
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 1

Coverage control for mobile sensing networks
Jorge Cortés, Member IEEE, Sonia Martı́nez, Member IEEE, Timur Karatas, Francesco Bullo, Member IEEE

Abstract— This paper presents control and coordination algo-
rithms for groups of vehicles. The focus is on autonomous vehicle
networks performing distributed sensing tasks where each vehicle
plays the role of a mobile tunable sensor. The paper proposes
gradient descent algorithms for a class of utility functions which
encode optimal coverage and sensing policies. The resulting
closed-loop behavior is adaptive, distributed, asynchronous, and
verifiably correct.

Index Terms— Coverage control, distributed and asynchronous
algorithms, sensor networks, centroidal Voronoi partitions

I. INTRODUCTION

Mobile sensing networks

The deployment of large groups of autonomous vehicles is
rapidly becoming possible because of technological advances
in networking and in miniaturization of electro-mechanical
systems. In the near future, large numbers of robots will
coordinate their actions through ad-hoc communication net-
works and will perform challenging tasks including search and
recovery operations, manipulation in hazardous environments,
exploration, surveillance, and environmental monitoring for
pollution detection and estimation. The potential advantages of
employing teams of agents are numerous. For instance, certain
tasks are difficult, if not impossible, when performed by a
single vehicle agent. Further, a group of vehicles inherently
provides robustness to failures of single agents or communi-
cation links.

Working prototypes of active sensing networks have already
been developed; see [1], [2], [3], [4]. In [3], launchable
miniature mobile robots communicate through a wireless net-
work. The vehicles are equipped with sensors for vibrations,
acoustic, magnetic, and IR signals as well as an active video
module (i.e., the camera or micro-radar is controlled via a
pan-tilt unit). A second system is suggested in [4] under
the name of Autonomous Oceanographic Sampling Network.
In this case, underwater vehicles are envisioned measuring
temperature, currents, and other distributed oceanographic
signals. The vehicles communicate via an acoustic local area
network and coordinate their motion in response to local
sensing information and to evolving global data. This mobile

Submitted on November 4, 2002, revised on June 16, 2003. Previous short
versions of this paper appeared in the IEEE Conference on Robotics and
Automation, Arlington, VA, May 2002, and Mediterranean Conference on
Control and Automation, Lisbon, Portugal, July 2002.

Jorge Cortés, Timur Karatas and Francesco Bullo are with the Coor-
dinated Science Laboratory, University of Illinois at Urbana-Champaign,
1308 W. Main St., Urbana, IL 61801, United States, Tels: +1-217-244-
8734, +1-217-244-9414 and +1-217-333-0656, Fax: +1-217-244-1653, Email:
{jcortes,tkaratas,bullo}@uiuc.edu

Sonia Martı́nez is with the Escola Universitària Politècnica de Vilanova i
la Geltrú, Universidad Politécnica de Cataluña, Av. V. Balaguer s/n, Vilanova
i la Geltrú, 08800, Spain, Tel: +34-938967743, Fax: +34-938967700, Email:
soniam@mat.upc.es

sensing network is meant to provide the ability to sample
the environment adaptively in space and time. By identifying
evolving temperature and current gradients with higher accu-
racy and resolution than current static sensors, this technology
could lead to the development and validation of improved
oceanographic models.

Optimal sensor allocation and coverage problems

A fundamental prototype problem in this paper is that of
characterizing and optimizing notions of quality-of-service
provided by an adaptive sensor network in a dynamic en-
vironment. To this goal, we introduce a notion of sensor
coverage that formalizes an optimal sensor placement problem.
This spatial resource allocation problem is the subject of a
discipline called locational optimization [5], [6], [7], [8], [9].

Locational optimization problems pervade a broad spectrum
of scientific disciplines. Biologists rely on locational optimiza-
tion tools to study how animals share territory and to char-
acterize the behavior of animal groups obeying the following
interaction rule: each animal establishes a region of dominance
and moves toward its center. Locational optimization problems
are spatial resource allocation problems (e.g., where to place
mailboxes in a city or cache servers on the internet) and play a
central role in quantization and information theory (e.g., how
to design a minimum-distortion fixed-rate vector quantizer).
Other technologies affected by locational optimization include
mesh and grid optimization methods, clustering analysis, data
compression, and statistical pattern recognition.

Because locational optimization problems are so widely
studied, it is not surprising that methods are indeed available
to tackle coverage problems; see [5], [8], [10], [9]. How-
ever, most currently-available algorithms are not applicable
to mobile sensing networks because they inherently assume
a centralized computation for a limited size problem in a
known static environment. This is not the case in multi-vehicle
networks which, instead, rely on a distributed communication
and computation architecture. Although an ad-hoc wireless
network provides the ability to share some information, no
global omniscient leader might be present to coordinate the
group. The inherent spatially-distributed nature and limited
communication capabilities of a mobile network invalidate
classic approaches to algorithm design.

Distributed asynchronous algorithms for coverage control

In this paper we design coordination algorithms imple-
mentable by a multi-vehicle network with limited sensing and
communication capabilities. Our approach is related to the
classic Lloyd algorithm from quantization theory; see [11]
for a reprint of the original report and [12] for a historical
overview. We present Lloyd descent algorithms that take into



2 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION

careful consideration all constraints on the mobile sensing
network. In particular, we design coverage algorithms that are
adaptive, distributed, asynchronous, and verifiably asymptoti-
cally correct:

Adaptive: Our coverage algorithms provide the network with
the ability to address changing environments, sensing
task, and network topology (due to agents departures,
arrivals, or failures).

Distributed: Our coverage algorithms are distributed in the
sense that the behavior of each vehicle depends only on
the location of its neighbors. Also, our algorithms do
not require a fixed-topology communication graph, i.e.,
the neighborhood relationships do change as the network
evolves. The advantages of distributed algorithms are
scalability and robustness.

Asynchronous: Our coverage algorithms are amenable to
asynchronous implementation. This means that the algo-
rithms can be implemented in a network composed of
agents evolving at different speeds, with different compu-
tation and communication capabilities. Furthermore, our
algorithms do not require a global synchronization and
convergence properties are preserved even if information
about neighboring vehicles propagates with some delay.
An advantage of asynchronism is a minimized commu-
nication overhead.

Verifiable Asymptotically Correct: Our algorithms guaran-
tee monotonic descent of the cost function encoding
the sensing task. Asymptotically, the evolution of the
mobile sensing network is guaranteed to converge to so-
called centroidal Voronoi configurations (i.e., configura-
tions where the location of each generator coincides with
the centroid of the corresponding Voronoi cell) that are
critical points of the optimal sensor coverage problem.

Let us describe in some detail what are the contributions of
this paper. Section II reviews certain locational optimization
problems and their solutions as centroidal Voronoi partitions.
Section III provides a continuous-time version of the classic
Lloyd algorithm from vector quantization and applies it to the
setting of multi-vehicle networks. In discrete-time, we pro-
pose a family of Lloyd algorithms. We carefully characterize
convergence properties for both continuous and discrete-time
versions (Appendix I collects some relevant facts on descent
flows). We discuss a worst-case optimization problem, we
investigate a simple uniform planar setting, and we present
simulation results.

Section IV presents two asynchronous distributed imple-
mentations of Lloyd algorithm for ad-hoc networks with
communication and sensing capabilities. Our treatment care-
fully accounts for the constraints imposed by the distributed
nature of the vehicle network. We present two asynchronous
implementations, one based on classic results on distributed
gradient flows, the other based on the structure of the coverage
problem. (Appendix II briefly reviews some known results on
asynchronous gradient algorithms.)

Section V-A considers vehicle models with more realistic
dynamics. We present two formal results on passive vehicle
dynamics and on vehicles equipped with individual local con-

trollers. We present numerical simulations of passive vehicle
models and of unicycle mobile vehicles. Next, Section V-B de-
scribes density functions that lead the multi-vehicle network to
predetermined geometric patterns. We present our conclusions
and directions for future research in Section VI.

Review of distributed algorithms for cooperative control

Recent years have witnessed a large research effort focused
on motion planning and coordination problems for multi-
vehicle systems. Issues include geometric patterns [13], [14],
[15], [16], formation control [17], [18], gradient climbing [19],
and conflict avoidance [20]. It is only recently, however, that
truly distributed coordination laws for dynamic networks are
being proposed; e.g., see [21], [22], [23].

Heuristic approaches to the design of interaction rules and
emerging behaviors have been throughly investigated within
the literature on behavior-based robotics; see [24], [25], [17],
[26], [27], [28]. An example of coverage control is discussed
in [29]. Along this line of research, algorithms have been
designed for sophisticated cooperative tasks. However, no
formal results are currently available on how to design reactive
control laws, ensure their correctness, and guarantee their
optimality with respect to an aggregate objective.

The study of distributed algorithms is concerned with pro-
viding mathematical models, devising precise specifications
for their behavior, and formally proving their correctness and
complexity. Via an automata-theoretic approach, the refer-
ences [30], [31] treat distributed consensus, resource alloca-
tion, communication, and data consistency problems. From
a numerical optimization viewpoint, the works in [32], [33]
discuss distributed asynchronous algorithms as networking
algorithms, rate and flow control, and gradient descent flows.
Typically, both these sets of references consider networks with
fixed topology, and do not address algorithms over ad-hoc dy-
namically changing networks. Another common assumption is
that any time an agent communicates its location, it broadcasts
it to every other agent in the network. In our setting, this would
require a non-distributed communication set-up.

Finally, we note that the terminology “coverage” is also
used in [34], [35] and references therein to refer to a different
problem called the coverage path planning problem, where a
single robot equipped with a limited footprint sensor needs to
visit all points in its environment.

II. FROM LOCATION OPTIMIZATION TO CENTROIDAL

VORONOI PARTITIONS

A. Locational optimization

In this section we describe a collection of known facts
about a meaningful optimization problem. References include
the theory and applications of centroidal Voronoi partitions,
see [10], and the discipline of facility location, see [6]. Along
the paper, we interchangeably refer to the elements of the
network as sensors, agents, vehicles, or robots. We let R+ be
the set of nonnegative real numbers, N be the set of positive
natural numbers and N0 = N ∪ {0}.

Let Q be a convex polytope in R
N including its interior,

and let ‖ · ‖ denote the Euclidean distance function. We call



CORTÉS, MARTÍNEZ, KARATAS AND BULLO: COVERAGE CONTROL FOR MOBILE SENSING NETWORKS 3

a map φ : Q → R+ a distribution density function if it
represents a measure of information or probability that some
event take place over Q. In equivalent words, we can consider
Q to be the bounded support of the function φ. Let P =
(p1, . . . , pn) be the location of n sensors, each moving in the
space Q. Because of noise and loss of resolution, the sensing
performance at point q taken from ith sensor at the position
pi degrades with the distance ‖q − pi‖ between q and pi; we
describe this degradation with a non-decreasing differentiable
function f : R+ → R+. Accordingly, f (‖q − pi‖) provides a
quantitative assessment of how poor the sensing performance
is.

Fig. 1. Contour plot on a polygonal environment of the Gaussian density
function φ = exp(−x2 − y2).

Remark 2.1: As an example, consider n mobile robots
equipped with microphones attempting to detect, identify, and
localize a sound-source. How should we plan to robots’ motion
in order to maximize the detection probability? Assuming the
source emits a known signal, the optimal detection algorithm
is a matched filter (i.e., convolve the known waveform with
the received signal and threshold). The source is detected
depending on the signal-to-noise-ratio, which is inversely
proportional to the distance between the microphone and
the source. Various electromagnetic and sound sensors have
signal-to-noise ratios inversely proportional to distance.

Within the context of this paper, a partition of Q is a
collection of n polytopes W = {W1, . . . ,Wn} with disjoint
interiors whose union is Q. We say that two partitions W and
W ′ are equal if Wi and W ′

i only differ by a set of φ-measure
zero, for all i ∈ {1, . . . , n}.

We consider the task of minimizing the locational optimiza-
tion function

H(P,W) =

n
∑

i=1

∫

Wi

f(‖q − pi‖)φ(q)dq, (1)

where we assume that the ith sensor is responsible for mea-
surements over its “dominance region” Wi. Note that the
function H is to be minimized with respect to both (1) the
sensors location P , and (2) the assignment of the dominance
regions W . The optimization is therefore to be performed with
respect to the position of the sensors and the partition of the
space. This problem is referred to as a facility location problem
and in particular as a continuous p-median problem in [6].

Remark 2.2: Note that if we interchange the positions
of any two agents, along with their associated
regions of dominance, the value of the locational
optimization function H is not affected. Equivalently,

if Σn denotes the discrete group of permutations
of n elements, then H(p1, . . . , pn,W1, . . . ,Wn) =
H(pσ(1), . . . , pσ(n),Wσ(1), . . . ,Wσ(n)) for all σ ∈ Σn.
To eliminate this discrete redundancy, one could take natural
action of Σn on Qn, and consider Qn/Σn as the configuration
space for the position P of the n vehicles.

B. Voronoi partitions

One can easily see that, at fixed sensors location, the optimal
partition of Q is the Voronoi partition V(P ) = {V1, . . . , Vn}
generated by the points (p1, . . . , pn):

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}.

We refer to [9] for a comprehensive treatment on Voronoi
diagrams, and briefly present some relevant concepts. The set
of regions {V1, . . . , Vn} is called the Voronoi diagram for the
generators {p1, . . . , pn}. When the two Voronoi regions Vi

and Vj are adjacent (i.e., they share an edge), pi is called a
(Voronoi) neighbor of pj (and vice-versa). The set of indexes
of the Voronoi neighbors of pi is denoted by N (i). Clearly,
j ∈ N (i) if and only if i ∈ N (j). We also define the (i, j)-
face as ∆ij = Vi ∩ Vj . Voronoi diagrams can be defined with
respect to various distance functions, e.g., the 1-, 2-, s-, and
∞-norm over Q = R

m, see [36]. Some useful facts about the
Euclidean setting are the following: if Q is a convex polytope
in a N -dimensional Euclidean space, the boundary of each Vi

is the union of (N − 1)-dimensional convex polytopes.
In what follows, we shall write

HV(P ) = H(P,V(P )).

Note that using the definition of the Voronoi partition, we
have mini∈{1,...,n} f(‖q − pi‖) = f(‖q − pj‖) for all q ∈ Vj .
Therefore,

HV(P ) =

∫

Q

min
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq , (2)

= E(Q,φ)

[

min
i∈{1,...,n}

f(‖q − pi‖)

]

,

that is, the locational optimization function can be interpreted
as an expected value composed with a min operation. This is
the usual way in which the problem is presented in the facility
location and operations research literature [6]. Remarkably,
one can show [10] that

∂HV

∂pi

(P ) =
∂H

∂pi

(P,V(P )) =

∫

Vi

∂

∂pi

f (‖q − pi‖) φ(q)dq,

(3)

i.e., the partial derivative of HV with respect to the ith sensor
only depends on its own position and the position of its
Voronoi neighbors. Therefore the computation of the derivative
of HV with respect to the sensors’ location is decentralized
in the sense of Voronoi. Moreover, one can deduce some
smoothness properties of HV : since the Voronoi partition
V depends at least continuously on P = (p1, . . . , pn), the
function HV is at least continuously differentiable.



4 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION

C. Centroidal Voronoi partitions

Let us recall some basic quantities associated to a region
V ⊂ R

N and a mass density function ρ. The (generalized)
mass, centroid (or center of mass), and polar moment of inertia
are defined as

MV =

∫

V

ρ(q) dq, CV =
1

MV

∫

V

q ρ(q) dq,

JV,p =

∫

V

‖q − p‖2 ρ(q) dq.

Additionally, by the parallel axis theorem, one can write,

JV,p = JV,CV
+ MV ‖p − CV ‖2 (4)

where JV,CV
∈ R+ is defined as the polar moment of inertia

of the region V about its centroid CV .
Let us consider again the locational optimization prob-

lem (1), and suppose now we are strictly interested in the
setting

H(P,W) =

n
∑

i=1

∫

Wi

‖q − pi‖
2φ(q)dq, (5)

that is, we assume f(‖q− pi‖) = ‖q− pi‖
2. The parallel axis

theorem leads to simplifications for both the function HV and
its partial derivative:

HV(P ) =

n
∑

i=1

JVi,CVi
+

n
∑

i=1

MVi
‖pi − CVi

‖2

∂HV

∂pi

(P ) = 2MVi
(pi − CVi

).

Here the mass density function is ρ = φ. It is convenient to
define

HV,1 =

n
∑

i=1

JVi,CVi
, HV,2 =

n
∑

i=1

MVi
‖pi − CVi

‖2 .

Therefore, the (not necessarily unique) local minimum points
for the location optimization function HV are centroids of their
Voronoi cells, i.e., each location pi satisfies two properties
simultaneously: it is the generator for the Voronoi cell Vi and
it is its centroid

CVi
= argminpi

HV(P ).

Accordingly, the critical partitions and points for H are called
centroidal Voronoi partitions. We will refer to a sensors’
configuration as a centroidal Voronoi configuration if it gives
rise to a centroidal Voronoi partition. Of course, centroidal
Voronoi configurations depend on the specific distribution den-
sity function φ, and an arbitrary pair (Q,φ) admits in general
multiple centroidal Voronoi configurations. This discussion
provides a proof alternative to the one given in [10] for the
necessity of centroidal Voronoi partitions as solutions to the
continuous p-median location problem.

III. CONTINUOUS AND DISCRETE-TIME LLOYD DESCENT

FOR COVERAGE CONTROL

In this section, we describe algorithms to compute the
location of sensors that minimize the cost H, both in con-
tinuous and in discrete-time. In Section III-A, we propose a

continuous-time version of the classic Lloyd algorithm. Here,
both the positions and partitions evolve in continuous time,
whereas Lloyd algorithm for vector quantization is designed
in discrete time. In Section III-B, we develop a family of
variations of Lloyd algorithm in discrete time. In both settings,
we prove that the proposed algorithms are gradient descent
flows.

A. A continuous-time Lloyd algorithm

Assume the sensors location obeys a first order dynamical
behavior described by

ṗi = ui.

Consider HV a cost function to be minimized and impose
that the location pi follows a gradient descent. In equivalent
control theoretical terms, consider HV a Lyapunov function
and stabilize the multi-vehicle system to one of its local
minima via dissipative control. Formally, we set

ui = −kprop(pi − CVi
), (6)

where kprop is a positive gain, and where we assume that the
partition V(P ) = {V1, . . . , Vn} is continuously updated.

Proposition 3.1 (Continuous-time Lloyd descent): For the
closed-loop system induced by equation (6), the sensors lo-
cation converges asymptotically to the set of critical points
of HV , i.e., the set of centroidal Voronoi configurations on Q.
Assuming this set is finite, the sensors location converges to
a centroidal Voronoi configuration.

Proof: Under the control law (6), we have

d

dt
HV(P (t)) =

n
∑

i=1

∂HV

∂pi

ṗi

= −2kprop

n
∑

i=1

MVi
‖pi − CVi

‖2 = −2kpropHV,2(P (t)).

By LaSalle’s principle, the sensors location converges to the
largest invariant set contained in H−1

V,2(0), which is precisely
the set of centroidal Voronoi configurations. Since this set is
clearly invariant for (6), we get the stated result. If H−1

V,2(0)
consists of a finite collection of points, then P (t) converges
to one of them, see Corollary 1.2.

Remark 3.2: If H−1
V,2(0) is finite, and P (t) → C, then a

sufficient condition that guarantees exponential convergence is
that the Hessian of HV be positive definite at C. Establishing
this property is a known open problem, see [10]. Note that this
gradient descent is not guaranteed to find the global minimum.
For example, in the vector quantization and signal processing
literature [12], it is known that for bimodal distribution density
functions, the solution to the gradient flow reaches local
minima where the number of generators allocated to the two
region of maxima are not optimally partitioned.

B. A family of discrete-time Lloyd algorithms

Let us consider the following variations of Lloyd algorithm.
Let T be a continuous mapping T : Qn → Qn verifying the
following two properties:



CORTÉS, MARTÍNEZ, KARATAS AND BULLO: COVERAGE CONTROL FOR MOBILE SENSING NETWORKS 5

(a) for all i ∈ {1, . . . , n}, ‖Ti(P )−CVi(P )‖ ≤ ‖pi−
CVi(P )‖, where Ti denotes the ith component of T ,
(b) if P is not centroidal, then there exists a j such
that ‖Tj(P ) − CVj(P )‖ < ‖pj − CVj(P )‖.

Property (a) guarantees that, if moved according to T , the
agents of the network do not increase their distance to its
corresponding centroid. Property (b) ensures that at least one
robot moves at each iteration and strictly approaches the cen-
troid of its Voronoi region. Because of this property, the fixed
points of T are the set of centroidal Voronoi configurations.

Proposition 3.3 (Discrete-time Lloyd descent): Let T :
Qn → Qn be a continuous mapping satisfying properties (a)
and (b). Let P0 ∈ Qn denote the initial sensors’ location.
Then, the sequence {T m(P0) | m ∈ N} converges to the set
of centroidal Voronoi configurations. If this set is finite, then
the sequence {T m(P0) | m ∈ N} converges to a centroidal
Voronoi configuration.

Proof: Consider HV : Qn → R+ as an objective
function for the algorithm T . Using the parallel axis theorem,
H(P,W) =

∑n
i=1 JWi,CWi

+
∑n

i=1 MWi
‖pi − CWi

‖2, and
therefore

H(P ′,W) ≤ H(P,W) , (7)

as long as ‖p′i − CWi
‖ ≤ ‖pi − CWi

‖ for all i ∈ {1, . . . , n},
with strict inequality if for any i, ‖p′i −CWi

‖ < ‖pi −CWi
‖.

In particular, H(CW ,W) ≤ H(P,W), with strict inequality
if P 6= CW , where CW denotes the set of centroids of
the partition W . Moreover, since the Voronoi partition is the
optimal one for fixed P , we also have

H(P,V(P )) ≤ H(P,W) , (8)

with strict inequality if W 6= V(P ).
Now, because of property (a) of T , inequality (7) yields

H(T (P ),V(P )) ≤ H(P,V(P )) = HV(P ) ,

and the inequality is strict if P is not centroidal by property
(b) of T . In addition,

HV(T (P )) = H(T (P ),V(T (P ))) ≤ H(T (P ),V(P )) ,

because of (8). Hence, HV(T (P )) ≤ HV(P ), and the inequal-
ity is strict if P is not centroidal. We then conclude that HV is
a descent function for the algorithm T . The result now follows
from the global convergence Theorem 1.3 and Proposition 1.4
in Appendix I.

Remark 3.4: Lloyd algorithm in quantization theory [11],
[12] is usually presented as follows: given the location of n
agents, p1, . . . , pn, (i) construct the Voronoi partition corre-
sponding to P = (p1, . . . , pn); (ii) compute the mass centroids
of the Voronoi regions found in step (i). Set the new location
of the agents to these centroids; and return to step (i). Lloyd
algorithm can also be seen as a fixed point iteration. Consider
the mappings LLi : Qn → Q for i ∈ {1, . . . , n}

LLi(p1, . . . , pn) =

(

∫

Vi(P )

φ(q)dq

)−1
∫

Vi(P )

qφ(q)dq .

Let LL : Qn → Qn be defined by LL = (LL1, . . . , LLn).
Clearly, LL is continuous (indeed, C1), and corresponds to

Lloyd algorithm. Now, ‖LLi(P ) − CVi
‖ = 0 ≤ ‖pi − CVi

‖,
for all i ∈ {1, . . . , n}. Moreover, if P is not centroidal, then
the inequality is strict for all pi 6= CVi

. Therefore, LL verifies
properties (a) and (b).

C. Remarks

(i) Note that different sensor performance functions f in
equation (1) correspond to different optimization prob-
lems. Provided one uses the Euclidean distance in the
definition of H (cf. equation (1)), the standard Voronoi
partition computed with respect to the Euclidean metric
remains the optimal partition. For arbitrary f , it is not
possible anymore to decompose HV into the sum of
terms similar to HV,1 and HV,2. Nevertheless, it is
still possible to implement the gradient flow via the
expression for the partial derivative (3).
Proposition 3.5: Assume the sensors location obeys a
first order dynamical behavior, ṗi = ui. Then, for the
closed-loop system induced by the gradient law (3),
ui = −∂HV/∂pi, the sensors location P = (p1, . . . , pn)
converges asymptotically to the set of critical points of
HV . Assuming this set is finite, the sensors location
converges to a critical point.

(ii) More generally, various distance notions can be used
to define locational optimization functions. Different
performance function gives rise to corresponding notions
of “center of a region” (any notion of geometric center,
mean, or average is an interesting candidate). These can
then be adopted in designing coverage algorithms. We
refer to [36] for a discussion on Voronoi partitions based
on non-Euclidean distance functions and to [5], [8] for a
discussion on the corresponding locational optimization
problems.

(iii) Next, let us discuss an interesting variation of the origi-
nal problem. In [6], minimizing the expected minimum
distance function HV in equation (2) is referred to
as the continuous p-median problem. It is instructive
to consider the worst-case minimum distance function,
corresponding to the scenario where no information is
available on the distribution density function. In other
words, the network seeks to minimize the largest possi-
ble distance from any point in Q to any of the sensor
locations, i.e., to minimize the function

max
q∈Q

[

min
i∈{1,...,n}

‖q − pi‖

]

= max
i∈{1,...,n}

[

max
q∈Vi

‖q − pi‖

]

.

This optimization is referred to as the p-center problem
in [6], [7]. One can design a strategy for the p-center
problem analog to the Lloyd algorithm for the p-median
problem: each vehicle moves, in continuous or discrete-
time, toward the center of the minimum-radius sphere
enclosing the polytope. We refer to [37] for a conver-
gence analysis of the continuous-time algorithms.

In what follows, we shall restrict our attention to the p-
median problem and to centroidal Voronoi partitions.



6 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION

D. Computations over polygons with uniform density

In this section, we investigate closed-form expression for the
control laws introduced above. Assume the Voronoi region Vi

is a convex polygon (i.e., a polytope in R
2) with Ni vertexes

labeled {(x0, y0), . . . , (xNi−1, yNi−1)} such as in Fig. 2. It is
convenient to define (xNi

, yNi
) = (x0, y0). Furthermore, we

assume that the density function is φ(q) = 1. By evaluating the

(x2, y2)

(x3, y3)

(x5, y5)
(x0, y0) = (x6, y6)

(x1, y1)

(Cx, Cy)

(x4, y4)

Fig. 2. Notation conventions for a convex polygon.

corresponding integrals, one can obtain the following closed-
form expressions

MVi
=

1

2

Ni−1
∑

k=0

(xkyk+1 − xk+1yk)

CVi,x =
1

6MVi

Ni−1
∑

k=0

(xk + xk+1)(xkyk+1 − xk+1yk) (9)

CVi,y =
1

6MVi

Ni−1
∑

k=0

(yk + yk+1)(xkyk+1 − xk+1yk) .

To present a simple formula for the polar moment of inertia,
let x̄k = xk−CVi,x and ȳk = yk−CVi,y , for k ∈ {0, . . . , Ni−
1}. Then, the polar moment of inertia of a polygon about its
centroid, JVi,C becomes

JVi,CVi
=

1

12

Ni−1
∑

k=0

(x̄kȳk+1 − x̄k+1ȳk) ·

(x̄2
k + x̄kxk+1 + x̄2

k+1 + ȳ2
k + ȳkȳk+1 + ȳ2

k+1) .

The proof of these formulas is based on decomposing the
polygon into the union of disjoint triangles. We refer to [38]
for analog expressions over R

N .
Note also that the Voronoi polygon’s vertexes can be ex-

pressed as a function of the neighboring vehicles. The vertexes
of the ith Voronoi polygon that lie in the interior of Q are
the circumcenters of the triangles formed by pi and any two
neighbors adjacent to pi. The circumcenter of the triangle
determined by pi, pj , and pk is

1

4M

(

‖αkj‖
2(αji · αik)pi + ‖αik‖

2(αkj · αji)pj

+ ‖αji‖
2(αik · αkj)pk

)

, (10)

where M is the area of the triangle, and αls = pl − ps.
Equation (9) for a polygon’s centroid and equation (10) for

the Voronoi cell’s vertexes lead to a closed-form algebraic
expression for the control law in equation (6) as a function of
the neighboring vehicles’ location.

E. Numerical simulations

To illustrate the performance of the continuous-time Lloyd
algorithm, we include some simulation results. The algorithm
is implemented in Mathematica as a single centralized
program. For the R

2 setting, the code computes the bounded
Voronoi diagram using the Mathematica package Com-
putationalGeometry, and computes mass, centroid, and
polar moment of inertia of polygons via the numerical inte-
gration routine NIntegrate. Careful attention was paid to
numerical accuracy issues in the computation of the Voronoi
diagram and in the integration. We illustrate the performance
of the closed-loop system in Fig. 3.

IV. ASYNCHRONOUS DISTRIBUTED IMPLEMENTATIONS

In this section we show how the Lloyd gradient algorithm
can be implemented in an asynchronous distributed fashion. In
Section IV-A we describe our model for a network of robotic
agents, and we introduce a precise notion of distributed evolu-
tion. Next, we provide two distributed algorithms for the local
computation and maintenance of the Voronoi cells. Finally,
in Section IV-C we propose two distributed asynchronous
implementations of Lloyd algorithm: the first one is based on
the gradient optimization algorithms as described in [32] and
the second one relies on the special structure of the coverage
problem.

A. Modeling an asynchronous distributed network of mobile
robotic agents

We start by modeling a robotic agent that performs sens-
ing, communication, computation, and control actions. We
are interested in the behavior of the asynchronous network
resulting from the interaction of finitely many robotic agents.
A framework to formalize the following concepts is the theory
of distributed algorithms; see [30].

Let us here introduce the notion of robotic agent with
computation, communication, and control capabilities as the
ith element of a network. The ith agent has a processor
with the ability of allocating continuous and discrete states
and performing operations on them. Each vehicle has access
to its unique identifier i. The ith agent occupies a location
pi ∈ Q ⊂ R

N and it is capable of moving in space, at any
time t ∈ R+ for any period of time δt ∈ R+, according to a
first order dynamics of the form:

ṗi(s) = ui, ‖ui‖ ≤ 1 , ∀s ∈ [t, t + δt]. (11)

The processor has access to the agent’s location pi and
determines the control pair (δt, ui). The processor of the
ith agent has access to a local clock ti ∈ R+, and a
scheduling sequence, i.e., an increasing sequence of times
{Ti,k ∈ R+ | k ∈ N0} such that Ti,0 = 0 and 0 < ti,min <
Ti,k+1−Ti,k < ti,max. The processor of the ith agent is capable
of transmitting information to any other agent within a closed
disk of radius Ri ∈ R+. We assume the communication radius
Ri to be a quantity controllable by the ith processor and the
corresponding communication bandwidth to be limited. We
represent the information flow between the agents by means of



CORTÉS, MARTÍNEZ, KARATAS AND BULLO: COVERAGE CONTROL FOR MOBILE SENSING NETWORKS 7

Fig. 3. Lloyd continuous-time algorithm for 32 agents on a convex polygonal environment, with the Gaussian density function of Fig. 1. The control gain
in (6) is kprop = 1 for all the vehicles. The left (respectively, right) figure illustrates the initial (respectively, final) locations and Voronoi partition. The central
figure illustrates the gradient descent flow.

“send” (within specified radius Ri) and “receive” commands
with a finite number of arguments.

We shall alternatively consider networks of robotic agents
with computation, sensing, and control capabilities. In this
case, the processor of the ith agent has the same computation
and control capabilities as before. Furthermore, we assume the
processor can detect any other agent within a closed disk of
radius Ri ∈ R+. We assume the sensing radius Ri to be a
quantity controllable by the processor.

Remark 4.1: We assume all communication between agents
and all sensing of agents locations to be always accurate and
instantaneous.

Consider the closed-loop system formed by the evolution
of the n agents of a network according to equation (11).
The network evolution is said to be Voronoi-distributed if
each ui(p1, . . . , pn) can be written as a function of the form
ui(pi, pi1 , . . . , pim

), with ik ∈ N (i), k ∈ {1, . . . ,m}. It
is well known that there are at most 3n − 6 neighborhood
relationships in a planar Voronoi diagram [9, see Section 2.3].
As a consequence, the number of Voronoi neighbors of each
site is on average less than or equal to 6, i.e., m ≤ 6. (Recall
that sites are Voronoi-neighbors if they share an edge, not
just a vertex.) Accordingly, we argue that Voronoi-distributed
algorithms lead to scalable networks. Finally, note that the
set of indexes {i1, . . . , im} for a specific generator pi of a
Voronoi-distributed dynamical system is not the same for all
possible configurations of the network. In other words, the
identity of the Voronoi neighbors changes along the evolution,
i.e., the topology of the closed-loop system is dynamic.

B. Voronoi cell computation and maintenance

A key requirement of the Lloyd algorithms presented in
Section III is that each agent must be able to compute its own
Voronoi cell. To do so, each agent needs to know the relative
location (distance and bearing) of each Voronoi neighbor. The
ability of locating neighbors plays a central role in numerous
algorithms for localization, media access, routing, and power
control in ad-hoc wireless communication networks; e.g.,
see [39], [40], [41] and references therein. Therefore, any
motion control scheme might be able to obtain this information
from the underlying communication layer. In what follows, we
set out to provide a distributed asynchronous algorithm for

the local computation and maintenance of Voronoi cells. The
algorithm is related to the synchronous scheme in [41] and is
based on basic properties of Voronoi diagrams.

We present the algorithm for a robotic agent with sensing
capabilities (as well as computation and control). The pro-
cessor of the ith agent allocates the information it has on
the position of the other agents in the state variable P i. The
objective is to determine the smallest distance Ri for agent i
which provides enough information to compute the Voronoi
cell Vi. We start by noting that Vi is a subset of the convex
set

W (pi, Ri) = B(pi, Ri) ∩
(

∩j:‖pi−pj‖≤Ri
Sij

)

, (12)

where B(pi, Ri) = {q ∈ Q | ‖q − pi‖ ≤ Ri} and the half
planes Sij are

{q ∈ R
N | ‖q − pi‖ ≤ ‖q − pj‖}.

Provided Ri is twice as large as the maximum distance
between pi and the vertexes of W (pi, Ri), one can show that
all Voronoi neighbors of pi are within distance Ri from pi and
the equality Vi = W (pi, Ri) holds. The minimum adequate
sensing radius is therefore Ri,min = 2maxq∈W (pi,Ri,min) ‖pi−
q‖. This argument guarantees the correctness of the ADJUST

SENSING RADIUS ALGORITHM in Table I. The execution of
this algorithm is illustrated in Fig. 4.

TABLE I

ADJUST SENSING RADIUS ALGORITHM

Name: ADJUST SENSING RADIUS ALGORITHM

Goal: distributed Voronoi cell
Requires: sensor with controllable radius Ri

At time ti, local agent i performs:
1: initialize Ri, detect all pj within radius Ri

2: update P i(ti), compute W (pi(ti), Ri)
3: while Ri < 2 maxq∈W (pi(ti),Ri)

‖pi(ti) − q‖ do
4: set Ri := 2Ri

5: detect all pj within radius Ri

6: update P i(ti), compute W (pi(ti), Ri)
7: end while
8: set Ri := 2 maxq∈W (pi(ti),Ri)

‖pi(ti) − q‖
9: set Vi := Wi(pi(ti), Ri)



8 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION

Fig. 4. An execution (from left to right) of the ADJUST SENSING RADIUS

ALGORITHM: the sensing disk B(pi, Ri) is in light gray, and the Voronoi
cell estimate W (pi, Ri) is the darker gray region.

A similar ADJUST COMMUNICATION RADIUS ALGORITHM

algorithm can be designed for a robotic agent with communi-
cation capabilities. The specifications go as in the previous
algorithm, except for the fact that steps 2: and 7: are
substituted by

send
(

“request to reply”, pi(ti)
)

within radius Ri

receive
(

“response”, pj

)

from all agents within radius Ri

Further, we have to require each agent to perform the following
event-driven task: if the ith agent receives at any time ti

a “request to reply” message from the jth agent located at
position pj , it executes

send
(

“response”, pi(ti)
)

within radius ‖pi(t) − pj‖

Next, we present the MONITORING ALGORITHM (cf. Ta-
ble II), whose objective is to maintain the information about
the Voronoi cell of the ith agent, and detect certain events. We
consider robotic agents with sensing capabilities. We call an
agent active if it is moving and we assume the ith agent can
determine if any agent within radius Ri is active or not. It turns
out that (only) the following two events are of interest: (i) a
Voronoi neighbor of the ith agent becomes active, and (ii) an
active agent becomes a Voronoi neighbor of the ith agent. In
both cases, we record the event by setting a Boolean variable
event to true (as we shall later show, this will trigger an
appropriate control action). The map weight : P i ∈ R

N×n 7→
(w1, . . . , wn) ∈ N

n
0 in Table II is defined by

wj =







3 if j ∈ N (i) and j is active
1 if j ∈ N (i) and j is not active
0 if j 6∈ N (i) .

We denote by weightj the jth component of weight. The
algorithm is designed to run for times ti ∈ [t0, t0 + δt].

The correctness of the MONITORING ALGORITHM is guar-
anteed by the following argument: if an event of type (i) occurs
at time ti ∈ [t0, t0 + δt], i.e., an agent (say, the jth) that
is a Voronoi neighbor of the ith agent becomes active, then
weightj(P

i(ti))−wj = 2, and therefore event is set to true.
Similarly, if an event of type (ii) occurs at time ti ∈ [t0, t0+δt],
i.e., a new active agent (say, the jth) becomes a Voronoi
neighbor of the ith agent, then weightj(P

i(ti)) − wj = 3,
and event is set to true.

C. Asynchronous distributed implementations of coverage
control

Let us now present two versions of Lloyd algorithm
for the solution of the optimization problem (1) that can

TABLE II

MONITORING ALGORITHM

Name: MONITORING ALGORITHM

Goal: Cell maintenance & event detection
Requires: (i) sensor with controllable radius Ri

(ii) positive reals t0, δt
(iii) ADJUST SENSING RADIUS

ALGORITHM

Local agent i performs for ti ∈ [t0, t0 + δt]:
1: initialize P i(t0) and Vi(t0), set w := weight(P i(t0))
2: while ti ≤ t0 + δt do
3: run ADJUST SENSING RADIUS ALGORITHM

4: if for any j, |weightj(P
i(ti)) − wj | ≥ 2 then

5: if weightj(P
i(ti)) − wj ≥ 2 then

6: set event := true
7: end if
8: set w := weight(P i(ti))
9: end if

10: end while

be implemented by an asynchronous distributed network of
robotic agents. For simplicity, we assume that at time 0
all clocks are synchronized (although they later can run at
different speeds) and that each agent knows at 0 the exact
location of every other agent. The COVERAGE BEHAVIOR

ALGORITHM I (cf. Table III) is designed for robotic agents
with communication capabilities, and requires the ADJUST

COMMUNICATION RADIUS ALGORITHM (while it does not
require the MONITORING ALGORITHM).

TABLE III

COVERAGE BEHAVIOR ALGORITHM I

Name: COVERAGE BEHAVIOR ALGORITHM I
Goal: distributed optimal agent location
Requires: (i) Voronoi cell computation

(ii) centroid and mass computation
(iii) positive real δ0

(iv) ADJUST COMMUNICATION RADIUS

ALGORITHM

For i ∈ {1, . . . , n}, ith agent performs at ti = Ti,0 = 0:

0: set P i(Ti,0) := (pi
1(Ti,0), . . . , pi

n(Ti,0))
0: compute Voronoi region Vi(Ti,0)
0: set Vi := Vi(Ti,0) and Ri := 2 maxq∈Vi

‖pi − q‖

For i ∈ {1, . . . , n}, the ith agent performs at time ti = Ti,k either one
of the following threads or both. For some Bi ∈ N, we require that each
thread is executed at least once every Bi steps of the scheduling sequence.

[Information thread]
1: run ADJUST COMMUNICATION RADIUS ALGORITHM

[Control thread]
1: compute centroid CVi

and mass MVi
of Vi

2: apply control pair
(

δ0, MVi
(CVi

− pi(Ti,k))
)

As a consequence of the results in [32, Theorem 3.1 and
Corollary 3.1] (see Appendix II, Theorem 2.2 below for a brief
exposition), we have the following result.

Proposition 4.2: Let P0 ∈ Qn denote the initial sensors
location. Let {Tk} be the sequence in increasing order of all
the scheduling sequences of the agents of the network. Assume
infk{Tk − Tk−1} > 0. Then, there exists a sufficiently small
δ∗ > 0 such that if 0 < δ0 ≤ δ∗, the COVERAGE BEHAVIOR

ALGORITHM I converges to the set of critical points of HV ,



CORTÉS, MARTÍNEZ, KARATAS AND BULLO: COVERAGE CONTROL FOR MOBILE SENSING NETWORKS 9

that is, the set of centroidal Voronoi configurations.
Next, we focus on distributed asynchronous implementa-

tions of Lloyd algorithm that take advantage of the special
structure of the coverage problem. The COVERAGE BEHAVIOR

ALGORITHM II (cf. Table IV) is designed for robotic agents
with sensing capabilities, it requires the Monitoring and the
Adjust sensing radius algorithms. Two advantages of this
algorithm over the previous one are that there is no need for
each agent to exactly go toward the centroid of its Voronoi
cell nor to take a small step at each stage.

TABLE IV

COVERAGE BEHAVIOR ALGORITHM II

Name: COVERAGE BEHAVIOR ALGORITHM II
Goal: distributed optimal agent location
Requires: (i) Voronoi cell computation

(ii) centroid computation
(iii) MONITORING ALGORITHM

For i ∈ {1, . . . , n}, ith agent performs at ti = Ti,0 = 0:

0: set P i(Ti,0) := (pi
1(Ti,0), . . . , pi

n(Ti,0))
0: compute Voronoi region Vi(Ti,0)
0: set Vi := Vi(Ti,0) and Ri := 2 maxq∈Vi

‖pi − q‖

For i ∈ {1, . . . , n}, ith agent performs at ti = Ti,k:

1: choose 0 < δti < ti,min

2: set s := Ti,k , compute centroid CVi
(s)

3: choose ui, with ui ·(CVi
−pi(s)) ≥ 0, with strict inequality if pi(s) 6=

CVi
, set event := false

4: while ti ≤ Ti,k + δti do
5: run MONITORING ALGORITHM for (Ti,k, δti)
6: while event = false do
7: ṗi = ui

8: end while
9: set s := ti, compute centroid CVi(s)

10: choose ui, with ui · (CVi
− pi(s)) ≥ 0, with strict inequality if

pi(s) 6= CVi
, set event := false

11: end while

Remark 4.3: The control law in step 7: of the COVERAGE

BEHAVIOR ALGORITHM II can be defined via a saturation
function. For instance, SR : R

N → R
N

SR(x) =

{

x if ‖x‖ ≤ 1
x/‖x‖ if ‖x‖ ≥ 1

Then set ui = SR(CVi
− pi).

With respect to the correctness of the COVERAGE BEHAV-
IOR ALGORITHM II, one can consider the time instants when
the computation of the centroid of the Voronoi region of any
agent is made, together with the time instants when any agent
decide to stop, and regard the execution of this algorithm as
a discrete-time mapping. Resorting to the discussion in Sec-
tion III-B on the convergence of the discrete Lloyd algorithms,
one can prove that the Coverage behavior algorithm II verifies
properties (a) and (b). As a consequence of Proposition 3.3,
we then have the following result.

Proposition 4.4: Let P0 ∈ Qn denote the initial sensors lo-
cation. The COVERAGE BEHAVIOR ALGORITHM II converges
to the set of critical points of HV , that is, the set of centroidal
Voronoi configurations.

V. EXTENSIONS AND APPLICATIONS

In this section we investigate various extensions and appli-
cations of the algorithms proposed in the previous sections. We

extend the treatment to vehicles with passive dynamics and we
also consider discrete-time implementations of the algorithms
for vehicles endowed with a local motion planner. Finally,
we describe interesting ways of designing density functions to
solve problems apparently unrelated to coverage.

A. Variations on vehicle dynamics

Here, we consider vehicles systems described by more
general linear and nonlinear dynamical models.

Coordination of vehicles with passive dynamics. We start by
considering the extension of the control design to nonlinear
control systems whose dynamics is passive [42]. Relevant
examples include networks of vehicles and robots with general
Lagrangian dynamics, as well as spatially invariant passive lin-
ear systems. Specifically, assume that for each i ∈ {1, . . . , n},
the ith vehicle state includes the spatial variable pi, and that
the vehicle’s dynamics is passive with input ui, output ṗi and
storage function Si : Q → R+. Furthermore, assume that
the input preserving the zero dynamics manifold {ṗi = 0} is
ui = 0.

For such systems, we devise a proportional derivative (PD)
control via,

ui = −kpropMVi
(pi − CVi

) − kderivṗi, (13)

where kprop and kderiv are scalar positive gains. The closed-
loop system induced by this control law can be analyzed with
the Lyapunov function

E =
1

2
kpropHV +

n
∑

i=1

Si,

yielding the following result.
Proposition 5.1: For passive systems, the control law (13)

achieves asymptotic convergence of the sensors location to the
set of centroidal Voronoi configurations. If this set is finite,
then the sensors location converges to a centroidal Voronoi
configuration.

Proof: Consider the evolution of the function E ,

d

dt
E =

1

2
kprop

d

dt
HV +

n
∑

i=1

Ṡi

≤ kpropMVi
(pi − CVi

) + ṗiui = −kderiv

n
∑

i=1

ṗ2
i ≤ 0 .

By LaSalle’s principle, the sensors location converges to
the largest invariant set contained in {ṗi = 0}. Given the
assumption on the zero dynamics, we conclude that pi = CVi

for i ∈ {1, . . . , n}, i.e., the largest invariant set corresponds to
the set of centroidal Voronoi configurations. If this set is finite,
LaSalle’s principle also guarantees convergence to a specific
centroidal Voronoi configuration.

In Fig. 5 we illustrate the performance of the control
law (13) for vehicles with second-order dynamics p̈i = ui

and storage function Si = 1
2 ṗ2

i .
Coordination of vehicles with local controllers. Next, con-

sider the setting where each vehicle has an arbitrary dynam-
ics and is endowed with a local feedback and feedforward
controller. The controller is capable of strictly decreasing the



10 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION

Fig. 5. Coverage control for 32 vehicles with second order dynamics. The
environment and Gaussian density function are as in Fig. 3. The control gains
are kprop = 6 and kderiv = 1.

distance to any specified position in Q in a specified period
of time δ.

Assume the dynamics of the ith vehicle is described by
ẋi = fi(t, xi, u), where xi ∈ R

m denotes its state, and πi :
R

mi → Q is such that πi(xi) = pi. Assume also that for
any ptarget ∈ Q and any x0 ∈ R

m \ π−1
i (ptarget), there exists

u(t, x(t), ptarget) such that the solution xi(t) of

ẋi = fi(t, xi(t), u(t, xi(t), ptarget)) , xi(0) = x0 ,

verifies ‖πi(xi(t0 + δ)) − ptarget‖ < ‖πi(xi(t0)) − ptarget‖.
Proposition 5.2: Consider the following coordination algo-

rithm. At time tk = kδ, k ∈ N, each vehicle computes
Vi(tk) and CVi

(tk); then, for time t ∈ [tk, tk+1[, the vehicle
executes u(t, x(t), CVi

(tk)). For this closed-loop system, the
sensors location converges to the set of centroidal Voronoi
configurations. If this set is finite, then the sensors location
converges to a centroidal Voronoi configuration.
The proof of this result readily follows from Proposition 3.3,
since the algorithm verifies properties (a) and (b) of Sec-
tion III-B.

As an example, we consider a classic model of mobile
wheeled dynamics, the unicycle model. Assume the ith vehicle
has configuration (θi, xi, yi) ∈ SE(2) evolving according to

θ̇i = ωi , ẋi = vi cos θi , ẏi = vi sin θi ,

where (ωi, vi) are the control inputs for vehicle i. Note that
the definition of (θi, vi) is unique up to the discrete action
(θi, vi) 7→ (θi+π,−vi). Given a target point ptarget, we use this
symmetry to require the equality (cos θi, sin θi)·(pi−ptarget) ≤
0 for all time t. Should the equality be violated at some time
t = t0, we shall redefine θi(t

+
0 ) = θi(t

−
0 ) + π and vi as −vi

from time t = t0 onward.
Following the approach in [43], consider the control law

ωi = 2kprop arctan
(− sin θi, cos θi) · (pi − ptarget)

(cos θi, sin θi) · (pi − ptarget)

vi = −kprop(cos θi, sin θi) · (pi − ptarget),

where kprop is a positive gain. This feedback law differs from
the original stabilizing strategy in [43] only in the fact that no
final angular position is preferred. One can prove that pi =
(xi, yi) is guaranteed to monotonically approach the target
position ptarget when run over an infinite time horizon. We
illustrate the performance of the proposed algorithm in Fig. 6.

B. Geometric patterns and formation control

Here we suggest the use of decentralized coverage algo-
rithms as formation control algorithms, and we present various

density functions that lead the multi-vehicle network to prede-
termined geometric patterns. In particular, we present simple
density functions that lead to segments, ellipses, polygons, or
uniform distributions inside convex environments.

Consider a planar environment, let k be a large positive
gain, and denote q = (x, y) ∈ Q ⊂ R

2. Let a, b, c be real
numbers, consider the line ax + by + c = 0, and define the
density function

φline(q) = exp(−k(ax + by + c)2).

Similarly, let (xc, yc) be a reference point in R
2, let a, b, r be

positive scalars, consider the ellipse a(x−xc)
2 +b(y−yc)

2 =
r2, and define the density function

φellipse(q) = exp
(

− k(a(x − xc)
2 + b(y − yc)

2 − r2)2
)

.

Fig. 7 illustrates the performance of the closed-loop network
corresponding to this density function. During the simulations,
we observed that the convergence to the desired pattern was
rather slow.

Fig. 7. Coverage control for 32 vehicles with φellipse. The parameter values
are: k = 500, a = 1.4, b = .6, xc = yc = 0, r2 = .3, and kprop = 1.

Finally, define the smooth ramp function SR`(x) =
x(arctan(`x)/π + (1/2)), and the density function

φdisk(q) = exp(−k SR`(a(x − xc)
2 + b(y − yc)

2 − r2)).

This density function leads the multi-vehicle network to obtain
a uniform distribution inside the ellipsoidal disk a(x−xc)

2 +
b(y− yc)

2 ≤ r2. We illustrate this density function in Fig. 8.

Fig. 8. Coverage control for 32 vehicles to an ellipsoidal disk. The density
function parameters are the same as in Fig. 7, and ` = 10, kprop = 1.

It appears straightforward to generalize these types of
density functions to the setting of arbitrary curves or shapes.
The proposed algorithms are to be contrasted with the classic
approach to formation control based on rigidly encoding the
desired geometric pattern. One disadvantage of the proposed
approach is the requirement for a careful numerical computa-
tion of Voronoi diagrams and centroids. We refer to [14], [15]
for previous work on algorithms for geometric patterns, and
to [17], [18] for formation control algorithms.



CORTÉS, MARTÍNEZ, KARATAS AND BULLO: COVERAGE CONTROL FOR MOBILE SENSING NETWORKS 11

Fig. 6. Coverage control for 16 vehicles with mobile wheeled dynamics. The environment and Gaussian density function are as in Fig. 3, and kprop = 3.

VI. CONCLUSIONS

We have presented a novel approach to coordination algo-
rithms for multi-vehicle networks. The scheme can be thought
of as an interaction law between agents and as such it is
implementable in a distributed scalable asynchronous fashion.

This paper leaves numerous important extensions open for
further research. First, we envision considering the setting of
structured environments (ranging all the way from simple non-
convex polygon to more realistic ground, air and underwater
environments); it might be useful for example to design
distributed algorithms for the art gallery problem. Second, it
is clearly important to consider non-isotropic sensors, such
as cameras and directional microphones, as well as limited
footprint sensors, as studied for example in the literature
on coverage path planning. Third, we plan to extend the
algorithms to provide collision avoidance guarantees and to
vehicle dynamics which are not locally controllable. Finally,
to investigate the effect of measurement errors on our proposed
algorithms and to quantify their closed-loop robustness we
are implementing these algorithms on a network of all-terrain
vehicles. All these problems provide nontrivial challenges that
go beyond our current treatment.

Acknowledgments

This material is based upon work supported by ARO
Grant DAAD 190110716, and DARPA/AFOSR MURI Award
F49620-02-1-0325. Any opinions, findings, conclusions or
recommendations expressed in this publication are those of
the authors.

REFERENCES

[1] C. R. Weisbin, J. Blitch, D. Lavery, E. Krotkov, C. Shoemaker,
L. Matthies, and G. Rodriguez, “Miniature robots for space and military
missions,” IEEE Robotics & Automation Magazine, vol. 6, no. 3, pp. 9–
18, 1999.

[2] E. Krotkov and J. Blitch, “The Defense Advanced Research Projects
Agency (DARPA) tactical mobile robotics program,” International Jour-
nal of Robotics Research, vol. 18, no. 7, pp. 769–76, 1999.

[3] P. E. Rybski, N. P. Papanikolopoulos, S. A. Stoeter, D. G. Krantz, K. B.
Yesin, M. Gini, R. Voyles, D. F. Hougen, B. Nelson, and M. D. Erickson,
“Enlisting rangers and scouts for reconnaissance and surveillance,” IEEE
Robotics & Automation Magazine, vol. 7, no. 4, pp. 14–24, 2000.

[4] T. B. Curtin, J. G. Bellingham, J. Catipovic, and D. Webb, “Autonomous
oceanographic sampling networks,” Oceanography, vol. 6, no. 3, pp. 86–
94, 1993.

[5] A. Okabe, B. Boots, and K. Sugihara, “Nearest neighbourhood op-
erations with generalized Voronoi diagrams: a review,” International
Journal of Geographical Information Systems, vol. 8, no. 1, pp. 43–71,
1994.

[6] Z. Drezner, Ed., Facility Location: A Survey of Applications and
Methods, ser. Springer Series in Operations Research. New York, NY:
Springer Verlag, 1995.

[7] A. Suzuki and Z. Drezner, “The p-center location problem in an area,”
Location Science, vol. 4, no. 1/2, pp. 69–82, 1996.

[8] A. Okabe and A. Suzuki, “Locational optimization problems solved
through Voronoi diagrams,” European Journal of Operational Research,
vol. 98, no. 3, pp. 445–56, 1997.

[9] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, 2nd ed., ser. Wiley
Series in Probability and Statistics. New York, NY: John Wiley &
Sons, 2000.

[10] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessellations:
applications and algorithms,” SIAM Review, vol. 41, no. 4, pp. 637–676,
1999.

[11] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982, presented as Bell
Laboratory Technical Memorandum at a 1957 Institute for Mathematical
Statistics meeting.

[12] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Transactions on
Information Theory, vol. 44, no. 6, pp. 2325–2383, 1998, commemora-
tive Issue 1948-1998.

[13] H. Yamaguchi and T. Arai, “Distributed and autonomous control method
for generating shape of multiple mobile robot group,” in IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems, Munich, Germany, Sept. 1994,
pp. 800–807.

[14] K. Sugihara and I. Suzuki, “Distributed algorithms for formation of ge-
ometric patterns with many mobile robots,” Journal of Robotic Systems,
vol. 13, no. 3, pp. 127–39, 1996.

[15] I. Suzuki and M. Yamashita, “Distributed anonymous mobile robots:
Formation of geometric patterns,” SIAM Journal on Computing, vol. 28,
no. 4, pp. 1347–1363, 1999.

[16] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed mem-
oryless point convergence algorithm for mobile robots with limited
visibility,” IEEE Transactions on Robotics and Automation, vol. 15,
no. 5, pp. 818–828, 1999.

[17] T. Balch and R. Arkin, “Behavior-based formation control for multirobot
systems,” IEEE Transactions on Robotics and Automation, vol. 14, no. 6,
pp. 926–39, 1998.

[18] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control
of formations of nonholonomic mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 6, pp. 905–8, 2001.

[19] R. Bachmayer and N. E. Leonard, “Vehicle networks for gradient descent
in a sampled environment,” in IEEE Conf. on Decision and Control, Las
Vegas, NV, Dec. 2002, pp. 112–117.

[20] C. Tomlin, G. J. Pappas, and S. S. Sastry, “Conflict resolution for
air traffic management: a study in multiagent hybrid systems,” IEEE
Transactions on Automatic Control, vol. 43, no. 4, pp. 509–21, 1998.

[21] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on
Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[22] E. Klavins, “Communication complexity of multi-robot systems,” in
Algorithmic Foundations of Robotics V, ser. STAR, Springer Tracts in



12 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION

Advanced Robotics, J.-D. Boissonnat, J. W. Burdick, K. Goldberg, and
S. Hutchinson, Eds., vol. 7. Berlin Heidelberg: Springer Verlag, 2003.

[23] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” Preprint, May 2003.

[24] R. A. Brooks, “A robust layered control-system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23,
1986.

[25] R. C. Arkin, Behavior-Based Robotics. New York, NY: Cambridge
University Press, 1998.

[26] M. S. Fontan and M. J. Mataric, “Territorial multi-robot task division,”
IEEE Transactions on Robotics and Automation, vol. 14, no. 5, pp. 815–
822, 1998.

[27] A. C. Schultz and L. E. Parker, Eds., Multi-Robot Systems: From Swarms
to Intelligent Automata. Dordrecht, The Netherlands: Kluwer Academic
Publishers, 2002, proceedings from the 2002 NRL Workshop on Multi-
Robot Systems.

[28] T. Balch and L. E. Parker, Eds., Robot Teams: From Diversity to
Polymorphism. Natick, MA: A K Peters Ltd., 2002.

[29] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed scalable solution to
the area coverage problem,” in International Conference on Distributed
Autonomous Robotic Systems (DARS02), Fukuoka, Japan, June 2002,
pp. 299–308.

[30] N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan
Kaufmann Publishers, 1997.

[31] G. Tel, Introduction to Distributed Algorithms, 2nd ed. New York, NY:
Cambridge University Press, 2001.

[32] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asyn-
chronous deterministic and stochastic gradient optimization algorithms,”
IEEE Transactions on Automatic Control, vol. 31, no. 9, pp. 803–12,
1986.

[33] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Belmont, MA: Athena Scientific, 1997.

[34] H. Choset, “Coverage for robotics - a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

[35] E. U. Acar and H. Choset, “Sensor-based coverage of unknown envi-
ronments: incremental construction of Morse decompositions,” Interna-
tional Journal of Robotics Research, vol. 21, no. 4, pp. 345–366, 2002.

[36] R. Klein, Concrete and abstract Voronoi diagrams, ser. Lecture Notes
in Computer Science. New York, NY: Springer Verlag, 1989, vol. 400.

[37] J. Cortés and F. Bullo, “Coordination and geometric optimization via
distributed dynamical systems,” SIAM Journal on Control and Opti-
mization, May 2003, submitted.

[38] C. Cattani and A. Paoluzzi, “Boundary integration over linear polyhe-
dra,” Computer-Aided Design, vol. 22, no. 2, pp. 130–5, 1990.

[39] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Geometric
spanner for routing in mobile networks,” in ACM International Sympo-
sium on Mobile Ad-hoc Networking & Computing, Long Beach, CA,
Oct. 2001, pp. 45–55.

[40] X.-Y. Li and P.-J. Wan, “Constructing minimum energy mobile wireless
networks,” ACM Journal of Mobile Computing and Communication
Survey, vol. 5, no. 4, pp. 283–286, 2001.

[41] M. Cao and C. Hadjicostis, “Distributed algorithms for Voronoi dia-
grams and application in ad-hoc networks,” Preprint, Oct. 2002.

[42] A. J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear
Control, 2nd ed. New York, NY: Springer Verlag, 1999.

[43] A. Astolfi, “Exponential stabilization of a wheeled mobile robot via dis-
continuous control,” ASME Journal on Dynamic Systems, Measurement,
and Control, vol. 121, no. 1, pp. 121–127, 1999.

[44] H. K. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ:
Prentice Hall, 1995.

[45] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed. Read-
ing, MA: Addison-Wesley, 1984.

APPENDIX I
INVARIANCE AND CONVERGENCE PRINCIPLES

In this section we collect some relevant facts on descent
flows both in the continuous and in the discrete-time settings.
We do this following [44] and [45], respectively. We include
Proposition 1.4 as we are unable to locate it in the linear and
nonlinear programming literature.

Continuous-time descent flows

Consider the differential equation ẋ = X(x), where X :
D ⊂ R

N → R
N is locally Lipschitz and D is an open

connected set. A set M is said to be (positively) invariant
with respect to X if x(0) ∈ M implies x(t) ∈ M , for
all t ∈ R (resp. t ≥ 0). A descent function for X on Ω,
V : D → R, is a continuously differentiable function such
that LXV ≤ 0 on Ω. We denote by E the set of points in
Ω where LXV (x) = 0 and by M be the largest invariant set
contained in E. Finally, the distance from a point x to a set
M is defined as dist(x,M) = infp∈M ‖x − p‖.

Lemma 1.1 (LaSalle’s principle): Let Ω ⊂ D be a compact
set that it is positively invariant with respect to X . Let x(0) ∈
M and x∗ be an accumulation point of x(t). Then x∗ ∈ M
and dist(x(t),M) → 0 as t → ∞.
The following corollary is Exercise 3.22 in [44].

Corollary 1.2: If the set M is a finite collection of points,
then the limit of x(t) exists and equals one of them.

Discrete-time descent flows

Let X be a subset of R
N . An algorithm T is a continuous

mapping from X to X . A set C is said to be positively
invariant with respect to T if x0 ∈ C implies T (x0) ∈ C.
A point x∗ is said to be a fixed point of T if T (x∗) = x∗. We
denote the set of fixed points of T by Γ. A descent function
for T on C, Z : X → R+, is any nonnegative real-valued
continuous function satisfying Z(T (x)) ≤ Z(x) for x ∈ C,
where the inequality is strict if x 6∈ Γ. Typically, Z is the
objective function to be minimized, and T reflects this goal
by yielding a point that reduces (or at least does not increase)
Z.

Lemma 1.3 (Global convergence theorem): Let T : X →
X be an algorithm with a compact, positively invariant set C ⊂
X and a descent function Z. Let x0 ∈ C and denote xm =
T (xm−1), m ≥ 1. Let x∗ be an accumulation point of the
sequence {xm ∈ C | m ∈ N}. Then x∗ ∈ Γ, dist(xm,Γ) → 0
and Z(xm) → Z(x∗) as m → ∞.

Proposition 1.4: If the set Γ is a finite collection of points,
then {xm ∈ C | m ∈ N} converges and equals one of them.

Proof: Let x∗ be an accumulation point of {xm} and
assume the whole sequence does not converge to it. Then,
there exists an ε > 0 such that for all m0, there is a m′ > m0

such that ‖xm′ − x∗‖ > ε. Let d be the minimum of all the
distances between the points in Γ. Fix ε′ = min{d/2, ε}. Since
T is continuous and Γ is finite, there exists δ > 0 such that
‖x−z‖ < δ, with z ∈ Γ, implies ‖T (x)−z‖ < ε′ (that is, for
each z ∈ Γ, there exists such δ(z), and we take the minimum
over Γ).

Now, since dist(xm,Γ) → 0, there exists m1 such that for
all m ≥ m1, dist(xm,Γ) < δ. Also, we know that there is a
subsequence of {xm | m ∈ N} which converges to x∗, let us
denote it by {xmk

| k ∈ N}. For δ, there exists mk1
such that

for all k ≥ k1, we have ‖xmk
− x∗‖ < δ.

Let m0 = max{m1,mk1
}. Take k such that mk ≥ m0

Then,

‖xmk+1 − x∗‖ = ‖T (xmk
) − x∗‖ < ε′ . (14)



CORTÉS, MARTÍNEZ, KARATAS AND BULLO: COVERAGE CONTROL FOR MOBILE SENSING NETWORKS 13

Now we are going to prove that ‖xmk+1−x∗‖ < δ. If d/2 ≤ δ,
then this claim is straightforward, since ε′ ≤ d/2. If d/2 > δ,
suppose that ‖xmk+1 − x∗‖ > δ. Since mk + 1 > m0 ≥ m1,
then dist(xmk+1,Γ) < δ. Therefore, there exists y ∈ Γ such
that ‖xmk+1 − y‖ < δ. Necessarily, y 6= x∗. Now, by the
triangle inequality, ‖x − y‖ ≤ ‖x − xmk+1‖ + ‖xmk+1 − y‖.
Then,

‖xmk+1 − x∗‖ ≥ ‖x − y‖ − ‖xmk+1
− y‖ ≥ d − δ > d/2 ,

which contradicts (14). Therefore, ‖xmk+1 − x∗‖ < δ. This
argument can be iterated to prove that for all m ≥ m0, we
have ‖xm − x∗‖ < δ. Let us take now m′ > m0 such that
‖xm′−x∗‖ > ε. Since m′−1 ≥ m0, we have ‖xm′−1−x∗‖ <
δ, and therefore

‖xm′ − x∗‖ = ‖T (xm′−1) − x∗‖ < ε′ ≤ ε ,

which is a contradiction. Therefore, {xm | m ∈ N} converges
to x∗.

APPENDIX II
ASYNCHRONOUS GRADIENT ALGORITHMS

In this section, we present a brief account of the results
in [32] concerning asynchronous gradient optimization algo-
rithms. We do not review them in its full generality, but rather
formulate them in a form readily applicable to our setting.

Let H1, . . . , HL be finite-dimensional real vector spaces and
let H = H1 × H2 × · · · × HL. If x = (x1, . . . , xL), xl ∈ Hl,
we refer to xl as the lth component of x. Let {1, . . . ,M}
be a set of processors that participate in the computation.
The algorithms considered here evolve in discrete time. This
restriction does not involve any loss of generality, since the
events of interest (an update by a processor, a transmission of
a message, etc.) may be indexed by a discrete variable. The
value stored by the ith processor at time n (global) is denoted
by xi(n). This global clock is only need for analysis purposes.
The processors may be working without having access to it:
instead, they may have access to a local clock or to no clock
at all.

Consider the specialization setting [32], where each proces-
sor updates a particular component of the vector x specifically
assigned to it and relies on the information provided by the
other processors for the remaining components. Formally,

(i) M = L,
(ii) Processor i may update only its own component xi

i,
(iii) Processor j only sends messages containing elements of

Hj . If processor i receives such a message, it uses it to
reset the xi

j equal to the value received.

Let T i
i be the set of all times when processor i performs a

computation involving the ith component of x. If a message
from processor j, containing an element of Hj , is received
by processor i at time n, let tijj (n) denote the time that this
message was sent. The content of the message is therefore
xj

j(t
ij
j (n)). Naturally, it is assumed tijj (n) ≤ n and we set

tiii (n) = n. Finally, T ij
j denotes the set of all times when

processor i receives a message from processor j.

Let J : H → R+ be a C1-function whose derivative
is a Lipschitz function. Consider the deterministic gradient
algorithm given by

xi
i(n + 1) =

{

xi
i(n) n 6∈ T i

i

−γ0
∂J
∂xi

(xi(n)) n ∈ T i
i

(15a)

xi
j(n + 1) =

{

xi
j(n) n 6∈ T ij

j

xj
j(t

ij
j (n)) n ∈ T ij

j

(15b)

where γ0 > 0, n ∈ N and i, j ∈ {1, . . . ,M}. The specific
conclusions of Theorem 3.1 and Corollary 3.1 in [32] that
we need for the specialization setting are presented in the
following result.

Theorem 2.1: Assume each processor i communicates its
components xi

i to every other processor at least once every
B1 time units, for some constant B1. Then, there exists a
constant γ∗ > 0 such that if 0 < γ0 ≤ γ∗, the deterministic
gradient algorithm (15) verifies

lim
n→∞

‖xi(n) − xj(n)‖ = 0 and lim
n→∞

∂J

∂xi

(xi(n)) = 0 ,

for all i, j ∈ {1, . . . ,M}.
In the particular case when, for each i ∈ {1, . . . ,M},

the partial derivative ∂J
∂xi

(x) only depends on xl, with l ∈
M(x, i)∪ {i} for certain set M(x, i), the previous result can
be restated in the following form.

Theorem 2.2: Assume each processor i communicates its
components xi

i to every other processor in M(x, i) at least
once every B1 time units, for some constant B1. Then, there
exists a constant γ∗ > 0 such that if 0 < γ0 ≤ γ∗, the
deterministic gradient algorithm (15) verifies

lim
n→∞

‖xi
l(n) − xj

l (n)‖ = 0 and lim
n→∞

∂J

∂xi

(xi(n)) = 0 ,

for all i, j ∈ {1, . . . ,M} and all l ∈ (M(x, i) ∪ {i}) ∩
(M(x, j) ∪ {j}).

PLACE
PHOTO
HERE

Jorge Cortés graduated in Pure Mathematics from
the Universidad de Zaragoza, Spain, in June 1997.
He received his Ph.D. degree in Engineering Math-
ematics from the Universidad Carlos III de Madrid,
Spain, in December 2001. From January 2002 to
June 2002, he held a postdoctoral position at the
Systems, Signals and Control Department of the
University of Twente. He is currently a Postdoc-
toral Research Associate at the Coordinated Science
Laboratory of the University of Illinois at Urbana-
Champaign. His current research interests focus on

mathematical control theory and geometric integration, with a special em-
phasis on Lagrangian and Hamiltonian systems and the role of symmetry
principles, and motion coordination algorithms for groups of autonomous
vehicles.



14 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION

PLACE
PHOTO
HERE

Sonia Martı́nez graduated in Pure Mathematics
from the Universidad de Zaragoza, Spain, in June
1997. She received her Ph.D. degree in Engineering
Mathematics from the Universidad Carlos III de
Madrid, Spain, in May 2002. From September 2002
to September 2003, she held a postdoctoral position
at Department of Applied Mathematics IV of the
Universidad Politécnica de Cataluña. From October
2003, she is a Postdoctoral Fulbright Fellow at the
Coordinated Science Laboratory of the University of
Illinois at Urbana-Champaign. Her current research

interests include optimal control policies for robotic locomotion, control-
lability analysis and motion planning for underactuated systems, and low-
complexity representations of mechanical systems.

PLACE
PHOTO
HERE

Timur Karataş received the Bachelor of Science
degree in Mechanical Engineering from the Middle
East Technical University, Turkey, in 1999, and the
Master of Science degree in General Engineering
from the University of Illinois at Urbana-Champaign
in 2001. He is currently working toward the Ph.D.
degree in the Electrical and Computer Engineering
department of the University of Illinois at Urbana-
Champaign. His research interests include trajectory
generation and path planning for autonomous vehi-
cles, cooperative control and distributed algorithms.

PLACE
PHOTO
HERE

Francesco Bullo received the Laurea degree in Elec-
trical Engineering from the University of Padova,
Italy, in 1994, and the Ph.D. degree in Control and
Dynamical Systems from the California Institute of
Technology in 1999. He is an Assistant Professor
with the Department of General Engineering and
with the Coordinated Science Laboratory of the
University of Illinois at Urbana-Champaign. His
research interests include motion planning and coor-
dination for autonomous vehicles, geometric control
of mechanical systems, and distributed and adaptive

algorithms.


