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Abstract— This paper presents coordination algorithms for
groups of mobile agents performing deployment and coverage
tasks. As an important modeling constraint, we assume that
each mobile agent has a limited sensing or communication
radius. We focus on (1) a comprehensive smoothness analysis
of a class of locational optimization functions (including a gen-
eralized statement of the Conservation-of-Mass Law), and (2) a
discrete-time convergence result based on a recently-developed
generalized statement of LaSalle Invariance Principle. These
coordination algorithms have convergence guarantees and are
spatially distributed with respect to appropriate proximity
graphs. Numerical simulations illustrate the results.

I. INTRODUCTION

The current technological development of relatively inex-
pensive communication, computation, and sensing devices
has lead to an intense research activity devoted to the
distributed control and coordination of networked systems.
The potential advantages of networked robotic systems are
their versatility and robustness in the realization of multiple
tasks such as manipulation in hazardous environments, pol-
lution detection, estimation and map-building of unknown
environments. A fundamental problem in the distributed
coordination of mobile robots is that of providing stable
and decentralized control laws that are scalable with the
number of network agents. Indeed, there have been various
efforts to provide rigorous procedures with convergence
guarantees using a combination of potential energy shaping
methods, gyroscopic forces, and graph theory (see [1], [2],
[3], [4], [5], [6], [7] and references therein). In our previous
work [8], we studied distributed algorithms for deployment
and optimal coverage using tools from computational ge-
ometry, nonsmooth analysis and geometric optimization.

In devising coordination algorithms it is important to
progressively account for the various restrictions that real-
world systems impose. Building on [8], this paper devel-
ops spatially-distributed algorithms for coverage control
amenable to implementation on (more) realistic network
models; we do this by considering the following new
aspects. First, we enforce the communication or sensing
capacity of an agent to be restricted to a bounded region,
typically much smaller than the environment of interest.
We refer to these information exchanges between agents
as “limited-range interactions.” Second, we design discrete-
time gradient ascent control laws, motivated by the argu-
ment that discrete-time feedback algorithms are indeed the

ones truly amenable to implementation in a group of agents
exchanging information over a communication network. We
deal with these problems via a combination of tools from
graph theory, locational optimization, and systems theory.

The contributions of the paper are the following: First,
we formalize the concept of spatially-distributed algorithms
via the notion of proximity graphs. Second, we analyze
the smoothness properties of an important class of objec-
tive functions, called multi-center functions, common in
locational optimization, quantization theory, and geometric
optimization. Our analysis supersedes the results in [9],
[10], [11]. As an important outcome, we determine the
extent in which certain multi-center functions are spatially
distributed and with respect to which proximity graphs.
Finally, we design novel spatially-distributed discrete-time
control laws for groups of robots with the objective of
steering the location of a group of robots to local maxima
of the multi-center function. We formally analyze their
performance and illustrate their behavior in simulations.
In our analysis, we make use of useful extensions of the
Conservation-of-Mass Law and of the discrete-time LaSalle
Invariance Principle. These extensions are, to the best of our
knowledge, not present in classical texts on the subject.

One fundamental scientific problem in the study of coor-
dination algorithms is scalability with respect to communi-
cation complexity. It is important to design algorithms with
communication requirements that scale nicely with the num-
ber of network agents. However, it is impossible to quantify
the communication complexity of any algorithm without a
detailed communication model. Adopting a computational
geometric approach, this paper classifies the complexity
of coordination algorithms via the proximity graphs with
respect to which the algorithms are spatially distributed.
The underlying assumption is that low complexity proximity
graphs (e.g., graphs with a low number of edges) will re-
quire limited communication in a realistic implementation.

Throughout the paper we consider only extremely simple
models for the dynamics of each individual agent (the state
of each agent is a point in R

2 and its dynamical model is
an integrator). This feature is a natural consequence of our
focus on network-wide coordination aspects. We shall also
interchangeably refer to agent as location or point.

The organization of the paper is as follows. In Section II
we review various preliminary mathematical concepts and
we develop useful extensions of classical analysis results.
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In Section III we study the smoothness of the multi-center
function and show in what sense its gradient is spatially
distributed. In Section IV we design spatially-distributed
coverage algorithms in discrete time. The numerical out-
comes of the algorithms’ implementation are reported in
Section V. Finally, we discuss possible avenues of future
research in Section VI. We refer the interested reader to the
journal version of this paper [12] for a detailed discussion of
the computational geometric and algorithmic aspects of this
work, and the proofs of all statements in this manuscript.

II. PRELIMINARY DEVELOPMENTS

In this section we present a variety of preliminary con-
cepts. Proximity graphs from computational geometry will
allow us to introduce the notion of spatially-distributed
algorithms. We refer the reader to [13, Chapter 1] for an
exposition of standard graph-theoretical notions.

A. Voronoi partitions and proximity graphs

We start by reviewing the notion of Voronoi partition; we
refer the reader to [14], [10] for comprehensive treatments.
A covering of R

2 is a collection of subsets of R
2 whose

union is R
2; a partition of R

2 is a covering whose subsets
have disjoint interiors. Let P be a set of n distinct points
{p1, . . . , pn} in R

2. The Voronoi partition of R
2 generated

by P is the collection of sets {Vi(P)}i∈{1,...,n} defined by
Vi(P) =

{

q ∈ R
2 | ‖q − pi‖ ≤ ‖q − pj‖ , for all pj ∈ P

}

.
Here, ‖ · ‖ denotes the standard Euclidean norm. It is
customary to refer to Vi(P) as Vi.

Next, we present some relevant concepts on proximity
graph functions [15]. Let F(R2) be the collection of finite
point sets in R

2; an element of F(R2) is denoted by
P = {p1, . . . , pn} ⊂ R

2, where p1, . . . , pn are distinct. Let
G(R2) be the set of undirected graphs whose vertex set is an
element of F(R2). A proximity graph function G : F(R2) →
G(R2) associates to a point set P an undirected graph with
vertex set P and edge set EG(P), where EG : F(R2) →
F(R2 × R

2) is such that EG(P) ⊆ P × P \ diag(P × P)
for any P . Here, diag(P×P) = {(p, p) ∈ P × P | p ∈ P}.
In other words, the edge set of a proximity graph depends
on the location of its vertices. For p ∈ R

2 and r ∈ R+ =
[0,+∞), let Br(p) =

{

q ∈ R
2 | ‖q − p‖ ≤ r

}

. Consider
the following proximity graphs (see Figure 1):

(i) the Delaunay graph GD with (pi, pj) ∈ ED(P) if and
only if Vi(P)∩Vj(P) 6= ∅;

(ii) the r-disk graph Gdisk(r) with (pi, pj) ∈ Edisk(P, r) if
and only if ‖pi − pj‖ ≤ r;

(iii) the r-Delaunay graph Gdisk∩D(r) is the intersection of
Gdisk(r) and GD;

(iv) the r-limited Delaunay graph GLD(r) with (pi, pj) ∈
ELD(P, r) if and only if ∆ij(P, r) ,

(

Vi(P) ∩
B r

2
(pi)

)

∩
(

Vj(P) ∩ B r
2
(pj)

)

6= ∅.

Remark 2.1: Let P be a set of n distinct points
{p1, . . . , pn} ⊂ R

2, and r ∈ R+. The collection {Vi(P) ∩
B r

2
(pi)}i∈{1,...,n} is a partition of the set ∪iB r

2
(pi) ⊂ R

2.
The boundary of Vi(P) ∩ B r

2
(pi) is the union of a finite

number of segments and arcs; see Figure 2. Therefore, at
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Fig. 1. Delaunay, r-disk, r-Delaunay, and r-limited Delaunay graphs for
a random configuration of 16 generators with coordinates contained in the
rectangle [0, 1.9] × [0, .75]. The parameter r is taken equal to .45.

fixed P , there exist n numbers Mi(r) ≥ 0, i ∈ {1, . . . , n},
of distinct arcs arci,1(r), . . . , arci,Mi(r)(r) of radius r

2 in
∂(Vi(P) ∩ B r

2
(pi)) with the property that

∂
(

Vi(P) ∩ B r
2
(pi)

)

=
(

∪pj∈NGLD(r),pi
(P) ∆ij(r)

)

∪
(

∪l∈{1,...,Mi(r)} arci,l(r)
)

,

where NGLD(r),pi
(P) denotes the set of neighbors in

GLD(P, r) of the vertex pi.
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Fig. 2. The shaded regions are examples of sets Vi(P) ∩ B r
2
(pi). In

the figure on the right, ∂Vi(P) ∩ B r
2
(pi) does not contain any arc.

B. Spatially-distributed functions and set-valued maps

The notion of proximity graph is defined for sets of
distinct points P = {p1, . . . , pn}. However, we will often
consider tuples of elements of R

d of the form P =
(p1, . . . , pn), i.e., ordered sets of possibly coincident points.
Let iF : (Rd)n → F(Rd) be the natural immersion, i.e.,
P = iF(P ) is the point set that contains only the distinct
points in P . Note that iF is invariant under permutations of
its arguments and that the cardinality of iF(P ) is in general
less than or equal to n. More precisely, if

S = {P ∈ (R2)n | pi = pj for some i 6=j ∈ {1, . . . , n}},

then #P < n if P ∈ S and #P = n if P 6∈ S. The Voronoi
covering V(p1, . . . , pn) = {Vi(p1, . . . , pn)}i∈{1,...,n} gen-
erated by the tuple (p1, . . . , pn) is defined by assigning to
each point pi its corresponding Voronoi cell in the Voronoi
partition generated by P . Coincident points in the tuple
(p1, . . . , pn) have the same Voronoi cell.

We can now extend the notion of proximity graphs to
this setting. Given a proximity graph function G with edge
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set function EG , we define (with a slight abuse of notation)

G = G ◦ iF : (R2)n → G(R2),

EG = EG ◦ iF : (R2)n → F(R2 × R
2).

Moreover, the map NG : (R2)n → (F(R2))n is the
function whose jth component is NG,j(p1, . . . , pn) =
NG,pj

(iF(p1, . . . , pn)). Coincident points in the tuple
(p1, . . . , pn) have the same set of neighbors.

Given a set Y and a proximity graph function G, a map
T : (R2)n → Y n is spatially distributed over G if there
exist a map T̃ : R

2 × F(R2) → Y , with the property that,
for all (p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,j(p1, . . . , pn)) ,

where Tj denotes the jth-component of T . In other
words, the jth component of a spatially distributed map at
(p1, . . . , pn) can be computed with only the knowledge of
the vertex pj and the neighboring vertices in the undirected
graph G({p1, . . . , pn}). We are now in a position to state
an important property of the r-limited Delaunay graph.

Lemma 2.2: Let r ∈ R+. The set of neighbors map
NGLD(r) of GLD(r) is spatially distributed over Gdisk(r).
Loosely speaking, this result means that, to compute GLD,
each agent needs to know only the location of all the agents
in a disk of radius r. This property is to be contrasted with
the centralized computation required to determine Gdisk∩D.

C. Piecewise smooth sets and Conservation-of-Mass Law

A set S ⊂ R
2 is strictly star-shaped if there exists a

point p ∈ S such that for all s ∈ ∂S and all λ ∈ (0, 1],
one has λp + (1 − λ)s ∈ int(S). A curve C in R

2 is
the image of a map γ : [a, b] → R

2. The map γ is
a parameterization of C. A curve γ : [a, b] → R

2 is
simple if it is not self-intersecting, i.e., if γ is injective
on (a, b). A curve is closed if γ(a) = γ(b). A set Ω ⊂
R

2 is piecewise smooth if its boundary, ∂Ω, is a simple
closed curve that admits a continuous and piecewise smooth
parameterization γ : S

1 → R
2. Likewise, a collection of sets

{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

is a piecewise smooth family if
Ω(x) is piecewise smooth for all x ∈ (a, b), and there exists
γ : S

1 × (a, b) → R
2, (θ, x) 7→ γ(θ, x), differentiable with

respect to its second argument such that for each x ∈ (a, b),
the map θ 7→ γx(θ) = γ(θ, x) is a continuous and piecewise
smooth parameterization of ∂Ω(x). We refer to γ as a
parameterization for the family

{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

.
The following result is an extension of the integral form
of the Conservation-of-Mass Law in fluid mechanics [16].
Given a curve C parameterized by a piecewise smooth map
γ : [a, b] → C, recall that

∫

C
f =

∫ b

a
f(γ(t)) |γ̇(t)| dt

denotes the line integral over C of f : C ⊂ R
2 → R,

and is independent of the selected parameterization.
Proposition 2.3: Let {Ω(x) ⊂ Q |x ∈ (a, b)} be a

piecewise smooth family with Ω(x) strictly star-shaped for
all x ∈ (a, b). Let φ : Q × (a, b) → R be continuously
differentiable with respect to its second argument for all
x ∈ (a, b) and almost all q ∈ Ω(x), and such that for
each x ∈ (a, b), the maps q 7→ φ(q, x) and q 7→ ∂φ

∂x
(q, x)

are integrable on Ω(x). Then, the function (a, b) 3 x 7→
∫

Ω(x)
φ(q, x)dq is continuously differentiable and

d

dx

∫

Ω(x)

φ(q, x)dq =

∫

Ω(x)

∂φ

∂x
(q, x)dq+

∫

∂Ω(x)

nt ∂γ

∂x
φ(·, x) ,

where n : ∂Ω(x) → R
2, q 7→ n(q), is the unit outward

normal to ∂Ω(x) at q ∈ ∂Ω(x), and γ : S
1× (a, b) → R

2 is
a parameterization for the family

{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

.

D. Discrete-time LaSalle Invariance Principle

We review here some notions on discrete-time algo-
rithms [17]. An algorithm on S ⊂ R

N is a set-valued map
T : S → 2S\{∅}. A map from S to S is simply a singleton-
valued map. For any x0 ∈ S, T generates feasible sequences
as follows: given xn ∈ S, the map T yields T (xn) ⊂ S.
From this set, an arbitrary element xn+1 may be selected,

xn+1 ∈ T (xn) , n ∈ N ∪ {0} . (1)

An algorithm T is closed at x ∈ S if for all convergent
sequences xk → x, x′

k → x′ with x′
k ∈ T (xk), one has

x′ ∈ T (x). An algorithm is closed on W ⊂ S if it is closed
at x, for all x ∈ W . In particular, every continuous map
T : S → S is closed on S. A set C ⊂ S is weakly positively
invariant with respect to T if for any x0 ∈ C there exists
x ∈ T (x0) such that x ∈ C. The function U : S → R

is non-increasing along T on W if U(x′) ≤ U(x) for all
x′ ∈ T (x) and all x ∈ W .

Theorem 2.4 (Discrete-time LaSalle Invariance Principle):
Let T be a closed algorithm on W ⊂ R

N and let U be
a continuous non-increasing function along T on W . Let
x0 ∈ W and assume the sequence {xn | n ∈ N ∪ {0}}
defined via xn+1 ∈ T (xn) belongs to W and is bounded.
Then there exists c ∈ R such that

xn −→ M ∩ U−1(c) ,

where M is the largest weakly positively invariant set con-
tained in

{

x ∈ W | ∃y ∈ T (x) such that U(y) = U(x)
}

.

III. LIMITED-RANGE LOCATIONAL OPTIMIZATION

Let Q be a simple convex polygon in R
2 including its

interior. Let diam(Q) = maxq,p∈Q ‖q − p‖. For δ < ε ∈
R+, let D[δ,ε](p) =

{

q ∈ R
2 | δ ≤ ‖q − p‖ ≤ ε

}

denote the
annulus in R

2 centered at p of radius δ and ε; we also
define D[0,ε](p) = Bε(p) =

{

q ∈ R
2 | ‖q − p‖ ≤ ε

}

and
D[δ,+∞)(p) =

{

q ∈ R
2 | δ ≤ ‖q − p‖

}

. Let nBε(p)(q) de-
note the unit outward normal to Bε(p) at q ∈ ∂Bε(p). Given
S ⊂ Q, let 1S denote the indicator function, 1S(q) = 1 if
q ∈ S, and 1S(q) = 0 if q 6∈ S. Throughout the paper, given
a point set P = {p1, . . . , pn}, we consider the restriction of
the Voronoi partition V(P) generated by P to the polygon
Q, {Vi(P)∩Q}i∈{1,...,n}. For ease of exposition, we denote
this restriction in the same way as the standard Voronoi
partition. Given a tuple P = (p1, . . . , pn) ∈ Qn, recall
that P = iF(P ) denotes the associated point set that only
contains the corresponding distinct points.

A density function φ : Q → R+ is a bounded function
on Q. Given a set S ⊂ Q, let areaφ(S) =

∫

S
φ(q)dq. A
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performance function f : R+ → R is a non-increasing and
piecewise differentiable function with finite jump disconti-
nuities at R1, . . . , Rm ∈ R+, with R1 < · · · < Rm. For
convenience, we set R0 = 0 and Rm+1 = +∞, and write

f(x) =

m+1
∑

α=1

fα(x) 1[Rα−1,Rα)(x) ,

where fα : [Rα−1, Rα] → R, α ∈ {1, . . . ,m + 1} are
non-increasing and differentiable with fα(Rα) > fα+1(Rα)
for α ∈ {1, . . . ,m}. Given a density function φ and
a performance function f , we consider the multi-center
function H : Qn → R defined by

H(P ) =

∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq. (2)

Note that H is an aggregate objective function since it
depends on all the locations p1, . . . , pn. It will be of interest
to find local maxima for H.

Remark 3.1: In the optimal placement problem of large
numbers of spatially-distributed sensors, (1) H provides the
expected value of the sensing performance provided by the
group of sensors over any point in the environment Q,
where (2) φ is the distribution density function representing
a measure of information or probability that some event take
place over Q, and (3) f describes the sensing performance
of the sensors. Because of noise and loss of resolution, the
sensing performance at point q taken from the ith sensor at
the position pi degrades with the distance ‖q − pi‖. •

Theorem 3.2: Given a density function φ and a perfor-
mance function f , the multi-center function H is globally
Lipschitz on Qn, and continuously differentiable on Qn\S,
where for each i ∈ {1, . . . , n}

∂H

∂pi

(P )=

∫

Vi(P )

∂

∂pi

f(‖q − pi‖)φ(q)dq +

m
∑

α=1

(fα(Rα)−

fα+1(Rα)) ·
(

Mi(2Rα)
∑

k=1

∫

arci,k(2Rα)

nBRα (pi)(q)φ(q)dq
)

, (3)

with arci,k(2Rα), k ∈ {1, . . . ,Mi(2Rα)} the arcs in the
boundary of Vi(P )∩BRα

(pi).
This result is a consequence of Proposition 2.3; we refer the
interested reader to [12] for a detailed proof. For particular
choices of performance function, the corresponding multi-
center function and its gradient have different features.

a) Centroid problem: If f is piecewise differentiable
with no jump discontinuities, then

∂H

∂pi

(P ) =

∫

Vi(P )

∂

∂pi

f(‖q − pi‖)φ(q)dq .

This is the result known in the locational optimization
literature [10], [9]. For f(x) = −x2, H reads

H(P ) = −
n

∑

i=1

∫

Vi(P )

‖q − pi‖
2φ(q)dq , −

n
∑

i=1

JVi,pi
,

where JW,p denotes the polar moment of inertia of the set
W ⊂ Q about the point p. In addition, the gradient of H is

∂H

∂pi

(P )=2

∫

Vi(P )

(q − pi)φ(q)dq=2MVi(P )(CMVi(P ) −pi).

Here MW and CMW denote, respectively, the mass and the
center of mass with respect to φ of W ⊂ Q. The critical
points of H are P ∈ Qn with pi = CMVi(P ) for all i ∈
{1, . . . , n}, i.e. centroidal Voronoi configurations, cf. [9].

b) Area problem: If f(x) = 1[0,R](x), then H corre-
sponds to the area, measured according to φ, covered by
the union of the n balls BR(p1), . . . , BR(pn), that is,

H(P ) = areaφ(∪n
i=1BR(pi)) .

In this case, the first term in equation (3) vanishes and then

∂H

∂pi

(P ) =

Mi(2R)
∑

k=1

∫

arci,k(2R)

nBR(pi) φ .

Given P ∈ Qn, if the ith agent is surrounded by neighbors
in the graph GLD(2R) in such a way that Mi(2R) = 0, then
the H does not depend on pi. This situation is depicted in
Figure 2 (see the example on the right) and captures the
fact that the total area covered by the agents is not affected
by an infinitesimal displacement of the ith agent.

c) Mixed centroid-area problem: If f is given by x 7→
f(x) = −x2 1[0,R)(x) + b · 1[R,+∞)(x), for b ≤ −R2, the
multi-center function takes the form

H(P ) =−
n

∑

i=1

JVi(P )∩BR(pi),pi
+ b areaφ(Q \ ∪n

i=1BR(pi)) ,

and its partial derivative with respect pi is

∂H

∂pi

(P ) = 2MVi(P )∩BR(pi)(CMVi(P )∩BR(pi) −pi)

− (R2 + b)

Mi(2R)
∑

k=1

∫

arci,k(2R)

nBR(pi) φ .

In the particular case when b = −R2, the function f is
continuous and therefore the gradient of H takes the form

∂H

∂pi

(P ) = 2MVi(P )∩BR(pi)(CMVi(P )∩BR(pi) −pi) .

In this case, the critical points of H are P ∈ Qn such
that pi = CMVi(P )∩BR(pi) for all i ∈ {1, . . . , n}. We
refer to them as R-centroidal Voronoi configurations. For
R ≥ diam(Q), they coincide with the standard centroidal
Voronoi configurations over Q.

Corollary 3.3: Let φ and f be a density and a perfor-
mance function, respectively. The gradient of H with re-
spect to the agents’ location P ∈ Qn is spatially distributed
over GD. Furthermore, if f(x) = b for all x ≥ R, then
the gradient of H with respect to the agents’ location is
spatially distributed over GLD(2R).

IV. DESIGN OF SPATIALLY-DISTRIBUTED ALGORITHMS

FOR COVERAGE CONTROL

Here, we design discrete-time implementations of the
gradient ascent for a general aggregate objective function H.
We start by extending the definition of H to consider general
partitions W of Q. Let P ∈ Qn and let W = {Wi ⊂ Q}n

i=1
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be a partition of Q such that Wi is a convex polygon and
pi ∈ Wi, for i ∈ {1, . . . , n}. Define

He(P,W) =

n
∑

i=1

∫

Wi

f(‖q − pi‖)φ(q)dq .

The function He is differentiable with respect to its first
variable on the whole Qn. Note that, if H1(p,W ) =
∫

W
f(‖q − p‖)φ(q)dq, then we can also write

He(P,W) =

n
∑

i=1

H1(pi,Wi) .

The following two equalities hold

H(P ) = He(P,V(P )) , for all P ∈ Qn , (4)
∂He

∂pi

(P,V(P )) =
∂H

∂pi

(P ) , for all P ∈ Qn \ S . (5)

Let P ∈ S and consider a partition W = {Wi ⊂ Q}n
i=1

of Q such that Wi is a convex polygon and pi ∈ Wi, for
i ∈ {1, . . . , n}. Let i0, j0 ∈ {1, . . . , n}, i0 6= j0 such that
pi0 = pj0 . Then, Vi0(P ) = Vj0(P ), and V(P ) is no longer
a partition of Q, but a covering. Nevertheless, one could
consider the line determined by the edge Wi0 ∩ Wj0 and
the associated hyperplanes Hi0,Wi0

∩Wj0
and Hj0,Wi0

∩Wj0

such that Wi0 ⊂ Hi0,Wi0
∩Wj0

and Wj0 ⊂ Hj0,Wi0
∩Wj0

.
With a slight abuse of notation, redefining

Vi0(P ) = Vi0(P ) ∩ Hi0,Wi0
∩Wj0

,

Vj0(P ) = Vj0(P ) ∩ Hj0,Wi0
∩Wj0

,

the collection V(P ) can be seen a partition of Q. This
procedure can be extended if there are more than two
coincident agents {i1, . . . , is} at a point p ∈ Q by defining

Viµ
(P ) = Viµ

(P )∩
(

∩ν∈{1,...,s}\{µ} Hiµ,Wiµ∩Wiν

)

,

for µ ∈ {1, . . . , s}. In the following, such a construction
will be tacitly performed for P ∈ S and a partition W of Q.
One can show (cf. [12]) that the Voronoi partition is optimal
within the set of partitions of Q, that is, He(P,W) ≤
He(P,V(P )) for all P ∈ Qn. Moreover, the inequality is
strict if f is strictly decreasing and the partitions V(P ) and
W differ by a set of non-zero measure.

We are now ready to characterize a class of algorithms
with guaranteed convergence to the set of critical points of
the aggregate objective function H.

Proposition 4.1 (Discrete-time ascent): Let T : Qn →
2Qn

be a closed algorithm on Qn \ S such that:
(a) for all P ∈ Qn, T (P ) ∩ S = ∅;
(b) for all P ∈ Qn \ S, P ′ ∈ T (P ) and i ∈ {1, . . . , n},

H1(p
′
i, Vi(P )) ≥ H1(pi, Vi(P ));

(c) for all P ∈ S and P ′ ∈ T (P ), H(P ′) > H(P );
(d) if P ∈ Qn \ S is not a critical point of H, then for

all P ′ ∈ T (P ), there exists j ∈ {1, . . . , n} such that
H1(p

′
j , Vj(P )) > H1(pj , Vj(P )).

Let P0 ∈ Qn denote the initial agents’ location. Then,
any sequence {Pn | n ∈ N ∪ {0}} generated according to
equation (1) converges to the set of critical points of H.

This result is a consequence of Theorem 2.4; we refer
the interested reader to [12] for a detailed proof. In what

follows, we devise a general algorithm T : Qn → 2Qn

verifying properties (a)-(d) in Proposition 4.1. One can show
that if p0 ∈ ∂W , then ∂H1(·,W )

∂p
(p0) 6= 0 points toward the

interior of W . If p0 ∈ int(W ) is not a critical point, then
one also has that ∂H1(·,W )

∂p
(p0) 6= 0. For both cases, there

exists ε = ε(p0,W ) > 0 such that the point pδ defined by

pδ = p0 + δ
∂H1(·,W )

∂p
(p0) ∈ W

has the property that H1(pδ) > H1(p0), for all δ ∈ (0, ε),
and H1(pε) = H1(p0). As it is usually done in nonlinear
programming [17], the computation of the step-size ε can
be implemented numerically via a “line search”. With this
discussion in mind, let us define the line search algorithm
Tls : Qn → 2Qn

as follows:

Given P ∈ Qn, let P ′ ∈ Tls(P ) if, for i ∈
{1, . . . , n} with the property that pi 6= pj , j ∈
{1, . . . , n} \ {i},

p′i = pi + δ
∂H1(·, Vi(P ))

∂p
(pi) , (6)

with δ ∈
[

ε(pi,Vi(P ))
3 , ε(pi,Vi(P ))

2

]

, and, for each

set {i1, . . . , is} of coincident indexes at p ∈ Q,

p′iµ
= piµ

+ δ
∂H1(·, Yiµ

)

∂p
(piµ

) , (7)

with δ ∈
[

ε(pi,Yi)
3 , ε(pi,Yi)

2

]

, where {Yi1 , . . . , Yis
}

is a partition of Vi1(P ) = · · · = Vis
(P ) verifying

p ∈ Yiµ
, for µ ∈ {1, . . . , s}.

Proposition 4.2: The algorithm Tls : Qn → 2Qn

defined
by equations (6)-(7) is closed on Qn \ S, and verifies
properties (a)-(d) in Proposition 4.1.

Corollary 4.3: Consider the algorithm Tls : Qn → 2Qn

defined by equations (6)-(7). Then

(i) For a general performance function f , the algorithm
Tls is spatially distributed over GD. If, in addition,
f(x) = b for all x ≥ R, then Tls is spatially
distributed over GLD(2R);

(ii) The sequence of agents’ locations generated by Tls

according to equation (1) starting at P0 ∈ Qn,
converges asymptotically to the set of critical points
of the aggregate objective function H.

Remark 4.4: In a practical setting, the sensing and/or
communication capabilities of each network agent are re-
stricted to a bounded region specified by a finite radius
r > 0. Therefore, as a way of approximating the gradient
ascent of the multi-center function H for an arbitrary per-
formance function f , one could implement the discrete-time
algorithm Tls corresponding to the multi-center function
induced by the performance function f r

2
: R+ → R given

by f r
2
(x) = f(x) for x < r

2 and f r
2
(x) = f(diam(Q))

for x ≥ r
2 . This latter algorithm has the advantage of being

spatially distributed over GLD(r). We do not follow this path
here, and instead refer the interested reader to [12] for a
complete exposition, including a detailed characterization
of the approximation properties of this procedure. •
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V. SIMULATIONS

To illustrate the performance of the coordination algo-
rithms, we include some simulation results. The algorithms
are implemented in Mathematica as a library of routines
and a main program running the simulation. We show exe-
cutions of the discrete-time algorithm Tls (cf. equations (6)-
(7)) for the area problem and the mixed centroid-area
problem with discontinuous sensing performance in Figs. 3
and 4, respectively. Measuring displacements in meters, we
consider the domain Q with vertices

{(0, 0), (2.125, 0), (2.9325, 1.5), (2.975, 1.6),

(2.9325, 1.7), (2.295, 2.1), (0.85, 2.3), (0.17, 1.2)}.

The diameter of this domain is diam(Q) = 3.37796. In all
examples, the density function φ (represented by means of
its contour plot) is the sum of five Gaussian functions of the
form 5 exp(6(−(x−xcenter)

2 − (y− ycenter)
2)) with centers

(xcenter, ycenter) at (2, .25), (1, 2.25), (1.9, 1.9), (2.35, 1.25)
and (.1, .1). Measured with respect to φ, the area of the
domain is areaφ(Q) = 8.61656. Each agent operates with
a finite sensing/communication radius equal to r = .45.

Fig. 3. Area problem (with agent performance f(x) = 1[0, r
2
](x)):

discrete-time algorithm Tls for 16 agents on a convex polygonal envi-
ronment. The left figure illustrates the gradient ascent flow and the right
figure represents the final location and Voronoi partition. For each agent
i, the intersection Vi ∩B r

2
(pi) is plotted in light gray. After 18 seconds,

the value of the multi-center function is approximately 6.28977.

Fig. 4. Mixed centroid-area problem (with discontinuous agent perfor-
mance f(x) = −x2 1[0, r

2
)(x)−diam(Q)2 ·1[ r

2
,+∞)(x)): discrete-time

algorithm Tls for 16 agents on a convex polygonal environment. The left
figure illustrates the gradient ascent flow and the right figure represents
the final location and Voronoi partition. For each agent i, the intersection
Vi ∩B r

2
(pi) is plotted in light gray. After 13.5 seconds, the value of the

multi-center function is approximately −6.803.

As mentioned in Remark 4.4, the execution of the
coordination algorithm in Figure 4 can be regarded as
a limited-range implementation of the gradient ascent of
the multi-center function H corresponding to the agent
performance f(x) = −x2; this performance function does
not have any range limitation. To compare both executions,
we computed the percentage error in the value of H at their
final configurations, which is approximately 30.7%. We also
observed that the percentage error of the performance of the
limited-range implementation improves with higher values
of the ratio r/diam(Q).

VI. CONCLUSIONS AND FUTURE WORK

We have presented novel spatially-distributed discrete-
time algorithms for coordinated motion of groups of agents.
Future research lines include (1) distributed implementation
of deterministic annealing techniques (which promise to
overcome local maxima), (2) visibility-based algorithms for
coverage in non-convex environments, and (3) distributed
algorithms for other cooperative behaviors and sensing
tasks, e.g., detection, estimation, and map-building.
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