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Robust rendezvous for mobile autonomous agents
via proximity graphs in arbitrary dimensions

Jorge Cortés, Sonia Martı́nez, Francesco Bullo

Abstract— This paper presents coordination algorithms for
networks of mobile autonomous agents. The objective of the
proposed algorithms is to achieve rendezvous, that is, agreement
over the location of the agents in the network. We provide
analysis and design results for multi-agent networks in arbitrary
dimensions under weak requirements on the switching and
failing communication topology. The novel correctness proof
relies on proximity graphs and their properties and on a general
LaSalle Invariance Principle for nondeterministic discrete-time
dynamical systems.

I. INTRODUCTION

This work is a contribution to the emerging discipline
of motion coordination for ad-hoc networks of mobile au-
tonomous agents. With this loose terminology we refer to
groups of robotic agents with limited mobility and commu-
nication capabilities. In the not too distant future these groups
of coordinated devices will perform a variety of challenging
tasks including, for example, search and recovery operations,
surveillance, exploration and environmental monitoring. The
potential advantages of employing arrays of agents have re-
cently motivated vast interest in this topic. For example, from
a control viewpoint, a group of agents inherently provides
robustness to failures of single agents or of communication
links.

The motion coordination problem for groups of autonomous
agents is a control problem in the presence of communication
constraints. Typically, each agents makes decisions based only
on partial information about the state of the entire network that
is obtained via communication with its immediate neighbors.
One important difficulty is that the topology of the communi-
cation network depends on the agents’ locations and, therefore,
changes with the evolution of the network. A fundamental
system-theoretical problem in the motion coordination of ad-
hoc networks is the synthesis of control laws whose commu-
nication requirements scale nicely with the number of agents
in the network.

The “multi-agent rendezvous” problem and a first “cir-
cumcenter algorithm” have been introduced by Ando and
coworkers in [1]. The algorithm proposed in [1] has been
extended to various synchronous and asynchronous stop-
and-go strategies in [2], [3]. A related algorithm, in which
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connectivity constraints are not imposed, is proposed in [4].
A preliminary study on rendezvous under communication
quantization is presented in [5]. These motion coordination
schemes are memoryless (static feedback), anonymous (all
agents are indistinguishable), and spatially distributed (only
local information is required). An incomplete list of recent
works on motion coordination algorithms includes [6], [7] on
pattern formation, [8] on flocking, [9] on self-assembly, [10]
on foraging, [11] on gradient climbing, and [12] on deploy-
ment. Consensus and control theoretical problems on dynamic
graphs are discussed in [13] and in [14], respectively.

In this paper we provide novel analysis and design results
on a class of rendezvous algorithms. First, we define and
analyze a class of “circumcenter algorithms” defined over
switching communication topologies. We classify communi-
cation topologies for our algorithms via the notion of “prox-
imity graphs,” see [15] and [12]. Admissible communication
topologies for our algorithms are proximity graphs with the
following properties: they are “spatially distributed” over the
disk graph (i.e., they can be computed with only the local
information encoded in the disk graph) and their connected
components have the same vertices as the disk graph. This is
a more general class of communication topologies than the
one adopted in most works on motion coordination including
for example [1], [2], [3], [4]. The ability to rely on general
communication topologies is advantageous in the design of
wireless communication strategies and is referred to as “topol-
ogy control,” see for example [16] and references therein. For
the proximity graphs of interest in this paper, we prove some
novel technical facts regarding connectivity.

Second, we consider networks of agents whose state space
is R

d, where d is an arbitrary number not restricted to {1, 2}.
We prove that our proposed class of circumcenter algorithms is
indeed correct in arbitrary dimensions and include simulations
in two and three dimensions. As a natural outcome of this
analysis, we prove that the original circumcenter algorithm
in [1] can be adapted to work in higher dimensions, and that
it is guaranteed to converge in finite time.

Third, we establish a general theorem on the robustness of
the proposed class of circumcenter algorithms with respect to
communication link failures. Rendezvous is guaranteed even
if each agent experiences different link failures, provided the
resulting directed communication graph is strongly connected
at least once every finite number of time instants. Our results
provide the first contribution to the theoretical explanation
of the robustness properties of the circumcenter algorithm
observed in computer simulations in [1].

Fourth, we develop an innovative method of proof based
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on a recently-developed LaSalle Invariance Principle for non-
deterministic discrete-time dynamical systems, see [12]. This
version of the invariance principle helps us establish robust
convergence as follows. At each configuration of the network,
we consider all the possible evolutions of the agents under
all the possible choices of strongly connected communication
topologies. In this way, the evolution of the proposed class
of circumcenter algorithms is embedded into the (larger) set
of evolutions of a non-deterministic discrete-time dynamical
system. In turn, this system is analyzed via our novel version
of the invariance principle.

This paper and our previous work in [12] use the same
tools (generalized invariance principle and proximity graphs)
to study two different and complementary motion coordina-
tion problems (deployment and rendezvous, respectively). We
envision that these theoretical tools will play an important role
in the emerging discipline of scalable motion coordination.

We emphasize that rendezvous problems are also important
because of their relevance in network consensus problems [17],
[13]. In a network consensus problem, the objective is to
achieve agreement over the value of some logical variables.
Our rendezvous algorithms can be applied to tackle consensus
problems over dynamically changing and failing topologies,
where the agents communicate and adjust the values of the
agreement variables instead of their location. The proposed
rendezvous algorithms are therefore comparable with feedback
consensus algorithms for networks with failures.

The paper is organized as follows. In Section II we provide
the necessary tools from stability theory and from geometry;
these include the LaSalle Invariance Principle for nondeter-
ministic discrete-time dynamical systems and the notion and
properties of proximity graphs. Section III contains (i) a
model of robotic network, (ii) the statement of the rendezvous
problem, (iii) the statement of the so-called Circumcenter
Algorithm over a proximity graph, and (iv) the theorems on
asymptotic convergence and robustness to link failures. Sec-
tion IV contains all the proofs, and Section V contains some
instructive simulations in two and three dimensions. Finally,
we provide a summary and future directions of research in
Section VI.

II. PRELIMINARY DEVELOPMENTS

Here we collect some known and some novel concepts
that will be required in the later sections. First, we present a
recently-developed version of the LaSalle Invariance Principle.
Next, we review some geometric concepts related to proximity
graphs. Finally, we provide a formally accurate notion of spa-
tially distributed maps and obtain some fundamental properties
associated with it.

A. LaSalle Invariance Principle for nondeterministic discrete-
time dynamical systems

We review some concepts regarding the stability of discrete-
time dynamical systems and set-valued maps following [18],
[12]. For d ∈ N, an algorithm on R

d is a set-valued map
T : R

d → 2(Rd) with the property that T (p) 6= ∅ for all
p ∈ R

d. Note that a map from R
d to R

d can be interpreted as

a singleton-valued map. A trajectory of an algorithm T is a
sequence {pm}m∈N∪{0} ⊂ R

d with the property that

pm+1 ∈ T (pm) , m ∈ N ∪ {0} .

In other words, given any initial p0 ∈ R
d, a trajectory of T is

computed by recursively setting pm+1 equal to an arbitrary el-
ement in T (pm). An algorithm is therefore a nondeterministic
discrete-time dynamical system.

An algorithm T is closed at p ∈ R
d if for all pairs of

convergent sequences pk → p and p′k → p′ such that p′k ∈
T (pk), one has that p′ ∈ T (p). An algorithm is closed on
W ⊂ R

d if it is closed at p, for all p ∈ W . In particular,
every continuous map T : R

d → R
d is closed on R

d. A
set C is weakly positively invariant with respect to T if, for
any p0 ∈ C, there exists p ∈ T (p0) such that p ∈ C. A
point p0 is said to be a fixed point of T if p0 ∈ T (p0). The
function V : R

d → R is non-increasing along T on W ⊂ R
d

if V (p′) ≤ V (p) for all p ∈ W and p′ ∈ T (p). We are ready
to state the following result, whose proof is provided in [12].

Theorem 2.1: (LaSalle Invariance Principle for closed al-
gorithms) Let T be a closed algorithm on W ⊂ R

d and let
V : R

d → R be a continuous function non-increasing along T
on W . Assume the trajectory {pm}m∈N∪{0} of T takes values
in W and is bounded. Then there exists c ∈ R such that

pm −→ M ∩ V −1(c) ,

where M is the largest weakly positively invariant set con-
tained in

{p ∈ W | ∃p′ ∈ T (p) such that V (p′) = V (p)}.
Remark 2.2: If W is closed, then T is closed on W if

and only if the graph of T restricted to W , Graph(T )|W =
{(p, p′) | p ∈ W,p′ ∈ T (p)} is a closed set. From [19,
Lemma 14], if T is bounded on a neighborhood of W , then
Graph(T )|W being closed is equivalent to T being upper
semi-continuous on W . �

B. Basic geometric notions and the circumcenter of a set

We review some notation for standard geometric objects;
for additional information we refer the reader to [20] and
references therein. For a bounded set S ⊂ R

d, d ∈ N, we
let co(S) denote the convex hull of S. For p, q ∈ R

d, we let
]p, q[= {λp + (1 − λ)q | λ ∈]0, 1[} and [p, q] = co({p, q})
denote the open and closed segment with extreme points p
and q, respectively. For a bounded set S ⊂ R

d, we let CC(S)
and CR(S) denote the circumcenter and circumradius of S,
respectively, that is, the center and radius of the smallest-
radius d-sphere enclosing S. Note that the computation of the
circumcenter and circumradius of a bounded set is a strictly
convex problem and in particular a quadratically constrained
linear program. For p ∈ R

d, we let B(p, r) and B(p, r) denote
the open and closed ball of radius r ∈ R+ centered at p,
respectively. Here, we let R+ and R+ denote the positive and
the nonnegative real numbers, respectively. A polytope is the
convex hull of a finite point set.1 We let Ve(Q) denote the set

1Note that with this definition polytopes are automatically convex.
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of vertices of a polytope Q, and we emphasize that any vertex
of Q is strictly convex, i.e., v ∈ Ve(Q) if and only if there
exists u ∈ R

d such that (s − v) · u > 0 for all s ∈ Q \ {v}.
Proposition 2.3: Let S be a bounded and finite set in R

d.
The following statements hold:

(i) CC(S) ∈ co(S) \ Ve(co(S));
(ii) if p ∈ S \CC(S) and r ∈ R+ satisfy S ⊂ B(p, r), then

]p,CC(S)[ has nonempty intersection with B( p+q
2 , r

2 )
for all q ∈ S.

Proof: The first statement follows directly from the
definition of circumcenter and of vertex of a polytope. Let us
provide a proof for the second statement. Since p 6= CC(S)
and S ⊂ B(p, r), we deduce that CR(S) < r. Let q ∈ S. If
‖p − q‖ < r, then p ∈ B( p+q

2 , r
2 ), and therefore ]p,CC(S)[

has nonempty intersection with B( p+q
2 , r

2 ). Consider the case
when ‖p − q‖ = r. Since p, q ∈ B(CC(S),CR(S)) and
CR(S) < r, it follows that CC(S) ∈ B(p, r)∩B(q, r). From
this, we deduce that ]p,CC(S)[ has nonempty intersection
with B(p+q

2 , r
2 ), as claimed.

C. Proximity graphs and their properties

We introduce some concepts regarding proximity graphs for
point sets in R

d. We assume the reader is familiar with the
standard notions of graph theory as defined in [21, Chapter 1].
We begin with some notation. Given a vector space V, let
F(V) be the collection of finite subsets of V. Accordingly,
F(Rd) is the collection of finite point sets in R

d; we shall
denote an element of F(Rd) by P = {p1, . . . , pn} ⊂ R

d,
where p1, . . . , pn are distinct points in R

d. Let G(Rd) be the
set of undirected graphs whose vertex set is an element of
F(Rd).

A proximity graph function G : F(Rd) → G(Rd) associates
to a point set P an undirected graph with vertex set P and
edge set EG(P), where EG : F(Rd) → F(Rd × R

d) has the
property that EG(P) ⊆ P×P \diag(P ×P) for any P . Here,
diag(P × P) = {(p, p) ∈ P × P | p ∈ P}. In other words,
the edge set of a proximity graph depends on the location of
its vertices. General properties of proximity graphs and the
following examples are defined in [20], [15], [12]:

(i) the r-disk graph Gdisk(r), for r ∈ R+, with (pi, pj) ∈
EGdisk(r)(P) if ‖pi − pj‖ ≤ r;

(ii) the Delaunay graph GD, with (pi, pj) ∈ EGD(P) if the
Voronoi regions of pi and pj have non-empty intersec-
tion;

(iii) the Relative Neighborhood graph GRN, with (pi, pj) ∈
EGRN(P) if, for all pk ∈ P \ {pi, pj}, pk 6∈ B(pi, ‖pi −
pj‖)∩B(pj , ‖pi − pj‖);

(iv) the Gabriel graph GG, with (pi, pj) ∈ EGG(P) if, for all
pk ∈ P \ {pi, pj}, pk 6∈ B(

pi+pj

2 ,
‖pi−pj‖

2 );
(v) the Euclidean Minimum Spanning Tree GEMST, which

for each P , is a minimum-weight spanning tree of the
complete graph (P,P ×P \ diag(P ×P)) whose edge
(pi, pj) has weight ‖pi − pj‖.

If needed, we shall write Gdisk(P, r) to denote Gdisk(r) at
P . In what follows, we will consider the proximity graphs
GRN ∩disk(r) and GG ∩disk(r) defined by the intersection of
GRN and GG with Gdisk(r), r ∈ R+, respectively. A different

proximity graph related to, but different from, the intersection
GD ∩disk(r) of GD with Gdisk(r) is the r-limited Delaunay graph
GLD(r), as defined in [12].

To each proximity graph function G, one can associate the
set of neighbors map NG : R

d × F(Rd) → F(Rd), defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪ {p})}.
Typically, p is a point in P , but the definition is well-posed
for any p ∈ R

d. Given p ∈ R
d, it is convenient to define the

map NG,p : F(Rd) → F(Rd) by NG,p(P) = NG(p,P).
Let G1 and G2 be two proximity graph functions. We say

that G1 is spatially distributed over G2 if, for all p ∈ P ,

NG1,p(P) = NG1,p

(
NG2,p(P)

)
.

It is straightforward to deduce that if G1 is spatially distributed
over G2, then G1 is a subgraph of G2, that is, G1(P) ⊂ G2(P)
for all P ∈ F(Rd). The converse is in general not true (for
instance, the graph GD ∩disk is a subgraph of Gdisk, but it is not
spatially distributed over it, see [12]).

We say that two proximity graph functions G1 and G2 have
the same connected components if, for all point sets P , the
graphs G1(P) and G2(P) have the same number of connected
components consisting of the same vertices.

Theorem 2.4: For r ∈ R+, the following statements hold:
(i) GEMST ⊂ GRN ⊂ GG and GG∩disk(r) ⊂ GLD(r);

(ii) Gdisk(r) is connected if and only if GEMST ⊂ Gdisk(r);
(iii) GRN ∩disk(r), GG ∩disk(r), and GLD(r) are spatially dis-

tributed over Gdisk(r);
(iv) GEMST ∩disk(r), GRN ∩disk(r), GG ∩disk(r) and GLD(r) have

the same connected components as Gdisk(r).
Proof: Fact (i) is mostly taken from [15] and [20].

Facts (ii) and (iii) are taken from [12]. Here we prove fact (iv).
For r ∈ R+, it is enough to show that GEMST ∩disk(r) has the
same connected components as Gdisk(r), since this implies that
the same result holds for GRN ∩disk(r), GG ∩disk(r) and GLD(r).
Let P ∈ F(Rd). Since GEMST ∩disk(r) is a subgraph of Gdisk(r),
it is clear that vertices belonging to the same connected
component of GEMST ∩disk(P, r) must also belong to the same
connected component of Gdisk(P, r). To prove the converse
assume pi and pj in P verify ‖pi − pj‖ ≤ r. Let C be the
connected component of Gdisk(P, r) to which they belong, with
vertices V (C). Since C is connected, then GEMST(V (C)) ⊂ C
by (ii). Now, using the definition of the Euclidean Minimum
Spanning Tree and the fact that C is a connected component of
Gdisk(P, r), one can show that GEMST(V (C)) = GEMST(P)[C],
where the latter denotes the subgraph of GEMST(P) induced
by C (see [21] for the notion of induced graph). From this, we
deduce that GEMST(V (C)) ⊂ GEMST ∩disk(P, r), and therefore
pi and pj belong to the same component of GEMST ∩disk(P, r).
This implies the result.

We conclude this section with some examples of proximity
graphs in R

2 and R
3; see Figures 1 and 2.

D. Proximity graphs over arrays of possibly coincident points
and spatially distributed maps

The notion of proximity graph is defined for sets of distinct
points P = {p1, . . . , pn}. However, we will often consider
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Fig. 1. From left to right, r-disk, r-limited Delaunay, and Euclidean
Minimum Spanning Tree graphs in R

2 for a configuration of 25 agents with
coordinates uniformly randomly generated within the square [−7, 7]×[−7, 7].
The parameter r is taken equal to 4.
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Fig. 2. From left to right, r-disk, Gabriel, and Relative Neighborhood graphs
in R

3 for a configuration of 25 agents with coordinates uniformly randomly
generated within the square [−7, 7] × [−7, 7] × [−7, 7]. The parameter r is
taken equal to 4.

tuples of elements of R
d of the form P = (p1, . . . , pn), i.e.,

ordered sets of possibly coincident points. Let iF : (Rd)n →
F(Rd) be the natural immersion, i.e., iF(P ) is the point set
that contains only the distinct points in P = (p1, . . . , pn).
Note that iF is invariant under permutations of its arguments
and that the cardinality of iF(p1, . . . , pn) is in general less
than or equal to n. In what follows, P = iF(P ) will always
denote the point set associated to P ∈ (Rd)n.

We can now extend the notion of proximity graphs to this
setting. Given a proximity graph function G with edge set
function EG , we define (with a slight abuse of notation)

G = G ◦ iF : (Rd)n → G(Rd),

EG = EG ◦ iF : (Rd)n → F(Rd × R
d).

Additionally, we define the set of neighbors map NG :
(Rd)n → (F(Rd))n as the function whose jth component is

NG,j(p1, . . . , pn) = NG(pj , iF(p1, . . . , pn)).

Note that coincident points in the tuple (p1, . . . , pn) will have
the same set of neighbors.

Given a set Y and a proximity graph function G, a map
T : (Rd)n → Y n is spatially distributed over G if there exist
a map T̃ : R

d × F(Rd) → Y , with the property that, for all
(p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,j(p1, . . . , pn)) ,

where Tj denotes the jth-component of T . In other words, the
jth component of a spatially distributed map at (p1, . . . , pn)
can be computed with only the knowledge of the vertex
pj and the neighboring vertices in the undirected graph
G({p1, . . . , pn}).

Remark 2.5: With this definition of spatially distributed
map, one can see that the proximity graph function G1 is
spatially distributed over the proximity graph function G2

if and only if the set of neighbors map NG1
is spatially

distributed over G2. �

III. RENDEZVOUS VIA PROXIMITY GRAPHS

In this section we state the model, the control objective,
the motion coordination algorithm, and the properties of the
resulting closed-loop system.

A. Modeling a network of robotic agents

We begin by introducing the notions of robotic agent and of
network of robotic agents. Let n be the number of agents in the
network. Each agent has the following sensing, computation,
communication, and motion control capabilities. The ith agent
has a processor with the ability of allocating continuous and
discrete states and performing operations on them. The ith
agent occupies a location pi ∈ R

d, d ∈ N, and it is capable
of moving at any time m ∈ N, for any unit period of time,
according to the discrete-time control system

pi(m + 1) = pi(m) + ui. (1)

Here, the control ui takes values in a bounded subset of
R

d. We assume that there is a maximum step size smax ∈
R+ common to all agents, that is, ‖ui‖ ≤ smax, for all
i ∈ {1, . . . , n}. The sensing and communication model is
the following. The processor of each agent has access to its
location, and transmits this information to any other agent
within a closed disk of radius r ∈ R+. Note that we are
assuming the communication radius is the same for all agents.

Remarks 3.1: • Equivalently, we shall consider groups
of robotic agents without communication capabilities, but
instead capable of measuring the relative position of each
other agent within a closed disk of radius r ∈ R+.

• At first we assume that all communication between agents
and all sensing of agents locations are accurate. We
shall later analyze the robustness of our algorithms with
respect to communication link failures. We will instead
not address in this paper the correctness of our algorithms
in the presence of measurement errors or communication
quantization.

• Our network model is synchronous. Regarding asyn-
chronous network models in rendezvous problems, we
refer to [1] for early numerical results and to [3] for a
thorough theoretical analysis. �

B. The rendezvous motion coordination problem

We now state the control design problem for the network
of robotic agents. The rendezvous objective is to achieve
agreement over the location of the agents in the network, that
is, to steer each agent to a common location. This objective
is to be achieved with the limited information flow described
in the model above.

Typically, it will be impossible to solve the rendezvous
problem if the agents are placed in such a way that they do
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not form a connected communication graph. Arguably, a good
property of any algorithm for rendezvous is that of maintaining
some form of connectivity between agents.

C. The Circumcenter Algorithm

Here is an informal description of what we shall refer to as
the Circumcenter Algorithm over a proximity graph G:

Each agent performs the following tasks: (i) it de-
tects its neighbors according to G; (ii) it computes
the circumcenter of the point set comprised of its
neighbors and of itself, and (iii) it moves toward this
circumcenter while maintaining connectivity with its
neighbors.

This algorithm is an extension of the one introduced in [1].
Let us clarify which proximity graphs are allowable and how
connectivity is maintained. Firstly, we are allowed to design
motion coordination algorithms that are spatially distributed
over the r-disk graph Gdisk(r), or more generally, over any
proximity graph G that is spatially distributed over Gdisk(r).
This is a direct consequence of our modeling assumption that
each agent can acquire the location of each other agent within
distance less than or equal to r ∈ R+. Secondly, we maintain
connectivity by restricting the allowable motion of each agent.
In particular, we will show that it suffices to restrict the motion
of each agent as follows. If agents pi and pj are neighbors
in the proximity graph G, then their subsequent positions
are required to belong to B(

pi+pj

2 , r
2 ). If an agent pi has

its neighbors at locations {q1, . . . , ql}, then its constraint set
Cpi,r({q1, . . . , ql}) is

Cpi,r({q1, . . . , ql}) =
⋂

q∈{q1,...,ql}

B
(pi + q

2
,
r

2

)
.

Before stating the algorithm in a more formal fashion, let
us introduce one final concept. For q0 and q1 in R

d, and for
a convex closed set Q ⊂ R

d with q0 ∈ Q, let λ(q0, q1, Q)
denote the solution of the strictly convex problem:

maximize λ

subject to λ ≤ 1, (1 − λ)q0 + λq1 ∈ Q.
(2)

Note that this convex optimization problem has the following
interpretation: move along the segment from q0 to q1 the
maximum possible distance while remaining in Q. Under the
stated assumptions the solution exists and is unique. We are
now ready to formally describe the algorithm.

Name: Circumcenter Algorithm over G
Goal: Solve the rendezvous problem
Assumes: (i) smax ∈ R+ is maximum step size

(ii) r ∈ R+ is communication radius
(iii) G is spatially distributed proximity

graph over Gdisk(r)

For i ∈ {1, . . . , n}, agent i executes at each time instant in N:
1: acquire {q1, . . . , qk} := NGdisk(r),pi

(P)

2: compute Mi := NG,pi
({q1, . . . , qk}) ∪ {pi}

3: compute Qi := Cpi,r(Mi \ {pi})∩B(pi, smax)

4: compute λ∗
i := λ(pi,CC(Mi), Qi)

5: set ui := λ∗
i (CC(Mi) − pi), i.e.,

move from pi to (1 − λ∗
i )pi + λ∗

i CC(Mi)

In what follows we shall refer to the Circumcenter Algorithm
over the proximity graph G as the map TG : (Rd)n → (Rd)n.

D. Asymptotic correctness of the Circumcenter Algorithm

We are now ready to state the main convergence result,
whose proof is postponed to the following section.

Theorem 3.2: Let p1, . . . , pn be a network of robotic agents
in R

d, for d ∈ N, with maximum step size smax ∈ R+ and
communication radius r ∈ R+. Let the proximity graph G be
spatially distributed over Gdisk(r) and have the same connected
components as Gdisk(r). Any trajectory {Pm}m∈N∪{0} of TG

has the following properties:
(i) if the locations of two agents belong to the same con-

nected component of Gdisk(Pk, r) for some k ∈ N∪{0},
then they remain in the same connected component of
Gdisk(Pm, r) for all m ≥ k;

(ii) there exists P ∗ = (p∗1, . . . , p
∗
n) ∈ (Rd)n with the

following properties: Pm → P ∗ as m → +∞, and
p∗i = p∗j or ‖p∗i − p∗j‖ > r for each i, j ∈ {1, . . . , n};

(iii) if G = Gdisk(r), then there exists k ∈ N such that Pm =
P ∗ for all m ≥ k, that is, convergence is achieved in
finite time.

Remarks 3.3: • A consequence of Theorem 3.2(i)
and (ii) is that, if the locations of two agents belong to
the same connected component of G at some time, then
they converge to the same point in R

d.
• The statements Theorem 3.2(i) and (ii) were originally

proved in [1] for the Circumcenter Algorithm over Gdisk
and for d = 2. This result was extended to other control
policies by [2], [3] (still on the plane and with Gdisk
communication topology).

• It is instructive to consider two alternative strategies. With
the same notation as in the Circumcenter Algorithm, they
can be described as follows:

(i) each agent moves to the orthogonal projection of
the circumcenter CC(Mi) onto the convex set
Qi ∩ co(Mi);

(ii) each agent moves to the point in Qi ∩ co(Mi)
that minimizes the maximum distance to each point
in Mi.
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These algorithms are also the solutions to convex opti-
mization problems. However, at this time, it is not clear
what, if any, advantages they possess in comparison with
the Circumcenter Algorithm. We conjecture that their
correctness can be established along similar lines as the
ones provided in the next section for Theorem 3.2. �

E. Robustness properties of the Circumcenter Algorithm

Here we characterize the robustness of the Circumcenter
Algorithm with respect to link failures. We provide no physical
model to motivate the occurrence for link failures; rather we
analyze the resulting closed-loop network.

Definition 3.4: A link failure in Gdisk(r) at P ∈ (Rd)n is
said to occur at agent pi if (pi, pj) is an edge in Gdisk(P, r)
and the agent pi does not detect agent pj . For P = iF(P ), we
denote this link failure by the directed edge (pi, pj) ∈ P ×P .
�

Remark 3.5: Consider an application of the Circumcenter
Algorithm over a proximity graph G as described in the steps
1 -5 above. If the link failure (pi, pj) takes place at step 1 ,
then the following two events will ensue:

(i) if pj is a neighbor of pi according to G, then pi looses
the neighbor pj at step 2 ,

(ii) if pk is not a neighbor of pi according to G because
of the presence of pj , then pi gains the neighbor pk at
step 2 .

Note that, after steps 1 and 2 , the collection of neighbors
has been computed inaccurately. Nevertheless the execution
of steps 3 through 5 can continue. �

Definition 3.6: For P ∈ (Rd)n, let P = iF(P ). Let G be
a proximity graph function that is spatially distributed over
Gdisk(r) and let F ⊂ P × P be a set of link failures. Let

(i) Gdisk(P, r) 8 F be the directed graph with vertex set
P and with edge set Edisk(P, r) \ F ;

(ii) G(P) 8 F be the directed graph with vertex set P
and with edges determined as follows; the neighbors of
p ∈ P are

NG,p

(
{q | (p, q) ∈ Edisk(P, r) \ F}

)
,

that is, the edges of G(P) 8 F arise from the compu-
tation of G(P) with the link failures F , as described in
Remark 3.5;

(iii) TG8F (P ) is the configuration obtained from applying
the Circumcenter Algorithm over G (steps 1 -5 ) at con-
figuration P with the link failures F at step 1 . �

Note that only a finite number of possible link failures can
occur at any configuration. Consequently, the set of possible
directed graphs arising from link failures is finite. We are now
ready to state the main robust convergence result, whose proof
is postponed to the following section.

Theorem 3.7: Let the network p1, . . . , pn and the proximity
graph G have the same properties as in Theorem 3.2. Given
P0 ∈ (Rd)n, consider the two sequences {Pm}m∈N∪{0} and
{Fm}m∈N∪{0} defined recursively by

(i) Fm is a set of link failures in Gdisk(r) at Pm, and
(ii) Pm+1 = TG8Fm

(Pm).

If there exists ` ∈ N such that at least one graph of any `
consecutive elements of {G(Pm) 8 Fm}m∈N∪{0} is strongly
connected, then there exists p∗ ∈ R

d such that Pm → P ∗ =
(p∗, . . . , p∗) as m → +∞.

Remarks 3.8: • One could also state a version of this
result for each connected component of the network, in a
similar way to Theorem 3.2. We leave this to the reader.

• Theorem 3.7 provides the first theoretical explanation for
the robustness behavior against sensor and control errors
of the Circumcenter Algorithm over Gdisk(r) observed
in [1]. �

Corollary 3.9: With the same notation as in Theorem 3.7,
if at each step m ∈ N, the proximity graph G(Pm) is km-edge
connected2 and if Fm contains at most km − 1 link failures,
then there exists p∗ ∈ R

d such that Pm → P ∗ = (p∗, . . . , p∗)
as m → +∞.

Next, we analyze the performance of the Circumcenter
Algorithm when each agent of the mobile network at each time
step is allowed to use a different proximity graph to compute
its neighbors. The following definition formalizes this idea.

Definition 3.10: Let S be a set of proximity graph functions
that are spatially distributed over Gdisk(r). The Circumcenter
Algorithm over S is the Circumcenter Algorithm where step 2

is replaced by

2 (a): choose any G ∈ S
2 (b): compute Mi := NG,pi

({q1, . . . , qk}) ∪ {pi}.
The selection algorithm for each agent at each execution of
step 2 (a) is left unspecified. �

The following result guarantees that, under suitable condi-
tions on the set S, rendezvous is still attained by the mobile
network executing the Circumcenter Algorithm over S.

Corollary 3.11: Let the network p1, . . . , pn be as in The-
orem 3.2. Let S be a set of proximity graph functions that
are spatially distributed over Gdisk(r). Assume there exists a
proximity graph F with the same connected components as
Gdisk(r) such that F ⊂ G, for all G ∈ S. Then any trajectory
{Pm}m∈N∪{0} of the Circumcenter Algorithm over S has
properties (i) and (ii) in Theorem 3.2.

We postpone the proof of this result to the following section.
Note that, for r ∈ R+, the proximity graphs introduced in
Section II-C, GRN ∩disk(r), GG ∩disk(r) and GLD(r) are spatially
distributed over Gdisk(r) and contain GEMST ∩disk(r), which has
the same connected components as Gdisk(r) (cf. Theorem 2.4).
Therefore, any set S ⊂ {GRN ∩disk(r),GG ∩disk(r),GLD(r)}
satisfies the hypothesis of Corollary 3.11.

IV. CONVERGENCE ANALYSIS

This section presents the proof of the main results of the
paper. Before going into the details, let us introduce some
useful notation. Let G be a directed graph with vertex set
{1, . . . , n} and edge set E ⊂ {1, . . . , n} × {1, . . . , n}. Let
NG(i) = {j ∈ {1, . . . , n} | (i, j) ∈ E}. Given P ∈ (Rd)n,

2An undirected graph is k-edge connected if it remains connected after any
k − 1 edges have been removed, see [21].
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let P (NG(i)) = {pj ∈ R
d | (i, j) ∈ E}. To a proximity

graph function G that is spatially distributed over Gdisk(r), a
configuration P ∈ (Rd)n, and a set of link failures F ⊂ P ×
P (where P = iF(P )), one may associate a directed graph
GG(P )8F = ({1, . . . , n}, E) by defining (i, j) ∈ E if (pi, pj)
is an edge of G(P ) 8 F . Note that if F is empty, then (i, j) ∈
E if and only if (pi, pj) ∈ EG(P ). Clearly, for each P ∈
(Rd)n, P (NGG(P )8F

(i)) is equal to the set of neighbors of pi

with respect to the directed graph G(P ) 8 F .
Given a directed graph G = ({1, . . . , n}, E) and r ∈ R+,

define the Circumcenter Algorithm at Fixed Topology TG,r :
(Rd)n → (Rd)n whose ith component is

(TG,r)i(p1, . . . , pn) = (1−µ∗
i )pi+µ∗

i CC
(
{pi}∪P (NG(i))

)
,

where the coefficient of the convex combination is

µ∗
i = λ(pi,CC

(
{pi} ∪ P (NG(i))

)
, Q̃i),

and the constraint set is defined by

Q̃i = Cpi,ri(P )(P (NG(i)))∩B(pi, smax),

ri(P ) = max{r,max{‖pi − pj‖ | (i, j) ∈ E}}.

Note that if ‖pi − pj‖ ≤ r for all j ∈ NG(i), then ri(P ) = r.
There are two differences between TG,r and the algorithm

TG defined in Section III-C: (1) the topology of the network is
fixed in TG,r and changing in TG , and (2) the constraint sets
are, in general, bigger in TG,r than in TG . The reason for the
latter difference is purely technical and will become clear in
the proof of Theorem 4.6 below.

Lemma 4.1: Let P ∈ (Rd)n and r ∈ R+. Let G be
a proximity graph function that is spatially distributed over
Gdisk(r) and let F ⊂ P × P be a set of link failures. Then
TGG(P )8F ,r(p1, . . . , pn) = TG8F (p1, . . . , pn). In particular,
TGG(P )8∅,r(p1, . . . , pn) = TG(p1, . . . , pn).

Proof: The result follows from the definition of the
directed graph GG(P )8F .

With a slight abuse of notation, we introduce the convex
hull function co : (Rd)n → 2(Rd) by co(P ) = co(iF(P )),
where we implicitly represent a polytope in R

d by its set of
vertexes.

Lemma 4.2: For G = ({1, . . . , n}, E) and r ∈ R+, the map
TG,r : (Rd)n → (Rd)n has the following properties:

(i) TG,r is continuous;
(ii) co(TG,r(P )) ⊂ co(P ), for P ∈ (Rd)n;

Proof: Statement (i) is a consequence of the fol-
lowing two facts: the circumcenter of a point set depends
continuously on their location, and the solutions µ∗

i , i ∈
{1, . . . , n}, of the convex optimization problem (2) depend
continuously on the data. From Proposition 2.3(i), we deduce
(TG,r)i(p1, . . . , pn) ∈ co(P ) for all i ∈ {1, . . . , n}, which
implies statement (ii).

Given r ∈ R+, define the set-valued map T : (Rd)n →
2((Rd)n) by

Tr(P ) = {TG,r(P ) ∈ (Rd)n | G = ({1, . . . , n}, E) is
strongly connected} .

We shall refer to Tr as to the Circumcenter Algorithm at
All Strongly Connected Topologies. Because there are a finite
number of strongly connected directed graphs with n vertices,
the set Tr(P ) is finite.

Proposition 4.3: For r ∈ R+, the map Tr : (Rd)n →
2((Rd)n) has the following properties:

(i) co(P ′) ⊂ co(P ) for all P ′ ∈ Tr(P ) and P ∈ (Rd)n;
(ii) Tr is closed on (Rd)n.

Proof: Fact (i) is a consequence of Lemma 4.2(ii).
Next, we prove fact (ii). Take P∗ ∈ (Rd)n and let us prove
that Tr is closed at P . Consider two convergent sequences
Pm → P∗ and P ′

m → P ′
∗ with P ′

m ∈ Tr(Pm) for all
m ∈ N. We have to prove that P ′

∗ ∈ Tr(P∗). In order to
do so, we reason by contradiction. Assume P ′

∗ 6∈ Tr(P∗),
i.e, P ′

∗ 6= TG,r(P∗) for any strongly connected directed graph
G = ({1, . . . , n}, E). Let ε = min{‖P ′

∗ − TG,r(P∗)‖ | G =
({1, . . . , n}, E) is strongly connected} > 0. On the other
hand, since for each directed graph G, the map TG,r is
continuous at P∗, there exists δG > 0 such that if ‖P −
P∗‖ ≤ δG, then ‖TG,r(P ) − TG,r(P∗)‖ ≤ ε/2. Take δ =
min{δG | G = ({1, . . . , n}, E) is strongly connected} > 0.
Using the fact that the sequence {Pm}m∈N converges to P∗,
we deduce that there exists m0 such that ‖Pm − P∗‖ ≤ δ
for all m ≥ m0. Therefore, for all m ≥ m0, one has
‖TG,r(Pm) − TG,r(P∗)‖ ≤ ε/2 for any strongly connected
directed graph G. From P ′

m ∈ Tr(Pm) for each m ∈ N, we
deduce that there exists a strongly connected directed graph
Gm such that P ′

m = TGm,r(Pm). In particular, note that for
all m ≥ m0, we have that ‖TGm,r(Pm) − TGm,r(P∗)‖ ≤
ε/2. Using these facts, we deduce the following chain of
inequalities,

‖P ′
∗ − P ′

m‖ = ‖P ′
∗ − TGm,r(Pm)‖ ≥∣∣∣‖P ′

∗ − TGm,r(P∗)‖ − ‖TGm,r(P∗) − TGm,r(Pm)‖
∣∣∣ ≥ ε

2
,

for all m ≥ m0, which contradicts P ′
m → P ′

∗.
Next, let us study some properties of the diameter of a set.

The diameter function diam : 2(Rd) → R+∪{+∞} is defined
by

diam(S) = sup{‖p − q‖ | p, q ∈ S}.
Lemma 4.4: The function diam has the following proper-

ties:
(i) diam(S) = 0 if and only if S is a singleton;

(ii) if S ⊂ R ⊂ R
d, then diam(S) ≤ diam(R);

(iii) diam(S) = diam(co(S)) for all S ⊂ R
d;

(iv) if S ⊂ R
d and Q a polytope in R

d satisfy S ⊂ Q \
Ve(Q), then diam(S) < diam(Q).

Proof: The proof of these statements is straightforward
and we do not include it here in the interest of space.

It is now possible to define the function Vdiam = diam ◦ co :
(Rd)n → R+, by

Vdiam(P ) = diam(co(P ))

= max{‖pi − pj‖ | i, j ∈ {1, . . . , n}}.
Let diag((Rd)n) = {(p, . . . , p) ∈ (Rd)n | p ∈ R

d}.
Lemma 4.5: The function Vdiam = diam ◦ co : (Rd)n →

R+ has the following properties:



8 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL

(i) Vdiam is continuous and invariant under permutations of
its arguments;

(ii) Vdiam(P ) = 0 if and only if P ∈ diag((Rd)n);
(iii) Vdiam is non-increasing along Tr, r ∈ R+, on (Rd)n.

Proof: Fact (i) is a straightforward consequence of the
definition of Vdiam. Fact (ii) is a consequence of Lemma 4.4(i).
Proposition 4.3(i) implies fact (iii).

We are now ready to analyze the asymptotic convergence
properties of the algorithm Tr, for r ∈ R+.

Theorem 4.6: (Rendezvous via switching strongly con-
nected graphs and suitable constraints): For r ∈ R+ and
P0 ∈ (Rd)n, any sequence {Pm}m∈N∪{0}, defined by Pm+1 ∈
Tr(Pm), converges to a point of the form (p, . . . , p) ∈ (Rd)n.

Proof: From Lemma 4.5, we know that Vdiam : (Rd)n →
R+ is non-increasing along Tr on (Rd)n. Proposition 4.3(i)
implies that the evolution of the sequence {Pm}m∈N∪{0} is
contained in the compact set co(P0). Since Tr is closed
(cf. Proposition 4.3), we can resort to the LaSalle Invariance
Principle for closed algorithms (cf. Theorem 2.1) to deduce
that Pm → M , where M is the largest weakly positively
invariant set contained in

{P ∈ (Rd)n | ∃P ′ ∈ Tr(P ) such that diam(P ′) = diam(P )} .

Let us show that M = diag((Rd)n). Clearly, diag((Rd)n) ⊂
M . To prove the other inclusion, we reason by contradiction.
Assume P ∈ M \ diag((Rd)n), and therefore diam(P ) >
0. Let G be a strongly connected directed graph and con-
sider TG,r(P ). Clearly, by Proposition 2.3(i), for all pj 6∈
Ve(co(P )), we have that (TG,r)j(P ) ∈ co(P ) \ Ve(co(P )).
Let pi be a (strictly convex) vertex of the polytope co(P ).
In general, there might exist more than one agent located at
the same position pi. Let us see that the application of TG,r

will strictly decrease the number of agents Npi
(P ) located

at pi. Since the directed graph G is strongly connected,
there must exist i∗ with pi∗ = pi such that there exist
j ∈ NG(i∗) with pj 6= pi∗ . By Proposition 2.3(i), CC({pi∗}∪
P(NG(i∗))) ∈ co(P )\Ve(co(P )), which in particular implies
that CC({pi∗} ∪ P (NG(i∗))) 6= pi∗ . Using this fact, together
with {pi∗} ∪ P (NG(i∗)) ⊂ B(pi∗ , ri∗(P )), we deduce (cf.
Proposition 2.3(iii)) that ]pi∗ ,CC({pi∗} ∪ P (NG(i∗)))[ has
nonempty intersection with B(

pi∗+q

2 ,
ri∗ (P )

2 ) for all q ∈
P (NG(i∗)). Therefore, the solution µ∗

i∗
of the convex opti-

mization problem (2) is strictly positive. As a consequence,
we have that (TG,r)i∗(P ) ∈ co(P ) \ Ve(co(P )). Therefore,
Npi

(TG,r(P )) < Npi
(P ).

Next, let us show that, after a finite number of steps,
no agents will remain at the location pi. Define N =
max{Npi

(P ) | pi ∈ Ve(co(P ))} < n − 1. Then all
agents in the configuration TG1,r(TG2,r(. . . TGN ,r(P ))) are
contained in co(P ) \ Ve(co(P )), for any strongly connected
directed graphs G1, . . . , GN . Therefore, by Proposition 2.3(ii),
diam(TG1,r(TG2,r(. . . TGN ,r(P )))) < diam(P ), which con-
tradicts the fact that M is weakly invariant.

Therefore, we have proved that for any initial condition
P0 ∈ (Rd)n, any sequence {Pm}m∈N∪{0}, defined by Pm+1 ∈
Tr(Pm), converges to the set diag((Rd)n). To finish the proof,
let us show that indeed {Pm}m∈N∪{0} must converge to a
point that belongs to diag((Rd)n). Since the sequence is

contained in the compact set co(P0), there must exist a conver-
gent subsequence {Pmk

}k∈N∪{0}, Pmk
→ (p∗, . . . , p∗) when

k → +∞. Therefore, for any ε > 0, there exists k0 such that
for k ≥ k0 one has ‖(pi)mk

− p∗‖ ≤ ε/
√

n, or equivalently,
co(Pmk

) ⊂ B(p∗, ε/
√

n). From Proposition 4.3(i) we deduce
that co(Pm) ⊂ B(p∗, ε/

√
n) for all m ≥ mk0

, which in turn
implies that ‖Pm − (p∗, . . . , p∗)‖ ≤ ε for all m ≥ mk0

, as
desired.

Finally, we are ready to present the proof of Theorem 3.2.
Proof of Theorem 3.2: We start by proving fact (i). Let

k ∈ N∪{0} and take C a connected component of Gdisk(Pk, r).
By assumption, G and Gdisk(r) have the same connected
components, and therefore C is also a connected component
of G(Pk). By definition of TG , if agents i and j are neigh-
bors according to the graph G(Pk), then (pi)k+1, (pj)k+1 ∈
B(

(pi)k+(pj)k

2 , r
2 ), which in particular implies that ‖(pi)k+1−

(pj)k+1‖ ≤ r. Therefore, the agents in C remain connected in
the r-disk graph at step k+1, i.e., the agents in C are contained
in the same connected component of Gdisk(Pk+1, r).

Now, let us prove fact (ii). From (i), we deduce that the
number of vertices in each of the connected components of
G(Pm) is non-decreasing. Since there is a finite number of
agents, there must exist m0 such that the identity of the
agents in each connected component is fixed for all m ≥ m0

(i.e., no more agents are added to the connected component
afterwards). Let C = {pi1 , . . . , piK

} be any of these connected
components. As a consequence of Theorem 4.6, we deduce
that all the agents in C asymptotically converge to the same
location in R

d (since their evolution under TG is one of
the many possible evolutions under the algorithm T , see
Lemma 4.1).

Finally, we prove fact (iii). It suffices to prove that the agents
in C will rendezvous in finite time. Let a = min{smax,

r
2} ∈

R+. By the previous discussion, there exists k ∈ N such that
the location of the agents in C belongs to a closed ball of
radius

√
2a/2. In such a case, we deduce that (1) Gdisk(r) at C

is the complete graph, and therefore all agents in C compute
the same circumcenter point CC, and (2) the corresponding
circumradius can be seen to be less than or equal to a using
a simple geometric argument. From the latter, we deduce
that CC ∈ B(pi, smax) and CC ∈ Cpi,r(P \ {pi}), i.e., the
circumcenter belongs to Qi, for all i ∈ {1, . . . , n}. As a
consequence, all mobile agents in C rendezvous at the same
location CC at step k + 1.

Proof of Theorem 3.7: The proof of this result goes along
the same lines as the one of Theorem 4.6. Given r ∈ R+, de-
fine the set-valued map P ∈ (Rd)n 7→ T̃r(P ) = {TG,r(P ) ∈
(Rd)n | G = ({1, . . . , n}, E) directed graph}. Reasoning as
in the proof of Proposition 4.3, one can show that T̃r is closed.
Given two set-valued maps T1, T2 : (Rd)n → 2((Rd)n), define
its composition as the set-valued map T1 ◦ T2 : (Rd)n →
2((Rd)n) given by (T1 ◦ T2)(P ) = {P ′′ ∈ (Rd)n | ∃P ′ ∈
(Rd)n such that P ′′ ∈ T1(P

′) and P ′ ∈ T2(P )}. For
k ∈ N, we denote by T̃ k

r the composition of k instances of
T̃r. Now, let us define the set-valued map P ∈ (Rd)n 7→
Tr,`(P ) = {P ′ ∈ (Rd)n | ∃k ∈ {0, . . . , ` − 1} such that P ′ ∈
T̃ k

r (Tr(P ))}. Using Lemma 4.2(ii), together with the fact that
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T̃r and Tr are closed, we deduce that Tr,` is also closed.
Reasoning as in the proof of Theorem 4.6, one can show
that any sequence defined by Tr,` converges to a point that
belongs to diag((Rd)n). This concludes the result, since the
hypotheses of the statement of the theorem imply that the
evolution of the network, {Pm}m∈N∪{0}, is one of the many
possible evolutions under Tr,`, see Lemma 4.1.

Proof of Corollary 3.11: The proof of fact (i) is parallel to
that of Theorem 3.2(i) invoking now that F ⊂ G, for all G ∈ S,
and that F and Gdisk(r) have the same connected components.
Fact (ii) is a consequence of Theorem 3.7 since any execution
of the Circumcenter Algorithm over (S1, . . . ,Sn) can be seen
as an instance of the Circumcenter Algorithm over Gdisk(r)
with appropriately selected link failures at each step.

V. SIMULATIONS

In order to illustrate the performance of our rendezvous
algorithms, we developed a library of basic geometric routines.
The resulting Mathematica R© packages PlanGeom.m (con-
taining the 2-dimensional routines) and SpatialGeom.m
(containing the 3-dimensional routines) are freely available at
http://motion.mee.ucsb.edu .

We implemented the Circumcenter Algorithm in the plane,
d = 2, over the r-limited Delaunay proximity graph with link
failures. The simulation run is illustrated in Figure 3. The
25 vehicles have a maximum step size smax = .15, and a
communication radius r = 4. The initial configuration of the
network is as in Figure 1 over the square [−7, 7] × [−7, 7].

Fig. 3. Evolution (in light gray) of the Circumcenter Algorithm over the
r-limited Delaunay graph GLD(r) with link failures. The initial configuration
of the network is as in Figure 1.

At each time step, a set consisting of 18 numbers between 1
and 25 is randomly selected, corresponding to the identities
of the agents where link failures occur. For each of them,
a randomly selected link failure in Gdisk(r) is chosen. Note
that, the identity of an agent might appear more than once

in the random set, and therefore, more than one link failure
may occur at the same agent. Nevertheless, rendezvous is
asymptotically achieved according to Theorem 3.7 (indeed,
in the various simulations that we ran, usually after 80 steps).

We also implemented the Circumcenter Algorithm in space,
d = 3, over the set of proximity graphs {Gdisk(r),GG(r) ∩
Gdisk(r),GRN(r) ∩ Gdisk(r)}. The simulation run is illustrated
in Figure 4. The 25 vehicles have, as before, a maximum
step size smax = .15, and a communication radius r = 4.
The initial configuration of the network is as in Figure 2
over the square [−7, 7] × [−7, 7] × [−7, 7]. At each time
step, each agent randomly selects one of the proximity graphs
in {Gdisk(r),GRN∩disk(r),GG∩disk(r)} and computes its corre-
sponding set of neighbors according to it. Then, it executes
steps 3 through 5 of the Circumcenter Algorithm. Rendezvous
is achieved in a finite number of steps (in the various simula-
tions that we ran, usually after 100 steps).

VI. CONCLUSIONS

We have designed and analyzed a class of circumcenter
algorithms over proximity graphs for multi-agent rendezvous.
Additionally, we have provided a set of novel tools that we
believe are important in the design and analysis of general
motion coordination algorithms. Future directions of research
in motion coordination include the study of increasingly
realistic communication settings (asynchronicity, quantization,
media access and power control issues), the analysis of the
performance and complexity of the algorithms, and the formal
design of other spatially distributed coordination primitives.
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