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Abstract— This paper presents recently-developed theoreti-
cal tools for the analysis and design of coordination algorithms
for networks of mobile autonomous agents. First, various
motion coordination tasks are encoded into aggregate cost
functions from Geometric Optimization. Second, the limited
communication capabilities of the mobile agents are modeled
via the notions of proximity graphs from Computational
Geometry and of spatially distributed maps. Third, the al-
gorithms correctness is established via advanced versions of
the LaSalle Invariance Principle for non-deterministic systems
in discrete and continuous time. Finally, we illustrate how to
apply these tools in a variety of motion coordination problems
such as deployment, rendezvous, and flocking.

I. INTRODUCTION

Motion coordination is a remarkable phenomenon in
biological systems and an extremely useful tool in man-
made groups of vehicles, mobile sensors and embedded
robotic systems. Just like animals do, groups of mobile
autonomous agents need the ability to deploy over a given
region, assume a specified pattern, rendezvous at a given
point, or jointly move in a synchronized manner. These
coordinations tasks are typically to be achieved with little
available communication between the agents, and therefore,
with limited information about the state of the entire system.

An important scientific motivation for the study of mo-
tion coordination is the analysis of emerging and self-
organized behaviors in biological groups with distributed
agent-to-agent interactions. At the same time, an important
engineering reason to study motion coordination stems
from the recent interest in sensor networks. Indeed, it is
envisioned that groups of autonomous agents with com-
puting, communication and mobility capabilities will soon
become economically feasible and perform a variety of
spatially-distributed sensing tasks such as search and rescue,
surveillance, environmental monitoring, and exploration.

The objective of this paper is to illustrate ways in which
systems theory helps us analyze emerging behaviors in
animal groups and design autonomous and reliable robotic
networks. Indeed, the interest of the control community for
motion coordination has increased tremendously over the
last few years. A necessarily incomplete list of works on dis-
tributed, or leaderless, motion coordination includes [1], [2]
on pattern formation, [3] on flocking, [4] on self-assembly,
[5] on swarm aggregation, [6] on gradient climbing, [7]
on deployment, [8], [9], [10], [11] on rendezvous, [12] on
cyclic pursuit, and [13], [14], [15] on consensus. This paper

presents and surveys some recently-developed theoretical
tools for modeling, analysis and design of motion coordi-
nation. The next paragraphs summarize the various sections.

Section II reviews the computational geometric notion of
proximity graph. Proximity graphs of various kinds model
agent-to-agent interactions that depend only on the agents’
location in space. This is the case for example in wireless
communication or in communication based on line-of-sight.
Thus, the notion of proximity graph allows us to model the
information flow between mobile agents. Useful examples
include the disk and the visibility graphs. A coordination
algorithm is said to be spatially distributed over a proximity
graph if the control input of each agent can be computed
only with the information encoded in the given graph.

The focus of Section III is on motion coordination tasks
and on how to encode them into aggregate cost functions
from Geometric Optimization. We discuss various aggregate
cost functions for tasks such as deployment (area-coverage
deployment, maximum detection likelihood deployment,
and visibility-based deployment), rendezvous (via the diam-
eter of convex hull function), cohesiveness, and consensus
(via the so-called Laplacian potential from algebraic graph
theory). We also discuss some results on their smoothness
properties and extreme points via nonsmooth analysis.

Section IV highlights a recently-developed version of the
LaSalle Invariance Principle for non-deterministic discrete-
time dynamical systems. This is an example of a system-
theoretic tool that is helpful in establishing stability
and convergence of motion coordination algorithms. Non-
determinism may arise because of different reasons includ-
ing asynchronicity (the asynchronous, deterministic evolu-
tion of a mobile network may be subsumed into a larger
set of synchronous, non-deterministic evolutions, e.g. [9]),
design choices when devising the motion coordination al-
gorithm (at each time instant throughout the evolution, each
agent can choose among multiple possible control actions,
as opposed to a single one, e.g. [7]) and communication,
control and sensor errors in the agents during the execution
of the coordination algorithm (e.g. [8], [11]).

Section V builds upon the tools introduced earlier and
presents various approaches to the design and analysis of
scalable motion coordination algorithms. A first approach
is based on the design of gradient flows: here we typically
are given a sensing task to be performed by the network
and a proximity graph as communication constraint. A



second approach is based on the analysis of emerging
behaviors: in this case a notion of neighboring agents and
an interaction law between them is usually given. We apply
these approaches to numerous examples of coordination
algorithms proposed in the literature.

Let us finally mention that, for reasons of space, the
present exposition does not include a more in-depth discus-
sion of various techniques that have been proved useful in
motion coordination problems. Among them, we highlight
ergodic [3] and circulant [12] matrices from matrix analysis,
graph Laplacians and algebraic connectivity [3], [13] from
algebraic graph theory, graph grammars [4], symmetries
of differential equations [2], and nonsmooth and stability
analysis for differential inclusions [16].

II. SPATIALLY DISTRIBUTED MAPS OVER PROXIMITY

GRAPHS

In this section we introduce the notion of proximity
graphs and of spatially distributed maps.

A. Basic geometric notions

A partition of a set S is a collection of subsets of S
with disjoint interiors and whose union is S. Let F(S)
be the collection of finite subsets of S. Given S ⊂ R

2

and P ∈ F(S) a set of n distinct points {p1, . . . , pn}
in S, the Voronoi partition of S generated by P with
respect to the Euclidean norm ‖ · ‖ is the collection of sets
{Vi(P)}i∈{1,...,n} defined by Vi(P) = {q ∈ S | ‖q− pi‖ ≤
‖q − pj‖ , for all pj ∈ P}. We usually refer to Vi(P) as
Vi. For a detailed treatment of Voronoi partitions we refer
to [17], [18]. Unless otherwise stated, we usually deal with
the Voronoi partition of S = R

2.
For p ∈ R

2 and r ∈ R+ = (0,+∞), let B(p, r) and
B(p, r) denote the open and closed ball in R

2 centered at
p of radius r, respectively. For P ∈ F(S) with n elements,
consider the collection {Vi(P)∩B(pi, r)}i∈{1,...,n}, which
is a partition of ∪iB(pi, r) ∩ S. For i, j ∈ {1, . . . , n}, let

∆ij(P, r) ,
(

Vi(P) ∩ B(pi, r)
)

∩
(

Vj(P) ∩ B(pj , r)
)

.

Fig. 1 shows an example of these geometric constructions.

Fig. 1. Voronoi partition of a convex polygon Q generated by 50 points
selected randomly (left) and Voronoi partition of Q generated by the same
configuration restricted to ∪iB(pi, r) ∩ Q, with r = .2 (right).

B. Proximity graphs and their properties

For standard notions in graph theory we refer to [19,
Chapter 1]. Here, we start by briefly reviewing the notion
of Laplacian matrix. Let G = (V,E) be an undirected graph

with n vertices. The graph Laplacian matrix associated with
G is defined as L = ∆ − A, where ∆ is the degree matrix
and A is the adjacency matrix. The graph Laplacian is
symmetric, positive semi-definite and has an eigenvector at
λ = 0 with eigenvector (1, . . . , 1)T . Furthermore, the graph
G is connected if and only if rank(L) = n − 1.

Let us introduce some concepts about proximity graphs
for point sets in R

d. For a set S, let G(S) be the set of
undirected graphs whose vertex set is an element of F(S).
A proximity graph G : F(Rd) → G(Rd) associates to P ∈
F(Rd), an undirected graph with vertex set P and edge set
EG(P), where EG : F(Rd) → F(Rd×R

d) satisfies EG(P) ⊆
{(p, q) ∈ P × P | p 6= q}. In other words, the edge set of
a proximity graph depends on the location of its vertices.
The following examples are defined in [17], [20], [21], [7]:

(i) the complete graph Gcomplete, with EGcomplete(P) =
{(p, q) ∈ P × P | p 6= q};

(ii) the r-disk graph Gdisk(r), for r ∈ R+, with (pi, pj) ∈
EGdisk(r)(P) if ‖pi − pj‖ ≤ r;

(iii) the Delaunay graph GD, with (pi, pj) ∈ EGD(P) if
Vi(P) ∩ Vj(P) 6= ∅;

(iv) the r-limited Delaunay graph GLD(r) with (pi, pj) ∈
EGLD(P) if ∆ij(P, r

2 ) 6= ∅;
(v) the Relative Neighborhood graph GRN, with (pi, pj) ∈

EGRN(P) if, for all pk ∈ P\{pi, pj}, pk 6∈ B(pi, ‖pi−
pj‖)∩B(pj , ‖pi − pj‖);

(vi) the Gabriel graph GG, with (pi, pj) ∈ EGG(P) if, for
all pk ∈ P \ {pi, pj},

pk 6∈ B
(pi + pj

2
,
‖pi − pj‖

2

)

;

(vii) the Euclidean Minimum Spanning Tree GEMST, which
for each P , is a minimum-weight spanning tree of
Gcomplete whose edge (pi, pj) has weight ‖pi − pj‖;

(viii) given a simple polytope in R
d, the visibility graph

Gvis,Q : F(Q) → G(Q) is defined by (pi, pj) ∈
EGvis,Q(P) if the closed segment from pi to pj , denoted
[pi, pj ], is contained in Q.

If needed, we will write Gdisk(P, r) to denote Gdisk(r) at P .
We will also work with the proximity graphs GRN ∩disk(r),
GG ∩disk(r) and GD ∩disk(r) defined by the intersection of
GRN, GG and GD with Gdisk(r), r ∈ R+, respectively.

To each proximity graph G, we associate the set of
neighbors map NG : R

d × F(Rd) → F(Rd) defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪ {p})}.

Given p ∈ R
d, define NG,p : F(Rd) → F(Rd) by

NG,p(P) = NG(p,P). Given G1 and G2, we say that G1

is spatially distributed over G2 if, for all p ∈ P ,

NG1,p(P) = NG1,p

(

NG2,p(P)
)

.

It is clear that if G1 is spatially distributed over G2, then
G1(P) ⊂ G2(P) for all P ∈ F(Rd). The converse is in
general not true (e.g., GD ∩disk is a subgraph of Gdisk, but it
is not spatially distributed over it, see [7]).

Theorem 2.1: For r ∈ R+, we have



(i) GEMST ⊂ GRN ⊂ GG ⊂ GD and GG∩disk(r) ⊂ GLD(r) ⊂
GD∩disk(r);

(ii) Gdisk(r) is connected iff GEMST ⊂ Gdisk(r);
(iii) GRN ∩disk(r), GG ∩disk(r), and GLD(r) are spatially

distributed over Gdisk(r);
Fig. 2 shows some examples of proximity graphs in R

2.
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Fig. 2. From top left, in counterclockwise order, r-disk, inter-
section of Delaunay and r-disk, r-limited Delaunay, Euclidean
Minimum Spanning Tree, Gabriel and Relative Neighborhood
graphs in R

2 for 25 agents with coordinates uniformly randomly
generated within [−7, 7] × [−7, 7] and r = 4.

C. Spatially distributed maps

Here we provide a formally accurate notion of spatially
distributed maps. Let iF : (Rd)n → F(Rd) be the natural
immersion, i.e., iF(P ) is the point set that contains only the
distinct points in P ∈ (Rd)n. Note that iF is invariant under
permutations of its arguments.

Given a set Y and a proximity graph G, a map T :
(Rd)n → Y n is spatially distributed over G if there exist a
map T̃ : R

d × F(Rd) → Y , with the property that, for all
(p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,pj
(iF(p1, . . . , pn))) ,

where Tj denotes the jth component of T . In other
words, the jth component of a spatially distributed map
at (p1, . . . , pn) can be computed with only the knowl-
edge of the vertex pj and the neighboring vertices in
G(iF(p1, . . . , pn)).

III. ENCODING SENSING TASKS INTO AGGREGATE COST

FUNCTIONS

Here we define various locational optimization functions
that encode network sensing objectives and characterize
their smoothness properties. Cost functions of interest typi-
cally quantify an aggregate behavior of the entire network.

A. Aggregate cost functions for deployment

Loosely speaking, deployment consists of the following
problem: a network of mobile agents must deploy within
an environment of interest in order to achieve maximum

coverage of it. Let us formalize this idea. We start by
introducing some necessary notation. For ε ∈ R+, let
nB(p,ε)(q) denote the unit outward normal to B(p, ε) at
q ∈ ∂B(p, ε). Let Q ⊂ R

d be a simple convex polytope.
Given S ⊂ Q, let 1S denote the indicator function, 1S(q) =
1 if q ∈ S, and 1S(q) = 0 if q 6∈ S. In the remainder of
the paper, {Vi(P)}i∈{1,...,n} refers to the Voronoi partition
of the polytope Q generated by P ∈ F(Rd).

A density function φ : Q → R+ is a bounded function.
Given S ⊂ Q, let areaφ(S) =

∫

S
φ(q)dq. A performance

function f : R+ → R is a non-increasing and piecewise dif-
ferentiable function with finite jump discontinuities. Given
a density function φ and a performance function f , consider
the function H : Qn → R defined by

H(P ) =

∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq. (1)

Note that H is an aggregate cost function since it depends on
all the locations p1, . . . , pn. Roughly speaking, H provides
the expected value of the sensing performance provided by
the group of agents over any point in Q, where φ represents
a probability that some event take place over Q, and f
describes the sensing performance of the sensors. Because
of noise and loss of resolution, the sensing performance at
point q taken from the ith sensor at the position pi degrades
with the distance ‖q − pi‖. Therefore, it will be of interest
to find local maxima for H.

Different choices of performance function give rise to
different aggregate cost functions with particular features.

Distortion problem: If f(x) = −x2 (differentiable with
no jump discontinuities), H takes the form

HC(P ) = −
n

∑

i=1

∫

Vi(P )

‖q − pi‖
2φ(q)dq , −

n
∑

i=1

JVi,pi
,

where JW,p denotes the polar moment of inertia of the
set W ⊂ Q about the point p. In signal compression,
see [22], −HC is referred to as the distortion function,
and is relevant in many disciplines including facility
location, numerical integration, and clustering analysis.

Area problem: If f is the indicator function of the set
[0, R], then H corresponds to the area, measured
according to φ, covered by the union of the n balls
B(p1, R), . . . , B(pn, R); that is,

Harea(P ) = areaφ(∪n
i=1B(pi, R)) .

Mixed distortion-area problem: If f is given by x 7→
−x2 1[0,R)(x) + b · 1[R,+∞)(x), for b ≤ −R2, then
H takes the form

HR(P ) = −
n

∑

i=1

JVi∩B(pi,R),pi

+ b areaφ(Q \ ∪n
i=1B(pi, R)) .

B. Aggregate cost function for visibility-based deployment

Let Q be a simple non-convex polytope in R
d. Given

p ∈ Q, let S(p) = {q ∈ Q | [q, p] ⊂ Q} denote the visible



region in Q from the location p (recall that [q, p] is the
closed segment from q to p). Define

Hvis(P ) =

∫

Q

max
i∈{1,...,n}

1S(pi)(q)dq.

Roughly speaking, the function H measures the amount of
area of the non-convex polygon Q which is visible from
any of the agents located at p1, . . . , pn. Therefore, it will
be of interest to find local maxima of Hvis.

C. Aggregate cost functions for consensus

Let us here briefly consider a setup based on a fixed graph
instead of a proximity graph. Let G = ({1, . . . , n}, E) be an
undirected graph with n vertices. Following [13], define the
disagreement function or Laplacian potential ΦG : R

n →
R+ associated with G as

ΦG(x) = xT Lx =
1

2

∑

(i,j)∈E

(xj − xi)
2 .

For i ∈ {1, . . . , n}, the variable xi is associated with the
agent pi. The variable xi might represent physical quantities
including attitude, position, temperature, or voltage. Two
agents pi and pj are said to agree if and only if xi = xj .
It is clear that ΦG(x) = 0 if and only if all neighboring
nodes in the graph G agree. If, in addition, the graph G is
connected, then all nodes in the graph agree and a consensus
is reached. Therefore, ΦG(x) is a meaningful function that
quantifies the group disagreement in a network.

Note that achieving consensus is a network coordination
problem that does not necessarily refer to physical variables
such as spatial coordinates or velocities. In what follows we
consider two “spatial versions” of consensus, that we refer
to as rendezvous and cohesiveness.

D. Aggregate cost function for rendezvous

Roughly speaking, rendezvous means agreement over
the location of the agents in a network. With a slight
abuse of notation, we introduce the convex hull function
co : (Rd)n → 2(Rd) as co(P ) = co(iF(P )), where we
represent a polytope in R

d by its vertex set. The diameter
function diam : 2(Rd) → R+ ∪ {+∞} is defined by

diam(S) = sup{‖p − q‖ | p, q ∈ S}.

Consider now the function Vdiam = diam ◦ co : (Rd)n →
R+, defined by

Vdiam(P ) = diam(co(P ))

= max{‖pi − pj‖ | i, j ∈ {1, . . . , n}}.

Let diag((Rd)n) = {(p, . . . , p) ∈ (Rd)n | p ∈ R
d}.

One can show that Vdiam = diam ◦ co : (Rd)n → R+ is
locally Lipschitz and invariant under permutations of its
arguments, and, moreover, Vdiam(P ) = 0 if and only if
P ∈ diag((Rd)n). Therefore, the set of global minima of
Vdiam corresponds to the network configurations where the
agents rendezvous.

E. Aggregate cost functions for cohesiveness

Let h : R+ → R be a continuously differentiable function
satisfying the following conditions: (i) limR→0 h(x) =
+∞, (ii) there exists R0 ∈ R+ such that h is convex
on (0, R0) achieving its minimum at all the points in the
interval [R∗, R

′
∗] ⊂ (0, R0) and h is concave on (R0,+∞),

and (iii) there exists R1 ∈ R+, R1 ≥ R0 such that h(R) = c
for all R ≥ R1. Let G be a some proximity graph. Define
now the aggregate cost function

Hcohe,G(P ) =
∑

(pi,pj)∈EG(P )

h(‖pi − pj‖) .

The minima of Hcohe,G correspond to “cohesive” network
configurations. Specifically, for n ∈ {2, 3}, configurations
of minimum for Hcohe,G have all neighboring agents’ loca-
tions within a distance contained in the interval [R∗, R

′
∗].

This objective function, or variations of it, has been em-
ployed over different proximity graphs in a number of works
in the literature ([5] and [6] over the complete graph, [23]
over the r-disk graph) to guarantee collision avoidance and
cohesiveness of the network.

IV. LASALLE INVARIANCE PRINCIPLE FOR

NON-DETERMINISTIC DISCRETE-TIME SYSTEMS

In recent years, various techniques have been proved
useful in the analysis of coordination problems and in
establishing correctness guarantees of motion coordination
algorithms. Correctness should be loosely understood as the
property that consists of making certain sets that encode the
desired behaviors of the network invariant and attractive for
the evolution of the group of agents under a given algorithm.
Among the proposed methods, we distinguish between lin-
ear techniques (ergodic and circulant matrices from matrix
analysis, graph Laplacians from algebraic graph theory) and
nonlinear techniques (symmetries of differential equations,
LaSalle Invariance Principles for differential inclusions and
for discrete-time non-deterministic dynamical systems).

In the interest of brevity, here we just present one of these
tools, a recently-developed version of the LaSalle Invariance
Principle. We first review some concepts on the stability
of discrete-time dynamical systems and set-valued maps
following [24], [7]. For d ∈ N, an algorithm on R

d is a
set-valued map T : R

d → 2(Rd) such that T (p) 6= ∅ for all
p ∈ R

d. Note that a map from R
d to R

d can be interpreted
as a singleton-valued map. A trajectory of an algorithm T
is a sequence {pm}m∈N∪{0} ⊂ R

d with the property that

pm+1 ∈ T (pm) , m ∈ N ∪ {0} .

In other words, given any initial p0 ∈ R
d, a trajectory of

T is computed by recursively setting pm+1 equal to an
arbitrary element in T (pm). An algorithm is therefore a
non-deterministic discrete-time dynamical system.

An algorithm T is closed at p ∈ R
d if for all pairs of

convergent sequences pk → p and p′k → p′ such that p′k ∈
T (pk), one has p′ ∈ T (p). An algorithm is closed on W ⊂
R

d if it is closed at p, for all p ∈ W . In particular, every
continuous map T : R

d → R
d is closed on R

d. A set



C is weakly positively invariant with respect to T if, for
any p0 ∈ C, there exists p ∈ T (p0) such that p ∈ C.
The function V : R

d → R is non-increasing along T on
W ⊂ R

d if V (p′) ≤ V (p) for all p ∈ W and p′ ∈ T (p).
We are ready to state the following result.

Theorem 4.1: (LaSalle Invariance Principle for closed
algorithms [7]) Let T be a closed algorithm on W ⊂
R

d and let V : R
d → R be a continuous function

non-increasing along T on W . Assume the trajectory
{pm}m∈N∪{0} of T takes values in W and is bounded. Then
there exists c ∈ R such that

pm −→ M ∩ V −1(c) ,

where M is the largest weakly positively invariant set
contained in

{p ∈ W | ∃p′ ∈ T (p) such that V (p′) = V (p)}.

V. TOWARD A SYSTEMATIC METHODOLOGY FOR THE

DESIGN OF MOTION COORDINATION ALGORITHMS

In this section, we elaborate on the role played by the
tools introduced in the previous sections. Throughout the
discussion we do not enter into technical details, but rather
refer to various works for further reference. Our intention is
to provide a first step toward the establishment of a rigorous
systems theoretic approach to the design and analysis of
coordination algorithms for a variety of sensing tasks.

We start by informally describing the notion of coordina-
tion algorithm. Roughly speaking, a coordination algorithm
consists of a control law for each agent of the network.
In particular, we mainly focus on coordination algorithms
which specify the same control law for all agents. Math-
ematically, a coordination algorithm will be described in
different forms, depending on whether it is implemented
in continuous time (a vector field, or more generally, a
differential inclusion over the configuration space of the
network) or in discrete time (a map, or more generally, a
set-valued map over the configuration space of the network).

Given a network of identical agents equipped with mo-
tion control, communication and sensing capabilities, the
following subsections contain various approaches to the
study of distributed motion coordination. Loosely speaking,
a first approach is based on the design of gradient flows:
here we typically are given a sensing task to be performed
by the network and a proximity graph as communication
constraint. A second approach is based on the analysis of
emerging behaviors: in this case a notion of neighboring
agents and an interaction law between them is usually given.
The remaining two approaches build on these two.

A. Designing the coordination algorithm from the aggre-
gate cost function

The first step of this approach is to identify the aggregate
cost function which is relevant for the desired sensing task.
Once this objective function is determined, one analyzes its
differentiable properties and computes its (generalized) gra-
dient. With this information, it is possible to characterize its
critical points, i.e., the desired network configurations. The

next step is to identify those proximity graphs with respect
to which the gradient of the objective function is spatially
distributed (cf. Section II-C). If any of these proximity
graphs is computable with the capabilities of the mobile
network, then a control law for each agent simply consists
of following the gradient of the aggregate cost function. By
LaSalle Invariance Principle, such a coordination algorithm
is automatically guaranteed to ensure convergence of the
closed-loop network trajectories to the set of critical points.

Example 5.1: (Distortion and area problems): The co-
ordination algorithms proposed in [7] for the distortion
problem and in [7] for the area problem are examples
of this approach. For Q a simple convex polygon in R

2,
one can prove that the functions HC and Harea are locally
Lipschitz on Qn and differentiable on Qn \{(p1, . . . , pn) ∈
(R2)n | pi = pj for some i, j ∈ {1, . . . , n}, i 6= j}, with

∂HC

∂pi

(P ) = 2MVi(P )(CMVi(P ) −pi) , (2a)

∂Harea

∂pi

(P ) =

Mi(R)
∑

k=1

∫

arci,k(R)

nB(pi,R) φ , (2b)

where arci,1(R), . . . , arci,Mi(R)(R) correspond to the arcs
in ∂(Vi(iF(P )) ∩ B(pi, R)), for each i ∈ {1, . . . , n}. Here
MW and CMW denote, respectively, the mass and the
center of mass with respect to φ of W ⊂ Q. The critical
points P ∈ Qn of HC satisfy pi = CMVi(P ) for all
i ∈ {1, . . . , n}. Such configurations are called centroidal
Voronoi configurations, see [22].

From equation (2a) it is clear that the gradient of HC

is spatially distributed over GD, whereas from equation (2b)
one deduces that the gradient of Harea is spatially distributed
over GLD(2R). The gradient flows of HC and of Harea cor-
respond to the coordination algorithms “move-toward-the-
centroid of own Voronoi cell” and “move in the direction
of the (weighted) normal to the boundary of own cell,”
respectively. Figs. 3 and 4 show an example of the execution
of these algorithms. �

Fig. 3. Distortion problem: 16 mobile agents in a convex polygon
following the gradient of HC (cf. equation (2a)). The density function φ
(represented by means of its contour plot) is the sum of five Gaussian
functions. The left (respectively, right) figure illustrates the initial (respec-
tively, final) locations and Voronoi partition. The central figure illustrates
the gradient descent flow.

Example 5.2: (Consensus): The asymptotic agreement
algorithm proposed in [13] to solve the consensus problem
is another example of this approach. For a fixed undirected
graph G = ({1, . . . , n}, E), the function ΦG is smooth, and
its partial derivative takes the form

∂ΦG

∂x
= Lx . (3)



Fig. 4. Area problem: 16 mobile agents in a convex polygon following
the gradient of Harea (cf. equation (2b)). The density function φ and the
environment are the same as in Fig. 3. Each agent operates with a finite
sensing/communication radius equal to r = .45. For each agent i, the
intersection Vi ∩ B(pi,

r

2
) is plotted in light gray.

Clearly, this gradient is spatially distributed with respect
to the graph G itself. The implementation of the gradient
control law leads to the algorithm ẋi =

∑

(i,j)∈E(xj −xi),
i ∈ {1, . . . , n} which asymptotically achieves average-
consensus, i.e., the final value upon which all agents agree
can be proved to be equal to 1

n

∑n

i=1 xi(0). It is also pos-
sible to consider algorithms that take into account different
weights at each of the edges of the graph G. �

Example 5.3: (Cohesiveness): Another example of this
approach are the various coordination algorithms proposed
in the literature to achieve cohesiveness [5], [6], [23].
For the complete graph Gcomplete, the function Hcohe,Gcomplete

is smooth on Qn \ {(p1, . . . , pn) ∈ (R2)n | pi =
pj for some i, j ∈ {1, . . . , n}, i 6= j}, with

∂Hcohe,Gcomplete

∂pi

(P ) =

n
∑

j 6=i

∂

∂pi

(

h(‖pi − pj‖)
)

=
∑

pj∈NGdisk(R1),pi

∂

∂pi

(

h(‖pi − pj‖)
)

,

where we used the fact that 0 = ∂h/∂R for R ≥ R1.
According to the notions introduced in Section II, this
gradient is spatially distributed over Gdisk(R1). The gradient
descent control law for each agent guarantees that the
network agents will asymptotically approach the set of
critical points of Hcohe,Gcomplete . �

Not always does the aggregate cost function enjoy the
desirable property that its gradient is spatially distributed
with respect to the required proximity graph. In other words,
given an available information flow, not always the appro-
priate gradient flow can be computed. If this is the case,
then one possible approach is the following: (i) consider
constant-factor approximations of the cost function, (ii)
identify those approximations whose gradient is spatially
distributed with respect to an appropriate proximity graph,
and (iii) implement as coordination algorithm that each
agent follows the gradient of the approximation.

Example 5.4: (Mixed distortion-area problem): The co-
ordination algorithm proposed in [7] for the distortion
problem falls into the situation described in the previous
paragraph. Since the gradient of HC is spatially distributed
over GD (cf. (2a)), and this graph is not spatially distributed
over the r-disk graph, the coordination algorithm “move-
toward-the-centroid of own Voronoi cell” is not imple-
mentable over a network with limited-range interactions.

Instead, one can try to compute constant-factor approxi-
mations of HC. Indeed, for r ∈ R+, one has that (i) for
β = r2/(2 diam Q)2,

H r
2
(P ) ≤ HC(P ) ≤ β H r

2
(P ) < 0 , (4)

and (ii) the partial derivative of H r
2

with respect to the
position of the ith agent is

∂H r
2

∂pi

(P ) = 2MVi(P )∩B(pi,
r
2 )(CMVi(P )∩B(pi,

r
2 ) −pi)

−
(( r

2

)2
+ b

)

Mi(
r
2 )

∑

k=1

∫

arci,k( r
2 )

nB(pi,
r
2 ) φ ,

where arci,1(
r
2 ), . . . , arci,Mi(

r
2 )(

r
2 ) correspond to the arcs

in ∂(Vi(iF(P )) ∩ B(pi,
r
2 )). Clearly, the gradient of H r

2

is spatially distributed over GLD(r), and therefore, the
coordination algorithm based on the corresponding gradient
control law is implementable over a network with limited
range interactions. Fig. 5 illustrates the execution of this
algorithm. �

Fig. 5. Mixed distortion-area problem: 16 mobile agents in a convex
polygon following the gradient of H r

2
. The density function φ and the

environment are the same as in Fig. 3. Each agent operates with a finite
radius r = .45. From the constant-factor approximation (4), the absolute
error is less than or equal to (β − 1)H r

2
(Pfinal) ≈ 6.77, where Pfinal

denotes the final configuration of this execution. The percentage error in the
value of the HC at Pfinal with respect to the value at the final configuration
of the execution in Fig. 3 is approximately equal to 30%.

B. Analyzing the coordinated behavior emerging from basic
interaction laws

This approach consists of devising a simple control law,
typically inspired by some sort of heuristic or behavior,
that implemented over each agent of the network would
reasonably perform the desired sensing task. Once this
is done, one should (i) check that the resulting coordi-
nation algorithm is spatially distributed with regards to
some appropriate proximity graph and (ii) characterize its
asymptotic convergence properties. One way of doing the
latter is by finding an aggregate cost function that encodes
the desired sensing task and by showing that it is optimized
along the execution of the coordination algorithm.

Example 5.5: (Move-away-from-closest-neighbor): Con-
sider the coordination algorithm studied in [16] where each
network agent moves away from its closest neighbor (see
Fig. 6). This simple interaction law is spatially distributed
over GD. One can prove that along the evolution of the
network, the aggregate cost function

HSP(P ) = min
i6=j∈{1,...,n}

{

1
2‖pi − pj‖,dist(pi, ∂Q)

}

, (5)



is monotonically non-decreasing. This function corresponds
to the non-interference problem, where the network tries
to maximize the coverage of the domain in such a way
that the various sensing radius of the agents do not overlap
or leave the environment (because of interference). Under
appropriate technical conditions, one can show that the
critical points of HSP are incenter Voronoi configurations.
�

Fig. 6. Non-interference problem: “move-away-from-closest-neighbor”
algorithm for 16 mobile agents in a convex polygon. The left (respectively,
right) figure illustrates the initial (respectively, final) locations and Voronoi
partition. The central figure illustrates the network evolution. For each
agent i, the ball of maximum radius contained in Vi and centered at pi is
plotted in light gray.

Example 5.6: (Flocking): Consider the coordination al-
gorithm analyzed in [3] for the flocking problem. Roughly
speaking, flocking consists of agreeing over the direction of
motion by the agents in the network. Let G be a proximity
graph. Now, consider the coordination algorithm where each
agent performs the following steps: (i) detects its neighbors’
(according to G) heading; (ii) computes the average of its
neighbors’ heading and its own heading, and (iii) updates
its heading to the computed average. Clearly, this algorithm
is spatially distributed over G. Moreover, assuming that G
remains connected throughout the evolution, one can show
that the agents asymptotically acquire the same heading.
The method of proof for this result builds on the properties
of ergodic and non-negative matrices from linear algebra
and the properties of graph Laplacians from algebraic graph
theory. It is also worth mentioning that, for the r-disk graph
Gdisk, one can establish [3] that there does not exist in gen-
eral a quadratic Lyapunov function that helps characterize
the asymptotic stability properties of the algorithm. �

C. Designing the coordination algorithm from local objec-
tive functions

This approach has common elements with the two ap-
proaches presented previously. Now, in order to derive a
control law for each specific agent, one assumes that the
neighboring agents of that agent, or some spatial structure
attributed to it, remain fixed. One then defines a local
objective function, which is somehow related with the
global aggregate cost function encoding the desired sensing
task, and devises a control law to optimize it. The specific
control strategy might be heuristically derived or arise nat-
urally from the gradient information of the local objective
function. Once the coordination algorithm is setup, one
should check that it is spatially distributed, and characterize
its asymptotic convergence properties.

Example 5.7: (Non-interference problem): Consider the
aggregate cost function HSP defined in equation (5). Con-

sider the alternative expression,

HSP(P ) = min
i∈{1,...,n}

smVi(P )(pi) ,

where smW (p) is the distance from p to the boundary of
the convex polygon W , i.e., smW (p) , dist(p, ∂W ). Now,
for i ∈ {1, . . . , n}, consider smVi(P ) as a local objective
function. Assuming that the Voronoi cell Vi(P ) remains
fixed, then one can implement the (generalized) gradient
ascent of smVi(P ) as the control law for the agent pi. One
can show [16] that this interaction law precisely corre-
sponds to the strategy “move-away-from-closest-neighbor”
discussed in Example 5.5. A related strategy consists of
each agent moving toward the incenter of its own Voronoi
cell, which can be shown to also make HSP monotonically
non-decreasing and enjoy analogous asymptotic conver-
gence properties (see Fig. 7). �

Fig. 7. Non-interference scenario: “move-toward-the-incenter” algorithm
for 16 mobile agents in the same convex polygon as in Fig. 6.

Example 5.8: (Rendezvous): Let G be a proximity graph.
Consider the Circumcenter Algorithm over G, where each
agent performs the following steps: (i) detects its neighbors
according to G; (ii) computes the circumcenter of the point
set comprised of its neighbors and of itself, and (iii) moves
toward this circumcenter while maintaining connectivity
with its neighbors. In order to maintain connectivity, the
allowable motion of each agent is conveniently restricted
(see [8], [9], [11] for further details).

Note that with step (ii), assuming that all other agents
remain fixed, each agent minimizes the local objective
function given by the maximum distance from the agent
to all its neighbors in the proximity graph G. By con-
struction, this coordination algorithm is spatially distributed
over the proximity graph G. Moreover, one can prove
that the evolution of the aggregate cost function Vdiam

is monotonically non-increasing along the execution of
the Circumcenter Algorithm. Using the LaSalle Invariance
Principle for closed algorithms (cf. Theorem 4.1) presented
in Section IV, one can indeed characterize the asymptotic
correctness properties of the Circumcenter Algorithm over
G. See Fig. 8 for an illustration of its execution. A similar
algorithm, where the agents of the network, instead of
rendezvousing at a common position, rendezvous at the
direction of their velocity vectors would lead to a solution
of the flocking problem. �

D. Designing the coordination algorithm by composing
different behaviors

This approach builds on the other approaches presented
above. One approach to the composition of behaviors is
to implement one coordination algorithm on most of the
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Fig. 8. Evolution of the Circumcenter Algorithm over GG(r) ∩ Gdisk(r)
in R

3.

network agents and a second coordination algorithm on
the small subset of other agents. Coupling two algorithms
in this parallel fashion might result in interesting overall
network behaviors. For example, one may prescribe the
open-loop motion of some of the network agents (e.g.,
specifying that some particular agents must stay fixed, or
follow a desired path, no matter what the rest of agents will
do) and implement a feedback law for the others. Examples
of this approach include (1) the formation control strategy
in [9] to make the network form a straight line, and (2)
the leader-following algorithm proposed in [3] to make the
network flock in a pre-specified direction. It is also possible
to explore more general parallel, serial and hierarchical
approaches to the composition of behaviors.

VI. CONCLUSIONS

We have surveyed a set of recent tools (proximity graphs,
spatially distributed maps, aggregate cost functions, LaSalle
Invariance Principle for non-deterministic discrete-time sys-
tems) that we believe are important in the design and
analysis of motion coordination algorithms. We have also
identified various approaches to the design of coordination
algorithms and shown the wide applicability of the proposed
tools in these approaches. We hope that in the coming years
the set of control tools for motion coordination will continue
to expand and will lead to the design of other spatially
distributed primitives and the analysis of the algorithms’
performance and complexity.
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