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SPATIALLY-DISTRIBUTED COVERAGE OPTIMIZATION AND CONTROL

WITH LIMITED-RANGE INTERACTIONS
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Abstract. This paper presents coordination algorithms for groups of mobile agents performing de-
ployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent
has a limited sensing or communication radius. Based on the geometry of Voronoi partitions and
proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms
in continuous and discrete time. These algorithms have convergence guarantees and are spatially
distributed with respect to appropriate proximity graphs. Numerical simulations illustrate the results.
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Introduction

The current technological development of relatively inexpensive communication, computation, and
sensing devices has lead to an intense research activity devoted to the distributed control and coordi-
nation of networked systems. In robotic settings, the study of large groups of autonomous vehicles is
nowadays a timely concern. The potential advantages of networked robotic systems are their versatility
and robustness in the realization of multiple tasks such as manipulation in hazardous environments,
pollution detection, estimation and map-building of partially known or unknown environments.

A fundamental problem in the distributed coordination of mobile robots is that of providing stable
and decentralized control laws that are scalable with the number of agents in the network. Indeed,
since the initial works from the robotics and ecology communities on similar problems on swarms and
flocking [1–3], there have been various efforts to provide rigorous procedures with convergence guar-
antees using a combination of potential energy shaping methods, gyroscopic forces, and graph theory
(see [4–7] and references therein). In our previous work [8, 9], we studied distributed algorithms for
deployment and optimal coverage problems using tools from computational geometry, nonsmooth anal-
ysis and geometric optimization. The great interest in coordination problems can be easily detected
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in the proceedings of the 42nd IEEE Conference on Decision and Control held in 2003, the 4th Inter-
national Conference on Cooperative Control and Optimization held in 2003, or the 6th International
Conference on Distributed Autonomous Robotic Systems held in 2002.

In devising useful coordination algorithms it is important to progressively account for the various
restrictions that real-world systems impose. Building on our previous work [8, 9], this paper develops
spatially-distributed algorithms for coverage control amenable to implementation on (more) realistic
models of networks; we do this by considering the following new aspects. Firstly, we enforce the
communication or sensing capacity of an agent to be restricted to a bounded region, typically much
smaller than the region where the entire network is confined. In other words, we assume that the
agents will have limited-range communication and/or sensing capabilities: we refer to these informa-
tion exchanges between agents as “limited-range interactions.” Secondly, we provide gradient ascent
control laws in both continuous and discrete-time settings, and we prove that the induced dynam-
ical systems are convergent. Discrete-time feedback algorithms are indeed the ones truly amenable
to implementation in a group of agents exchanging information over a communication network. To
deal with these problems, we use a seemingly unrelated combination of tools from graph theory [10],
locational optimization [11,12], and systems theory [13].

The contributions of the paper are the following:

(i) Based on the notion of proximity graph [14], we provide a formal notion of spatially-distributed
vector fields and maps; we unveil several important properties of the limited-range Delaunay
graph, previously introduced in [15], and we show, in a formal way, that it can be computed
in a spatially-distributed fashion.

(ii) We analyze the smoothness properties of an important class of objective functions, called
multi-center functions, common in locational optimization, quantization theory, and geometric
optimization. Our analysis supersedes the results in [11, 12, 16–19]. One important objective
of the analysis is to determine the extent in which certain multi-center functions are spatially
distributed and with respect to which proximity graphs.

(iii) We consider the problem of steering the location of a group of robots to local maxima of the
objective function. To achieve this objective in continuous and discrete-time, we design novel
spatially-distributed control laws for groups of robots. We formally analyze their performance
and illustrate their behavior in simulations.

(iv) To perform the smoothness analysis in (ii) and the stability analysis in (iii), we prove useful
extensions of the Conservation-of-Mass Law from fluid dynamics and of the discrete-time
LaSalle Invariance Principle, respectively. These extensions are, to the best of our knowledge,
not present in classical texts on the subject.

It is worth remarking that one fundamental scientific problem in the study of coordination algo-
rithms is scalability with respect to communication complexity. In other words, it is important to
design algorithms with communication requirements that scale nicely (e.g., linearly) with the number
of agents in the network. However, it is impossible to quantify the communication complexity of any
algorithm without introducing a detailed communication model. Adopting a computational geometric
approach, this paper classifies the complexity of coordination algorithms in terms of the proximity
graphs with respect to which the algorithms are spatially distributed. The underlying assumption is
that low complexity proximity graphs (e.g., graphs with a low number of edges) will require limited
communication in a realistic implementation.

Throughout the paper we shall consider purposefully only extremely simple models for the dynamics
of each individual agent. In particular, we shall assume that the state of each agent is a point in R
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and that the dynamical model of each agent is an integrator (indeed, we shall interchangeably refer
to agent as a location or point). This feature is a natural consequence of our focus on network-wide
coordination aspects.

The organization of the paper is as follows. In Section 1 we review various preliminary mathematical
concepts, and we introduce the notion of proximity graph function and of spatially-distributed map.
In Section 2 we study the smoothness of the multi-center function and show in what sense its partial
derivative is spatially distributed. In Section 3 we design spatially-distributed coverage algorithms,
first in continuous-time and then in discrete-time. The numerical outcomes of the algorithms’ imple-
mentation are reported in Section 4. We discuss possible avenues of future research in Section 5. The
appendixes presents the extensions of the Conservation-of-Mass Law and of the discrete-time LaSalle
Invariance Principle.

1. Proximity graphs and spatially-distributed algorithms

In this section we introduce the notion of proximity graphs and of spatially-distributed algorithms.
These notions will later be key in characterizing the distributed character of the proposed coordination
algorithms. We start by presenting some preliminary concepts from computational geometry.

1.1. Preliminaries on graph theory and Voronoi partitions

Here we gather some basic notions on graph theory and we introduce the notion of Voronoi partition
generated by a set of points on the Euclidean space; for comprehensive treatments we refer the reader
to [10] and to [11, 20], respectively. Given a set U , recall that 2U is the collection of subsets of U . A
graph G = (U , E) consists of a vertex set U and an edge set E ∈ 2U×U . A graph (U , E) is undirected if
(i, j) ∈ E implies (j, i) ∈ E . If (i, j) ∈ E , then vertex j is a neighbor (in G) of vertex i. Let the map
NG : U → 2U associate to the vertex i the set NG(i) of its neighbors in G. A graph G is called complete
if any two different vertices in U are neighbors, i.e., E = U ×U \ diag(U ×U). This is usually denoted
by Kn. A path connecting vertex i to vertex j is a sequence of vertices {i0 = i, i1, . . . , ik, ik+1 = j}
with the property that (il, il+1) ∈ E for all l ∈ {0, . . . , k}. A graph G is connected if there exists
a path connecting any two vertices of G. Given two graphs G1 = (U1, E1) and G2 = (U2, E2), the
intersection graph G1 ∩G2 is the graph (U1 ∩U2, E1 ∩E2), and the union graph G1 ∪G2 is the graph
(U1 ∪U2, E1 ∪E2).

A graph G1 = (U1, E1) is a subgraph of a graph G2 = (U2, E2) if U1 ⊆ U2 and E1 ⊆ E2. Alternatively,
G2 is said to be a supergraph of G1. Formally, we set G1 ⊆ G2. If G1 ⊆ G2 and G1 contains all the
edges (i, j) ∈ E2 with i, j ∈ U1, then G1 is called an induced subgraph of G2. A subgraph G1 of G2 is
called spanning if U1 = U2. A cycle of G is a subgraph where every vertex has exactly two neighbors.
An acyclic graph is a graph that contains no cycles. A tree is a connected acyclic graph. Given a
connected graph G, assign to each edge a positive real number called length or weight. The weight of
a subgraph of G is the sum of the weights of its edges. A minimum spanning tree of G is a spanning
tree with the smallest possible weight. In general, there might exist more than one minimum spanning
tree of G, all with the same weight.

Before presenting the notion of Voronoi partition, let us introduce some important notation. Given
a vector space V, let F(V) be the collection of finite subsets of V. Accordingly, F(Rd) is the collection
of finite point sets in R

d, d ∈ N; we shall denote an element of F(Rd) by P = {p1, . . . , pn} ⊂ R
d, where

p1, . . . , pn are distinct points in R
d. Let G(Rd) be the set of undirected graphs whose vertex set is an

element of F(Rd).
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A covering of R
d is a collection of subsets of R

d whose union is R
d; a partition of R

d is a covering
whose subsets have disjoint interiors. Let P ∈ F(Rd) be a set of n distinct points {p1, . . . , pn} in R

d.
The Voronoi partition of R

d generated by P with respect to the Euclidean norm is the collection of
sets {Vi(P)}i∈{1,...,n} defined by

Vi(P) =
{

q ∈ R
d | ‖q − pi‖ ≤ ‖q − pj‖ , for all pj ∈ P

}

.

Here, ‖ · ‖ denotes the standard Euclidean norm. It is customary and convenient to refer to Vi(P) as
Vi. The boundary of each set Vi is the union of a finite number of segments and rays.

1.2. Proximity graphs

Next, we shall present some relevant concepts on proximity graph functions, that is, on graphs
whose vertex set is (in 1-1 correspondence with) a set of distinct points on the Euclidean space and
whose edge set is a function of the relative locations of the point set. This notion is an extension of
the notion of proximity graph as explained in the survey article [14]; see also [21] and the literature
on topology control in wireless networks for related references.

A proximity graph function G : F(Rd) → G(Rd) associates to a point set P ∈ F(Rd) an undirected
graph with vertex set P and edge set EG(P), where EG : F(Rd) → F(Rd × R

d) has the property that
EG(P) ⊆ P × P \ diag(P × P) for any P. Here, diag(P × P) = {(p, p) ∈ P × P | p ∈ P}. In other
words, the edge set of a proximity graph depends on the location of its vertices. We will refer to the
map EG as the proximity edge function corresponding to the proximity graph function G.

To each proximity graph function G, one can associate the set of neighbors map NG : R
d ×F(Rd) →

F(Rd), defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪{p})} .

Typically, p is a point in P, but the definition is well-posed for any p ∈ R
d. Given p ∈ R

d, it is
convenient to define the map NG,p : F(Rd) → F(Rd) by NG,p(P) = NG(p,P). Given two proximity
graph functions G1 and G2, we say that G1 is spatially distributed over G2 if, for all p ∈ P,

NG1,p(P) = NG1,p

(

NG2,p(P)
)

.

It is straightforward to deduce that if G1 is spatially distributed over G2, then G1 is a subgraph of G2,
that is, G1(P) ⊂ G2(P) for all P ∈ F(Rd). The converse is in general not true, as we point out later.

Throughout the rest of the paper, we will focus our attention on the case d = 2, although most of
the discussion can be carried out in arbitrary dimensions. Let R+ = (0,+∞) and R+ = [0,+∞). For
p ∈ R

2 and r ∈ R+, let B(p, r) =
{

q ∈ R
2 | ‖q − p‖ ≤ r

}

and B(p, r) =
{

q ∈ R
2 | ‖q − p‖ < r

}

denote

the closed and open ball in R
2 centered at p of radius r, respectively. Now, for r ∈ R+, consider the

following proximity graph functions:

(i) the Delaunay graph P 7→ GD(P) = (P, EGD
(P)) has edge set

EGD
(P) = {(pi, pj) ∈ P × P \ diag(P × P) | Vi(P)∩Vj(P) 6= ∅} ;

(ii) the r-disk graph P 7→ Gdisk(P, r) = (P, EGdisk
(P, r)) has edge set

EGdisk
(P, r) = {(pi, pj) ∈ P × P \ diag(P × P) | ‖pi − pj‖ ≤ r} ;
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(iii) the r-Delaunay graph P 7→ Gdisk∩D(P, r) is the intersection of Gdisk(P, r) and GD(P);
(iv) the r-limited Delaunay (or, limited-range Delaunay) graph P 7→ GLD(P, r) = (P, EGLD

(P, r))
consists of the edges (pi, pj) ∈ P × P \ diag(P × P) with the property that

∆ij(P, r) ,
(

Vi(P) ∩B(pi,
r
2)
)

∩
(

Vj(P) ∩B(pj ,
r
2)
)

6= ∅ ; (1)

(v) the Gabriel graph, P 7→ GG(P) = (P, EGG
(P)) consists of the edges (pi, pj) ∈ P×P \diag(P×

P) with the property that

pk 6∈ B
(pi + pj

2
,
‖pi − pj‖

2

)

, for all k ∈ {1, . . . , n} \ {i, j} ; (2)

(vi) the r-Gabriel graph P 7→ Gdisk∩G(P, r) is the intersection of Gdisk(P, r) and GG(P);
(vii) an Euclidean Minimum Spanning Tree, P 7→ GEMST(P) = (P, EGEMST

(P)) is defined as a
minimum spanning tree of the complete graph (P,P × P \ diag(P × P), whose edge (pi, pj)
has weight ‖pi − pj‖, for (i, j) ∈ {1, . . . , n}.

Figure 1 presents an example of these proximity graphs for a random configuration of points. In
general, one can prove that GEMST(P) ⊆ GG(P) ⊆ GD(P) (see for instance [14]). The r-Delaunay graph
has been studied in [21, 22] and the r-limited Delaunay graph has been proposed in [15] to develop
approximations of geometric objects in the Euclidean space. In the next proposition, we study some
basic useful properties of these graphs.
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Figure 1. From left to right, and from up to down, Delaunay, r-disk, r-Delaunay,
r-limited Delaunay, Gabriel and Euclidean Minimum Spanning Tree graphs for a con-
figuration of 16 generators with coordinates contained in the rectangle [0, 1.9]× [0, .75].
The parameter r is taken equal to .45.

Proposition 1.1. Let P = {p1, . . . , pn} ∈ F(R2), and let r ∈ R+. The following statements hold

(i) Gdisk∩G(P, r) ⊆ GLD(P, r) ⊆ Gdisk∩D(P, r);
(ii) Gdisk(P, r) is connected if and only if GLD(P, r) is connected;

(iii) #EGLD
(P, r) ≤ 3n−6 and #EGdisk

(P, r) ≤ n(n−1)
2 . If Gdisk(P, r) is connected, then #EGLD

(P, r) ≥
n− 1.
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Proof. We first prove the inclusion Gdisk∩G(P, r) ⊆ GLD(P, r). Let (pi, pj) ∈ EGdisk ∩G
(P, r). From the

definition of the Gabriel graph, we deduce that ‖ pi+pj

2 − pi‖ = ‖pi+pj

2 − pj‖ ≤ ‖pi+pj

2 − pk‖, for all

k ∈ {1, . . . , n}\{i, j}, and therefore,
pi+pj

2 ∈ Vi∩Vj . Since (pi, pj) ∈ EGdisk
(P, r), we deduce that

pi+pj

2 ∈
B(pi,

r
2) ∩ B(pj ,

r
2), and hence equation (1) holds, i.e., (pi, pj) ∈ EGLD

(P, r). The second inclusion in
(i) is straightforward: if (pi, pj) ∈ EGLD

(P, r), then equation (1) implies that Vi(P) ∩ Vj(P) 6= ∅,
i.e., (pi, pj) ∈ EGD

(P). Since clearly (pi, pj) ∈ EGdisk
(P, r), we conclude (i). The statement (ii) is a

consequence of the following more general fact: the r-disk graph Gdisk(P, r) is connected if and only
if GEMST(P) ⊆ Gdisk(P, r). The proof of this fact is as follows. If GEMST(P) ⊆ Gdisk(P, r), then
clearly Gdisk(P, r) is connected. To prove the other implication, assume that Gdisk(P, r) is connected.
We reason by contradiction. Let GEMST(P) 6⊆ Gdisk(P, r), i.e, there exists pi and pj with (pi, pj) ∈
EGEMST

(P) and ‖pi − pj‖ > r. If we remove this edge from EGEMST
(P), the tree becomes disconnected

into two connected components T1 and T2, with pi ∈ T1 and pj ∈ T2. Now, since by hypothesis the
r-disk graph Gdisk(P, r) is connected, there must exist k, l ∈ {1, . . . , n} such that pk ∈ T1, pl ∈ T2

and ‖pk − pl‖ ≤ r. If we add the edge (pk, pl) to the set of edges of T1 ∪ T2, the obtained graph
G is acyclic, connected and contains all the vertices P, i.e., G is a spanning tree. Moreover, since
‖pk − pl‖ ≤ r < ‖pi − pj‖ and T1 and T2 are induced subgraphs of GEMST(P), we conclude that G
has smaller length than GEMST(P, r), which is a contradiction. As a consequence, we deduce that
if Gdisk(P, r) is connected, then GEMST(P) ⊆ Gdisk∩G(P, r). Using (i), we conclude that GLD(P, r) is
connected. Finally, the bounds concerning the r-limited Delaunay graph in (iii) follow from (i) and (ii)
by noting that #EGD

(P) ≤ 3n − 6 (see, for instance, [11]) and #EGEMST
(P) = n − 1. The bound on

the r-disk graph follows from this graph being a subgraph of the complete graph. �

Let us make the following observations concerning Proposition 1.1.

Remarks 1.2. As before, let P = {p1, . . . , pn} ∈ F(R2) and let r ∈ R+.

(i) The r-Delaunay graph does not coincide in general with the r-limited Delaunay graph. Fig-
ure 2 illustrates a point set P in which pl is a neighbor of pi in Gdisk∩D(P, r) but not in
GLD(P, r).

pj

pi

pk

r
2

rpm

pl

Figure 2. Example point set for which the r-Delaunay graph strictly contains the
r-limited Delaunay graph: pl is a neighbor of pi in Gdisk∩D(P, r) but not in GLD(P, r).

(ii) The collection {Vi(P) ∩ B(pi,
r
2)}i∈{1,...,n} is a partition of the set ∪n

i=1B(pi,
r
2) ⊂ R

2. The

boundary of each set Vi(P)∩B(pi,
r
2), i ∈ {1, . . . , n}, is the union of a finite number of segments
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and arcs; see Figure 3. Therefore, at fixed P, there exist n numbers Mi(r) ≥ 0, i ∈ {1, . . . , n},
of distinct arcs arci,1(r), . . . , arci,Mi(r)(r) of spheres of radius r

2 in ∂(Vi(P)∩B(pi,
r
2) with the

property that

∂
(

Vi(P) ∩B(pi,
r
2)
)

=
(

∪j∈NGLD(P,r)(pi) ∆ij(r)
)

∪
(

∪l∈{1,...,Mi(r)} arci,l(r)
)

,

where we recall that NGLD(P,r)(pi) denotes the set of neighbors in GLD(P, r) of the vertex pi.

pj

∆im

arci,1

pi

pk

r
2

r

arci,2

∆ik

∆ij

pl

pm

pj

pi r
2

r

∆ij

pm

pl

∆im

∆il

pk

∆ik

Figure 3. The shaded regions are examples of sets Vi(P) ∩ B(pi,
r
2). In the right

figure, the boundary of the set Vi(P) ∩B(pi,
r
2) does not contain any arc.

(iii) If ‖pi − pj‖ is strictly greater than r, then the half plane
{

q ∈ R
2 | ‖q − pi‖ ≤ ‖q − pj‖

}

contains the ball B(pi,
r
2). Accordingly,

B(pi,
r
2) ∩ Vi(P) = B(pi,

r
2) ∩

{

q ∈ R
2 | ‖q − pi‖ ≤ ‖q − pj‖ , for all pj ∈ P

}

= B(pi,
r
2) ∩

{

q ∈ R
2 | ‖q − pi‖ ≤ ‖q − pj‖ , for all pj ∈ NGdisk(P,r)(pi)

}

.

(iv) For simplicity, it is convenient to refer to the various proximity graphs functions without
explicitly writing the argument P. •

Finally, we conclude this section with a general note.

Remark 1.3. The notion of proximity graph is defined for sets of distinct points P ∈ F(Rd). However,
we will often consider tuples of elements of R

d of the form P = (p1, . . . , pn), i.e., ordered sets of possibly
coincident points. Let iF : (Rd)n → F(Rd) be the natural immersion, i.e., iF(P ) is the point set that
contains only the distinct points in P = (p1, . . . , pn). In what follows, P = iF(P ) will always denote
the point set associated to P ∈ (Rd)n. Note that iF is invariant under permutations of its arguments
and that the cardinality of iF(p1, . . . , pn) is in general less than or equal to n. More precisely, if S
denotes the set

S =
{

(p1, . . . , pn) ∈ (Rd)n | pi = pj for some i, j ∈ {1, . . . , n}, i 6= j
}

, (3)

then #P < n if (p1, . . . , pn) ∈ S and #P = n if (p1, . . . , pn) 6∈ S. The Voronoi covering V(p1, . . . , pn) =
{Vi(p1, . . . , pn)}i∈{1,...,n} generated by the tuple (p1, . . . , pn) is defined by assigning to each point pi its
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corresponding Voronoi cell in the Voronoi partition generated by P. Note that coincident points in
the tuple (p1, . . . , pn) have the same Voronoi cell.

We can now extend the notion of proximity graphs to this setting. Given a proximity graph function
G with edge set function EG , we define (with a slight abuse of notation)

G = G ◦ iF : (Rd)n → G(Rd),

EG = EG ◦ iF : (Rd)n → F(Rd × R
d).

Additionally, we define the set of neighbors map NG : (Rd)n → (F(Rd))n as the function whose jth
component is

NG,j(p1, . . . , pn) = NG(pj , iF(p1, . . . , pn)).

Note that coincident points in the tuple (p1, . . . , pn) will have the same set of neighbors. •

1.3. Spatially-distributed functions, vector fields, and set-valued maps

We are now in a position to discuss distributed control laws and algorithms in formal terms. From
now on, we shall deal not only with sets of distinct points, but also with tuples of elements of R

2.
Let G be a proximity graph function and let Y be a set. A map f : (R2)n → Y n is spatially distributed

over G if there exist maps f̃i : R
2 × F(R2) → Y , i ∈ {1, . . . , n}, with the property that for all

(p1, . . . , pn) ∈ (R2)n

fi(p1, . . . , pn) = f̃i(pi,NG,i(p1, . . . , pn)) ,

where fi denotes the ith-component of f . A vector field X on (R2)n is spatially distributed over G if its
associated map X : (R2)n → (R2)n, where the canonical identification between the tangent space of
(R2)n and (R2)n itself is understood, is spatially distributed in the above sense. Likewise, a set-valued

map T : (R2)n → 2Y n ≡ (2Y )n is spatially distributed over G if there exist maps T̃i : R
2 ×F(R2) → 2Y ,

i ∈ {1, . . . , n}, with the property that for all (p1, . . . , pn) ∈ (R2)n

Ti(p1, . . . , pn) = T̃i(pi,NG,i(p1, . . . , pn)) ,

where Ti denotes the ith-component of T .

Remark 1.4. In other words, to compute the ith component of a spatially-distributed function,
vector field, or set-valued map at (p1, . . . , pn), it is only required the knowledge of the vertex pi and
the neighboring vertices in the graph G({p1, . . . , pn}). •
Remark 1.5. One can see that the proximity graph function G1 is spatially distributed over the
proximity graph function G2 if and only if the set of neighbors map NG1 is spatially distributed over G2

according to the previous definition. •
We are now in a position to establish an important property of the r-limited Delaunay graph.

Lemma 1.6. Let r ∈ R+. Then, the r-limited Delaunay graph GLD(r) is spatially distributed over
Gdisk(r), i.e., the set of neighbors map NGLD(r) : (R2)n → (F(R2))n is spatially distributed over Gdisk(r).

Proof. The result follows from Remark 1.2(iii). �

Loosely speaking, this lemma states that the r-limited Delaunay graph GLD can be computed in a
spatially localized way: each agent needs to know only the location of all other agents in a disk of
radius r. This property is to be contrasted with the centralized computation required to determine
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the r-Delaunay graph Gdisk∩D. This requirement can be observed in Figure 2: if pj and pl are placed
arbitrarily close to the line joining pi and pk, then, in order to decide if pl ∈ NGdisk∩D(P,r)(pi), in general
it is necessary to know the locations of all the other points in {p1, . . . , pn}. That is, Gdisk ∩D ⊂ Gdisk

is not spatially distributed over Gdisk.

2. Limited-range locational optimization

Let Q be a simple convex polygon in R
2 including its interior. The diameter of Q is defined as

diam(Q) = maxq,p∈Q ‖q− p‖. For δ, ε ∈ R+, δ < ε, let D(p, [δ, ε]) =
{

q ∈ R
2 | δ ≤ ‖q − p‖ ≤ ε

}

denote

the annulus in R
2 centered at p of radius δ and ε; it is also convenient to define D(p, [0, ε]) = B(p, ε) =

{

q ∈ R
2 | ‖q − p‖ ≤ ε

}

and D(p, [δ,+∞]) =
{

q ∈ R
2 | δ ≤ ‖q − p‖

}

. Let nB(p,ε)(q) denote the unit

outward normal to B(p, ε) at q ∈ ∂B(p, ε). Given a set S ⊂ Q, let 1S denote the indicator function
defined by 1S(q) = 1 if q ∈ S, and 1S(q) = 0 if q 6∈ S.

Throughout the rest of the paper, given a set of n distinct points P = {p1, . . . , pn} ∈ F(R2),
we consider the restriction of the Voronoi partition V(P) generated by P to the convex polygon Q,
{Vi(P)∩Q}i∈{1,...,n}. For ease of exposition, we denote this restriction in the same way as the standard
Voronoi partition. Given a tuple P = (p1, . . . , pn) ∈ Qn, recall that we let P = {p1, . . . , pn} denote
the associated point set that only contains the corresponding distinct points.

A density function φ : Q → R+ is a bounded measurable function on Q. Given a set S ⊂ Q, let
areaφ(S) denote the area of S measured according to φ, i.e., areaφ(S) =

∫

S
φ(q)dq. A performance

function f : R+ → R is a non-increasing and piecewise differentiable map with finite jump disconti-
nuities at R1, . . . , Rm ∈ R+ = (0,+∞), with R1 < · · · < Rm. For convenience, we set R0 = 0 and
Rm+1 = +∞, and write

f(x) =
m+1
∑

α=1

fα(x) 1[Rα−1,Rα)(x) , (4)

where fα : [Rα−1, Rα] → R, α ∈ {1, . . . ,m+1} are non-increasing continuously differentiable functions
such that fα(Rα) > fα+1(Rα) for α ∈ {1, . . . ,m}. Given a density function φ and a performance
function f , we consider the multi-center function H : Qn → R defined by

H(P ) =

∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq. (5)

Note that H is an aggregate objective function in the sense that it depends on all the locations
p1, . . . , pn. It will be of interest to find local maxima for H. Note that the performance function f
can be defined up to a constant c ∈ R, since

∫

Q

(

max
i∈{1,...,n}

(

f(‖q − pi‖) + c
)

)

φ(q)dq = H(P ) + c areaφ(Q) ,

and, therefore, this function and H have the same local maxima.

Remark 2.1. Maximizing the multi-center function is an optimal resource placement problem; it is
interesting to draw an analogy with the optimal placement problem for large numbers of spatially-
distributed sensors. In this setting, (1) H provides the expected value of the sensing performance
provided by the group of sensors over any point in the environment Q, where (2) the function φ is
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the distribution density function representing a measure of information or probability that some event
take place over Q, and (3) f describes the utility or sensing performance of the sensors. Because of
noise and loss of resolution, the sensing performance at point q taken from ith sensor at the position
pi degrades with the distance ‖q − pi‖ between q and pi. •

Let us provide two equivalent expressions for the function H over the set Qn \ S, for S defined in
equation (3). Using the definition of the Voronoi partition and the fact that f is non-increasing, H
can be rewritten as

H(P ) =
n
∑

i=1

∫

Vi(P )
f(‖q − pi‖)φ(q)dq , P ∈ Qn \ S .

Resorting to the expression of f in (4), we can also rewrite H as

H(P ) =
n
∑

i=1

m+1
∑

α=1

∫

Vi(P )∩D(pi,[Rα−1,Rα])
fα(‖q − pi‖)φ(q)dq , P ∈ Qn \ S . (6)

We now analyze the smoothness properties of the multi-center function.

Theorem 2.2. Given a density function φ and a performance function f , the multi-center function
H is

(i) globally Lipschitz on Qn, and
(ii) continuously differentiable on Qn \ S, where for each i ∈ {1, . . . , n}

∂H
∂pi

(P ) =

∫

Vi(P )

∂

∂pi
f(‖q − pi‖)φ(q)dq

+
m
∑

α=1

(fα(Rα) − fα+1(Rα))
(

Mi(2Rα)
∑

k=1

∫

arci,k(2Rα)
nB(pi,Rα)(q)φ(q)dq

)

, (7)

with arci,k(2Rα), k ∈ {1, . . . ,Mi(2Rα)} the arcs in the boundary of Vi(P )∩B(pi, Rα).

Proof. We start by proving fact (i). Because maxi∈{1,...,n} ‖q − pi‖ ≤ diam(Q) for all q, p1, . . . , pn

in Q, we can assume, without loss of generality, that Rm+1 = diam(Q). Since the functions fα,
α ∈ {1, . . . ,m + 1}, are continuously differentiable on [Rα−1, Rα], they admit a non-increasing C1-
extension to [0, Rα], that we also denote by fα for simplicity. We then rewrite H as

H(P ) =
m+1
∑

α=1

∫

Q

fα(dist(q, P ))
(

1[0,Rα)(dist(q, P )) − 1[0,Rα−1)(dist(q, P )
)

φ(q)dq ,

where dist(q, P ) = mini∈{1,...,n} ‖q − pi‖, for P = (p1, . . . pn) ∈ Qn. Since the finite sum of globally
Lipschitz functions is globally Lipschitz, in what follows it suffices to prove that for R ∈ [0, Rα] and
for α ∈ {1, . . . ,m+ 1}, the function

Hα,R(P ) =

∫

Q

fα(dist(q, P )) 1[0,R)(dist(q, P ))φ(q)dq ,
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is globally Lipschitz. To this end, we introduce a useful partition of Q. For S ⊂ Q, recall Sc = Q \ S.
Given P = (p1, . . . , pn), P ′ = (p′1, . . . , p

′
n), define the following sets

S1 =
(

∪i∈{1,...,n}B(pi, R)
)

∩
(

∩i∈{1,...,n}B(p′i, R)c
)

,

S2 =
(

∪i∈{1,...,n}B(p′i, R)
)

∩
(

∩i∈{1,...,n}B(pi, R)c
)

,

S3 =
(

∩i∈{1,...,n}B(pi, R)c
)

∩
(

∩i∈{1,...,n}B(p′i, R)c
)

,

S4 =
(

∪i∈{1,...,n}B(pi, R)
)

∩
(

∪i∈{1,...,n}B(p′i, R)
)

.

Note that S1 ∪S2 = (S3 ∪S4)
c and therefore Q = S1 ∪ S2 ∪ S3 ∪ S4. Also, observe that Sa ∩ Sb = ∅

for any a, b ∈ {1, 2, 3, 4} with a 6= b. Accordingly, we write

Hα,R(P ) −Hα,R(P ′)

=
4
∑

a=1

∫

Sa

(

fα(dist(q, P )) 1[0,R)(dist(q, P )) − fα(dist(q, P ′)) 1[0,R)(dist(q, P ′))
)

φ(q)dq .

Now we upper bound each of the integrals in the above sum. For q ∈ S3, we have 1[0,R)(dist(q, P )) = 0
and 1[0,R)(dist(q, P ′)) = 0, and therefore the integral over S3 vanishes. For q ∈ S4, we have dist(q, P ) ≤
R and dist(q, P ′) ≤ R. Thus,

∣

∣

∣

∫

S4

(

fα(dist(q, P )) 1[0,R)(dist(q, P )) − fα(dist(q, P ′)) 1[0,R)(dist(q, P ′))
)

φ(q)dq
∣

∣

∣

≤
∫

S4

| fα(dist(q, P )) − fα(dist(q, P ′)) |φ(q)dq

≤
∥

∥

∥

∥

dfα

dx

∥

∥

∥

∥

[0,Rα]

∫

S4

| dist(q, P ) − dist(q, P ′) |φ(q)dq

≤
∥

∥

∥

∥

dfα

dx

∥

∥

∥

∥

[0,Rα]

‖P − P ′‖
∫

S4

φ(q)dq ≤
∥

∥

∥

∥

dfα

dx

∥

∥

∥

∥

[0,Rα]

areaφ(Q) ‖P − P ′‖ ,

where ‖g‖[0,Rα] denotes the L∞-norm of g : [0, Rα] → R, and ‖P −P ′‖ is the Euclidean norm of P −P ′

as a vector in R
2n. Here we have made use of the fact that, for all q ∈ Q, the map P 7→ dist(q, P ) is

globally Lipschitz with Lipschitz constant 1. For q ∈ S1, we have

∣

∣

∣

∫

S1

(

fα(dist(q, P )) 1[0,R)(dist(q, P )) − fα(dist(q, P ′)) 1[0,R)(dist(q, P ′))
)

φ(q)dq
∣

∣

∣

≤
∫

S1

| fα(dist(q, P )) |φ(q)dq ≤ ‖φ‖Q‖fα‖[0,Rα]

∫

S1

dq

≤ ‖φ‖Q‖fα‖[0,Rα]

n
∑

i=1

∫

B(pi,R)∩(∩j∈{1,...,n} B(p′j ,R)c)
dq

≤ ‖φ‖Q‖fα‖[0,Rα]

n
∑

i=1

∫

B(pi,R)∩B(p′i,R)c

dq,
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where ‖φ‖Q = maxq∈Q φ(q). Now, we observe that, for ‖pi − p′i‖ ≥ R,

∫

B(pi,R)∩B(p′i,R)c

dq ≤ πR2 ≤ π diam(Q) ‖pi − p′i‖ . (8)

On the other hand, for ‖pi − p′i‖ ≤ R, Lemma B.1 in Appendix B shows that

∫

B(pi,R)∩B(p′i,R)c

dq ≤ 2
√

3+3
3 R ‖pi − p′i‖ ≤ 2

√
3+3
3 diam(Q) ‖pi − p′i‖. (9)

Therefore, since 2
√

3+3
3 < π, we have

∣

∣

∣

∫

S1

(

fα(dist(q, P )) 1[0,R)(dist(q, P )) − fα(dist(q, P ′)) 1[0,R)(dist(q, P ′))
)

φ(q)dq
∣

∣

∣

≤ π‖φ‖Q‖fα‖[0,Rα] diam(Q)
n
∑

i=1

‖pi − p′i‖ ≤ π√
n
‖φ‖Q‖fα‖[0,Rα] diam(Q) ‖P − P ′‖.

The integral over S2 can be bounded in an analogous fashion. Summarizing, we have proved that
Hα,R satisfies

|Hα,R(P ) −Hα,R(P ′)| ≤ Lα,R‖P − P ′‖ ,

with Lα,R = 2π√
n
‖φ‖Q‖fα‖[0,Rα] diam(Q) +

∥

∥

∥

dfα

dx

∥

∥

∥

[0,Rα]
areaφ(Q). This concludes the proof of the state-

ment that H is globally Lipschitz on Qn.
Next, we prove fact (ii), that is, we prove that H is continuously differentiable on Qn \ S and we

compute its partial derivative with respect to pi. Consider the expression (6) for the function H. Note
that for each i ∈ {1, . . . , n} and α ∈ {1, . . . ,m+ 1}, the function (q, P ) 7→ fα(‖q − pi‖) is continuous,
and also continuously differentiable with respect to its second argument for all P ∈ Qn and almost
all q ∈ Vi(P ) ∩ D(pi, [Rα−1, Rα]). Note also that, for fixed P ∈ Qn, both q 7→ fα(‖q − pi‖) and
q 7→ ∂

∂P
(fα(‖q− pi‖)) are integrable on Vi(P )∩D(pi, [Rα−1, Rα]). Furthermore, if P 6∈ S, then the set

{q ∈ Q| ∃i, j ∈ {1, . . . , n}, i 6= j, such that

‖q − pi‖ = ‖q − pj‖ ≤ ‖q − pk‖ for k ∈ {1, . . . , n} \ {i, j}}

has measure zero. Therefore, {Vi(P ) | P ∈ Qn \ S} is a piecewise smooth family for each i ∈ {1, . . . , n}.
Since for each α ∈ {1, . . . ,m+1}, the balls

{

B(pi, Rα) | P ∈ Qn
}

also define a piecewise smooth family,

one concludes that the intersection Vi ∩ D(pi, [Rα−1, Rα]) = Vi ∩ B(pi, Rα) \ Vi ∩ B(pi, Rα−1), with
P ∈ Qn \ S, can be written as the difference of two piecewise smooth families with strictly star-
shaped sets. Applying now Proposition A.1 (see also Remark A.2), we deduce that each summand
in equation (6) is continuously differentiable on Qn \ S. We now compute its partial derivative with
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respect to pi, i ∈ {1, . . . , n}, as

∂H
∂pi

(P ) =
∂

∂pi

(

m+1
∑

α=1

∫

Vi(P )∩D(pi,[Rα−1,Rα])
fα(‖q − pi‖)φ(q)dq

)

+
∂

∂pi





∑

j 6=i

m+1
∑

α=1

∫

Vj(P )∩D(pj ,[Rα−1,Rα])
fα(‖q − pj‖)φ(q)dq



 .

For each k ∈ {1, . . . , n} and each α ∈ {1, . . . ,m + 1}, let nk,α(q) denote the unit outward normal to

Vk(P ) ∩ B(pk, Rα) at q, and let γk,α : S
1 × Qn \ S → R

2 denote a parameterization for the family
{

Vk(P ) ∩B(pk, Rα) | P ∈ Qn \ S
}

. Using Proposition A.1, the above expression is equal to

∂H
∂pi

(P ) =
m+1
∑

α=1

∫

Vi(P )∩D(pi,[Rα−1,Rα])

∂

∂pi
fα(‖q − pi‖)φ(q)dq

+
m+1
∑

α=1

∫

∂
(

Vi(P )∩B(pi,Rα)
)
nt

i,α

∂γi,α

∂pi
fα(dist(·, pi))φ

−
m+1
∑

α=1

∫

∂
(

Vi(P )∩B(pi,Rα−1)
)
nt

i,α−1

∂γi,α−1

∂pi
fα(dist(·, pi))φ

+
m+1
∑

α=1

∑

j 6=i

∫

∂
(

Vj(P )∩B(pj ,Rα)
)

∩∂
(

Vi(P )∩B(pi,Rα)
)

nt
j,α

∂γj,α

∂pi
fα(dist(·, pj))φ

−
m+1
∑

α=1

∑

j 6=i

∫

∂
(

Vj(P )∩B(pj ,Rα−1)
)

∩∂
(

Vi(P )∩B(pi,Rα−1)
)

nt
j,α−1

∂γj,α−1

∂pi
fα(dist(·, pj))φ ,

where recall that dist(q, p) = ‖q − p‖. For α ∈ {1, . . . ,m + 1}, note that ∆ij(2Rα) = (Vi(P ) ∩
B(pi, Rα))∩(Vj(P )∩B(pj , Rα)) 6= ∅ if and only if pi and pj are neighbors according to the 2Rα-limited
Delaunay graph GLD(P, 2Rα). In this case, there exist intervals [θ−i,j(P ), θ+

i,j(P )] and [θ−j,i(P ), θ+
j,i(P )]

depending smoothly on P over an open set of Qn \ S such that

θ ∈ [θ−i,j(P ), θ+
i,j(P )] 7→ γi,α(θ, P ) , θ ∈ [θ−j,i(P ), θ+

j,i(P )] 7→ γj,α(θ, P ) ,

are two parameterizations of the set (Vi(P )∩B(pi, Rα))∩(Vj(P )∩B(pj , Rα)). Resorting to the implicit
function theorem, one can show that there exists a function h : S

1 ×U → S
1, h([θ−j,i(P ), θ+

j,i(P )], P ) =

[θ−i,j(P ), θ+
i,j(P )], such that γj,α(θ, P ) = γi,α(h(θ, P ), P ) for θ ∈ [θ−j,i(P ), θ+

j,i(P )]. From here, we deduce

that nt
j,α

∂γj,α

∂pi
= nt

j,α

(

∂γi,α

∂θ
∂h
∂pi

+
∂γi,α

∂pi

)

= nt
j,α

∂γi,α

∂pi
, since nj,α and

∂γi,α

∂θ
are orthogonal. Therefore, if
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pj ∈ NGLD(P,2Rα)(pi), we have

∫

∂
(

Vj(P )∩B(pj ,Rα)∩Vi(P )∩B(pi,Rα)
)

nt
j,α

∂γj,α

∂pi
fα(dist(·, pj))φ

= −
∫

∂
(

Vi(P )∩B(pi,Rα)∩Vj(P )∩B(pj ,Rα)
)

nt
i,α

∂γi,α

∂pi
fα(dist(·, pi))φ ,

since ni,α(q) = −nj,α(q) and ‖q− pi‖ = ‖q− pj‖ for all q ∈ ∂
(

Vi(P )∩B(pi, Rα)∩ Vj(P )∩B(pj , Rα)
)

.
Moreover, notice that if pi moves, the motion —projected to the normal direction ni,α— of the points

in the arcs {arci,1(2Rα), . . . , arci,Mi(2Rα)(2Rα)} ⊂ ∂(Vi(P ) ∩ B(pi, Rα)) is exactly the same as the

motion of pi, i.e., nt
i,α

∂γi,α

∂pi
= nt

i,α over arci,1(2Rα) ∪ · · · ∪ arci,Mi(2Rα)(2Rα). Using this fact, the

expression for the partial derivative of H with respect to pi can be rewritten as

∂H
∂pi

(P ) =

∫

Vi(P )

∂

∂pi
f(‖q − pi‖)φ(q)dq +

m+1
∑

α=1

(

Mi(2Rα)
∑

k=1

∫

arci,k(2Rα)
nB(pi,Rα)fα(Rα)φ

−
Mi(2Rα−1)
∑

k=1

∫

arci,k(2Rα−1)
nB(pi,Rα−1)fα(Rα−1)φ

)

.

The final result is a rearrangement of the terms in this equation. �

Remark 2.3. For a constant density function, q 7→ φ(q) = c ∈ R+, each line integral

∫

arc(2R)
nB(p,R) φ

computed over the arc(2R) described by [θ−, θ+] 3 θ 7→ p+R(cos θ, sin θ) ∈ R
2, equals

cR

∫ θ+

θ−

(cos θ, sin θ)dθ = 2cR sin
(θ+ − θ−

2

)(

cos
(θ+ + θ−

2

)

, sin
(θ+ + θ−

2

))

. •

For particular choices of performance function, the corresponding multi-center function and its
gradient have different features. We here explore some interesting cases:

Centroid problem: If the performance function f is piecewise differentiable with no jump
discontinuities, then all the terms in the second summand of equation (7) vanish and one
obtains

∂H
∂pi

(P ) =

∫

Vi(P )

∂

∂pi
f(‖q − pi‖)φ(q)dq .

This is the result known in the locational optimization literature [11,16,19]. In particular, if
f(x) = −x2, the multi-center function H reads

H(P ) = −
n
∑

i=1

∫

Vi(P )
‖q − pi‖2φ(q)dq , −

n
∑

i=1

JVi,pi
,
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where JW,p denotes the polar moment of inertia of the set W ⊂ Q about the point p. Addi-
tionally, the gradient of H is

∂H
∂pi

(P ) = 2

∫

Vi(P )
(q − pi)φ(q)dq = 2 MVi(P )(CMVi(P ) −pi) .

Here MW and CMW denote, respectively, the mass and the center of mass with respect to the
density function φ of the set W ⊂ Q. The critical points of H are configurations P ∈ Qn such
that pi = CMVi(P ) for all i ∈ {1, . . . , n}. Such configurations are called centroidal Voronoi
configurations, see [16].

Area problem: On the other hand, if one takes f(x) = 1[0,R](x), the indicator function of the
set [0, R], then the multi-center function H corresponds to the area, measured according to φ,
covered by the union of the n balls B(p1, R), . . . , B(pn, R), that is,

H(P ) = areaφ(∪n
i=1B(pi, R)) .

In this case, the first term in equation (7) vanishes and one obtains

∂H
∂pi

(P ) =

Mi(2R)
∑

k=1

∫

arci,k(2R)
nB(pi,R) φ .

Given a configuration P ∈ Qn, if the ith agent is surrounded by neighbors in the graph
GLD(P, 2R) in such a way that Mi(2R) = 0, then the multi-center function H does not depend
on pi. This situation is depicted in Figure 3 (see example on the right) and captures the fact
that the total area covered by the agents is not affected by an infinitesimal displacement of
the ith agent.

Mixed centroid-area problem: Consider the case when the function f is given by x 7→
−x2 1[0,R)(x) + b · 1[R,+∞)(x), for b ≤ −R2. The multi-center function then takes the form

H(P ) = −
n
∑

i=1

JVi(P )∩B(pi,R),pi
+ b areaφ(Q \ ∪n

i=1B(pi, R)) ,

and its partial derivative with respect to the position of the ith agent is

∂H
∂pi

(P ) = 2 MVi(P )∩B(pi,R)(CMVi(P )∩B(pi,R) −pi) − (R2 + b)

Mi(2R)
∑

k=1

∫

arci,k(2R)
nB(pi,R) φ .

In the particular case when b = −R2, the function x 7→ f(x) = −x2 1[0,R)(x)−R2 · 1[R,+∞)(x)
is continuous and therefore the gradient of H takes the form

∂H
∂pi

(P ) = 2

∫

Vi(P )∩B(pi,R)
(q − pi)φ(q)dq = 2 MVi(P )∩B(pi,R)(CMVi(P )∩B(pi,R) −pi) .

Note that, in this case, the critical points of H are configurations P ∈ Qn such that pi =
CMVi(P )∩B(pi,R) for all i ∈ {1, . . . , n}. We refer to such configurations as R-centroidal Voronoi

configurations. For R ≥ diam(Q), R-centroidal Voronoi configurations coincide with the
standard centroidal Voronoi configurations over Q.
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We can now characterize the results in Theorem 2.2 in terms of the notion of spatially-distributed
computations introduced in Section 1.2.

Corollary 2.4. Let φ and f be a density and a performance function, respectively. The gradient of H
with respect to the agents’ location P ∈ Qn is spatially distributed over the Delaunay graph GD(P ).
Furthermore, if f(x) = b for all x ≥ R, then the gradient of H with respect to the agents’ location is
spatially distributed over the 2R-limited Delaunay graph GLD(P, 2R).

Proof. In general, the partial derivative of H with respect to the ith agent (cf. equation (7)) depends
on the position pi and on the position of all neighbors of pi in the graph GD. If, in addition, f(x) = b,
for all x ≥ R, then necessarily Rα < R, α ∈ {1, . . . ,m}, and

∫

Vi(P )

∂

∂pi
f(‖q − pi‖)φ(q)dq =

∫

Vi(P )∩B(pi,R)

∂

∂pi
f(‖q − pi‖)φ(q)dq .

Therefore, the expression for ∂H/∂pi in equation (7) can be computed with the knowledge pi and of
its neighbors in the graph GLD(P, 2R). �

This corollary states that information about all neighbors in GD is required for objective functions
H corresponding to arbitrary performance functions f . In the next proposition we explore what can
be done with only information about the neighbors in the 2R-limited Delaunay graph GLD(2R).

Proposition 2.5. Let f be a performance function and, without loss of generality, assume f(0) = 0.
For r ∈]0, 2 diam(Q)], define the performance function f r

2
: R+ → R given by f r

2
(x) = f(x) for x < r

2

and f r
2
(x) = f(diam(Q)) for x ≥ r

2 . Let H r
2

be the multi-center function associated to the performance

function f r
2
. Then, for all P ∈ Qn,

H r
2
(P ) ≤ H(P ) ≤ βH r

2
(P ) < 0 , (10a)

H r
2
(P ) ≤ H(P ) ≤ H r

2
(P ) + Π(P ) , (10b)

where β =
f( r

2
)

f(diam(Q)) ∈ [0, 1] and Π : Qn → [0, κ] ⊂ R, Π(P ) = (f( r
2) − f(diam(Q))) areaφ(Q \

∪n
i=1B(pi,

r
2)), with κ = (f( r

2) − f(diam(Q))) areaφ(Q).

Proof. Clearly, f r
2

is a performance function as it is non-increasing and piecewise differentiable with

finite jump discontinuities. Let b = f(diam(Q)) and note that f(x) ≥ b for all x ∈ [0, diam(Q)]. By
construction, it is clear that f r

2
(x) ≤ f(x) for all x ∈ [0, diam(Q)]. Since ‖q − p‖ ≤ diam(Q) for all

q, p ∈ Q, we conclude that H r
2
(P ) ≤ H(P ). Now, consider the function f̃(x) = βf r

2
(x). Note that

f̃(x) = βf(x) ≥ f(x) for x < r
2 , and f̃(x) = βb = f( r

2) ≥ f(x) for x ≥ r
2 . Therefore,

βH r
2
(P ) =

∫

Q

max
i∈{1,...,n}

f̃(‖q − pi‖)φ(q)dq ≥
∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq = H(P ) ,

which concludes the proof of the first chain of inequalities. To prove the second chain of inequalities,
consider the difference

H(P ) −H r
2
(P ) =

n
∑

i=1

∫

Vi(P )∩(Q\B(pi,
r
2 ))

(f(‖q − pi‖) − b)φ(q)dq .
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For q ∈ Vi(P )∩ (Q\B(pi,
r
2)), the non-increasing property of f implies that f(‖q−pi‖)− b ≤ f( r

2)− b.
Therefore,

H(P ) −H r
2
(P ) ≤

n
∑

i=1

∫

Vi(P )∩(Q\B(pi,
r
2 ))

(f( r
2) − b)φ(q)dq =

∫

Q\∪n
i=1B(pi,

r
2 )

(f( r
2) − b)φ(q)dq = Π(P ) .

�

Remark 2.6. The inequalities in (10) provide, respectively, constant-factor and additive approxima-
tions of the value of the multi-center function H by the value of the function H r

2
. These approximations

will play an important role in Section 3 when we discuss the continuous and discrete-time implemen-
tations of spatially-distributed coordination algorithms. •

The next result provides one more useful indication of the relationship between multi-center func-
tions associated to certain performance functions.

Proposition 2.7. Let f and f r
2

be performance functions, and H and H r
2

be the corresponding multi-

center functions, defined as in Proposition 2.5. Let P ∗ = (p∗1, . . . , p
∗
n) ∈ Qn be a local maximum of H r

2

such that Q ⊂ ∪i∈{1,...,n}B(p∗i ,
r
2). Then H(P ∗) = H r

2
(P ∗) and P ∗ is a local maximum of the aggregate

objective function H.

Proof. If Q ⊂ ∪i∈{1,...,n}B(p∗i ,
r
2), then from equation (10b) we deduce that H(P ∗) = H r

2
(P ∗).

Moreover, one can also show that Vi(P ) ⊂ B(p∗i ,
r
2) for all i ∈ {1, . . . , n}, and therefore Vi(P ) =

Vi(P )∩B(p∗i ,
r
2). As a consequence, the r-limited Delaunay graph GLD(P ∗, r) and the Delaunay graph

GD(P ∗) coincide, and the gradients of both H and H r
2

vanish at P ∗. �

The importance of Proposition 2.7 lies in the fact that, by following the gradient of the function H r
2

(where, along the evolution, the inclusion Q ⊂ ∪i∈{1,...,n}B(pi,
r
2) may not be verified and each agent

only operates with the knowledge of (i) the positions of other agents up to a distance r of its own
position, and (ii) the events taking place at up to distance r

2 of its own position), the agents may
eventually find a local maximum of the original multi-center function H.

We end this section by presenting a useful result in the 1-center case, i.e., when there is a single agent
(n = 1). For a convex polygon W , define the function H1(p,W ) =

∫

W
f(‖q−p‖)φ(q)dq. The following

lemma proves that the points in the boundary of W are not local maxima of H1(·,W ) : W → R.

Lemma 2.8. Let W be a convex polygon, and consider the function H1(·,W ) : W → R. Let p0 ∈ ∂W .

Then the gradient of H1 at p0 is non-vanishing ∂H1(·,W )
∂p

(p0) 6= 0, and points toward int(W ).

Proof. The function p 7→ H1(p,W ) is continuously differentiable over W , and its derivative is given
by

∂H1(·,W )

∂p
=

∫

W

∂

∂p
f(‖q − p‖)φ(q)dq +

m+1
∑

α=1

∫

∂(W∩B(p,Rα))
nt

α

∂γα

∂p
fα(dist(·, p)) φ

−
m+1
∑

α=1

∫

∂(W∩B(p,Rα−1))
nt

α−1

∂γα−1

∂p
fα(dist(·, p)) φ .
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Let M(Rα) ≥ 0 denote the number of distinct arcs arc1(2Rα), . . . , arcM(Rα)(2Rα) of radius Rα in

∂(W ∩B(p,Rα)). After some simplifications, we rewrite the expression for the gradient at p0 as

−
∫

W

f ′(‖q − p0‖)
q − p0

‖q − p0‖
φ(q)dq +

m
∑

α=1

(fα(Rα) − fα+1(Rα))

M(Rα)
∑

l=1

∫

arcl(2Rα)
nα φ , (11)

where nα denotes the outward normal to B(p0, Rα). Since W is convex, it is defined as the intersection
of half spaces with supporting hyperplanes H1, . . . , Hd via the equations Hζ(q) = Aζq+ bζ ≥ 0, where

Aζ is a 2×2-matrix and bζ ∈ R, for ζ ∈ {1, . . . , d}. To show that ∂H1(·,W )
∂p

(p0) 6= 0 and points toward

int(W ), we consider its inner product with the direction given by the each line Aζ∗q + bζ∗ = 0 such
that Hζ∗(p0) = 0. Let us therefore consider

Aζ∗



−
∫

W

f ′(‖q − p0‖)
q − p0

‖q − p0‖
φ(q)dq +

m
∑

α=1

(fα(Rα) − fα+1(Rα))

M(Rα)
∑

l=1

∫

arcl(2Rα)
nα φ





= −
∫

W

f ′(‖q − p0‖)
Aζ∗q + bζ∗
‖q − p0‖

φ(q)dq +
m
∑

α=1

(fα(Rα) − fα+1(Rα))

M(Rα)
∑

l=1

∫

arcl(2Rα)

Aζ∗(·) + bζ∗
dist(·, p0)

φ ,

where we have used the fact that nα(q) = (q − p0)/‖q − p0‖ for each q ∈ ∂(W ∩ B(p0, Rα)). Since
the function f is non-increasing, then its derivative is negative almost everywhere, and the jump
discontinuities fα(Rα)−fα+1(Rα) are positive for all α ∈ {1, . . . ,m}. Finally, note that Aζ∗q+bζ∗ > 0

in the interior of W . Therefore, we conclude that Aζ∗

(

∂H1(·,W )
∂p

(p0)
)

> 0 for all ζ∗ such that Hζ∗(p0) =

0, i.e., ∂H1(·,W )
∂p

(p0) 6= 0 and points toward int(W ). �

3. Design of spatially-distributed algorithms for coverage control

In this section, we develop continuous and discrete-time implementations of the gradient ascent for
a general aggregate objective function H.

3.1. Continuous-time implementations

Assume the agents’ location obeys a first order dynamical behavior described by

ṗi = ui.

Consider H an aggregate objective function to be maximized and impose that the location pi follows
the gradient ascent given by (7). In more precise terms, we set up the following control law defined
over the set Qn \ S

ui =
∂H
∂pi

(P ) , (12)

where we assume that the partition V(P ) = {V1, . . . , Vn} is continuously updated. One can prove the
following result.
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Proposition 3.1 (Continuous-time Lloyd ascent). Consider the gradient vector field on Qn\S defined
by equation (12). Then

(i) For a general performance function f , the gradient vector field is spatially distributed over
the Delaunay graph GD(P). If, in addition, the performance function verifies f(x) = b for
all x ≥ R, then the vector field is spatially distributed over the 2R-limited Delaunay graph
GLD(P, 2R).

(ii) The agents’ location evolving under (12) starting at P0 ∈ Qn \ S remains in Qn \ S and
converges asymptotically to the set of critical points of the aggregate objective function H.
Assuming this set is finite, the agents’ location converges to a critical point of H.

Proof. The statement (i) is a transcription of Corollary 2.4. To prove the statement (ii), let t ∈
R+ 7→ P (t) ∈ Qn denote the solution to the initial value problem ṗi =

∂H r
2

∂pi
(P ), i ∈ {1, . . . , n},

P (0) = P0. We reason by contradiction. Assume that there exists t∗ ∈ R+ and i, j ∈ {1, . . . , n} such
that pi(t∗) = pj(t∗), i.e., P (t∗) ∈ S. Let v be an accumulation point of the sequence of unitary vectors
{

pi(t)−pj(t)
‖pi(t)−pj(t)‖

}

t→t−∗
. Let ε > 0 sufficiently small such that, for all t ∈ (t∗ − ε, t∗), pi(t) and pj(t) are

neighbors in the graph GLD(P (t), r). Then one can show that

v · lim
t→t−∗

∂H r
2

∂pi
(P (t)) > 0 , v · lim

t→t−∗

∂H r
2

∂pj
(P (t)) < 0 . (13)

Indeed, if n denotes the orthogonal line to v, and Hi,n and Hj,n denote the associated hyperplanes
having v pointing inward and outward respectively, then, reasoning as in the proof of Lemma 2.8,

one proves that
∂H r

2
∂pi

(P (t∗)) = limt→t−∗

∂H r
2

∂pi
(P (t)) points toward int(Vi(P (t∗)) ∩ B(pi(t∗), r

2) ∩ Hi,n),

and
∂H r

2
∂pj

(P (t∗)) = limt→t−∗

∂H r
2

∂pj
(P (t)) points toward int(Vj(P (t∗)) ∩B(pj(t∗), r

2) ∩Hj,n). Since equa-

tion (13) is valid for any accumulation point of the sequence
{

pi(t)−pj(t)
‖pi(t)−pj(t)‖

}

t→t−∗
, we deduce that for

all t sufficiently close to t∗, we have (pi(t) − pj(t)) · (ṗi(t) − ṗj(t)) > 0, which contradicts P (t∗) ∈ S.
One can resort to a similar argument to guarantee that there is no configuration belonging to S in
the ω-limit set of the curve t 7→ P (t). The convergence result to the set of critical points of H r

2
is an

application of LaSalle Invariance Principle [23]. �

Remark 3.2. Note that this gradient ascent is not guaranteed to find the global maximum. For
example, in the vector quantization and signal processing literature [18], it is known that for “bimodal”
distribution density functions, the solution to the gradient flow reaches local maxima where the number
of agents allocated to the two region of maxima are not optimally partitioned. •

In a practical setting, the sensing and/or communication capabilities of a network agent are re-
stricted to a bounded region specified by a finite radius r > 0. Therefore, instead of maximizing
the multi-center function H, we set up the continuous-time algorithm given by equation (12) with
the function H r

2
. This latter algorithm has the advantage of being spatially distributed over the r-

limited Delaunay graph GLD(P, r), and providing an approximation of the behavior for the multi-center
function H (cf. Proposition 2.5).
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3.2. Discrete-time implementations

We start by reviewing some notions on discrete-time algorithms following [24]. An algorithm on Qn

is a set-valued map T : Qn → 2Qn
. Note that a map from Qn to Qn can be interpreted as a singleton-

valued map. For any initial P0 ∈ Qn, an algorithm T generates feasible sequences of configurations in
the following way: given Pn ∈ Qn, the map T yields T (Pn) ⊂ Qn. From this set, an arbitrary element
Pn+1 may be selected. In other words,

Pn+1 ∈ T (Pn) , n ∈ N ∪ {0} . (14)

An algorithm T is said to be closed at P ∈ Qn if for all convergent sequences Pk → P , P ′
k → P ′ such

that P ′
k ∈ T (Pk), one has that P ′ ∈ T (P ). An algorithm is said to be closed on W ⊂ Qn if it is closed

at P , for all P ∈ W . In particular, every continuous map T : Qn → Qn is closed on Qn. A set C is
said to be weakly positively invariant with respect to T if for any P0 ∈ C there exists P ∈ T (P0) such
that P ∈ C. A point P∗ is said to be a fixed point of T if P∗ ∈ T (P∗). Let U : Qn → R. We say
that U is a Lyapunov function for T on W if (i) U is continuous on W and (ii) U(P ′) ≤ U(P ) for all
P ′ ∈ T (P ) and all P ∈W .

We now turn to the design of discrete-time algorithms for limited-range coverage control. We start
by extending the definition of the aggregate objective function H to consider general partitions W of
Q as follows. Let P ∈ Qn and let W = {Wi ⊂ Q}n

i=1 be a partition of Q such that Wi is a convex
polygon and pi ∈Wi, for i ∈ {1, . . . , n}. Define the function

He(P,W) =
n
∑

i=1

∫

Wi

f(‖q − pi‖)φ(q)dq .

The function He is continuously differentiable with respect to its first variable for all P ∈ Qn, and its
partial derivative is given by

∂He

∂pi
(P,W) =

m+1
∑

α=1

∫

Wi∩D(pi,[Rα−1,Rα])

∂

∂pi
fα(‖q − pi‖)φ(q)dq

+
m+1
∑

α=1

∫

∂(Wi∩B(pi,Rα))
nt

i,α

∂γi,α

∂pi
fα(dist(·, pi))φ

−
m+1
∑

α=1

∫

∂(Wi∩B(pi,Rα−1))
nt

i,α−1

∂γi,α−1

∂pi
fα(dist(·, pi))φ , (15)

where for each k ∈ {1, . . . , n} and each α ∈ {1, . . . ,m+ 1}, nk,α(q) denotes the unit outward normal

to Wk ∩B(pk, Rα) at q, and γk,α : S
1 ×Qn → R

2 denotes a parameterization for the piecewise smooth

family
{

Wk ∩B(pk, Rα) | P ∈ Qn
}

. Note that, using the definition of H1 (cf. Section 2), one can also
write

He(P,W) =
n
∑

i=1

H1(pi,Wi) .
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The following two equalities hold

H(P ) = He(P,V(P )) , for all P ∈ Qn , (16)

∂He

∂pi
(P,V(P )) =

∂H
∂pi

(P ) , for all P ∈ Qn \ S . (17)

Let P ∈ S and consider a partition W = {Wi ⊂ Q}n
i=1 of Q such that Wi is a convex polygon

and pi ∈ Wi, for i ∈ {1, . . . , n}. Let i0, j0 ∈ {1, . . . , n}, i0 6= j0 such that pi0 = pj0 . Then, following
Remark 1.3, Vi0(P ) = Vj0(P ), and V(P ) is no longer a partition of Q, but a covering. Nevertheless, one
could consider the line determined by the edge Wi0 ∩Wj0 and the associated hyperplanes Hi0,Wi0

∩Wj0

and Hj0,Wi0
∩Wj0

such that Wi0 ⊂ Hi0,Wi0
∩Wj0

and Wj0 ⊂ Hj0,Wi0
∩Wj0

. With a slight abuse of notation,
redefining

Vi0(P ) = Vi0(P ) ∩Hi0,Wi0
∩Wj0

, Vj0(P ) = Vj0(P ) ∩Hj0,Wi0
∩Wj0

,

the collection V(P ) can be seen a partition of Q. This procedure can be extended if there are more
than two coincident agents {i1, . . . , is} at a point p ∈ Q by defining

Viµ(P ) = Viµ(P )∩
(

∩ν∈{1,...,s}\{µ}Hiµ,Wiµ∩Wiν

)

, µ ∈ {1, . . . , s} .

In the following, such a construction will be tacitly performed whenever we have a configuration P ∈ S
and a partition W of Q.

The following lemma shows that the Voronoi partition is optimal within the set of partitions of Q.

Lemma 3.3. Let φ and f be a density and a performance function, respectively. Let P ∈ Qn and
consider a partition W = {Wi ⊂ Q}n

i=1 of Q such that Wi is a convex polygon and pi ∈ Wi, for
i ∈ {1, . . . , n}. Then

He(P,W) ≤ He(P,V(P )) ,

and the inequality is strict if f is strictly decreasing and the partitions V(P ) and W differ by a set of
non-zero measure.

Proof. Given the chain of implications q ∈ Vj(P ) ⇒ ‖q − pi‖ ≥ ‖q − pj‖ ⇒ f(‖q − pi‖)φ(q) ≤
f(‖q − pj‖)φ(q), we compute

He(P,W) =
n
∑

i=1

n
∑

j=1

∫

Wi ∩Vj(P )
f(‖q − pi‖)φ(q)dq

≤
n
∑

i=1

n
∑

j=1

∫

Wi ∩Vj(P )
f(‖q − pj‖)φ(q)dq = He(P,V(P )).

�

We are now ready to characterize a class of algorithms with guaranteed convergence to the set of
critical points of the aggregate objective function H.

Proposition 3.4 (Discrete-time ascent). Let T : Qn → 2Qn
be an algorithm closed on Qn\S satisfying

the following properties:
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(a) for all P ∈ Qn, T (P ) ∩ S = ∅;
(b) for all P ∈ Qn \ S, P ′ ∈ T (P ) and i ∈ {1, . . . , n}, H1(p

′
i, Vi(P )) ≥ H1(pi, Vi(P ));

(c) for all P ∈ S and P ′ ∈ T (P ), H(P ′) > H(P );
(d) if P ∈ Qn \ S is not a critical point of H, then for all P ′ ∈ T (P ), there exists j ∈ {1, . . . , n}

such that H1(p
′
j , Vj(P )) > H1(pj , Vj(P )).

Let P0 ∈ Qn denote the initial agents’ location. Then, any sequence {Pn | n ∈ N ∪ {0}} generated
according to equation (14) converges to the set of critical points of H.

Proof. Consider −H : Qn → R as a candidate Lyapunov function for the algorithm T on Qn \ S.
Because of Lemma 3.3, we have

H(P ′) = He(P
′,V(P ′)) ≥ He(P

′,V(P )) ,

for all P ′ ∈ T (P ). In addition, because of property (b) of T , we also have

He(P
′,V(P )) ≥ He(P,V(P )) = H(P ) ,

for all P ′ ∈ T (P ). Hence, H(P ′) ≤ H(P ) for all P ′ ∈ T (P ) and all P ∈ Qn. Therefore, we
deduce that −H is a Lyapunov function for the algorithm T . Let P0 ∈ Qn \ S and consider a
sequence {Pn | n ∈ N ∪ {0}} generated according to equation (14). Because of property (a) of T ,
{Pn | n ∈ N ∪ {0}} remains in Qn \ S ⊂ Qn. Since Qn is compact, we conclude that the sequence
is bounded. Now, the application of the discrete-time LaSalle Invariance Principle (see Appendix C,
Theorem C.1) guarantees that there exists c ∈ R such that Pn → M ∩ H−1(c), where M is the
largest weakly positively invariant set contained in {P ′ ∈ Qn | ∃P ′ ∈ T (P ) such that H(P ′) = H(P )}.
Properties (c) and (d) of T imply that M must be contained in the set of critical points of H. If
P0 ∈ S, the sequence {Pn | n ∈ N ∪ {0}} can be equivalently described by {P0}∪ {Pn | n ∈ N}. Since
P1 ∈ Qn \ S by property (a) of T , the previous argument implies that the sequence converges to the
set of critical points of H. �

In what follows, we devise a general algorithm T : Qn → 2Qn
verifying properties (a)-(d) in Propo-

sition 3.4. We shall do so by designing a discrete-time version of the gradient ascent algorithm for
continuous-time settings.

Recall that Lemma 2.8 asserts that if p0 ∈ ∂W , then ∂H1(·,W )
∂p

(p0) 6= 0 points toward the interior

of W . If p0 ∈ int(W ) is not a critical point, then one also has that ∂H1(·,W )
∂p

(p0) 6= 0. For both cases,

there exists ε = ε(p0,W ) > 0 such that the point pδ defined by

pδ = p0 + δ
∂H1(·,W )

∂p
(p0) ∈W

has the property that H1(pδ) > H1(p0), for all δ ∈ (0, ε), and H1(pε) = H1(p0). As it is usually done
in nonlinear programming [24], the computation of the step-size ε can be implemented numerically via
a “line search”. With this discussion in mind, let us define the line search algorithm Tls : Qn → 2Qn

as follows:

Given P ∈ Qn, let P ′ ∈ Tls(P ) if, for i ∈ {1, . . . , n} with the property that pi 6=
pj , j ∈ {1, . . . , n} \ {i},

p′i = pi + δ
∂H1(·, Vi(P ))

∂p
(pi) , with δ ∈

[

ε(pi, Vi(P ))

3
,
ε(pi, Vi(P ))

2

]

, (18)
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and, for each set {i1, . . . , is} of coincident indexes at a point p ∈ Q,

p′iµ = piµ + δ
∂H1(·, Yiµ)

∂p
(piµ) , with δ ∈

[

ε(pi, Yi)

3
,
ε(pi, Yi)

2

]

, (19)

where {Yi1 , . . . , Yis} is a partition of Vi1(P ) = · · · = Vis(P ) verifying p ∈ Yiµ , for
µ ∈ {1, . . . , s}.

Proposition 3.5. The algorithm Tls : Qn → 2Qn
defined by equations (18)-(19) is closed on Qn \ S,

and verifies properties (a)-(d) in Proposition 3.4.

Proof. The fact that Tls is closed on Qn \ S follows from its definition and the continuous dependence
of ε(p, V (P )) on P ∈ Qn \ S. Regarding the properties in Proposition 3.4, consider the following
discussion. Let P ∈ Qn and consider P ′ ∈ Tls(P ). On the one hand, equation (18) and the definition
of ε(p, V (P )) implies that p′i ∈ int(Vi(P )) for each i ∈ {1, . . . , n} such that pi 6= pj for all j ∈
{1, . . . , n}\{i}. On the other hand, equation (19) and Lemma 2.8 implies p′iµ ∈ int(Yiµ). Therefore, we

deduce that P ′ 6∈ S, and property (a) is verified. Using equation (18), one has that for all P ∈ Qn \S,
P ′ ∈ Tls(P ) and all i ∈ {1, . . . , n}, H1(p

′
i, Vi(P )) ≥ H1(pi, Vi(P )), i.e., the algorithm Tls verifies

property (b). With respect to property (c), let P ∈ S. For simplicity, we only deal with the case when
there exists i, j ∈ {1, . . . , n}, i 6= j such that pi = pj , and all other pk 6= pi = pj , k ∈ {1, . . . , n} \ {i, j}
are distinct among them (the cases with more degeneracies are treated analogously). Let P ′ ∈ T (P ).
According to equation (19), we have

H(P ) =
∑

k∈{1,...,n}\{i,j}
H1(pk, Vk(P )) + H1(pi, Yi) + H1(pj , Yj) ,

where {Yi, Yj} is a partition of Vi(P ) = Vj(P ) with pi ∈ Yi and pj ∈ Yj . Since necessarily pi ∈ ∂Yi

and pj ∈ ∂Yj , Lemma 2.8 implies that H1(pi, Yi) + H1(pj , Yj) < H1(p
′
i, Yi) + H1(p

′
j , Yj). Therefore,

H(P ) < H(P ′), i.e., property (c) is verified by Tls. Finally, if P ∈ Qn \ S is not a critical point of H,
then there must exist i ∈ {1, . . . , n} such that

∂H
∂pi

(P ) =
∂He

∂pi
(P,V(P )) 6= 0 .

Equivalently, pi is not a critical point of H1(·, Vi(P )) : Vi(P ) → R, and therefore ε(pi, Vi(P )) > 0. By
equation (18), we conclude that H1(p

′
i, Vi(P )) > H1(pi, Vi(P )) for all P ′ ∈ Tls(P ), i.e., the algorithm

Tls verifies property (d). �

Corollary 3.6. Consider the algorithm Tls : Qn → 2Qn
defined by equations (18)-(19). Then

(i) For a general performance function f , the algorithm Tls is spatially distributed over the De-
launay graph GD(P). If, in addition, the performance function verifies f(x) = b for all x ≥ R,
then Tls is spatially distributed over the 2R-limited Delaunay graph GLD(P, 2R);

(ii) The sequence of agents’ locations generated by Tls according to equation (14) starting at P0 ∈
Qn, converges asymptotically to the set of critical points of the aggregate objective function H.

Proof. The statement (i) is a direct consequence of Corollary 2.4. The convergence result is a conse-
quence of Propositions 3.4 and 3.5. �
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Remark 3.7. As we noticed in Section 3.1, in a practical setting, the network agents have typically
a limited sensing/communication radius r > 0, and therefore, following the result in Proposition 2.5,
we seek to maximize the function H r

2
. •

In certain cases, it might be possible to construct specific algorithms tailored to the concrete ag-
gregate objective function at hand. A relevant example of this situation is when the local maxima of
the function H1(·,W ) can be characterized for each fixed polygon W . With this discussion in mind,
let us define the max algorithm Tmax : Qn → 2Qn

as follows:

For P ∈ Qn \ S, let

Tmax(P ) =
{

P ′ ∈ Qn | p′i is a local maximum of H1(·, Vi(P )) , for i ∈ {1, . . . , n}
}

. (20)

If P ∈ S, for each set {i1, . . . , is} of coincident indexes at a point p ∈ Q, let p′iµ be

a local maximum of H1(·, Yiµ), where {Yi1 , . . . , Yis} is a partition of Vi1(P ) = · · · =
Vis(P ) verifying p ∈ Yiµ , for µ ∈ {1, . . . , s}.

One can show that Tmax is closed on Qn\S and verifies properties (a)-(d) in Proposition 3.4. As before,
the algorithm Tmax is spatially distributed over the Delaunay graph GD(P) and, if the performance
function is f r

2
, then Tmax is spatially distributed over the r-limited Delaunay graph GLD(P, r).

It is worth noticing that Lemma 2.8 guarantees that the local maxima of H1(·,W ) are not in the

boundary of W , and therefore are contained in the set
{

p∗ ∈W | ∂H1(·,W )
∂p

(p∗) = 0
}

. Moreover, if f

is concave, then H1 is also concave, as stated in the following lemma.

Lemma 3.8. If f : R+ → R is concave, then H1 is concave.

Proof. For fixed q ∈ Q, the map p 7→ f(‖q − p‖)φ(q) is concave; the integral with respect to q of a
map with this property is concave in p; see [25, Subsection 3.2.1]. �

As a consequence, the set of global maxima of H1(·,W ) is compact, convex and characterized by
the equation

∂H1(·,W )

∂p
(p) = 0 .

In particular, these conditions are met in the centroid problem introduced in Section 2, where f(x) =
−x2 is concave and the unique global minimum of H1(·,W ) is the centroid CMW of W . In this case,
the algorithm Tmax is precisely the Lloyd quantization algorithm [8,16,18].

4. Simulations

To illustrate the performance of the coordination algorithms, we include some simulation results.
The algorithms are implemented in Mathematica r© as a library of routines and a main program
running the simulation. We have developed a library of basic geometric routines in two and three di-
mensions. The resulting Mathematica r© packages PlanGeom.m and SpatialGeom.m are freely available
at http://ams.ucsc.edu/~jcortes/software.

The objective of a first routine is to compute the intersection of the bounded Voronoi cell Vi with
the ball B(pi,

r
2), for i ∈ {1, . . . , n}, and to parameterize each set Vi ∩ B(pi,

r
2) in polar coordinates.

The objective of a second routine is to compute the surface integrals on these sets and the line integrals
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on their boundaries via the numerical integration routine NIntegrate. We paid careful attention to
numerical accuracy issues in the computation of the Voronoi diagram and in the integration.

We show executions of the discrete-time algorithm Tls (cf. equations (18)-(19)) for the centroid
problem, the area problem, the mixed centroid-area problem with continuous sensing performance,
and the mixed centroid-area problem with discontinuous sensing performance in Figs. 4, 5, 6 and 7,
respectively. Measuring displacements in meters, we consider the domain Q determined by the vertices

{(0, 0), (2.125, 0), (2.9325, 1.5), (2.975, 1.6), (2.9325, 1.7), (2.295, 2.1), (0.85, 2.3), (0.17, 1.2)}.

The diameter of this domain is diam(Q) = 3.37796. In all examples, the distribution density function φ
is the sum of five Gaussian functions of the form 5 exp(6(−(x − xcenter)

2 − (y − ycenter)
2)) and is

represented by means of its contour plot. The centers (xcenter, ycenter) of the Gaussians are given,
respectively, by (2, .25), (1, 2.25), (1.9, 1.9), (2.35, 1.25) and (.1, .1). Measured with respect to φ, the
area of the domain is areaφ(Q) = 8.61656. Unless otherwise noted, each agent operates with a finite
sensing/communication radius equal to r = .45.

Figure 4. Centroid problem (with agent performance f(x) = −x2): discrete-time
algorithm Tls for 16 agents on a convex polygonal environment. The left (respectively,
right) figure illustrates the initial (respectively, final) locations and Voronoi partition.
The central figure illustrates the gradient ascent flow. After 90 seconds, the value of
the multi-center function is approximately −.321531.

The execution of the coordination algorithm in Figure 7 (with radius r = .45, agent performance
f r

2
(x) = −x2 1[0, r

2
)(x) − diam(Q)2 · 1[ r

2
,+∞)(x) and corresponding multi-center function H r

2
) can be

regarded as a limited-range implementation of the gradient ascent of the multi-center function H
corresponding to the agent performance f(x) = −x2 (cf. Figure 4); this performance function does
not have any range limitation. According to Proposition 2.5, we compute

β =
f( r

2)

f(diam(Q))
=

1

4

(

r

diam(Q)

)2

≈ 0.004437 ,

Π(Pfinal) =
(

f
(

r
2

)

− f(diam(Q))
)

areaφ(Q \ ∪n
i=1B(pi,

r
2)) ≈ 26.5156 ,

where Pfinal denotes the final configuration in Figure 7. From the constant-factor approximation (10a)
and the additive approximation (10b), the absolute error is guaranteed to be less than or equal to
min{(β − 1)H r

2
(Pfinal),Π(Pfinal)} ≈ 6.77282. In order to compare the performance of this execution

with the performance of the discrete-time algorithm in the unlimited-range case, i.e., for the case of
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Figure 5. Area problem (with agent performance f(x) = 1[0, r
2
](x)): discrete-time

algorithm Tls for 16 agents on a convex polygonal environment. The left (respectively,
right) figure illustrates the initial (respectively, final) locations and Voronoi partition.
The central figure illustrates the gradient ascent flow. For each agent i, the intersection
Vi ∩ B(pi,

r
2) is plotted in light gray. After 18 seconds, the value of the multi-center

function is approximately 6.28977.

Figure 6. Mixed centroid-area problem (with continuous agent performance f(x) =

−x2 1[0, r
2
)(x) − r2

4 · 1[ r
2
,+∞)(x)): discrete-time algorithm Tls for 16 agents on a con-

vex polygonal environment. The left (respectively, right) figure illustrates the initial
(respectively, final) locations and Voronoi partition. The central figure illustrates the
gradient ascent flow. For each agent i, the intersection Vi ∩B(pi,

r
2) is plotted in light

gray. After 90 seconds, the value of the multi-center function is approxima-
tely −0.252534.

f(x) = −x2 (cf. Figure 4), we compute the percentage error in the value of the multi-center function H
at their final configurations. This percentage error is approximately equal to 30.7%.

Figure 8 below shows another execution of the discrete-time algorithm Tls for the mixed centroid-
area problem with discontinuous sensing performance, where now the sensing/communication radius
is taken equal to r = .65. In this case, the percentage error with respect to the performance of the
discrete-time algorithm in the unlimited-range case is approximately equal to 23%. As expected, the
percentage error of the performance of the limited-range implementation improves with higher values
of the ratio r

diam(Q) .
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Figure 7. Mixed centroid-area problem (with discontinuous agent performance f(x) =
−x2 1[0, r

2
)(x) − diam(Q)2 · 1[ r

2
,+∞)(x)): discrete-time algorithm Tls for 16 agents on a

convex polygonal environment. The left (respectively, right) figure illustrates the initial
(respectively, final) locations and Voronoi partition. The central figure illustrates the
gradient ascent flow. For each agent i, the intersection Vi ∩B(pi,

r
2) is plotted in light

gray. After 13.5 seconds, the value of the multi-center function is approximately −6.803.

Figure 8. Execution of the discrete-time algorithm Tls in the same setting as in Fig-
ure 7, but with a sensing/communication radius equal to r = .65. After 13.5 seconds,
the value of the multi-center function is approximately −1.10561.

5. Conclusions and future work

We have presented novel spatially-distributed algorithms for coordinated motion of groups of agents
in continuous and discrete time. Avenues of possible future research include (1) distributed implemen-
tation of deterministic annealing techniques [26] (methods which promise to overcome local maxima),
(2) visibility-based algorithms for coverage in non-convex environments, and (3) distributed algorithms
for other cooperative behaviors and sensing tasks, e.g., detection, estimation, and map-building.

This material is based upon work supported in part by ARO Grant DAAD 190110716, ONR YIP Award
N00014-03-1-0512, and NSF SENSORS Award IIS-0330008. Sonia Mart́ınez’s work was supported in part by a
Fulbright PostDoctoral Fellowship from the Spanish Ministry of Education and Culture.
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Appendix A. Piecewise smooth sets and a generalized Conservation-of-Mass

Law

A set S ⊂ R
2 is called strictly star-shaped if there exists a point p ∈ S such that for all s ∈ ∂S

and all λ ∈ (0, 1], one has that λp + (1 − λ)s ∈ int(S). A curve C in R
2 is the image of a map

γ : [a, b] → R
2. The map γ is called a parameterization of C. A curve γ : [a, b] → R

2 is simple if it is
not self-intersecting, i.e., if γ is injective on (a, b). A curve is closed if γ(a) = γ(b). A set Ω ⊂ R

2 is
said to be piecewise smooth if its boundary, ∂Ω, is a simple closed curve that admits a continuous and
piecewise smooth (i.e. piecewise continuously differentiable) parameterization γ : S

1 → R
2. Likewise,

a collection of sets
{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

is said to be a piecewise smooth family if Ω(x) is piecewise

smooth for all x ∈ (a, b), and there exists a continuous function γ : S
1 × (a, b) → R

2, (θ, x) 7→ γ(θ, x),
continuously differentiable with respect to its second argument such that for each x ∈ (a, b), the map
θ 7→ γx(θ) = γ(θ, x) is a continuous and piecewise smooth parameterization of ∂Ω(x). We refer to γ
as a parameterization for the family

{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

.
The following result is an extension of the integral form of the Conservation-of-Mass Law in fluid

mechanics [27]. Given a curve C parameterized by a piecewise smooth map γ : [a, b] → C, recall that
the line integral of a function f : C ⊂ R

2 → R over C is defined by

∫

C

f =

∫ b

a

f(γ(t)) ‖γ̇(t)‖ dt ,

and it is independent of the selected parameterization.

Proposition A.1. Let
{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

be a piecewise smooth family such that Ω(x) is strictly

star-shaped for all x ∈ (a, b). Let the function φ : R
2 × (a, b) → R be continuous on R

2 × (a, b),
continuously differentiable with respect to its second argument for all x ∈ (a, b) and almost all q ∈ Ω(x),

and such that for each x ∈ (a, b), the maps q 7→ φ(q, x) and q 7→ ∂φ
∂x

(q, x) are measurable, and integrable
on Ω(x). Then, the function

(a, b) 3 x 7→
∫

Ω(x)
φ(q, x)dq (21)

is continuously differentiable and

d

dx

∫

Ω(x)
φ(q, x)dq =

∫

Ω(x)

∂φ

∂x
(q, x)dq +

∫

∂Ω(x)
φ(γ, x)nt(γ)

∂γ

∂x
dγ ,

where n : ∂Ω(x) → R
2, q 7→ n(q), denotes the unit outward normal to ∂Ω(x) at q ∈ ∂Ω(x), and

γ : S
1 × (a, b) → R

2 is a parameterization for the family
{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

.

Proof. Let x0 ∈ (a, b). Using the fact that the map γ is continuous and that Ω(x0) is strictly star-
shaped, one can show that there exist an interval around x0 of the form Ix0 = (x0 − ε, x0 + ε),
a continuously differentiable function ux0 : S

1 × R+ → R
2 and a function rx0 : S

1 × Ix0 → R+

continuously differentiable in x and piecewise continuously differentiable in θ such that for all x ∈ Ix0 ,
one has Ω(x) = ∪θ∈S1 {ux0(θ, s) | 0 ≤ s ≤ rx0(θ, x)} and ux0(θ, rx0(θ, x)) = γ(θ, x), for θ ∈ S

1. For
simplicity, we denote by r and u the functions rx0 and ux0 , respectively. By definition, the function
in (21) is continuously differentiable at x0 if the following limit exists

lim
h→0

1

h

(

∫

Ω(x0+h)
φ(q, x0 + h)dq −

∫

Ω(x0)
φ(q, x0)dq

)

,
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and depends continuously on x0. Now, we can rewrite the previous limit as

lim
h→0

1

h

∫ 2π

0

(

∫ r(θ,x0+h)

0
φ(u(θ, s), x0 + h)

∥

∥

∥

∂u

∂θ
× ∂u

∂s

∥

∥

∥
ds−

∫ r(θ,x0)

0
φ(u(θ, s), x0)

∥

∥

∥

∂u

∂θ
× ∂u

∂s

∥

∥

∥
ds
)

dθ =

lim
h→0

1

h

∫ 2π

0

(

∫ r(θ,x0+h)

r(θ,x0)
φ(u(θ, s), x0 + h)

∥

∥

∥

∂u

∂θ
× ∂u

∂s

∥

∥

∥
ds

+

∫ r(θ,x0)

0
(φ(u(θ, s), x0 + h) − φ(u(θ, s), x0))

∥

∥

∥

∂u

∂θ
× ∂u

∂s

∥

∥

∥
ds
)

dθ ,

where × denotes the vector product and for brevity we omit that the partial derivatives ∂u
∂θ

and ∂u
∂s

are evaluated at (θ, s) in the integrals. Now, since

lim
h→0

1

h

(

φ(u(θ, s), x0 + h) − φ(u(θ, s), x0)
∥

∥

∥

∂u

∂θ
× ∂u

∂s

∥

∥

∥

)

=
∂φ

∂x0
(u(θ, s), x0)

∥

∥

∥

∂u

∂θ
× ∂u

∂s

∥

∥

∥

almost everywhere and because this last function is measurable and its integral over the bounded
set Ω(x0) is finite by hypothesis, the Lebesgue Dominated Convergence Theorem [28] implies that

lim
h→0

1

h

∫ 2π

0

∫ r(θ,x0)

0
(φ(u(θ, s), x0 + h) − φ(u(θ, s), x0))

∥

∥

∥

∂u

∂θ
× ∂u

∂s

∥

∥

∥
dsdθ =

∫ 2π

0

∫ r(θ,x0)

0

∂φ

∂x
(u(θ, s), x0)

∥

∥

∥

∂u

∂θ
× ∂u

∂s

∥

∥

∥
dsdθ =

∫

Ω(x0)

∂φ

∂x
(q, x0)dq . (22)

On the other hand, using the continuity of φ, one can deduce that

lim
h→0

1

h

∫ 2π

0

∫ r(θ,x0+h)

r(θ,x0)
φ(u(θ, s), x0 + h)

∥

∥

∥

∂u

∂θ
(θ, s)× ∂u

∂s
(θ, s)

∥

∥

∥
ds dθ

= lim
h→0

1

h

∫ 2π

0

∫ x0+h

x0

φ(u(θ, r(θ, z)), x0 + h)
∥

∥

∥

∂u

∂θ
(θ, r(θ, z))× ∂u

∂s
(θ, r(θ, z))

∥

∥

∥

∂r

∂x
(θ, z) dz dθ

=

∫ 2π

0
φ(u(θ, r(θ, x0)), x0)

∥

∥

∥

∂u

∂θ
(θ, r(θ, x0))×

∂u

∂s
(θ, r(θ, x0))

∥

∥

∥

∂r

∂x0
(θ, x0) dθ .

Since γ(θ, x) = u(θ, r(θ, x)) for all θ ∈ S
1 and x ∈ Ix0 , one has

∂γ

∂θ
(θ, x0) =

∂u

∂θ
(θ, r(θ, x0)) +

∂u

∂s
(θ, r(θ, x0))

∂r

∂θ
(θ, x0) ,

∂γ

∂x
(θ, x0) =

∂u

∂s
(θ, r(θ, x0))

∂r

∂x
(θ, x0) .

Let χ denote the angle formed by ∂γ
∂θ

(θ, x0) and ∂u
∂s

(θ, r(θ, x0)). Then (omitting the expression
(θ, r(θ, x)) for brevity),

∥

∥

∥

∂u

∂θ
× ∂u

∂s

∥

∥

∥
=
∥

∥

∥

(

∂u

∂θ
+
∂u

∂s

∂r

∂θ

)

× ∂u

∂s

∥

∥

∥
=
∥

∥

∥

dγ

dθ

∥

∥

∥

∥

∥

∥

∂u

∂s

∥

∥

∥
sinχ =

∥

∥

∥

∂γ

∂θ

∥

∥

∥
nt(γ)

∂u

∂s
,
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where in the last inequality we have used the fact that, since γx0 is a parameterization of ∂Ω(x0), then
sinχ = cosψ, where ψ is the angle formed by n, the outward normal to ∂Ω(x0), and ∂u

∂s
. Therefore,

we finally arrive at

∫ 2π

0
φ(γ(θ), x0)

∥

∥

∥

∂u

∂θ
(θ, r(θ, x0))×

∂u

∂s
(θ, r(θ, x0))

∥

∥

∥

∂r

∂x
(θ, x0)dθ

=

∫ 2π

0
φ(γ(θ), x0)

∥

∥

∥

∂γ

∂θ
(θ, x0)

∥

∥

∥
nt(γ(θ, x0))

∂γ

∂x
(θ, x0)dθ =

∫

∂Ω(x0)
φ(γ, x0)n

t(γ)
∂γ

∂x
dγ . (23)

Given the hypothesis of Proposition A.1, both terms in (22) and (23) have a continuous dependence
on x0 ∈ (a, b), which concludes the proof. �

Remark A.2. Note that the result in Proposition A.1 can be readily extended to any family of
sets {Ω(x) | x ∈ (a, b)} that admits a suitable decomposition into piecewise smooth families consisting
of strictly star-shaped sets. For instance, if {Ωi(x) | x ∈ (a, b)}, i ∈ {1, 2} are two piecewise smooth
families with strictly star-shaped sets and we consider the family Ω(x) = Ω1(x)\Ω2(x), for all x ∈ (a, b),
then the same result holds for the function

x ∈ (a, b) 7→
∫

Ω(x)
φ(q, x)dq =

∫

Ω1(x)
φ(q, x)dq −

∫

Ω2(x)
φ(q, x)dq ,

by applying Proposition A.1 to each summand on the right-hand side of the equality. •

Appendix B. Upper bound on the area of the intersection between two balls

Lemma B.1. For R ∈ R+, let p, p′ ∈ R
2 satisfy ‖p−p′‖ ≤ R. Then the area A of B(p′, R)∩B(p,R)c

satisfies A ≤ 2
√

3+3
3 R‖p− p′‖.

Proof. The area A equals π R2 − L, where L is the area of the non-trivial lune B(p,R)∩B(p′, R) (see
Figure 9). Let O, O′ be the two points in the intersection ∂B(p,R)∩∂B(p′, R). Note that the triangle
with vertices O, p and p′, T (O, p, p′), and the triangle T (O′, p, p′) are isosceles. This implies that

the diagonals of the polygon P (p,O, p′, O′) intersect at the middle point p′+p
2 . Let ς be the angle of

T (O, p, p′) at p and D = ‖p−p′‖
2 . Then, the area of the lune L can be computed as L = 2(CS − 2T),

where CS is the area of a circular sector with angle 2ς and T is the area of the triangle T (p,O, p′+p
2 ).

Since CS = ςR2 and T = 1
2D

√
R2 −D2, we have that A = R2(π − 2ς) + 2D

√
R2 −D2. Now, using

that 0 ≤ D ≤ R, we deduce that

A ≤ R2(π − 2ς) + 2RD .

In order to finally bound the first term of the right-hand side of the inequality with a quantity
proportional to D, we use that ς = arccos(D

R
). Consider now the function g(x) = π− 2 arccosx−Kx.

It is easy to see that for K > 4√
3
, one has g′(x) ≤ 0 and g(x) ≤ 0 when 0 ≤ x ≤ 1

2 . In particular

this implies that, for 0 ≤ D
R

≤ 1
2 , we have that π − 2 arccos(D

R
) ≤ KD

R
. In other words, the former

inequality is valid for ‖p− p′‖ ≤ R. This concludes the proof. �
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p′
T

A

CS

ς

D

O′

R

O

p

Figure 9. Areas of interest: A is the area of B(p′, R)∩B(p,R)c, T is the area of

the triangle T (p,O, p′+p
2 ), and CS is the area of the circular sector inside B(p,R)

determined by (p,O,O′).

Appendix C. Discrete-time LaSalle Invariance Principle

The following result is an extension of two classical results: on the one hand, it extends the discrete-
time version of LaSalle Invariance Principle [29] to algorithms defined via set-valued maps. On the
other hand, it considers a more general notion of Lyapunov function (cf. Section 3.2) than in the usual
statement of the Global Convergence Theorem [24]. After the submission of this manuscript, it has
been brought to our attention that a related result is presented in [30].

Theorem C.1 (Discrete-time LaSalle Invariance Principle). Let T be a closed algorithm on W ⊂ R
N

and let U be a Lyapunov function for T on W . Let x0 ∈W and assume the sequence {xn | n ∈ N ∪ {0}}
defined via xn+1 ∈ T (xn) is in W and bounded. Then there exists c ∈ R such that

xn −→M ∩ U−1(c) ,

where M is the largest weakly positively invariant set contained in

{

x ∈ R
N | ∃y ∈ T (x) such that U(y) = U(x)

}

∩W.

Proof. Let Ω(xn) ⊂ W denote the ω-limit set of the sequence {xn | n ∈ N ∪ {0}}. First, let us
prove that Ω(xn) is weakly positively invariant. Let x ∈ Ω(xn). Then there exists a subsequence
{xnm | m ∈ N ∪ {0}} of {xn | n ∈ N ∪ {0}} such that xnm → x. Consider the sequence {xnm+1 | m ∈
N ∪ {0}}. Since this sequence is bounded, it has a convergent subsequence. For ease of notation, we
use the same notation to refer to it, i.e., there exits y such that xnm+1 → y. By definition, y ∈ Ω(xn).
Moreover, using the fact that T is closed, we deduce that y ∈ T (x). Therefore Ω(xn) is weakly
positively invariant.

Now, consider the sequence {U(xn) | n ∈ N ∪ {0}}. Since {xn | n ∈ N ∪ {0}} is bounded and U is
a Lyapunov function for T on W , this sequence is decreasing and bounded from below, and therefore
convergent. Let c ∈ R such that U(xn) → c. Let us see that the value of U on Ω(xn) is constant and
equal to c. Take any x ∈ Ω(xn). Accordingly, there exists a subsequence {xnm | m ∈ N ∪ {0}} such
that xnm → x. Since U is continuous, U(xnm) → U(x). From U(xn) → c, we conclude that U(x) = c.



DISTRIBUTED COVERAGE OPTIMIZATION AND CONTROL WITH RANGE-LIMITED INTERACTIONS 33

Finally, the fact that Ω(xn) is weakly positively invariant and U is constant on Ω(xn), implies that

Ω(xn) ⊂
{

x ∈ R
N | ∃y ∈ T (x) such that U(y) = U(x)

}

.

Therefore, we conclude that xn →M ∩U−1(c), where M is the largest weakly positively invariant set
contained in

{

x ∈ R
N | ∃y ∈ T (x) such that U(y) = U(x)

}

∩W . �


