
Hamiltonian theory of constrained impulsive motion

Jorge Cortés

Department of Applied Mathematics and Statistics

University of California, Santa Cruz

1156 High Street, Santa Cruz, CA 95064, USA

jcortes@ucsc.edu

Alexandre M. Vinogradov

Dipartimento di Matematica e Informatica
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Abstract

This paper considers systems subject to nonholonomic constraints which are not uniform on the
whole configuration manifold. When the constraints change, the system undergoes a transition in
order to comply with the new imposed conditions. Building on previous work on the Hamiltonian
theory of impact, we tackle the problem of mathematically describing the classes of transitions that
can occur. We propose a comprehensive formulation of the Transition Principle that encompasses
the various impulsive regimes of Hamiltonian systems. Our formulation is based on the partial sym-
plectic formalism, which provides a suitable framework for the dynamics of nonholonomic systems.
We pay special attention to mechanical systems and illustrate the results with several examples.

Keywords. Mechanical systems, variable nonholonomic constraints, Transition Principle, impul-
sive motion

1 Introduction

In this paper we consider the problem of mathematically describing impulsive motions (impacts, col-
lisions, reflection, refractions) of Hamiltonian systems subject to nonholonomic constraints. An im-
pulsive behavior takes place when one or more of the basic ingredients of the Hamiltonian dynamical
picture undergoes a drastic change. As an example, one may consider the instant of time when the
configuration space of the system collapses instantaneously because of an inelastic collision. Another
example is given by a ray of light that splits into reflected and refracted rays when passing from
one optical media to another, and so on. In situations like these, the phase trajectory of the system
becomes discontinuous and the problem of how to describe this discontinuity arises.

The problem of describing impulsive motion has been extensively studied in classical books such
as [2, 29, 31, 32, 36]. In these references, the emphasis is put on the analysis of mechanical systems
subject to impulsive forces, and in particular, the study of rigid body collisions by means of Newton
and Poisson laws of impact. Impulsive nonholonomic constraints (i.e. constraints whose reaction
force is impulsive) are also considered in [14, 30, 36, 42], and, from a geometric perspective, in more
recent works such as [13, 19, 22, 33]. If impulsive constraints and impulsive forces are present at the
same time, Newton and Poisson approaches have been revealed to be physically inconsistent in certain
cases [8, 38]. This surprising consequence of the impact laws is only present when the velocity along the
impact surface stops or reverses during collision due to the friction. Energetically consistent hypothesis
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for rigid body collisions with slip and friction are proposed in [37, 38]. From a design point of view,
the interest in systems subject to impulsive forces is linked to the emergence of nonsmooth and hybrid
dynamical systems in Control Theory, i.e., systems where continuous and discrete dynamics coexist,
see [7, 8, 9, 40] and references therein. Hybrid mechanical systems that locomote by switching between
different constraint regimes and are subject to elastic impacts are studied in [10]. Hyper-impulsive
control of mechanical systems is analyzed in [18].

Here, we aim at a comprehensive analysis of the various situations which can occur concerning
impulsive regimes of nonholonomic Hamiltonian systems. In particular, we focus on two different
but complementary cases. The first one deals with a drastic change in the nonholonomic constraints
imposed on the system. The second one concerns a drastic change of the Hamiltonian function and
includes, in particular, collisions and impacts of nonholonomic systems. The proposed solution is given
in terms of a generalized version of the Transition Principle. This principle, sketched for the first time
in a series of lectures of the second author [6] for discontinuous Hamiltonians, was recently extended to
other non-constrained situations in [34, 35] (see also [17] for a related discussion in an optimal control
setting). By its very nature, the Transition Principle is a direct dynamic interpretation of the geometric
data of the problem. This feature distinguishes it from other approaches. For instance, in Classical
Mechanics, the velocity jumps caused by an impact are traditionally derived from some assumptions
on the nature of the impulsive forces (see, for instance, [2, 24]). However, these assumptions are not
logical consequences of the fundamental dynamical principles and therefore one should really consider
them as additional principles for impulsive problems. The distinguishing feature of the Transition
Principle is that it gives full credit to the geometry of the nonholonomic Hamiltonian system. This
seems reasonable for the impulsive regime, keeping in mind the adequacy of the Hamiltonian description
to the dynamical behavior of the system in the absence of impulsive motions. In addition, there are
some noticeable advantages deriving from the Transition Principle. First of all, its application gives
an exact and direct description of the post-impact state which is of immediate use for both theoretical
and computational purposes. Secondly, it is still valid in some situations where standard methods can
be hardly applied. In particular, this is the case of Hamiltonian systems describing the propagation
of singularities of solutions of partial differential equations (consider, for instance, the example of
geometrical optics) [26, 27, 41]. Clearly, no variational or traditional approach can be applied to this
very important class of systems.

A second contribution of this paper concerns the formulation of the dynamics of nonholonomic
Hamiltonian systems. We make use of the notion of partial symplectic structures introduced in [6] and
relate this framework with other modern approaches to nonholonomic systems (see [3, 4, 5, 15, 21, 23,
28, 39] and references therein). One advantage of the partial symplectic formalism is that it allows us
to draw clear analogies between the unconstrained and constrained situations. Another advantage is
that the treatment of nonlinear constraints can be easily incorporated.

The paper is organized as follows. Section 2 introduces some geometric preliminaries on distri-
butions, constraint submanifolds and partial symplectic structures. In Section 3, we show how any
nonholonomic Hamiltonian system possesses an associated partial symplectic structure, and we use this
fact to intrinsically formulate the dynamics. We also analyze systems with instantaneous nonholonomic
constraints and systems exhibiting discontinuities. In Section 4, we develop a new formulation of the
Transition Principle for systems with constraints. We present the novel notion of focusing points with
respect to a constraint submanifold and we also introduce the concept of constrained characteristic.
Decisive points are defined for each impulsive regime resorting to in, out and trapping points. Section 5
presents a detailed study of the concepts introduced in the previous sections in the case of mechanical
systems. We compute the focusing points and the characteristic curves, and present various results
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concerning the decisive points. We also prove an appropriate version for generalized constraints of the
classical Carnot’s theorem for systems subject to impulsive forces: if the constraints are linear, we show
that the Transition Principle always implies a loss of energy. We conclude this section by showing that
if the constraints are integrable, then our formulation of the Transition Principle recovers the solution
for completely inelastic collisions [35]. Section 6 presents various examples of the application of the
above-developed theory. Finally, Section 7 presents our conclusions and directions for future research.

To ease the exposition, below we make use of the standard notation concerning differential geometry
and the Hamiltonian formalism without making explicit reference to any work. In particular, we denote
by Λi (resp., D(M)) the C∞(M)-module of ith order differential forms (resp., of vector fields) on a
manifold M . We use F ∗(ϕ) to denote the pullback with respect to a smooth map F of a function or
differential form ϕ. If x is a point of M , then the subscript x refers to the value of the corresponding
geometric object at x. For instance, Xx stands for the vector field vector X ∈ D(M) evaluated at x.
The interested reader may consult classical books such as [1, 20, 25] for further reference. We also
assume smoothness of all the objects we are dealing with.

2 Preliminaries

In this paper we deal with Hamiltonian systems defined on the cotangent bundle T ∗M of an n-
dimensional manifold M . In the particular case of a mechanical system, M and T ∗M are, respectively,
the configuration space and the phase space of the system. As usual, πM : T ∗M → M (or simply π)
stands for the canonical projection from T ∗M to M , H ∈ C∞(T ∗M) for the Hamiltonian function and
XH ∈ D(M) for the corresponding Hamiltonian vector field. The canonical symplectic structure on
T ∗M is denoted by Ω = ΩM . In canonical coordinates (qa, pa), a = 1, . . . , n of T ∗M , the symplectic
form reads Ω = dqa ∧ dpa.

We say that the Hamiltonian system (M,H) comes from a Lagrangian system (M,L) on TM if
H = (L∗

L)−1(EL), where EL ∈ C∞(TM) is the energy function corresponding to the (hyper-regular)
Lagrangian function L ∈ C∞(TM) and LL : TM → T ∗M is the associated Legendre map.

If X is a vector field on T ∗M , then the map αX : T ∗M → TM defined by

αX(θ) = dθπ(Xθ) ∈ Tπ(θ)M , θ ∈ T ∗M ,

denotes the anti-Legendre map associated with X. In standard coordinates, if X = Aa(q, p) ∂
∂qa +

Ba(q, p) ∂
∂pa

, then αX reads αX(qa, pa) = (qa, Aa(q, p)). For the Hamiltonian vector field X = XH , we
write αH instead of αXH

, so that

αH : (q, p) 7→

(

q, v =
∂H

∂p

)

.

It is not difficult to see that if the Hamiltonian system (M,H) comes from a Lagrangian system (M,L),
then αH = L−1

L .

2.1 Distributions and codistributions

Recall that a distribution (resp., codistribution) on a manifold M is a vector subbundle of TM (resp.,
of T ∗M). The annihilator of a distribution D on M is the codistribution Ann(D) defined by

Ann(D)x = {θ ∈ T ∗
xM | θ(ξ) = 0, ∀ξ ∈ Dx} , x ∈M .
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If D is (n −m)-dimensional, the codistribution Ann(D) is m-dimensional. The dual bundle D∗ of D
is canonically identified with the cotangent bundle T ∗M modulo Ann(D). We will also denote by D⊥

the orthogonal complement of a distribution D on T ∗M with respect to the symplectic form Ω, i.e.,

D⊥
y = {ξ ∈ Ty(T

∗M) | Ωy(ξ, η) = 0 , ∀η ∈ Dy} , y ∈ T ∗M .

A vector field X ∈ D(M) belongs to D if Xx ∈ Dx for all x ∈ M . Vector fields belonging
to D constitute a C∞(M)-module, denoted by DD(M), which is a submodule of D(M). In the
partial symplectic formalism (see Section 2.3 below), they are interpreted as “constrained” vector
fields. Dually, denote by Λ1

D(M) the C∞(M)-module of sections of the bundle D∗ and by Λi
D(M)

its ith exterior product. These are interpreted as “constrained” differential i-forms. We denote the
natural restriction map from Λi(M) to Λi

D(M) by rD : Λi(M) → Λi
D(M).

The geometric description of nonholonomic systems in the framework of the partial symplectic
formalism [6] requires a slight “affine” generalization of these standard notions. Namely, an affine
distribution on a manifold M is an affine subbundle ∆ of TM . This means that the fiber ∆x of ∆
over x ∈M is an affine subspace in TxM . Therefore, ∆x can be represented in the form ∆x = v + ∆0

x

with v ∈ TxM and ∆0
x being the vector subspace of TxM canonically associated with ∆x. In this

representation, the displacement vector v is unique modulo ∆0
x. The union ∪x∈M∆0

x constitutes a
linear distribution of the tangent bundle TM , denoted by ∆0, canonically associated with ∆. It is not
difficult to see that there always exist a vector field Y ∈ D(M) such that Yx is a displacement vector
for ∆x. Such vector fields are called displacement vector fields of ∆. Obviously, displacement vector
fields differ by another vector field belonging to ∆. In coordinate terms, an (n−m)-dimensional affine
codistribution is described by a system of linear equations Φi = 0 with respect to the variables pa, i.e.,
Φi(q, p) = Φia(q)pa + Φi0(q), i = 1, . . . ,m.

Similarly, an affine codistribution on M is an affine subbundle C ⊂ T ∗M of the cotangent bundle.
As above, one has C = Υ + C0, where C0 is the unique codistribution on M canonically associated
with C, and Υ ∈ Λ1(M) is a displacement form. Point-wisely this means that Cx = Υx + C0

x, for all
x ∈M .

2.1.1 Linear constraints

In the case of linear constraints, the analogy between free and constrained systems is particularly clear.
In fact, it is natural to interpret an affine distribution (resp., codistribution) on a manifold M as the
“constrained” tangent (resp., cotangent) bundle of M . A linearly constrained Hamiltonian system is
then a triple (M,H,C), with H ∈ C∞(T ∗M) and C an affine codistribution on M . Similarly, a triple
(M,L,∆), with L ∈ C∞(TM) and ∆ an affine distribution on M , is a linearly constrained Lagrangian
system. The anti-Legendre map allows one to pass from a constrained Hamiltonian system to the
corresponding Lagrangian system and vice versa. More precisely, if (M,H,C) is a linearly constrained
Hamiltonian system, the map αH is linear and (M,H) comes from a Lagrangian system (M,L), then
the corresponding linearly constrained Lagrangian system is (M,L,∆), with ∆ = αH(C). To go in the
opposite direction, one must use the Legendre map LL instead of αH .

Throughout the paper, we distinguish the class of mechanical systems subject to linear constraints
because of two reasons. First, classically they have been intensively studied. Second, one can extract
from them the motivations for the basic constructions which will be discussed below.
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2.1.2 Nonlinear constraints

In the Hamiltonian setting, the nonholonomic constraints are given by a submanifold (not necessarily
a vector subbundle) C ⊂ T ∗M . Similarly, nonholonomic Lagrangian or kinematic constraints are
given by a submanifold C ′ ⊂ TM . If the Hamiltonian system (M,H) comes from a Lagrangian
system (M,L), then C = LL(C ′) if and only if C ′ = αH(C). In mechanics, these two approaches
correspond to two possible descriptions of nonholonomic constraints: either as limitations imposed on
the momenta or as limitations imposed on the velocities, respectively. The fact that C (resp., C ′)
represents limitations imposed only on the momenta (resp., velocities), but not on the configurations
of the system, implies that the projection π must send C (resp., C ′) surjectively onto M . However,
the assumption of “infinitesimal surjectivity” of π|C is more adequate in this context. This means that
π|C is a submersion, i.e., dy(π|C) : TyC → Tπ(y)M is surjective for all y ∈ C. With this motivation, we
adopt the following definition.

Definition 2.1 A set of nonholonomic constraints imposed on a Hamiltonian system (M,H) is a
submanifold C ⊂ T ∗M such that π|C is a submersion. The constrained Hamiltonian system is denoted
by (M,H,C).

Since C and αH(C) are, respectively, interpreted as the constrained cotangent and tangent bundle of
the system (M,H,C), we will always assume that they have equal dimensions. It is worth stressing
that the above definition makes also sense for manifolds with boundary. In such a case, the boundary
of T ∗M is π−1(∂M) and the boundary of C is ∂C = C ∩ π−1(∂M).

Remark 2.2 Similarly, nonholonomic Lagrangian constraints are represented by submanifolds of TM
that project regularly onto M .

In what follows, Φi(q, p) = 0, i = 1, ...,m, will denote a set of local equations defining C. For a
point x ∈M , we denote by Cx the fiber of C at x,

Cx = C ∩ T ∗
xM = {y ∈ C | π(y) = x} = (π|C)−1(x) .

2.1.3 Instantaneous nonholonomic constraints

Let N be a hypersurface in M . Consider the induced hypersurface T ∗
NM = π−1(N) of T ∗M . Let

C ⊂ T ∗M be a set of nonholonomic constraints on M . Instantaneous constraints may be thought
as limitations on the momenta (resp., velocities) of the system that are imposed only at the instant
when a trajectory passes through a point of N . Therefore, they are represented by a submanifold C inst

of C ∩ T ∗
NM . These constraints are assumed to be additional to the ones already prescribed by C. In

order to admit an adequate mechanical interpretation, we also assume that the projection π restricted to
C inst is a submersion onto N . From the Lagrangian point of view, instantaneous kinematic constraints
are naturally interpreted as a submanifold C inst′ of TN . Based on these considerations, we take the
following definition.

Definition 2.3 Let (M,H,C) be a constrained Hamiltonian system and let N be a hypersurface of M .
A set of instantaneous constraints along N imposed on (M,H,C) is a submanifold C inst of C ∩ T ∗

NM
such that π restricted to C inst is a submersion onto N .
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It is worth stressing that, in some cases, a set of instantaneous constraints along N additionally
verifies the condition C inst ⊂ α−1

H (TN) (here TN is thought to be naturally embedded into TM). In an
inelastic scenario, where the nonholonomic motion in M is forced to take place in N after the impact,
this latter condition formalizes the parity between the Hamiltonian and Lagrangian approaches: if the
Hamiltonian system in question comes from a Lagrangian one, then C inst = LL(C inst′), with C inst′

being the instantaneous kinematic constraints.

2.2 Dynamics of Hamiltonian systems

As is well-known, in the absence of constraints, the dynamics of the Hamiltonian system (M,H) is
given by the Hamiltonian vector field XH , whose coordinate description is

dqa

dt
=
∂H

∂pa
,

dpa

dt
= −

∂H

∂qa
, a = 1, . . . , n .

In the presence of constraints, the “free” Hamiltonian vector field XH must be modified along the
constraint manifold C in order to become tangent to C. In the traditional approach this goal is achieved
by adding to XH another vector field along C, say, R, interpreted as the reaction of constraints. From
a purely geometrical point of view, the choice of a vector field that makes XH tangent to C is far from
being unique. Therefore, a new principle must be invoked to select the one that merits to be called the
“reaction of constraints”. The history of this problem (see, for instance, [30]) shows that its solution
is not straightforward. By applying, for instance, the Lagrange-d’Alembert principle (see [4, 15, 30]),
one gets the following equations of motion

dqa

dt
=
∂H

∂pa
,

dpa

dt
= −

∂H

∂qa
+ λi

∂Φi

∂pa
, Φi(q

a, pa) = 0 ,

a = 1, . . . , n, i = 1, . . . ,m, where the “Lagrange multipliers” λi’s are to be duly determined. Short-
comings of such an approach are that it is not manifestly intrinsic and does not reveal clearly the
geometric background of the situation. This is why in our further exposition we shall follow a purely
geometric approach, which does not require any discussion of reactions of constraints. It is based on
the concept of partial symplectic formalism, which also appears to be more concise from an algorithmic
point of view.

2.3 Partial symplectic structures

The following elementary facts from linear algebra will be most useful. Let V be a vector space, W ⊂ V
a subspace and b : V × V → R a bilinear form on V . Denote by W⊥

b the b-orthogonal complement of
W ,

W⊥
b = {v ∈ V | b(v, w) = 0, ∀w ∈W} .

Note that W ∩W⊥
b = 0 if and only if the restriction b |W of b to W is nondegenerate. The form b is

said to be nondegenerate on an affine subspace U of V , U = p0 +W , p0 ∈ V , if it is nondegenerate on
its associated vector space W . In such a case, U can be uniquely represented in the form U = p1 +W
with p1 ∈W⊥

b due to the fact that U ∩W⊥
b = {p1}. The vector p1 is called the canonical displacement

of U with respect to b. Consider the associated map

>W,b : W −→W ∗, >W,b(w) = b(w, ·) , w ∈W.
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In other words, >W,b(w)(w′) = b(w,w′), for all w′ ∈W . Obviously, >W,b is an isomorphism if and only
if b|W is nondegenerate.

If b is skew-symmetric and nondegenerate on V , and W is a subspace of V with codimension
one, then the kernel of the restricted form b|W , ker b|W is a 1-dimensional subspace, i.e., a line in V
contained in W . Therefore, ker b|W = W⊥

b .
Let now ∆ be an affine distribution on a manifold Q. A form ω ∈ Λ2(Q) is called nondegenerate

on ∆ if b = ωx is nondegenerate on U = ∆x, for all x ∈ Q. In such a case, there exists a unique vector
field Y ∈ D(Q) such that Yx is the canonical displacement of ∆x with respect to ωx, for all x ∈ Q.
The vector field Y = Y∆,ω is called the canonical displacement of ∆ with respect to ω. If ω ∈ Λ2(Q)
is nondegenerate on ∆, then one has the isomorphism of vector bundles

γ = γ∆0,ω : ∆0∗ → ∆0, γx = −(>∆0
x,ωx

)−1 : ∆0
x

∗
→ ∆0

x.

Passing to sections of these bundles, one gets the isomorphism of C∞(Q)-modules Γ∆0,ω : Λ1
∆0(Q) →

D∆0(Q) defined by
Γ = Γ∆0,ω(%)(x) = γ(%(x)), % ∈ Λ1

∆0(Q). (1)

Definition 2.4 A partial symplectic structure on a manifold Q is a pair (∆, ω) consisting of an affine
distribution ∆ on Q and a closed 2-form ω ∈ Λ2(Q) which is nondegenerate on ∆.

Given a partial symplectic structure Θ = (∆, ω), we will use the subscript Θ to denote the associated
objects: ∆Θ = ∆, ωΘ = ω, YΘ = Y∆,ω and ∆0

Θ for the distribution canonically associated to ∆. We
also write

rΘ = r∆0
Θ
, DΘ = D∆0

Θ
(Q), Λ1

Θ = Λ1
∆0

Θ
(Q), ΓΘ = Γ∆0

Θ
,ω : Λ1

Θ → DΘ.

In the partial symplectic formalism, the elements of C∞(Q)-modules DΘ and Λ1
Θ may be viewed as

“constrained” vector fields and differential forms, respectively. The constrained Hamiltonian vector
field associated with a Hamiltonian function H ∈ C∞(Q) is defined as

XΘ
H = ΓΘ(rΘ(dH)) + YΘ. (2)

The almost-Poisson bracket associated to the partial symplectic structure Θ is

{f, g}Θ = ΓΘ(rΘ(df))(g) = XΘ
f − YΘ(g) , f, g ∈ C∞(Q) .

The wording “almost” here refers to the fact that this bracket does not satisfy in general the Jacobi
identity. However, it is still skew-symmetric and a bi-derivation.

Definition 2.5 Let Θ = (∆, ω) be a partial symplectic structure on a manifold Q. A hypersurface
B ⊂ Q is transversal to Θ (or to ∆) if the affine subspaces TyB and ∆y of TyQ are transversal for
any y ∈ C.

If B is transversal to Θ, then TyB∩∆y is of codimension 1 in ∆y. If Θ is a partial symplectic struc-
ture on C ⊂ T ∗M , we shall extend this terminology by saying that Θ is transversal to a hypersurface
B̃ in T ∗M if B̃ is transversal to C, so that B = B̃ ∩ C is a hypersurface in C, and B is transversal to
Θ.
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3 Dynamics of nonholonomic Hamiltonian systems

In this section, we formulate the dynamics of nonholonomic Hamiltonian systems using the partial
symplectic formalism. We show how, under some technical conditions, any Hamiltonian system subject
to nonholonomic constraints possesses an associated partial symplectic structure. Then, we analyze the
cases of systems with instantaneous nonholonomic constraints, and systems exhibiting discontinuities.

3.1 The partial symplectic structure associated with a constrained Hamiltonian

system

Let (M,H,C) be a constrained Hamiltonian system. Our goal is to associate with it a partial symplectic
structure Θ on the “constrained” cotangent bundle C in such a way the corresponding constrained
Hamiltonian field XΘ

H gives the desired nonholonomic dynamics. With this purpose, consider the
constrained symplectic form defined by the restriction of the “free” symplectic form ΩM to C

ωΘ = j∗(ΩM ) , (3)

with j : C ↪→ T ∗M the canonical inclusion. The next step is to construct a suitable affine distribution
∆Θ on C. A natural non-singularity requirement on C is asking for the regularity of the map αH |C .
This is the reason why we assume that αH |C is an immersion, i.e., that the differential dyαH is
nonsingular for any y ∈ C. Since αH : T ∗M → TM is fibered, this assumption implies that the map
(αH)x : Cx → TM is an immersion for any x ∈M and vice versa.

Let y ∈ C and x = π(y). Let Πy be the affine subspace of TxM tangent to αH(Cx) at z = αH(y).
Since by the above assumption αH |C is an immersion, dim Πy = dimCx = n−m. Consider the affine
distribution ∆Θ on C defined by

∆Θy = {ξ ∈ TyC | dyπ(ξ) ∈ Πy} ⊂ TyC. (4)

Since dy(π|C) is surjective, the codimension of ∆Θy in TyC is equal to the codimension of Πy in TxM ,
i.e., to m. Therefore, dim ∆Θy = 2(n − m). It is not difficult to see now that if the form ωΘ is
nondegenerate on the distribution ∆Θ, then αH |C is an immersion.

Proposition 3.1 Let S = (M,H,C) be a constrained Hamiltonian system. Then, αH |C is an immer-
sion if the pair (∆Θ, ωΘ) defined by equations (3) and (4) is a partial symplectic structure.

The converse, however, is in general not true. Since the partial symplectic structure associated
with S = (M,H,C) is determined by H and C, we will simply denote it by Θ(H,C) = (∆H,C , ωC).

For most Hamiltonian systems (including those coming from Mechanics), the anti-Legendre map
αH is regular not only when restricted to C, but on the whole space T ∗M . In this is the case, and the
Hamiltonian system comes from a Lagrangian system, one can indeed show that the condition of ωΘ

being nondegenerate on the distribution ∆Θ is equivalent to the so-called compatibility condition [3,
23]. Therefore, Proposition 3.1 establishes a link between the classical partial symplectic formalism
introduced in [6] and more recent approaches as explained, for instance, in [15]. Also note that the
class of mechanical systems automatically verifies the compatibility condition, therefore admitting both
formulations. Indeed, for mechanical systems, the conditions in Proposition 3.1 are equivalent.

Definition 3.2 A nonholonomic Hamiltonian system on a manifold M is a constrained system (M,H,C),
H ∈ C∞(T ∗M), C ⊂ T ∗M such that Θ(H,C) = (∆H,C , ωC) is a partial symplectic structure.

8



The dynamics of a nonholonomic Hamiltonian system is given by the constrained Hamiltonian
vector field XΘ

H with respect to the partial symplectic structure Θ = Θ(H,C) (cf. equation (2)).
This vector field will be denoted by XH,C . Under regularity of the map αH , XH,C reads in canonical
coordinates

XH,C =
∂H

∂pa

∂

∂qa
−

(

∂H

∂qa
+ Cij

(

∂H

∂pb

∂Φj

∂qb
−
∂H

∂qb

∂Φj

∂pb

)

∂Φi

∂pc
Hca

)

∂

∂pa
,

where the matrices (Hab) and (Cij) are defined by

(Hab) =

(

∂2H

∂pa∂pb

)−1

, (Cij) =

(

∂Φi

∂pa
Hab

∂Φj

∂pb

)−1

.

Observe that the force of reaction of nonholonomic constraints (see Section 2.2) in the partial symplec-
tic framework is defined a posteriori as the difference between the constrained and the free Hamiltonian
vector fields, XH,C −XH . Also, note that the almost-Poisson bracket associated with the partial sym-
plectic structure ΘH,C coincides with the so-called nonholonomic bracket [15, 11, 39].

Transversality It is convenient to adapt the terminology related to the notion of transversality
discussed in Section 2.3 to the context of nonholonomic Hamiltonian systems. First, we shall say that
a nonholonomic Hamiltonian system S = (M,H,C) is transversal to a hypersurface B in T ∗M if the
underlying partial symplectic structure Θ(H,C) is transversal to B. Second, if N is a hypersurface in
M , we shall say that S is transversal to N if S is transversal to the hypersurface T ∗

NM . The following
result follows from the definition of the partial symplectic structure Θ(H,C).

Proposition 3.3 A nonholonomic Hamiltonian system (M,H,C) is transversal to a hypersurface
N ⊂M if and only if Πy ⊂ Tπ(y)M , the affine subspace of Tπ(y)M tangent to αH(Cπ(y)) at z = αH(y),
is transversal to Tπ(y)N ⊂ Tπ(y)M for all y ∈ C.

3.2 Instantaneous partial symplectic structures

It is intuitive to think that when a trajectory of a Hamiltonian system (M,H,C) crosses a critical
hypersurface N in the configuration manifold M , its phase space reduces to T ∗N . Moreover, it could
possibly be subject to additional instantaneous constraints along N . In the language of our approach,
this idea is naturally expressed by saying that all such critical states constitute a nonholonomic Hamil-
tonian system on N . Since T ∗N is not naturally embedded into T ∗M , a realization of this idea is not
completely straightforward. What one really needs is a partial symplectic structure on the manifold
of instantaneous constraints C inst which, by definition, is a submanifold of T ∗M

Namely, let C inst be a set of instantaneous constraints along N imposed on (M,H,C) (cf. Defini-
tion 2.3). Take y ∈ C inst. Let x = π(y) and denote by Πinst

y the affine subspace of TxN ⊂ TxM tangent

to αH(C inst
x ) at αH(y). Consider the 2-form ωΘinst and the affine distribution ∆Θinst on C inst defined

by
ωΘinst = j∗(ΩM ) , ∆Θinsty = {ξ ∈ TyC

inst | dyπ(ξ) ∈ Πinst
y } ⊂ TyC

inst, (5)

with j : C inst ↪→ T ∗M the canonical inclusion. We then have the following definition.

Definition 3.4 Let (M,H,C) be a nonholonomic Hamiltonian system and let C inst be a set of instan-
taneous constraints along a hypersurface N ⊂ M . The pair (∆Θinst , ωΘinst) defined by (5) is called the
instantaneous partial symplectic structure along N if ωΘinst is not degenerate on ∆Θinst . If this is the
case, C inst is called a regular set of instantaneous constraints.
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Note that this structure is defined by H, C inst and N . To highlight this fact, we denote Θinst =
Θinst(H,C inst, N). Accordingly, we denote by X(H,Cinst,N) the constrained Hamiltonian vector field

XΘinst

Hinst , with H inst = H|Cinst .
In general, since C inst ⊂ C by definition, one has that αH |Cinst is an immersion. For mechani-

cal systems, this implies that the 2-form ωΘinst is nondegenerate on ∆Θinst , and therefore any set of
instantaneous constraints is regular.

In what follows, we shall only deal with regular instantaneous nonholonomic constraints. A natural
class of instantaneous structures arises in the following situation of particular interest. Assume that
the nonholonomic Hamiltonian system S = (M,H,C) is transversal to N and that αH is regular. Then
α−1

H (TN) is transversal to C and, hence,

C(N,H) = α−1
H (TN) ∩ C

is a submanifold of codimension 2 in C. Note that C(N,H) is a set of instantaneous nonholonomic
constraints on S along N . By construction, the codimension of ∆N y = ∆y ∩ Ty(C(N,H)) in ∆y is
also 2 and Ωy is nondegenerate when restricted to ∆N y. Therefore, the affine distribution ∆N and
the 2-form Ω|N endow C(N,H) with a partial symplectic structure, which is an instantaneous partial
symplectic structure along N . We call it the trace of S on N and denote it by S(N,H). In the special
case N = ∂M , we call it the boundary of S, and denote it by ∂S, i.e., ∂S = S(∂M,H). We will denote
the constrained Hamiltonian vector field with respect to the trace (resp., boundary) as X tr = Xtr

(H,C,N)

(resp., X∂ = X∂
(H,C,∂M)).

3.3 Discontinuous nonholonomic systems

An impulsive behavior of a Hamiltonian system occurs when its trajectory “tries” to go across a
critical hypersurface N in the configuration space M . In such an instant, the system may be forced
to drastically change its constraints, to pass under the control of another Hamiltonian and/or to be
eventually subject to additional instantaneous constraints. Such situations may be interpreted as
discontinuities on both the constraints and the Hamiltonian of the system. Below, we formalize these
concepts properly via the notion of cutting-up.

Definition 3.5 Let N ⊂M be a hypersurface of M with N ∩ ∂M = ∅. A pair (M̂, ς), ς : M̂ →M , is
called a cutting-up of M along N if

(i) N̂ = ς−1(N) ⊂ ∂M̂ ;

(ii) ς maps M̂ \ N̂ diffeomorphically onto M \N ;

(iii) ς|
N̂

: N̂ → N is a double covering of N .

Note that, by definition, ς is a local diffeomorphism. Cuttings-up for a given N exist and are
equivalent one to each other. If N divides M into two parts, say, M+ and M−, i.e., M = M+ ∪M−,
M+ ∩M− = N , then M̂ may be viewed as the disjoint union of M+ and M−, and ς as the map that
matches them together along the common border N . Locally any cutting-up is of this form.

For our purposes, it is important to realize that, if (M̂, ς) is a cutting-up of M along N , then
(T ∗M̂, T ∗ς) is a cutting-up of T ∗M along the hypersurface T ∗

NM . Here, T ∗ς denotes the dual of

the inverse of the isomorphism dzς : TzM̂ → Tς(z)M , for all z ∈ M̂ . In the following definition, we
introduce the class of Hamiltonian systems we shall be dealing with throughout this paper.
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Definition 3.6 Let N ⊂M be a hypersurface of M with N ∩∂M = ∅ and let (M̂, ς) be a cutting-up of
M along N . A nonholonomic Hamiltonian system discontinuous along N , denoted S = (M,H,C | N),
is the direct image with respect to T ∗ς of a nonholonomic Hamiltonian system (M̂, Ĥ, Ĉ). Such system
is called regular if (M̂, Ĥ, Ĉ) is transversal to N̂ .

A system of instantaneous nonholonomic constraints on S along N is the direct image with respect
to T ∗ς of a set of instantaneous constraints Ĉ inst along N̂ on the associated system Ŝ = (M̂, Ĥ, Ĉ | N̂).
The trace of S on N is the direct image with respect to T ∗ς of the trace of Ŝ along N̂ .

According to Definition 3.6, Ĥ is a smooth function on T ∗M̂ and Ĉ is a submanifold of T ∗M̂ .
Therefore, the direct image of Ĥ along the matching map T ∗ς : T ∗M̂ → T ∗M may be viewed as a
function on T ∗M , which is 1-valued and smooth outside of T ∗

NM and 2-valued and smooth on T ∗
NM . We

will continue to use the notation H for this function and will refer to it as a discontinuous Hamiltonian
along N . Similarly, the direct image C = T ∗ς(Ĉ) of Ĉ will be referred to as discontinuous nonholonomic
constraints along N . Outside of T ∗

NM , C is a “good” smooth submanifold of T ∗M , whose boundary
is an immersed submanifold of T ∗

NM .
The previous discussion becomes particularly simple when N divides M into two parts, M+ and

M−, as mentioned above. In such a case, T ∗
NM also divides T ∗M into two parts, T ∗M+ and T ∗M−,

whose common boundary is T ∗
NM . Then, a discontinuous Hamiltonian H along N may be naturally

seen as a pair of Hamiltonians, say, H+ and H−, defined on T ∗M+ and T ∗M−, respectively. Similarly,
a set of discontinuous nonholonomic constraints along N is regarded as a pair of sets of nonholonomic
constraints C± ⊂ T ∗M±. Since N always divides M locally, this description constitutes a local picture
of a discontinuous nonholonomic Hamiltonian system along N .

We will continue to use the notation C inst (resp., Str) for instantaneous nonholonomic constraints
(resp., the trace of S) in the case of discontinuous nonholonomic systems. As before, one may inter-
pret C inst as a 2-valued system of instantaneous nonholonomic constraints along N . In the case when
N divides M into two parts, we will distinguish between the two branches using the notation C inst

± ,
and write also X(H,Cinst

±
,N) (resp., Xtr

(H,C±,N)).

Remark 3.7 The impulsive behavior of a Hamiltonian system is not necessarily related to some dis-
continuity. This type of phenomena occurs, for instance, each time that one of its trajectories “strikes”
against the boundary ∂M of the configuration space M . Various kinds of collisions, impacts, etc, in
mechanical systems are described in this way. Otherwise said, impulsive behavior is characteristic of
Hamiltonian systems with boundary. Moreover, systems with boundary may be viewed as a “limit”
case of discontinuous systems by dropping the requirement N ∩ ∂M = ∅ and choosing N = ∂M ,
M− = ∅, M+ = M . This allows a unified approach to both situations.

4 The Transition Principle

In this section we discuss the formulation of the Transition Principle for systems subject to nonholo-
nomic constraints. We first introduce the notions of focusing points, constrained characteristics, and
in, out and decisive points. The Transition Principle builds on these elements to prescribe the behavior
of the Hamiltonian system when one or more of its ingredients undergoes a drastic change.

4.1 Focusing points

The following simple linear result will be key for the subsequent discussion.
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Lemma 4.1 Let y ∈ T ∗M , and let W be an affine subspace in Ty(T
∗M) such that Ωy is nondegenerate

on W (hence, dimW = 2l for certain l) and dim dyπ(W ) = l. Denote by W 0 ⊂ Ty(T
∗M) and

dyπ(W )0 = dyπ(W 0) ⊂ Tπ(y)M the linear subspaces associated with the affine spaces W and dyπ(W ),

respectively. Then the affine subspaces W • = y + Ann(dyπ(W )0) and W• = y +W 0 ∩ Ty(T
∗
π(y)M) in

T ∗
π(y)M passing through y are transversal.

Proof: Since, by hypothesis, dim dyπ(W ) = l, one has

dimW 0 ∩ Ty(T
∗
π(y)M) = l and dim dyπ(W )0 = l .

Now, the dimension of Ann(dyπ(W )0) ⊂ T ∗
π(y)M is n − l. Moreover, W 0 ∩ Ty(T

∗
π(y)M) is transversal

to Ann(dyπ(W )0) if one identifies the spaces T ∗
π(y)M and Ty(T

∗
π(y)M). The result now follows.

Consider now a nonholonomic Hamiltonian system (M,H,C). Let y ∈ C. Denote by ∆ = ∆(H,C)

be the affine distribution of the corresponding partial symplectic structure Θ(H,C) (cf. Section 3.1).
By Definition 3.2, the affine subspace W = ∆y satisfies the assumptions of Lemma 4.1 on W (observe
that dyπ(W ) is precisely Πy in equation (4)). Therefore, the subspace W • = ∆•

y is well-defined and
we put

Ky = Ky(H,C) = ∆•
y ⊂ T ∗

π(y)M .

Moreover, it is not difficult to see that the subspace W• = (∆y)• is identical to TyCπ(y). This shows
that Ky is transversal to C at y, and that dimKy = m. The crown of the nonholonomic Hamiltonian
system (M,H,C) is the map

κ = κH,C : C −→ Am(T ∗M) , y 7→ Ky ,

where Ak(T
∗M) denotes the manifold whose elements are k-dimensional affine submanifolds contained

in the fibers of the cotangent bundle T ∗M . One can see that the graph of the crown κ,

Graph(κ) = {(y, v) ∈ C × T ∗M | v ∈ Ky}

is a 2n-dimensional smooth submanifold of C × T ∗M . Note that Graph(κ) is a fiber bundle over C
with projection

p = p(H,C) : Graph(κ) −→ C , (y, v) 7→ y .

The fiber over y of this bundle is precisely Ky. Since y ∈ Ky, the map

σ : C −→ Graph(κ) , y 7→ (y, y) ,

is a section of p(H,C). Since the fibers of p(H,C) are affine spaces, the bundle Graph(κ) → C has a
natural vector bundle structure whose zero section is σ. Moreover, this vector bundle is canonically
isomorphic to the normal bundle of C in T ∗M . This is due to the fact that, for any y ∈ C, the fiber
Ky is transversal to C at y. The same argument also guarantees that the map

Ξ = Ξ(H,C) : Graph(κ) −→ T ∗M , (y, v) 7→ v ,

induces a diffeomorphism of a neighborhood of the “zero” section σ(C) in Graph(κ) onto its image.
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Definition 4.2 Let (M,H,C) be a nonholonomic Hamiltonian system. Given a point u ∈ T ∗M , its
(H,C)-focusing locus F(H,C)(u) is the set of all points y ∈ C such that u ∈ Ky. In other words,

F(H,C)(u) = p(H,C)

(

Ξ−1
(H,C)(u)

)

⊂ Cπ(u) .

A point in F(H,C)(u) is called focusing for u.

Standard arguments show that Ξ(H,C) is regular, i.e., of maximal rank 2n almost everywhere,
that is, with the exception of a closed subset without interior points. Therefore, for a generic point
u ∈ T ∗M , the subset Ξ−1

(H,C)(u) is discrete, and so is F(H,C)(u) as well. Note also that if u ∈ C, then

u ∈ F(H,C)(u).

Remark 4.3 Focusing points can be understood as nonintegrable analogs of the notion of reducing
points considered in [35] in connection with the Transition Principle for inelastic collisions.

Remark 4.4 It is worth noticing that the concept of a focusing point makes also sense in the absence
of constraints. Obviously, in this case F(H,C)(u) = {u}. Therefore there is no need to distinguish
between the constrained and non-constrained cases in the statement of the Transition Principle.

If the constraints are linear, i.e., C = Υ +C0 with C0 a linear codistribution and Υ ∈ Λ1(M) (the
displacement form), then for each y ∈ T ∗M ,

T ∗
π(y)M = Co

π(y) ⊕ Ann(dyπ(∆y)) ,

where ∆ = ∆(H,C). Denote the corresponding projectors by P : T ∗
π(y)M → Co

π(y) and Q : T ∗
π(y)M →

Ann(dyπ(∆y)). Given u ∈ T ∗M , one has that z ∈ F(H,C)(u) if and only if z ∈ C and P(z) = P(u).
Since z = P(z) + Q(z) = P(u) + Q(Υy), one has the following result.

Proposition 4.5 Let (M,H,C) be a nonholonomic Hamiltonian system with linear constraints. Then,
for u ∈ T ∗

yM , there is a unique focusing point given by F(H,C)(u) = {P(u) + Q(Υy)}.

4.2 Instantaneous focusing points

We will also need an instantaneous version of the notion of a focusing point introduced in the previous
section. For this purpose, it is sufficient to apply the above construction to instantaneous constraints
instead of to the “usual” ones. Namely, let C inst be a system of regular instantaneous constraints along
N (see Section 2.1.3) and ∆inst = ∆Θinst be the corresponding affine distribution (see Section 3.2).
Following the same reasoning as above, the affine subspace W = ∆inst

y ⊂ Ty(T
∗M) satisfies the

assumptions of Lemma 4.1. Therefore, the affine subspace K inst
y = (∆inst)• of Ty(T

∗M) is well-defined,
and we have all the ingredients to define the notion of instantaneous crown and instantaneous focusing
point of a system subject to instantaneous nonholonomic constraints. For completeness, we state the
latter.

Definition 4.6 Let (M,H,C) be a nonholonomic Hamiltonian system and let C inst be a set of in-
stantaneous constraints along a hypersurface N ⊂ M . Given a point u ∈ T ∗

NM , its (H,C inst, N)-
instantaneous focusing locus F(H,Cinst,N)(u) is the set of all points y ∈ C inst such that u ∈ K inst

y . In
other words,

F(H,Cinst,N)(u) = p(H,Cinst)

(

Ξ−1
(H,Cinst,N)

(u)
)

⊂ C inst
π(u) .

A point in F(H,Cinst,N)(u) is called instantaneous focusing for u.
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As before, if the instantaneous nonholonomic constraints are linear C inst = Υinst +C insto, then for
each y ∈ T ∗

NM ,

T ∗
π(y)M = Co

π(y) ⊕ Ann(dyπ(∆inst
y )) ,

where ∆inst = ∆(H,Cinst,N). Denoting the corresponding projectors by P inst : T ∗
π(y)M → C insto

π(y) and

Qinst : T ∗
π(y)M → Ann(dyπ(∆inst

y )), one has the following result.

Proposition 4.7 Let (M,H,C) be a nonholonomic Hamiltonian system and let C inst be a set of
instantaneous affine constraints along a hypersurface N ⊂ M . Then, for u ∈ T ∗

yM , there is a unique
instantaneous focusing point given by F(H,Cinst,N)(u) = {P inst(u) + Qinst(Υinst

y )}.

4.3 Constrained characteristics

Consider then a partial symplectic structure Θ = (∆, ω) on a manifold C which is transversal to a
hypersurface B ⊂ C (cf. Definition 2.5). Let ∆0 denote the linear distribution associated with ∆.
For each y ∈ B, consider the linear space V = ∆0

y, the hyperplane W = ∆0
y ∩ TyB of V and the

nondegenerate skew-symmetric form b = ωy|∆0
y
. The characteristic direction at y ∈ B is defined as

ly = ly(Θ, B) = ker b|W = ker(ωy|∆0
y∩TyB) ⊂ ∆0

y ∩ TyB .

The proof of the following result is straightforward.

Lemma 4.8 Given a partial symplectic structure Θ = (∆, ω) on a manifold C and a hypersurface
B ⊂ C transversal to it, the distribution y 7→ ly(Θ, B) is one-dimensional.

Definition 4.9 Given a partial symplectic structure Θ = (∆, ω) on C and a hypersurface B ⊂ C
transversal to it, y 7→ ly(Θ, B) is called the characteristic distribution with respect to (Θ, B), and its
integral curves, denoted by ζ, are the (Θ, B)-characteristics.

We are particularly interested in the case when we have a nonholonomic Hamiltonian system
S = (M,H,C), the partial symplectic structure Θ is ΘH,C , N is a hypersurface in M and B̃ = T ∗

NM ,
B = T ∗

NM ∩ C. We will use the terminology (S|N)- or (H,C|N)-characteristic as a substitute for
(Θ, B)-characteristic. It should be emphasized that (H,C|N)-characteristics are only defined when S
is transversal to N (see Section 3.1).

In the absence of constraints, i.e., when (C = T ∗M,ω = Ω) is a symplectic manifold, and ∆
is the trivial distribution y 7→ TyC on C, the characteristic curves are precisely the characteristics
introduced in [6]. We will refer to non-constrained characteristics and constrained characteristics
when it is necessary to distinguish between the unconstrained and the constrained cases.

Remark 4.10 Just as non-constrained characteristics play a key role in describing holonomic elastic
collisions, and reflection and refraction phenomena of rays of light [6, 34], the constrained characteristics
will be fundamental in describing the “elastic part” of nonholonomic impulsive phenomena. What is
meant by “elastic part” will become clear in Section 4.5 when describing decisive points.

If the constraints C are affine, then the (H,C|N)-characteristic passing through a point y ∈ C,
π(y) ∈ N , is described in a particularly simple way. Namely, following Proposition 3.3, it is not difficult
to see that the (H,C|N)-characteristic passing through y is given by

ζy = y + C0
π(y) ∩ Ann(dyαH(C0) ∩ Tπ(y)N) ,

with C0 being the linear codistribution associated to C. In particular, in the absence of constraints,
C = T ∗M and the characteristics are straight lines in T ∗

xM parallel to Ann(TxN), x ∈ N .
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4.4 In, out and trapping points

Here, we first introduce some concepts concerning the behavior of a vector field in a neighborhood of
the boundary of its supporting manifold. We then discuss the notions in, out and trapping points.

Let Q be a manifold with boundary and X a vector field on Q. A point y ∈ ∂Q is called a jth
order in point for X if there exists a trajectory of X, β : [0, a] → Q, a > 0 such that

y = β(0) and β(t) /∈ ∂Q , for 0 < t ≤ a ,

and β is jth order tangent to ∂Q at y. A jth order out point for X is a jth order in point for −X. In
the dynamical context we have in mind, in and out points of 0th order are the most important. It is
easy to see that y ∈ ∂Q is a 0th order in point (resp., out point) for X if the vector Xy is transversal
to ∂Q and directed inside (resp., outside) of Q. A point that lies on a trajectory of X which is entirely
contained in ∂Q is called a trapping point for X.

Let ∂Qj = ∂Qj(X) denote the subset of all points of ∂Q where X is jth order tangent to ∂Q, and
∂Qj

> = ∂Qj
>(X) (resp., ∂Qj

< = ∂Qj
<(X)) the set of all jth order in points (resp., out points) for X.

Note that ∂Qj ⊃ ∂Qj+1 and
∂Qj \ (∂Qj

> ∪ ∂Qj
<) ⊂ ∂Qj+1. (6)

In a generic situation, ∂Qj is a submanifold (with singularities) of codimension j in ∂Q, which is
divided by ∂Qj+1 into two parts, ∂Qj

> \ ∂Qj+1
> and ∂Qj

< \ ∂Qj+1
< . An analytical description of the

previous discussion is obtained by choosing a smooth function f on Q with f ≥ 0 and dzf 6= 0, for all
z ∈ ∂Q such that ∂Q = {f = 0} (which always exists locally). Then

∂Qj = {z ∈ Q | f(z) = 0, X(f)(z) = 0, . . . , Xj(f)(z) = 0} ,

∂Qj
> \ ∂Qj+1

> = ∂Qj ∩ {z ∈ Q | Xj+1(f)(z) > 0} ,

∂Qj
< \ ∂Qj+1

< = ∂Qj ∩ {z ∈ Q | Xj+1(f)(z) < 0} .

The vector field X is said to be regular with respect to ∂Q when the inclusion in equation (6) is an
equality for all j ≥ 0. This is a generic property of vector fields. In such a case, the chain of inclusions

∂Q = ∂Q0 ⊃ ∂Q1 ⊃ · · · ⊃ ∂Qj ⊃ · · · ⊃ ∂Qn

is a stratification of ∂Q whose strata are ∂Qj
> \ ∂Qj+1

> and ∂Qj
< \ ∂Qj+1

< . Note also that the set of
trapping points precisely corresponds to ∂Qn.

Consider now a discontinuous nonholonomic Hamiltonian system (M,H,C | N) and the correspond-
ing cutting-up (M̂, ς). Then we can resort to the previous discussion with the manifold Q = Ĉ ⊂ T ∗M̂
and the vector field X = X

Ĥ,Ĉ
. Recall that N̂ ⊂ ∂M̂ and ∂Ĉ = Ĉ ∩ T ∗

∂M̂
M̂ .

Definition 4.11 Let S = (M,H,C | N) be a discontinuous nonholonomic system and denote by
(M̂, ς) the associated cutting-up. A point y ∈ T ∗

NM is called an in point (resp., an out point) of S

if there exists z ∈ T
N̂
M̂ such that y = ς(z) and z is an in point (resp., an out point) of X

Ĥ,Ĉ
with

respect to ∂Ĉ.

By definition, the map T ∗ς restricted to ∂Ĉ is an immersion. A point in T ∗
NM may turn out to be

an in and an out point at the same time. To resolve this ambiguity, the branch of T ∗ς to which such a
point belongs must be taken into consideration. This distinction is easily described in the case when N
divides M into two parts. In fact, in this case the system (M,H,C | N) may be viewed as a couple of
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nonholonomic Hamiltonian systems (M±, H±, C±), with the common boundary ∂M± = N , and where
H± ∈ C∞(M±) and C± ⊂M± (cf. Section 3.3). An in (resp., out, or trapping) point of the vector field
XH+,C+

with respect to the boundary ∂C+ is called an plus-in (resp., plus-out, or plus-trapping) point.
Analogous definitions are established for ε = −. In this way, the notions of plus-in point, minus-in
point, etc, introduced in [6] for the unconstrained situation are generalized to the constrained case.
Finally, we observe that N always divides M locally, and therefore the previous discussion is always
valid locally.

4.5 Decisive points

At this point, we are ready to introduce the key notion of decisive point corresponding to an out point.
The construction of decisive points depends on two elements: first, the mode (elastic or inelastic) in
which the system passes through the critical state and, second, the continuity and differentiability
properties of the Hamiltonian. Below, we will limit our discussion to the two most relevant situations,
just to avoid not very instructive technicalities arising in the most general context. The first one is
the case when the Hamiltonian is smooth and only the constraints are discontinuous along the critical
hypersurface. The second one concerns discontinuous Hamiltonians and not necessarily discontinuous
constraints. It is worth stressing that the first situation can not be considered as a particular case
of the second one, i.e., that the notion of a decisive point is not “continuous” in this sense. In what
follows, ε ∈ {+,−} and ε̄ stands for the opposite sign to ε. Throughout the section, instantaneous
constraints are assumed to be regular.

4.5.1 Elastic mode: change of constraints

Here, we deal with a discontinuous nonholonomic system (M,H,C|N), where the Hamiltonian function
is smooth, H ∈ C∞(M).

Definition 4.12 (Decisive points for smooth Hamiltonians and discontinuous constraints)
Let (M,H,C|N) be a regular discontinuous nonholonomic system, with H ∈ C∞(M) and consider a set
of instantaneous constraints C inst along N . Let y be an ε-out point of the system. A sequence (yi, εi),
i = 0, 1, . . . , k, with yi ∈ C ∩ T ∗

NM is called (y, ε)-admissible if it verifies the following conditions:

(i) (y0, ε0) = (y, ε);

(ii) for all i < k, yi+1 is a focusing point for yi with respect to either C inst
εi+1

or, if instantaneous
constraints are absent, Cεi+1

;

(iii) yi is an εi-out point for all i < k and yk is either an εk-in point or an εk-trapping point;

(iv) the sequence of signs {εi} alternates, i.e., εi+1 = ε̄i.

The end point of an (y, ε)-admissible sequence, (yk, εk), is called (y, ε)-decisive and the constrained
Hamiltonian vector field XH,Cεk

is referred to as the vector field corresponding to it.

Remark 4.13 The above formal description of decisive points is equivalent to the following iterative
procedure. Take, for instance, a plus-out point y. Then, according to Definition 4.12, all focusing with
respect to C inst

ε̄ (resp., to Cε̄) minus-in and minus-trapping points are decisive. On the other hand,
the procedure continues by restarting from any of the remaining focusing points that are minus-out
points, and so on. In some situations, this process may turn out to be infinite. At the present time,
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however, it is not clear whether that kind of phenomena can occur, say in propagation of singularities
or similar processes.

4.5.2 Elastic mode: discontinuous Hamiltonians

In this case, decisive points are constructed on the basis of an iterative procedure whose single steps
are either of reflective or of refractive type, as described below. Consider a regular discontinuous
nonholonomic system S = (M,H,C|N), which might be subject to additional instantaneous constraints
C inst along N . Let y ∈ C ∩ T ∗

NM be an ε-out point.

Reflective step

1-st move: y ⇒ z, where z is a point in the constrained characteristic ζy(Hε, Cε) such that Hε(z) =
Hε(y).

2-nd move: z ⇒ u, where u is a focusing point for z with respect to either C inst
ε or, if ε-instantaneous

constraints are absent, Cε.

Refractive step

1-st move: y ⇒ z, where z is a point of the constrained characteristic ζy(Hε, Cε) and such that
Hε̄(z) = Hε(y).

2-nd move: z ⇒ u, where u is a focusing point for z with respect to either C inst
ε̄ or, if ε̄-instantaneous

constraints are absent, Cε̄.

With a slight abuse of language, we shall say that (y, ε) is the initial point of the step and (u, ε)
(resp., (u, ε̄)) is the end point of the step if the scenario is reflective (resp., refractive).

Definition 4.14 (Decisive points for discontinuous Hamiltonians) Consider a regular discon-
tinuous nonholonomic system (M,H,C|N). Let C inst be a set of instantaneous constraints along N .
Let y be an ε-out point. A sequence (yi, εi), i = 0, 1, . . . , k, is called (y, ε)-admissible if

(i) (y0, ε0) = (y, ε);

(ii) (yi, εi) and (yi+1, εi+1) are the initial and the end points of a step, respectively;

(iii) yi is an εi-out point, 0 ≤ i < k, and yk is an εk-in point or an εk-trapping point.

The end point (yk, εk) of an admissible sequence is called (y, ε)-decisive and the constrained Hamiltonian
vector field XH,Cεk

is referred to as the vector field corresponding to it.

If the Hamiltonian is discontinuous and the constraints are linear, i.e., C ⊂ T ∗M is a smooth linear
submanifold, and the instantaneous constraints are absent, the previous definition of decisive points
becomes much simpler, as the following result shows.

Proposition 4.15 Let (M,H,C|N) be a regular discontinuous nonholonomic Hamiltonian system
with smooth linear constraints. Let y be an ε-out point. The (y, ε)-decisive points are the in and
the trapping points belonging to the intersection of the constrained characteristic ζy passing through y
with the set {z ∈ C | H±(z) = Hε(y)}.
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Proof: Let y be an ε-out point and denote by {z1, . . . , zs} (resp, {z1, . . . , zs̄}) the points belonging
to the intersection of the constrained characteristic ζy passing through y with the set {z ∈ C | Hε(z) =
Hε(y)} (resp. with {z ∈ C | Hε̄(z) = Hε(y)}). Since the constraints are smooth, then u = z in the
2nd-move of both a reflective and a refractive step. Now, for any j ∈ {1, . . . , s}, the intersection of the
constrained characteristic passing ζzj

through zj with the set {z ∈ C | Hε(z) = Hε(zj)} (resp. with
{z ∈ C | Hε̄(z) = Hε(y)}) is again {z1, . . . , zs} (resp, {z1, . . . , zs̄}). The same observation holds for
any zj , j ∈ {1, . . . , s}. The result now follows from Definition 4.14.

Remark 4.16 The introduced terminology remains valid for nonholonomic systems with boundary
(cf. Remark 3.7). In such a case, one has to formally put

M− = ∅ , M+ = M , N = ∂M , H− = ∞ , H+ = H .

This type of geometric data occurs in describing various collision phenomena.

4.5.3 Inelastic mode: change of constraints

As in the elastic case, we first deal with the case when the Hamiltonian H is smooth. We treat an
inelastic behavior of the system as the passage under the control of either the instantaneous discon-
tinuous nonholonomic system or, if instantaneous constraints are absent, the discontinuous boundary
system. In this and subsequent sections, the following shorthand notation will be used (cf. Sections 3.2
and 3.3)

C inst,tr
ε = C inst

ε ∩ α−1
Hε

(TN) , X inst,tr
ε = X

(Hε,C
inst,tr
ε ,N)

,

Ctr
ε = Cε(N,Hε) , Xtr

ε = Xtr
(Hε,Cε,N) .

We also use this notation when the Hamiltonian H is smooth, i.e., H± = H.

Definition 4.17 (Decisive points for smooth Hamiltonians and discontinuous constraints)
Consider a regular discontinuous nonholonomic system (M,H,C|N). Let C inst be a set of instanta-
neous constraints along N . Let y be an ε-out point. An (y, ε)-decisive point is a focusing point for
y with respect to either C inst,tr

ε̄ or, if the instantaneous constraints are absent, C tr
ε̄ . The constrained

Hamiltonian vector field X inst,tr
ε̄ , respectively, X tr

ε̄ is referred to as the corresponding vector field.

4.5.4 Inelastic mode: discontinuous Hamiltonians

As in the elastic case, decisive points are constructed on the basis of reflective or refractive steps, as
we now describe.

Reflected falling step

1-st move: y ⇒ z, where z is a point of the constrained characteristic ζy(Hε, Cε) such that Hε(z) =
Hε(y).

2-nd move: z ⇒ u, where u is a focusing point for z with respect to either C inst,tr
ε or, if ε-instantaneous

constraints are absent, Ctr
ε .
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Refracted falling step

1-st move: y ⇒ z, where z is a point of the constrained characteristic ζy(Hε, Cε) such that Hε̄(z) =
Hε(y).

2-nd move: z ⇒ u, where u is a focusing point for z with respect to C inst,tr
ε̄ or, if ε̄-instantaneous

constraints are absent, Ctr
ε̄ .

We shall refer to (u, ε) (resp., (u, ε̄)) as a reflected (resp. refracted) falling point.

Definition 4.18 (Decisive points for discontinuous Hamiltonians) Consider a regular discon-
tinuous nonholonomic system (M,H,C|N). Let C inst be a set of instantaneous constraints along N .
Let y be an ε-out point. An (y, ε)-decisive point is a falling point for y. The vector field X inst,tr

ε (resp.,
X tr

ε if C inst
ε = ∅) is called the vector field corresponding to a reflected falling point. The vector field

X inst,tr
ε̄ (resp., X tr

ε̄ if C inst
ε̄ = ∅) is called the vector field corresponding to a refracted falling point.

4.6 Transition Principle

From a physical point of view, the Transition Principle formulated below is an explicit description of
the discontinuity of a trajectory of a regular nonholonomic Hamiltonian system S that occurs when
it traverses a critical state. Such a discontinuity is interpreted as an impact, collision, reflection,
refraction, etc, depending on the physical situation modeled by the system S. From a mathematical
point of view, the Transition Principle corresponds to the definition of the trajectory of a regular
discontinuous nonholonomic Hamiltonian system.

The elastic or inelastic character of the impulsive motions of an specific physical system must be
taken into account when defining the trajectories. Accordingly, there are two different versions of
the Transition Principle that distinguish between the two situations. Let S = (M,H,C|N) stand
for a regular discontinuous nonholonomic system and let C inst be eventual instantaneous constraints
imposed on S along N . Let (M̂, ς) be the associated cutting-up of M along N (cf. Section 3.3). The
regular part of a trajectory of the system Ŝ = (M̂, Ĥ, Ĉ) is the part of the trajectory of the Hamiltonian
vector field X

Ĥ,Ĉ
that lies outside ∂M̂ . The regular part of a trajectory of S is the image by ς of the

regular part of the corresponding trajectory of Ŝ. At least locally, the regular part may be viewed as
a piece of the trajectory of the vector field XHε,Cε

that lies outside the hypersurface T ∗
NM .

Transition Principle. Let S = (M,H,C|N) be a regular discontinuous nonholonomic system and
let C inst be eventual instantaneous constraints on S along N . If a regular trajectory of the vector field
XHε,Cε

, ε = ± reaches the critical hypersurface TNM at a point y, it then continues its motion from
any (y, ε)-decisive point according to the chosen mode, elastic or inelastic, under the control of the
corresponding constrained Hamiltonian vector field.

Some features of the Transition Principle are worth mentioning. First of all, it prescribes a splitting
of the trajectory when the number of decisive points is greater than one. Of course, it is difficult to
imagine that a true mechanical system “goes into pieces” when reaching the critical hypersurface. But
it may perfectly happen when a Hamiltonian system describes the propagation of singularities in a fields
or a continuum media. A classical example one finds in geometrical optics when a light ray passing
from one optic medium to another splits into reflected and refracted rays (see, for instance, [34]). The
trajectory may also be trapped by the critical hypersurface. This happens when an “impact” state y
possesses no y-decisive points.
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5 Mechanical systems

In this section, we particularize the previous discussion to mechanical systems subject to affine con-
straints. Let g be a Riemannian metric on M and V ∈ C∞(M), and consider the mechanical system
whose kinetic energy and potential function are T (q, v) = 1

2g(v, v) and V , respectively. The corre-
sponding Lagrangian function is L(q, v) = T (q, v) − V (q) and the Hamiltonian one is

H(q, p) = T̂ (q, p) + V (q) , (7)

where T̂ (q, p) = 1
2G(p, p), and G is the co-metric, i.e., the metric on the cotangent bundle induced by

g. In a local chart qa on M , the local expressions of g and G are

g = gabdq
a ⊗ dqb , G = gab ∂

∂qa
⊗

∂

∂qb
.

In the mechanical case, the Legendre transform LL : TM −→ T ∗M is a linear bundle mapping whose
local description is LL(qa, q̇a) = (qa, gabq̇

b).
Consider an affine distribution C = C0 + Y in T ∗M determining some nonholonomic constraints

on the system (M,H). The linearity of αH = L−1
L implies that the space αH(C) = αH(C0) + αH(Y )

is a distribution of affine spaces on M , or otherwise said, that αH(C0) is a linear distribution on M .
Throughout this section, we will often resort to the shorthand notation D = αH(C0) and Υ = αH(Y ).
Now, it is easy to verify that T ∗

q M = C0
q ⊕ Ann(D)q, with associated projectors

Pq : T ∗
q M −→ C0

q , Qq : T ∗
q M −→ Ann(D)q , q ∈M .

Let µ1 = µ1adq
a, . . . , µm = µmadq

a be 1-forms such that (locally) Ann(D) = span{µ1, . . . , µm}. Define
the local function µi0 : M → R by µi0(q) = −µi(Υ(q)). Then αH(C) is locally defined by the equations

µia(q)q̇
a + µi0(q) = 0 , 1 ≤ i ≤ m.

Now, consider the matrices

G = (gab) , J = (µia) , B = JG−1J t . (8)

From the discussion after Proposition 3.1, recall that (∆H,C , ωC) is a partial symplectic structure if and
only if αH |C is an immersion, or, equivalently, if the compatibility condition is verified. Following [12],
the latter is equivalent to the matrix B being invertible. A direct computation give the following local
expression for the projectors P and Q,

P(x) = x−Q(x) , Q(x) = J tB−1JG−1x , x ∈ T ∗M .

Finally, let N ⊂ M be a hypersurface and assume that the nonholonomic system S = (M,H,C)
is transversal to N . Consider also a set of instantaneous nonholonomic linear constraints C inst =
(C insto,ΥCinst) imposed on S along N . Note that T ∗

q M = C inst
q

o
⊕ Ann(Dinst)q, with associated

projectors
P inst

q : T ∗
q M −→ C inst

q

o
, Qinst

q : T ∗
q M −→ Ann(Dinst)q , q ∈ N .

5.1 Focusing points

Since the mechanical system is subject to an affine distribution of constraints, Proposition 4.5 im-
plies that for a given u ∈ T ∗M , the focusing locus is F(H,C)(u) = {P(u) + Q(Υ)}. Regarding the
instantaneous focusing points, according to Proposition 4.7 one has that F(H,Cinst,N)(u) = {P inst(u) +

Qinst(ΥCinst)}.
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5.2 Constrained characteristics

Here we give an explicit description of the characteristic curves. Let N be the critical hypersurface, and
assume that (locally) N = f−1(0), with f ∈ C∞(M) verifying that dqf 6= 0 for all q ∈ N . Consider the
covector field P(df) along N defined as q 7→ P(df)q = Pq(dqf), q ∈ N . The transversality assumption
between C and N implies that P(df)q 6= 0, for all q ∈ N . Clearly P(df) ∈ C0. In addition, for
v ∈ D ∩ TN ,

P(df)(v) = (df −Q(df))(v) = df(v) = 0 ,

and one can conclude that C0∩Ann(D∩TN) = span{P(df)}. Therefore, we have the following result.

Lemma 5.1 The constrained characteristic of a mechanical system (M,H,C|N) passing through y ∈
C ∩ T ∗

NM is given by ζy = y + span{P(dπ(y)f)} ⊂ C ∩ T ∗
NM .

Note that in the absence of constraints one recovers the standard non-constrained characteristic
ζy = y + span{dπ(y)f} passing through y.

5.3 Decisive points: elastic mode

5.3.1 Change of constraints

Let C± ⊂ T ∗M be two affine constraint submanifolds. Denote by P± and Q± the projectors cor-
responding to C± and the co-metric G. Let y ∈ Cε ∩ T ∗

NM be a ε-out point, ε ∈ {+,−}. Then,
according to Definition 4.12, an y-admissible sequence, (yi, εi), i = 0, 1, . . . , k, is necessarily of the form
yi+1 = Pεi+1

(yi) + Qεi+1
(ΥCεi+1

). If instantaneous constraints are present, then one has to use the

projectors P inst
ε and Qinst

ε instead of Pε and Qε, respectively.

Remark 5.2 Mechanical systems subject to generalized constraints are also treated in [16] in a some-
how different context. The approach taken there makes use of generalized (i.e. non-constant rank)
codistributions defining the nonholonomic constraints and a generalized version of Newton’s second
law. Under appropriate regularity conditions, it can be seen that the ‘post-impact’ point in [16] is a
decisive point of the Hamiltonian system according to Definition 4.12.

5.3.2 Discontinuous Hamiltonian systems

Let C± ⊂ T ∗M be two affine constraint submanifolds. Let g± be a Riemannian metric on M± and
V± ∈ C∞(M±) such that

H±(q, p) = T̂±(q, p) + V±(q) , T̂±(q, p) =
1

2
G±(p, p) . (9)

For simplicity, we only treat the case V± = V |M±
, V ∈ C∞(M). We denote by P± and Q± the pro-

jectors corresponding to C± and the co-metric G±. Additionally, let C inst
± ⊂ T ∗

NM be affine constraint
submanifolds corresponding to some instantaneous constraints imposed along N . Denote by P inst

± and
Qinst

± the projectors corresponding to C inst
± and the co-metric G±.

Let y ∈ Cε ∩T
∗
NM be an ε-out point. Following Definition 4.14, we first describe the reflective and

refractive steps with initial point (y, ε). According to Lemma 5.1, we have to look for points of the
form

x = y + cPε(dqf) , q = π(y) ,

for some c, which in addition belong to the same H-energy level as y.
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Reflective step Concerning the 1-st move, note that y+ cPε(dqf) and y belong to T ∗
q M . Then, the

equality Hε(y + cPε(dqf)) = Hε(y) implies that T̂ε(y + cPε(dqf)) = T̂ε(y). Now,

T̂ε(y + cPε(dqf)) =

T̂ε(y) + cGε(y,Pε(dqf)) +
c2

2
Gε(Pε(dqf),Pε(dqf)) ,

and, therefore, we have

c
(

Gε(y,Pε(dqf)) +
c

2
Gε(Pε(dqf),Pε(dqf))

)

= 0 ,

with solutions

cε,1 = 0 , cε,2 = −
2Gε(y,Pε(dqf))

Gε(Pε(dqf),Pε(dqf))
. (10)

An important property of these points is contained in the following lemma.

Lemma 5.3 Let y ∈ Cε ∩ T
∗
NM and cε,2 be the constant given by (10). Then,

Gε(y, dqf) = Gε(Pε(y) + Qε(Υq), dqf) ,

Gε(y + cε,2Pε(dqf), dqf) = Gε(−Pε(y) + Qε(Υq), dqf) .

Proof: The first statement follows by noting that if y ∈ Cq, then y = Pε(y) + Qε(Υq). For the
second one, notice that

Gε(y + cε,2Pε(dqf), dqf) = Gε(y, dqf) + cε,2Gε(Pε(dqf),Pε(dqf))

= Gε(y, dqf − 2Pε(dqf)) = −Gε(Pε(y),Pε(dqf)) + Gε(Qε(y), dqf)

= Gε(−Pε(y) + Qε(Υq), dqf) ,

which gives the desired result.

The 2-nd move simply consists of determining the focusing points for points (10) with respect to
C inst

ε or, if ε-instantaneous constraints are absent, with respect to Cε. This is done in terms of the
corresponding projectors, exactly as explained in Section 5.1 above.

Refractive step Concerning the 1-st move, the equality Hε̄(y + cPε(dqf)) = Hε(y) implies T̂ε̄(y +
cPε(dqf)) = T̂ε(y). Now,

T̂ε̄(y + cPε(dqf)) = T̂ε̄(y) + cGε̄(y,Pε(dqf)) +
c2

2
Gε̄(Pε(dqf),Pε(dqf)) .

Therefore, one has

c
(

Gε̄(y,Pε(dqf)) +
c

2
Gε̄(Pε(dqf),Pε(dqf))

)

+ T̂ε̄(y) − T̂ε(y) = 0 ,

with solutions i = 1, 2,

cε̄,i =
1

Gε̄(Pε(dqf)),Pε(dqf))

(

− Gε̄(y,Pε(dqf))±

√

Gε̄(y,Pε(dqf))2 − 2Gε̄(Pε(dqf),Pε(dqf))(T̂ε̄(y) − T̂ε(y))
)

. (11)

As before, the 2-nd move simply consists of computing the focusing points for the solutions (11)
with regards to C inst

ε̄ or, if ε̄-instantaneous constraints are absent, Cε̄. This is done in terms of the
corresponding projectors according to Section 5.1.
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Discontinuous Hamiltonian systems with smooth constraints

In this situation, there is a single constraint submanifold C, and a discontinuous Hamiltonian H± on
T ∗M . Denote by P± and Q± the projectors corresponding to C and the co-metrics G±, respectively.
According to Proposition 4.15, the decisive points for a given ε-out point y ∈ C ∩ T ∗

NM are simply
the in and trapping points belonging to the intersection of the constrained characteristic ζy passing
through y with the set {z ∈ C | H±(z) = Hε(y)}. Therefore, as candidate ε-decisive points we have
the solution corresponding to cε,2 in (10), and as candidate ε̄-decisive points we have the solutions
corresponding to cε̄,i, i = 1, 2, in (11).

Proposition 5.4 Let y ∈ Cε ∩ T
∗
NM be a ε-out point. If the constraints are linear, C = C0, then the

solution corresponding to cε,2 in (10) is a ε-decisive point for y.

Proof: The basic observation is the second order character of the dynamics, both in the
presence and in the absence of nonholonomic constraints. This implies that for any y ∈ T ∗M and any
distribution of affine constraints C, we have XH(f)(y) = XH,C(f)(y), since f is only a function of the
configurations. Note that if H is of mechanical type, then XH(f)(x) = G(x, dqf), for any x ∈ T ∗

q M .
Now, from Lemma 5.3, taking H = Hε, one gets

Gε(y + c2Pε(dqf), dqf) = −Gε(y, dqf) .

Since y is a ε-out point, then Gε(y, dqf) 6= 0. Consequently, XH+
(f)(y + c2P+(dqf)) = −G+(dqf, y)

has the opposite sign, and hence it is an in point.

5.4 Decisive points: inelastic mode

5.4.1 Change of constraints

Let C± ⊂ T ∗M be two affine constraint submanifolds and let C inst be a set of instantaneous affine
constraints. We denote by P inst

± and Qinst
± the projectors corresponding to C inst

± and the co-metric
G. If the instantaneous constraints are absent, denote by P± and Q± the projectors corresponding
to Ctr

± and the co-metric G. Let y ∈ Cε ∩ T ∗
NM be a ε-out point, ε ∈ {+,−}. Then, according to

Definition 4.17, the unique y-decisive point is P inst
ε̄ (y) + Qinst

ε̄ (ΥCε̄
) (or, if there are no instantaneous

constraints, Pε̄(y) + Qε̄(ΥCε̄
)).

5.4.2 Discontinuous Hamiltonian systems

As in Section 5.3.2, let C± ⊂ T ∗M be two affine constraint submanifolds, g± a Riemannian metric
on M± and V± ∈ C∞(M±) such that equation (9) is verified. For simplicity, we only treat the case
V± = V |M±

, V ∈ C∞(M). We denote by P± and Q± the projectors corresponding to C± and the
co-metric G±. Additionally, let C inst

± ⊂ T ∗
NM be affine constraint submanifolds corresponding to some

instantaneous constraints imposed along N . We denote by P inst,tr
ε and Qinst,tr

ε the projectors associated
with the submanifold C inst,tr

ε and the co-metric Gε. In the absence of instantaneous constraints, we
denote by Ptr

ε and Qtr
ε the projectors associated with the submanifold C tr

ε and the co-metric Gε. In
case N = ∂M , we denote the latter with the superscript “∂” instead of “tr”.

Let y ∈ Cε∩T
∗
NM be an ε-out point. The points associated with y resulting from the 1-st moves in

a reflected or a refracted falling step are given, respectively, by equations (10) and (11). As before, the
2-nd move simply consists of computing the focusing points for these solutions with respect to C inst,tr

ε
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for a reflected falling step (respectively, C inst,tr
ε̄ for a refracted falling step) or, if the instantaneous

constraints are absent, Ctr
ε (respectively, Ctr

ε̄ ). This is done in terms of the corresponding projectors
according to Section 5.1. According to Definition 4.18, this gives all the y-decisive points.

Proposition 5.5 Let y ∈ Cε∩T
∗
NM be an ε-out point and assume that the constraints are linear. For

N = ∂M , the unique y-reflected falling point is given by P inst,∂
ε (y) (or, in the absence of ε-instantaneous

nonholonomic constraints, P∂
ε (y)).

Proof: From the previous discussion, we know that the points in the constrained characteristic
passing through y with the same Hε-energy level are y itself and y + cε,2Pε(dqf), q = π(y) (cf.
equation (10)). Now, note that dqf belongs to the Gε-orthogonal complement of α−1

Hε
(T (∂M)), i.e.

Gε(dqf, β) = dqf(αHε
(β)) = 0 , β ∈ α−1

Hε
(T (∂M)) .

Using the equality C∂
ε = Cε∩α

−1
Hε

(T (∂M)), we have that dqf ∈ α−1
Hε

(T (∂M))⊥ε implies P inst,∂
ε (Pε(dqf)) =

0 and P∂
ε (Pε(dqf)) = 0. The result is then a consequence of Definition 4.18.

5.5 Energy behavior

In this section, we discuss the consequences regarding the energy behavior of the system that result
from the application of the Transition Principle.

Lemma 5.6 Given y ∈ T ∗
NM , let x = P(y)+Q(Υq), q = π(y), be the associated y-focusing point with

respect to a submanifold C ⊂ T ∗M . Then

T̂ (x) ≤ T̂ (y) + T̂ (Q(Υq),Q(Υq)) ,

and the equality holds if and only if y belongs to C0.

Proof: Note that

G(P(y) + Q(Υq),P(y) + Q(Υq)) = G(P(y),P(y)) + G(Q(Υq),Q(Υq)))

≤ G(P(y),P(y)) + G(Q(y),Q(y)) + G(Q(Υq),Q(Υq))

= G(y, y) + G(Q(Υq),Q(Υq)) ,

where we have used that G is positive-definite, and the fact that C0 and Ann(D) are orthogonal spaces
with respect to the co-metric G. If the equality holds, then G(Q(y),Q(y)) = 0, which is equivalent to
y ∈ C0.

As a consequence of this simple lemma we can conclude that in the case of linear constraints the
Transition Principle always implies a loss of energy. This is a suitable generalization to constrained
systems of the classical Carnot theorem for systems subject to impulsive forces [36].

Theorem 5.7 (Carnot’s theorem for generalized linear constraints) Suppose that the Hamil-
tonian system is subject to nonholonomic constraints given by a linear distribution. Then the Transition
Principle implies always a loss of energy as the result of an “impact”.
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Proof: Under linear constraints, note that Υ = 0. From Lemma 5.6, we get T̂ (x) ≤ T̂ (y) with
F(H,C)(y) = {x}. The result now follows from the formulation of the Transition Principle and the
definitions of decisive points in Section 4.5 (cf. Definitions 4.12-4.18).

Under linear constraints, the trajectory of the system maintains the same energy level after the
application of the Transition Principle in the following cases:

(i) when the decisive points are determined according to Definitions 4.12 and 4.17 and the impact
point y ∈ T ∗

NM belongs to C+ ∩ C−; and

(ii) when the constraints are smooth, and therefore the decisive points are determined according to
Proposition 4.15.

If the decisive points are determined according to Definitions 4.14 and 4.18, then nothing can be said
in general. The refractive steps will typically imply an energy decrease.

Remark 5.8 This type of energy arguments also allows to discard as follows the possibility of chatter-
ing when computing the y-decisive points if the constraints change (see Definition 4.12 and Remark 4.13
above). Let N = {y ∈ T ∗M | f(y) = 0}. Assume there is an infinite y-admissible sequence (yi, εi),
i = 0, . . . ,∞. For each i, we have that yi 6= yi+1, since otherwise

X l
H,Cεi+1

(f)(yi+1) = X l
H(f)(yi+1) = X l

H,Cεi
(f)(yi) , for all l ,

which together with the fact that yi is a εi-out point, implies that yi+1 is a εi+1-in point. The latter
contradicts the definition of admissible sequence. As a consequence of Lemma 5.6, we then have

T̂ (y0) > T̂ (y1) > T̂ (y2) > · · · > T̂ (yi) ≥ 0 .

The limit of this sequence is zero, which implies that the y-decisive point corresponding to such a
sequence would be 0, that is, the trajectory would get ‘stuck’ when reaching N .

5.6 Integrable constraints

The integrability of the constraints simplifies the application of the Transition Principle. Consider, for
instance, the situation when the mechanical system is unconstrained on M− and is subject to some
generalized linear constraints C = C0 on M+ that turn out to be holonomic, i.e., αH(C0) = D is
integrable. Denote by {Sα}, α being an m-dimensional parameter, the foliation of M+ induced by D.
Locally this foliation is described by m functions fi ∈ C∞(M) such that

q ∈ Sα ⇐⇒ fi(q) = αi , 1 ≤ i ≤ m.

A similar situation has been treated in [35] in the context of totally inelastic collisions (note, however,
that in [35] the integrable distribution is defined only on N , whereas here D is defined on M+). The
integrable constraints imposed by D can be interpreted as an abrupt reduction of the phase space of
the mechanical system.

By definition, one has that Ann(D) = span{df1, . . . , dfm}. The matrix J in (8) is then given by
J = (∂fi/∂q

a) and the projector P is P(x) = (1 − J tB−1JG−1)x. Let y ∈ C− ∩ T ∗
NM be the impact

state of a trajectory q(t) coming from M−. From the discussion in Section 5.3, we obtain that the
unique focusing point associated to y is x = (1−J tB−1JG−1)y. The trajectory will continue its motion
in M+, M− or N depending on the in/out/trapping character of the focusing point x. If it evolves in
M+ (more precisely, in Sα ⊂ M+ with α such that x ∈ Sα), we call it the ‘refraction’ of the original
trajectory. If it evolves in M−, we call it the ‘reflection’ of the original trajectory.
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6 Examples

In this section we consider four examples to illustrate the theory exposed above. They all present the
example of a rolling sphere considered in various constrained situations. The first one is taken from [16]
and is treated here in order to provide a further comparison with previous approaches. The second
one combines the presence of smooth nonholonomic constraints with discontinuous Hamiltonians and
instantaneous constraints acting on the system along a hypersurface. The third one consists of a ball
rolling on a rotating surface whose angular velocity is suddenly changed to a different value, and this is
modeled via a discontinuous affine distribution of constraints. Finally, the fourth one presents a two-
wheeled system with a rod of variable length and illustrates the application of the Transition Principle
in both the elastic and the inelastic modes.

6.1 A rolling sphere

Consider a homogeneous sphere rolling on a plane. Assume it has unit mass (m = 1) and let k2 be its
inertia about any axis. Let (x, y) denote the position of the center of the sphere and let (ϕ, θ, ψ) denote
the Eulerian angles. The configuration space is therefore Q = R

2 × SO(3). Assume that the plane is
smooth if x < 0 and absolutely rough if x > 0 (see Figure 1). On the smooth half-plane, the motion of
the sphere is assumed free, that is, the sphere can slip. On the rough half-plane, the sphere should roll
without slipping due to the constraints imposed by the roughness. We are interested in determining
the eventual sudden changes in the trajectories of the sphere when it reaches the line separating the
smooth and the rough half-planes.

x

y

smooth rough

x = 0

ω

Figure 1: The rolling sphere on a ‘special’ surface.

The kinetic energy of the sphere is

T =
1

2

(

ẋ2 + ẏ2 + k2(ω2
x + ω2

y + ω2
z)

)

, (12)

where ωx, ωy and ωz are the angular velocities with respect to the inertial frame, given by

ωx = θ̇ cosψ + ϕ̇ sin θ sinψ , ωy = θ̇ sinψ − ϕ̇ sin θ cosψ , ωz = ϕ̇ cos θ + ψ̇ .

The condition of rolling without sliding of the sphere when x > 0 implies that the point of contact
of the sphere and the plane has zero velocity

φ1 = ẋ− rωy = 0 , φ2 = ẏ + rωx = 0 ,

where r is the radius of the sphere.
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Following the classical procedure [30], we introduce quasi-coordinates ‘q1’, ‘q2’ and ‘q3’ such that
q̇1’= ωx, ‘q̇2’= ωy and ‘q̇3’= ωz. The latter merely have a symbolic meaning in the sense that in the
present example, for instance, the partial derivative operators ∂/∂qi should be interpreted as linear
combinations of the partial derivatives with respect to Euler’s angles. Also to the differential forms dqi

one should attach the appropriate meaning, i.e. they do not represent exact differentials but, instead,
we should read them as dq1 = cosψ dθ + sin θ sinψ dϕ, etc.

The singular hypersurface N is defined by N = {x = 0}. In this case, the constraints are linear
and the nonholonomic distribution αH(C) = D on M+ is given by

D(x,y,q1,q2,q3) = span

{

r
∂

∂x
+

∂

∂q2
,−r

∂

∂y
+

∂

∂q1
,
∂

∂q3

}

.

Here we are dealing with a single distribution which constrains the motion on M+.
In the following we compute the decisive points for this example. Let λ ∈ C− ∩ T ∗M be a minus-

out point. A direct computation shows that the expression of the projector P : T ∗M → C in local
coordinates is

P =















r2

r2+k2 0 0 r
r2+k2 0

0 r2

r2+k2 − r
r2+k2 0 0

0 −rk2

r2+k2
k2

r2+k2 0 0
rk2

r2+k2 0 0 k2

r2+k2 0

0 0 0 0 1















. (13)

Therefore, the single focusing point for λ ∈ T ∗
NM is given by x = P(λ) ∈ C ∩ T ∗

NM . If we denote
λ = (x0, y0, q

1
0, q

2
0, q

3
0, (px)0, (py)0, (p1)0, (p2)0, (p3)0) and x = (x, y, q1, q2, q3, px, py, p1, p2, p3), we get

px =
r2(px)0 + r(p2)0

r2 + k2
,

py =
r2(py)0 − r(p1)0

r2 + k2
,

p1 =
−rk2(py)0 + k2(p1)0

r2 + k2
,

p2 =
rk2(px)0 + k2(p2)0

r2 + k2
,

p3 = (p3)0 .

Note also that the focusing point with respect to C− = T ∗M associated with x is x itself. Therefore,
if x is a plus-out point, the only admissible sequence for λ is {(λ,−), (x,+), (x,−)}. If x is either
a plus-in or a plus-trapping point, then the only admissible sequence for λ is {(λ,−), (x,+)}. The
set of plus-trapping points for the dynamics XH,C+

is ∂(T ∗M)n = {µ ∈ T ∗M | x = 0 , px = 0}.
Consequently, the trajectory is refracted, i.e., the sphere follows its motion on M+ under the dynamics
XH,C+

(rolling without slipping) if px ≥ 0. Otherwise (i.e., if px < 0), the trajectory is reflected by the
“roughness” and continues in M− under the dynamics XH starting from x.

6.2 A rolling sphere hitting a wall

This is a classical example [13, 19, 30] that we treat here for the sake of completeness. Consider again
a homogeneous sphere of radius r and unit mass. Assume that the sphere rolls without sliding on a
horizontal table, and that at a certain instant of time it hits a wall determined by the plane x = d > 0
(cf. Figure 2). When this happens, the following constraint is instantaneously imposed on the system,

ψ = ẏ − rωz = 0 .
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Figure 2: A rolling sphere that eventually hits a wall.

Therefore, we are in the situation explained in Remark 4.16. The configuration space of the system
is M = M+ = {x < d}, with the boundary N = {x = d}, and the linear constraint submanifold
C = C+ ⊂ T ∗M is given by αH(C) = D,

D = span

{

r
∂

∂x
+

∂

∂q2
,−r

∂

∂y
+

∂

∂q1
,
∂

∂q3

}

.

The expression for the projector P : T ∗M → C is given by equation (13). The submanifold giving the
instantaneous constraints along N is

C inst = {λ ∈ C | ψ(αH(λ)) = 0} .

The projector P inst = P inst
+ : T ∗M → C inst is

P inst(λ) =
rλx + λ2

r2 + k2

(

rdx+ k2dq2
)

+
−rλy + λ1 − λ3

r2 + 2k2

(

−rdy + k2dq1 − k2dq3
)

. (14)

Let λ = (x0, y0, q
1
0, q

2
0, q

3
0, (px)0, (py)0, (p1)0, (p2)0, (p3)0) ∈ C+ ∩ T ∗

NM ⊂ T ∗M be a plus-out point,
i.e., G(λ, dx) < 0. We first consider an elastic impact. Since H− = ∞, we only compute the outcome
of a reflective step. According to (10), the points in the constrained characteristic passing through λ
within the same H+-energy level are

λ and λ+ c+,2P(dx) , with c+,2 = −2
r2 + k2

r2
(px)0 .

The associated focusing points are given by

P inst(λ) and P inst(λ) + c+,2P
inst(P(dx)) . (15)

Note that P inst(P(dx)) = P inst(dx) = P(dx), and therefore the points in (15) belong to the same
constrained characteristic and to the same H+-energy level. Denoting the coordinates of the point
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P inst(λ) by (x, y, q1, q2, q3, px, py, p1, p2, p3), we get

px = (px)0

py =
(r2 + k2)(py)0 + r(p3)0

r2 + 2k2
,

p1 = −k2 (r2 + k2)(py)0 + r(p3)0
r(r2 + 2k2)

p2 = k2 (px)0
r

p3 = k2 (r2 + k2)(py)0 + r(p3)0
r(r2 + 2k2)

,

Now, notice that P inst(λ) is a plus-out point, because G(P inst(λ), dx) = G(λ, dx) < 0. Therefore,
following Proposition 5.4, we conclude that the sequence {(λ,+),P inst(λ) + c+,2P

inst(dx),+)} is λ-
admissible, and P inst(λ) + c+,2P

inst(dx) is a decisive point. The other possible λ-admissible sequence
corresponds to

{(λ,+),P inst(λ),P inst(λ) + c+,2P
inst(dx),+)} ,

but renders the same decisive point.
In the case of an inelastic impact, Proposition 5.5 yields that the unique λ-decisive point is

P inst,∂(λ). After the impact, the ball continues its motion along the wall under the dynamics specified

by the vector field X inst,∂
+ .

6.3 A rolling sphere on a rotating table

Consider again a homogeneous sphere of radius r and unit mass. Assume that the sphere rolls without
sliding on a horizontal table which is rotating with certain constant angular velocity about a vertical
axis through one of its points (see Figure 3). Let Ω− and Ω+ be two angular velocities. Here we
consider the following situation: each time the sphere reaches the hypersurface x = y, an impulsive
force is exerted on the table to put it spinning with a different angular velocity. That is, if the angular
velocity of the table was Ω−, the force applied on its rotation axis changes it to Ω+ and vice versa. We
assume that Ω− < Ω+. This can be modeled as thinking of a system which is subject to two different
affine constraint distributions. In order for this model to be consistent, we also assume that the surface
of the table is rough enough so that sphere is rolling without slipping at all times.

x

y

ω

Ωε

Figure 3: A rolling sphere on a rotating table.

The Lagrangian is again given by equation (12). The nonholonomic constraints are now affine in
the velocities,

ẋ− rωy = −Ωy, ẏ + rωx = Ωx .

The constraint space αH(C) is then described by

αH(C) = D + Y = span

{

r
∂

∂x
+

∂

∂q2
,−r

∂

∂y
+

∂

∂q1
,
∂

∂q3

}

+ Y ,
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where Y is the vector field defined by

Y = −Ωy
∂

∂x
+ Ωx

∂

∂y
.

Note that the projection of Υ = LL(Y ) to Ann(D) is given by

Q(Υ) =
Ωk2

r2 + k2

(

−ydx+ xdy − xrdq1 − yrdq2
)

.

Following the discussion for the case of affine constraints, given y ∈ T ∗M , the focusing point with
respect to C± is given by

x = P(y) + Q(Υ±) ,

where P is the projector in (13).
Assume that the sphere is rolling on the hyperplane M− = {x < y} and that the constant angular

velocity of the table is Ω−. Consider the case when the sphere “hits” the hypersurface N = {x = y}
with the impact state

λ = (x0, y0, q
1
0, q

2
0, q

3
0, (px)0, (py)0, (p1)0, (p2)0, (p3)0) ∈ C− = Co

− + Υ− .

Denote the coordinates of the associated focusing point by

x = P(λ) + Q(Υ+) = (x, y, q1, q2, q3, px, py, p1, p2, p3) .

Then

G(df, x) = px − py = (px)0 − (py)0 +
k2

r2 + k2
(x0 + y0)(Ω− − Ω+) . (16)

Given that λ is an minus-out point, we have that G(df, λ) = (px)0− (py)0 > 0. If x0 = y0 < 0, then the
second term in (16) is also positive, and {(λ,−), (x,+)} is the unique admissible sequence for λ. In
this case, x is the λ-decisive point. On the contrary, for certain values of x0 = y0 > 0, it might happen
that G(df, x) is negative, i.e., that x is a plus-out point. Now, note that the focusing point associated
with x is λ itself, since

P(x) + Q(Υ−) = P(P(λ)) + Q(Υ−) = P(λ) + Q(Υ−) = λ .

As a consequence, in this case there would not be any λ-decisive point. This problem stems from the
fact the modeling of this example as a system subject to affine constraints does not take into account
that the jump in the angular velocity of the table takes place no matter what. Therefore, after the
impact, we should really regard C+ as the new set of affine constraints acting on the whole configuration
manifold. With this interpretation, x would obviously be a plus-in point (and hence decisive). In other
words, the trajectory of the ball gets reflected back by the blow of the greater velocity Ω+.

6.4 A two-wheeled system with a rod of variable length

Consider a system composed of two wheels of different radii, r1 < r2, connected by a massless rod of
variable length ` (see Figure 4). For simplicity, assume that the two-wheeled system moves along a
line, and that both the masses and the momenta of inertia of the wheels are unitary. The wheels are
subject to the standard constraints of non-slipping. Assume that the length ` of the rod is constrained
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x

r1
θ1

r2θ2

`

Figure 4: A two-wheeled system with a rod of variable length.

between a minimum length a and a maximum length b. Here we consider the following two situations:
(i) when the length ` of the rod becomes extreme, an elastic impact occurs; (ii) when the length ` of
the rod becomes extreme, an arresting device fixes it, and therefore an inelastic impact occurs.

The Lagrangian of the system is given by the kinetic energy of the wheels

L =
1

2

(

θ̇2
1 + θ̇2

2 + ẋ2
1 + ẋ2

2

)

.

The conditions of rolling without sliding are encoded in the constraints

ẋ1 − r1θ̇1 = 0 , ẋ2 − r2 θ̇2 = 0 ,

which, since we are considering the motion of the two-wheeled system only along a line, turn out to
be holonomic. The constraint on the length of the rod is given by

a ≤ ` =
√

(r2 − r1)2 + (x2 − x1)2 ≤ b .

Following Remark 4.16, we set M− = ∅, M+ = M = {(x1, x2, θ1, θ2) ∈ R
2 × S

1 × S
1 | a ≤

`(x1, x2, θ1, θ2) ≤ b}, with boundary set N = ∂M = {(x1, x2, θ1, θ2) ∈ R
2 × S

1 × S
1 | `(x1, x2, θ1, θ2) =

a or `(x1, x2, θ1, θ2) = b}, and linear constraint submanifold C = C+ ⊂ T ∗M given by αH(C) = D,

D = span

{

r1
∂

∂x1
+

∂

∂θ1
, r2

∂

∂x2
+

∂

∂θ2

}

.

The expression for the projector P : T ∗M → C in local coordinates is given by the following matrix

P =















r2
1

1+r2
1

0 r1

1+r2
1

0

0
r2
2

1+r2
2

0 r2

1+r2
2

r1

1+r2
1

0 1
1+r2

1

0

0 r2

1+r2
2

0 1
1+r2

2















.

Let λ ∈ T ∗M+ be a plus-out point with `(λ) = b and G(λ, d`) > 0. Since H− = ∞, we only compute
the outcome of a reflective step. Following equation (10), the points in the constrained characteristic
passing through λ with the same H+-energy level are λ and λ+ c+,2P(d`), with

c+,2 = −
2G(λ,P(d`))

G(P(d`),P(d`))
. (17)
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According to Proposition 5.4, the point λ+ c+,2P(d`) is +-decisive.
Consider now an inelastic impact, i.e., the case when the length ` of the rod becomes fixed after the

impact. Since there are no additional instantaneous constraints imposed on the system at the impact
state, we compute the decisive points with regards to the boundary of the constraint manifold,

C∂ = C ∩ α−1
H+

(T∂M) = {(x1, x2, θ1, θ2, px1
, px2

, pθ1
, pθ2

) ∈ T ∗M | px1
= px2

,

px1
= r1pθ1

, px2
= r2pθ2

, `(x1, x2, θ1, θ2) = a or `(x1, x2, θ1, θ2) = b} .

As before, we only compute the outcome of a reflective step. Following Proposition 5.5, we deduce that
the unique decisive point is P∂(λ). After the inelastic impact, the length of the rod is fixed forever
after, the velocities of the two wheels of the system are reset according to P∂(λ) and evolve according
to X∂

(H,C,N).

7 Conclusions

We have developed a generalization of the Transition Principle to deal with impulsive regimes in gen-
eral nonholonomic systems, and particularized our discussion to the case of mechanical systems with
affine constraints. We have also provided a geometric formulation of the dynamics of nonholonomic
Hamiltonian systems via partial symplectic structures. Future work will be devoted to the develop-
ment of a suitable version of the Transition Principle for optimal control problems, the comparison of
quantitative and qualitative predictions made by the Transition Principle in specific examples, and the
implementation of the results obtained here in numerical schemes for impulsive nonholonomic systems.
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