are now in a position to discuss distributed control laws and algorithms in formal
terms. Let G be a proximity graph function and let Y be a set. A map f : (R2)n → Y n is
spatially distributed over G if there exist maps f̃i : R

2 ×2(R2)n
→ Y , i ∈ {1, . . . ,n}, with

the property that for all (p1, . . . , pn) ∈ (R2)n

fi(p1, . . . , pn) = f̃i(pi,{p j ∈ R
2 | p j ∈ N

G ,pi
(P)}) ,

where fi denotes the ith-component of f . A vector field X on (R2)n is spatially dis-
tributed over G if its associated map X : (R2)n → (R2)n, where the canonical identifica-
tion between the tangent space of (R2)n and (R2)n itself is understood, is spatially dis-
tributed in the above sense. In other words, to compute the ith component of a spatially-
distributed function or vector field at (p1, . . . , pn), it is only required the knowledge of
the vertex pi and the neighboring vertexes in the proximity graph G ({p1, . . . , pn}).



One can prove that r-limited Delaunay graph is spatially distributed over Gdisk(r).

More precisely, for r ∈ R+, the map N
GLD(·,r) : (R2)n →

[

2(R2)n]n
, defined by

(p1, . . . , pn) 7→ (N
GLD(r),p1

(P), . . . ,N
GLD(r),pn

(P)) ,

is spatially distributed over Gdisk(r). Loosely speaking, this proposition states that the
r-limited Delaunay graph GLD can be computed in a spatially localized way: each agent
needs to know only the location of all other agents in a disk of radius r.

2.2. Modeling a network of mobile agents

Here, we introduce the notions of mobile agent and of network of mobile agents. Let
n be the number of agents in the network. Each agent has the following sensing, com-
putation, communication, and motion control capabilities. The ith agent has a processor
with the ability of allocating continuous and discrete states and performing operations
on them. The ith agent occupies a location pi ∈ Q ⊂ R

2 and it is capable of moving in
space, at any time t ∈ R+ according to a first order continuous dynamics of the form

ṗi(t) = ui . (3)

Here, the control ui takes values in a bounded subset of R
2. The processor has access to

the agent’s location pi and determines the control ui. The processor of the ith agent is
capable of transmitting information to any other agent within a closed disk of radius
ri ∈ R+. We will consider two different sensing and communication models: in the
first one, we assume that the communication radius ri is a quantity controllable by
the ith processor; in the second one, we assume that the communication radius ri is a
fixed quantity and equal for all agents, ri = r ∈ R+, i ∈ {1, . . . ,n}. In both models, the
communication bandwidth is assumed to be limited. Throughout the paper, we shall
specify the concrete communication model used.

Equivalently, we shall consider groups of mobile agents without communication
capabilities, but instead capable of measuring the relative position of each other agent
within a closed disk of radius ri ∈ R+. We assume that all communication between
agents and all sensing of agents locations are accurate. Note that this network model
is synchronous. We refer the reader to [7, 10, 24] for various asynchronous network
models.

3. MULTI-CENTER FUNCTIONS AS NETWORK
PERFORMANCE MEASURES

In this section, we begin by introducing the precise notions of quality-of-service pro-
vided by the mobile network in a dynamic environment. These notions will be later the
criteria to judge the asymptotic correctness and performance of the motion coordina-
tion algorithms. We end the section by characterizing the smoothness properties of the
multi-center functions.



Expected value scenario

Assume that a certain density function φ : Q → R+ is known, describing the proba-
bility distribution in Q of the events of interest. Assume further that the mobile agents
can control and tune their communication radius (respectively their sensing radius). In
such a case, the network tries to minimize the expected distance from any event in the
environment to one of the mobile agents of the network (since, because of noise and loss
of resolution, the closest agent will be the one which is able to take the best possible
measurement of that event or can reach its location more quickly). Accordingly, we set
up the following geometric optimization problem

minimizep1,...,pn∈Q

{

HC(p1, . . . , pn) =
∫

Q
min

i∈{1,...,n}
‖q− pi‖

2φ(q)dq
}

. (4)

This problem is referred to as the p-median problem in [15]. On Qn \S , HC reads

HC(P) =
n

∑
i=1

∫

Vi

‖q− pi‖
2φ(q)dq .

Given a polytope W in R
N , its centroid, CMW , is the center of mass of W with respect

to the density function φ , i.e.,

CMW =
1

MW

∫

W
qφ(q)dq , MW =

∫

W
φ(q)dq .

Centroidal Voronoi configurations satisfy pi = CMVi(P)
for all i ∈ {1, . . . ,n}.

We can slightly modify the previous scenario to set up a different geometric opti-
mization problem. If, under the same hypothesis, the mobile agents have a fixed (and
common) communication radius r ∈ R+ (respectively sensing radius), then the problem
turns out to be harder. The objective is still to solve the optimization in equation (4), but
now the agents can only communicate to or sense other agents and events up to a fixed
distance. We refer to it as the expected value scenario with range-limited interactions.
To deal with this situation, we introduce the multi-center function

H r
2
(p1, . . . , pn) =

∫

Q
max

i∈{1,...,n}

(

‖q− pi‖
2 1B r

2
(pi)

(q)+diam(Q)2 ·1Q\B r
2
(pi)

(q)
)

φ(q)dq ,

where we assume r ≤ 2diam(Q) (since otherwise Q ⊂ B r
2
(pi) for all i ∈ {1, . . . ,n},

and the setting would be the same as in the expected value scenario). The factor 1/2
multiplying the radius comes out of technical reasons. There are two arguments to
explain why this function is important to deal with this scenario. The first one is given
by the following constant-factor approximation of the value of HC (cf. [22]),

H r
2
(P) ≥ HC(P) ≥ β H r

2
(P) > 0 , (5)

for all P ∈ Qn, and for β =
(

r
2diam(Q)

)2
∈ [0,1]. That is, the optimization of H r

2
is equiv-

alent, to the extent determined by equation (5), to the optimization of HC. The second
reason is related with the gradient of H r

2
. We postpone its exposition to Section 4.



Area scenario

An alternative optimization problem is the area scenario. Assuming that the mobile
agents have a fixed finite communication (respectively, sensing) radius r ∈ R+, the
mobile network should maximize the amount of area of the environment covered. If
a distribution density function φ : Q → R+ is known, then the area can be weighted
accordingly. The following geometric optimization problem describes this scenario:

maximizep1,...,pn∈Q

{

Harea(p1, . . . , pn) =
∫

Q

(

max
i

1B r
2
(pi)

(q)
)

φ(q)dq
}

.

Worst-case scenario

Assume now that no information is available about the distribution of events taking
place in the environment. Assume further that the mobile agents can control and tune
their communication radius (respectively their sensing radius). Since no information is
available, it seems reasonable to consider the worst-case scenario, that is, that the event
of interest will occur at the furthest-away point from the network in the environment.
Therefore, the network tries to minimize the largest possible distance from any point in
the domain to one of the agent locations,

minimizep1,...,pn∈Q

{

HDC(p1, . . . , pn) = max
q∈Q

(

min
i∈{1,...,n}

‖q− pi‖
)}

.

This problem is referred to as the p-center problem in [15, 25]. In terms of the Voronoi
partition, the function HDC admits the following alternative expression

HDC(P) = max
i∈{1,...,n}

{

max
q∈Vi

‖q− pi‖
}

.

It is conjectured in [25] that the p-center problem can be restated as a disk-covering
problem: how to cover a region with disks of minimum radius, which reads

min{R | ∪i∈{1,...,n} B(pi,R) ⊇ Q} .

In Theorem 3.2 we provide a positive answer to this question. Given a polytope W in R
N ,

its circumcenter, CCW , is the center of the minimum-radius sphere that contains W . We
say that P is a circumcenter Voronoi configuration if pi = CCVi(P)

, for all i ∈ {1, . . . ,n}.

Non-interference scenario

The objective here is to maximize the coverage of the domain in such a way that the
various sensing radius do not overlap or leave the environment (because of interference).
In this situation, the network tries to solve the following geometric optimization problem

maximizep1,...,pn∈Q

{

HSP(p1, . . . , pn) = min
i6= j∈{1,...,n}

(

1
2‖pi − p j‖,D(pi,∂Q)

)}

,



so that each agent can fit a circular sensing region as large as possible within the envi-
ronment and without overlapping with the regions belonging to other agents. In terms of
the Voronoi partition, the function HSP admits the following alternative expression

HSP(P) = min
i∈{1,...,n}

{

min
q6∈intVi

‖q− pi‖
}

.

A similar conjecture to the one presented above is that this problem can be restated
as a sphere-packing problem: how to maximize the coverage of a region with non-
overlapping disks (contained in the region) of minimum radius. The problem reads:

max{R | ∪i∈{1,...,n} B2(pi,R) ⊆ Q , int(B(pi,R))∩ int(B(p j,R)) = /0} .

In Theorem 3.2 we provide a positive answer to this question. Given a polytope W in
R

N , its incenter set, ICW , is the set of the centers of maximum-radius spheres contained
in W . We say that P ∈ Qn is an incenter Voronoi configuration if pi ∈ ICVi(P)

, for all

i ∈ {1, . . . ,n}. If P is an incenter Voronoi configuration, and each Voronoi region Vi(P)
has a unique incenter, ICVi(P)

= {pi}, then P is a generic incenter Voronoi configuration.

Smoothness analysis of the multi-center functions

The following discussion gathers the results concerning the smoothness properties of
the multi-center functions introduced above. The proof of the following result is based
on a generalized statement of the Conservation-Of-Mass Lemma. For further details, the
reader is referred to [22] and references therein.

Theorem 3.1 The multi-center functions HC, H r
2

and Harea are globally Lipschitz on

Qn, and continuously differentiable on Qn \S , where for each i ∈ {1, . . . ,n}

∂HC

∂ pi
(P) =

∫

Vi

∂
∂ pi

‖q− pi‖
2φ(q)dq = 2MVi(P)

(pi −CMVi(P)
) ,

∂H r
2

∂ pi
(P) = 2MVi(P)∩B r

2
(pi)

(pi −CMVi(P)∩B r
2
(pi)

)

+
(( r

2

)2
−diam(Q)2

)

Mi(r)

∑
k=1

∫

arci,k(r)
nB r

2
(pi)

φ ,

∂Harea

∂ pi
(P) =

Mi(r)

∑
k=1

∫

arci,k(r)
nB r

2
(pi)

φ .

with arci,k(r), k ∈ {1, . . . ,Mi(r)} the arcs in the boundary of Vi(P)∩B r
2
(pi). As a conse-

quence, the critical points of HC are centroidal Voronoi configurations.



Concerning the smoothness properties of the multi-center functions HDC and HSP,
let us consider the following alternative expressions. Let

HDC(P) = max
i∈{1,...,n}

Gi(P) , HSP(P) = min
i∈{1,...,n}

Fi(P) ,

where Gi(P) = maxq∈Vi(P)
‖q − pi‖ and Fi(P) = minq6∈intVi(P)

‖q − pi‖. For a convex

polygon W ⊂ R
2, define the functions

lgW (p) = max{‖q− p‖ | q ∈W} = max{‖v− p‖ | v ∈ Ve(W )} ,

smW (p) = min{‖q− p‖ | q 6∈ int(W )} = min{De(p) | e ∈ Ed(W )} .

These functions are locally Lipschitz and regular (the reader is referred to [17] for a
comprehensive treatment of nonsmooth analysis), and their generalized gradients are
given by ∂ lgQ(p) = co{versus(p−v) | v ∈ Ve(Q) , lgQ(p) = ‖p−v‖} and ∂ smQ(p) =

co{ne | e ∈ Ed(Q) , smQ(p) = De(p)}. Note that Gi(P) = lgVi(P)
(pi) and Fi(P) =

smVi(P)
(pi). Despite the slight abuse of notation, it is convenient to let ∂ lgVi(P)

(pi) de-

note ∂ lgV (pi)|V=Vi(P)
, and let ∂ smVi(P)

(pi) denote ∂ smV (pi)|V=Vi(P)
, i.e., holding fixed

the Voronoi cell Vi.
The properties of the functions Gi and Fi are strongly affected by the dependence on

the Voronoi partition V (P). These properties can be fully characterized (the interested
reader is referred to [21] for a detailed discussion): indeed, both Gi,−Fi : Qn → R

are locally Lipschitz and regular, and their generalized gradients can be described in a
precise way by means of a careful analysis of the vertexes and edges where their values
are attained, and of the degenerate/nondegenerate character of the Voronoi partition.
In the sake of brevity, here we will only highlight the fact that the knowledge of the
generalized gradients of Gi and Fi is key to describe the generalized gradients of the
functions HDC and HSP, as we do next.

Theorem 3.2 The multi-center functions HDC,−HSP : Qn → R are locally Lipschitz
and regular. Their generalized gradients can be expressed as

∂HDC(P) = co{∂Gi(P) | i such that Gi(P) = HDC(P)} ,

∂HSP(P) = co{∂Fi(P) | i such that Fi(P) = HSP(P)} .

Moreover,

(i) if P ∈ Qn is nondegenerate and 0 ∈ int∂HDC(P), then P is a strict local minimum
of HDC, all generators verify Gi(P) = HDC(P) and P is a circumcenter Voronoi
configuration;

(ii) if P ∈ Qn and 0 ∈ int∂HSP(P), then P is a strict local maximum of HSP, all gener-
ators verify Fi(P) = HSP(P) and P is a generic incenter Voronoi configuration.

Remark 3.3 Theorem 3.2(i) and (ii) provide the interpretation of the multi-center prob-
lems given at the beginning of this section: since all generators are active, they share the
same radius.



4. MOTION COORDINATION ALGORITHMS

In this section, we develop continuous-time implementations of the gradient ascent for
the multi-center functions introduced in the previous section. Recall that the agents’
location obeys a first order dynamical behavior, as described in equation (3).

We start by considering the multi-center functions HC, H r
2

and Harea. Building on the
result of Theorem 3.1, pick one of the multi-center functions as an aggregate objective
cost to be optimized and impose that the location pi follows its gradient flow. In more
precise terms, we set up the following control laws defined over the set Qn \S

ui = −
∂HC

∂ pi
(P) = 2MVi(P)

(CMVi(P)
−pi) , (6a)

ui = −
∂H r

2

∂ pi
(P) = 2MVi(P)∩B r

2
(pi)

(CMVi(P)∩B r
2
(pi)

−pi)

+
(

diam(Q)2 −
( r

2

)2)Mi(r)

∑
k=1

∫

arci,k(r)
nB r

2
(pi)

φ , (6b)

ui =
∂Harea

∂ pi
(P) =

Mi(r)

∑
k=1

∫

arci,k(r)
nB r

2
(pi)

, (6c)

where we assume that the partition V (P) = {V1, . . . ,Vn} is continuously updated. One
can prove the following result.

Proposition 4.1 Consider the gradient dynamical system on Qn \S defined by equa-
tion (6) for each of the multi-center functions HC, H r

2
and Harea. Then, we have

(i) The gradient dynamical system (6a) is spatially distributed over the Delaunay
graph GD, and the gradient dynamical systems (6b) and (6c) are spatially dis-
tributed over the r-limited Delaunay graph GLD(r).

(ii) For each of the flows in (6), the agents’ location evolution starting at P0 ∈ Qn \S

remains in Qn \S and converges asymptotically to the set of critical points of the
corresponding aggregate objective function. Assuming this set is finite, the agents’
location converges to a single critical point.

Remark 4.2 Note that the gradient ascent is not guaranteed to find the global optimum.
For example, in the vector quantization literature, it is known that for “bimodal” distribu-
tion density functions, the solution to the gradient flow reaches local maxima where the
number of agents allocated to the two region of maxima are not optimally partitioned.

We are now in a position to recover the discussion about the expected value scenario
with range-limited interactions that we began in Section 3. There, we introduced the
function H r

2
to deal with this situation. One of the reasons that we gave was the

constant-factor approximation (5) of the value of HC. The other reason is given by
Proposition 4.1(i). The gradient flow of HC is spatially distributed over the Delaunay
graph GD, and, therefore, not generally implementable over a network of mobile agents



with a fixed (and common) communication radius r ∈ R+ (respectively sensing radius).
On the other hand, the gradient flow of H r

2
is spatially distributed over the r-limited

Delaunay graph GLD(r), and therefore can be implemented over networks of mobile
agents with fixed radius r.

FIGURE 1. Expected value scenario: continuous-time algorithm (6a) for 20 mobile
agents in the convex polygonal environment defined by the vertexes of coordinates
{(0,0),(2.125,0),(2.9325,1.5),(2.975,1.6),(2.9325,1.7),(2.295,2.1),(0.85,2.3),(0.17,1.2)} (in me-
ters). The density function φ is the sum of four Gaussian functions of the form
11 exp(6(−(x − xcenter)

2 − (y − ycenter)
2)) and is represented by means of its contour plot. The

centers (xcenter,ycenter) of the Gaussians are given by (2.15, .75), (1., .25), (.725,1.75) and (.25, .7),
respectively. The left (respectively, right) figure illustrates the initial (respectively, final) locations and
Voronoi partition. The central figure illustrates the gradient descent flow. After 13 seconds, the value of
the multi-center function is approximately .515.

FIGURE 2. Expected value scenario with range-limited interactions: continuous-time algorithm (6b)
for 20 mobile agents in the same convex polygonal environment and with the same density function φ
as in Figure 1. Each agent operates with a finite sensing/communication radius equal to r = .47. The left
(respectively, right) figure illustrates the initial (respectively, final) locations and Voronoi partition. The
central figure illustrates the gradient ascent flow. For each agent i, the intersection V i ∩B r

2
(pi) is plotted

in light gray. After 13 seconds, the value of the multi-center function is approximately 4.794. From the
constant-factor approximation (5), we compute β ≈ 0.00484, where Pfinal denotes the final configuration
in Figure 2. The absolute error is guaranteed to be less than or equal to (1−β )H r

2
(Pfinal)≈ 4.77. In order

to compare the performance of this execution with the performance of the algorithm in the expected value
scenario (cf. Figure 1), we compute the percentage error in the value of the multi-center function HC
at their final configurations. This percentage error is approximately equal to 3.277%. As expected, we
verified in simulations that the percentage error of the performance of the limited-range implementation
improves with higher values of the ratio r/diam(Q).

Let us consider now the worst-case scenario and the non-interference scenario. Con-
sider the (signed) generalized gradient flow for the multi-center functions HDC and HSP,

Ṗ = −Ln(∂HDC(P)) , Ṗ = Ln(∂HSP(P)) ,



FIGURE 3. Area scenario: continuous-time algorithm (6c) for 20 mobile agents in the same convex
polygonal environment and with the same density function φ as in Figure 1. Each agent operates with
a finite sensing/communication radius equal to r = .4. The left (respectively, right) figure illustrates the
initial (respectively, final) locations and Voronoi partition. The central figure illustrates the gradient ascent
flow. For each agent i, the intersection V i ∩B r

2
(pi) is plotted in light gray. After 36 seconds, the value of

the multi-center function is approximately 14.141.

where Ln : 2R
N
→ R is the map that associates to each convex set S ⊂ R

N its least-norm
element, Ln(S) = projS(0). Alternatively, we may write for each i ∈ {1, . . . ,n},

ṗi = −πi(Ln(∂HDC)(p1, . . . , pn)) , (7a)
ṗi = πi(Ln(∂HSP)(p1, . . . , pn)) , (7b)

where πi : (R2)n → R
2 is the canonical projection onto the ith factor. Note that the

vector fields (7a) and (7b) are discontinuous, and therefore, we understand its solution
in the Filippov sense [18]. One needs to first compute the generalized gradients at P,
∂HDC(P) and ∂HSP(P), then compute the least-norm element, and finally project to
each of the n components. Note that the least-norm element of convex sets can be
computed efficiently, see [26], however closed-form expressions are not available in
general. One can also see that the compact set Qn is strongly invariant for both vector
fields −Ln(∂HDC) and Ln(∂HSP) (cf. [21]).

Proposition 4.3 For the dynamical system (7a) (respectively (7b)), the generators’ lo-
cation P = (p1, . . . , pn) converges asymptotically to the set of critical points of HDC
(respectively, HSP).

The gradient dynamical systems (7a) and (7b) enjoy the convergence guarantees stated
in Proposition 4.3, but their implementation is not spatially distributed over the Delaunay
graph GD because of two reasons. First, the values of all functions Gi (respectively Fi)
need to be compared in order to determine which generators are active. Second, the
least-norm element of the generalized gradients depends on the relative position of the
active generators with respect to each other and to the environment. This is the reason
why in what follows we propose a distributed implementation of the previous gradient
dynamical systems and explore their relation with behavior-based rules.

Consider the following variations of the gradient dynamical systems in equation (7),

ṗi = −Ln(∂ lgVi(P)
)(P) , (8a)

ṗi = Ln(∂ smVi(P)
)(P) , (8b)



for i ∈ {1, . . . ,n}. Note that the systems (8a) and (8b) are spatially distributed over the
Delaunay graph GD, since Ln(∂ lgVi(P)

)(P) is determined only by the position of pi and

of its Voronoi neighbors N
GD,pi

(P), and Ln(∂ smVi(P)
)(P) is determined only by the

position of pi and its nearest neighbors (which, in particular, must be Voronoi neighbors).
As for the previous dynamical systems, note that these vector fields are discontinuous,
and therefore, we understand its solutions in the Filippov sense. One can see that the
compact set Qn is strongly invariant for both vector fields. Moreover, for P ∈ Qn, the
solutions of the dynamical systems (8a) and (8b) starting at P are unique. The following
statement summarizes the results concerning these dynamical systems (for the notion of
weakly invariant set, we refer to [18, 19]).

Proposition 4.4 Consider the dynamical systems on Qn defined by equations (8a)
and (8b) for the multi-center functions HDC and HSP. Then, we have

(i) Both dynamical systems are spatially distributed over the Delaunay graph GD.
(ii) For the dynamical system (8a) (resp. the dynamical system (8b)), the generators’ lo-

cation P = (p1, . . . , pn) converges asymptotically to the largest weakly invariant set
contained in the closure of ADC(Q) = {P ∈ Qn | i such that Gi(P) = HDC(P) =⇒
pi = CCVi

} (resp. the largest weakly invariant set contained in the closure of

ASP(Q) = {P ∈ Qn | i such that Fi(P) = HSP(P) =⇒ pi ∈ ICVi
}).

Remarks 4.5 (Relation with behavior-based robotics) The dynamical systems (8a)
and (8b) have an interesting connection with basic interaction laws in behavior-based
robotics.

Move toward the furthest-away vertex: Consider the distributed gradient control law
in the disk-covering setting (8a). For the ith generator, if the maximum of lgVi(P)

is attained at a single vertex v of its Voronoi cell Vi, then (at fixed Vi(P)) lgVi(P)
is

differentiable at that configuration, and its derivative corresponds to versus(pi −
v). Therefore, the control law (8a) corresponds to the behavior “move toward
the furthest vertex in own Voronoi cell.” If there are two or more vertexes of Vi
where the value lgVi(P)

(pi) is attained, then (8a) provides an average behavior by

computing the least-norm element in the convex hull of all versus(pi −v) such that
‖pi − v‖ = lgVi(P)

(pi).

Move away from the nearest neighbor Consider the distributed gradient control law
in the sphere-packing setting (8b). For the ith generator, if the minimum of smVi(P)

is attained at a single edge e, then (at fixed Vi(P)) smVi(P)
is differentiable at that

configuration, and its derivative is ne. The control law (8b) corresponds to the
behavior “move away from the nearest neighbor” (where a neighbor can also be
the boundary of the environment). If there are two or more edges where the value
smVi(P)

(pi) is attained, then (8b) provides an average behavior in an analogous
manner as before.

One could also consider other distributed dynamical systems that also optimize the
multi-center functions HDC and HSP, based on the idea of geometric centering. Roughly



speaking, each agent moves toward the circumcenter of its own Voronoi region, for the
worst-case scenario, and toward the incenter of its own Voronoi region, for the non-
interference scenario. These strategies are the counterparts of the “move toward the
centroid” law in equation (6a) for the expected value scenario. They also enjoy similar
convergence properties to those of the dynamical systems (8a) and (8b). A detailed
discussion can be found in [21].

FIGURE 4. Worst-case scenario: “move-toward-the-furthest-away-vertex” algorithm for 16 mo-
bile agents in a convex polygonal environment determined by the vertexes with coordinates
{(0,0),(2.5,0),(3.45,1.5),(3.5,1.6),(3.45,1.7),(2.7,2.1),(1.,2.4),(.2,1.2)} (in meters). The left (re-
spectively, right) figure illustrates the initial (respectively, final) locations and Voronoi partition. The
central figure illustrates the network evolution. After 2 sec., the value of the multi-center function HDC is
approximately .39504 m.

FIGURE 5. Non-interference scenario: “move-away-from-closest-neighbor” algorithm for 16 mobile
agents in the same convex polygonal environment as in Figure 4. The left (respectively, right) figure
illustrates the initial (respectively, final) locations and Voronoi partition. The central figure illustrates the
network evolution. After 2 sec., the value of multi-center function HSP is approximately .26347 m.
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