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Abstract— This paper presents a motion control algorithm in this paper is that of optimally locating a guard in a
for a planar mobile observer such as, e.g., a mobile robot simple polygon. To the best of our knowledge, this problem
equipped with an omni-directional camera. We propose a g || open and is the subject of ongoing research; see

nonsmooth gradient algorithm for the problem of maximizing h S
the area of the region visible to the observer in a simple [2], [3], [4], and the surveys on geometric optimization

nonconvex polygon. First, we show that the visible area is and art gallery problems [5], [6]. However, randomized
almost everywhere a locally Lipschitz function of the observer algorithms for finding the optimal location up to a constant

location. Second, we provide a novel version of LaSalle Invari- factor approximation exist; see [4]. These algorithms can b
ance Principle for discontinuous vector fields and Lyapunov regarded as open-loop algorithms that require knowledge of

functions with a finite number of discontinuities. Finally, th . t Closed-l heuristic algorith for th
we establish the asymptotic convergence properties of the € environment. LI0sed-loop heuristic algonthms for the

nonsmooth gradient algorithm and we illustrate numerically ~ Next Best View problem are proposed and simulated in [7]
its performance. and in the early work [8].

A second set of relevant references are those on nons-
mooth stability analysis. Indeed, our approach to maximiz-

Consider a single-point mobile robot in a planar noning visible area is to design a nonsmooth gradient flow.
convex environment modeled as a simple polygon: howo define our proposed algorithm we rely on the notions
should the robot move in order to monotonically increasef generalized gradient [9] and of Filippov solutions for
the area of its visible region (i.e., the region within itsdiof ~ differential inclusions [10]. To study our proposed algjom
sight)? This problem is the subject of this paper, togethave extend recent results on the stability and convergence
with the following modeling assumptions. The dynamicaproperties of nonsmooth dynamical systems, as presented
model for the robot's motion is a first order system of then [11], [12].
form p = u, wherep refers to the position of the robot The contributions of this paper are threefold. First, we
in the environment and. is the driving input. The robot prove some basic properties of the area visible from a
is equipped with an omni-directional camera and rangpoint observer in a nonconvex polygap, see Figure 1.
sensor; the range of the sensor is larger than the diametéamely, we show that the area of the visibility polygon, as
of the environment. The robot does not know the entire
environment and its position in it, and its instantaneous
motion depends only on what is within line of sight (this
assumption restricts our attention to memoryless feedback
laws).

In broad terms, this problem is related to numerous
optimal sensor location and motion planning problems in
the computational geometry, geometric optimization, and
robotics literature. In computational geometry [1], thasel
sical Art Gallery Problem amounts to finding the optimum
number of guards in a nonconvex environment so that each
point of the environment is visible by at least one guard.
A heuristic for this problem is to use a greedy approach
wherein the first robot (guard) is placed at the point where
it sees the maximum area. The next robot is placed where
it sees the maximum area not visible to the first and so on.
In robotics, this approach is useful for 2D map building Fig. 1. The visible area function over a nonconvex polygon.
wherein a robot moves in such a way so that its next
position is the best in terms of what it can see additionallya function of the observer position, is a locally Lipschitz
In this robotic context, these problems are referred to danction almost everywhere, and that the finite set point
Next Best View problems. The specific problem of interesbf discontinuities are the reflex vertices of the polyggn

I. INTRODUCTION

Visible area (in m?)




Additionally, we compute the generalized gradient of théf [; || [; denotes that the two linds, > € L are parallel,
function and show that it is, in general not regular. Secondet fi, : L2\ {(l1,l2) € L? | Iy || l2} — R? map two lines
we provide a generalized version of the certain stabilityhat are not parallel to their unique intersection poinueai
theorems for discontinuous vector fields available in théwo lines[(a1, b1, ¢1)] and[(az, ba, c2)] that are not parallel,
literature [11], [12]. Specifically, we provide a genereliz the function fi, admits the expression

nonsmooth LaSalle Invariance Principle for discontinuous

vector fields, Filippov solutions, and Lyapunov functions Jip ([(a1,01,¢1)]; [(a2, b2, ¢2)])

that are locally Lipschitz almost everywhere (except for a baci — bica aica —ascy

finite set of discontinuities). Third and last, we use these o ( ) '
novel res_ults tc_) design a nonsmoot_h_gradient algorithm thf{fote that the functiongy and fi, are classC*, i.e., they
monotonically increases the area V|§|b_le toa pomt 0b$erv%re analytic over their domains.

To the best ,Of our kno_wledgg, this is the first provgbly Now, let us turn our attention to the polygonal environ-
correct algorithm for this version of the Next Best View ant. LetQ be a simple polygon, possibly nonconvex.

p.robl_em. We illustrate thg perfo.rmance of our algorithm,are as in [1], a simple polygon is a region enclosed
via simulations for some interesting polygons. by a single closed polygonal chain that does not intersect
The paper is organized as follows. Section Il contains theoi- thus. the region contains no holes. l@tand 9Q

analysis of the smoothness and of the generalized gradieinte the interior and the boundary®f respectively. Let
of the function of interest. Section Il contains the novelve(Q) — (v1,...,v,) be the list of vertices of) ordered

results on nonsmooth stability analysis. Section IV presen., nterclockwise. Thénterior angle of a vertex of Q is

the nonsmooth gradient algorithm and the properties Qfe angle formed insid® by the two edges of the boundary
the resulting closed-loop system. Finally, the simulagion¢ @ incident atv. The pointv € Ve(Q) is areflex vertex

in Section V illustrate the convergence properties of thg iis interior angle is strictly greater than Let Ve, (Q) be
algorithm. The proofs for the results in Section Il and Il jist of reflex vertices )

are included, whereas the proofs for the results in Section |
will be included in future submissions.

azby — Cllb27 azby — a1bs

A point ¢ € @Q is visible fromp € @ if the segment
betweeng and p is contained inQ. The visibility polygon
S(p) C @ from a pointp € @ is the set of points inQ
visible from p. It is convenient to think ofp — S(p) as

In this section we study the area of the region visible t@a map from@ to the set of polygons contained @. It
a point observer equipped with an omnidirectional cameranust be noted that the visibility polygon is not necessarily
We show that the visible area, as a function of the locatioa simple polygon.
of the observer, is locally Lipschitz, except at a finite pjoin  Definition 2.1: Let v be a reflex vertex of), and letw €
set. We prove that, for general nonconvex polygons, theée(Q) be visible fromv. The (v, w)-generalized inflection
function is not regular. We also provide expressions for theegment/ (v, w) is the set
generalized gradient of the visible area function wherever . _
it is locally Lipschitz. We refer the reader to [9] for the Iv,w)={qg€ S(v) [g= v+ (1-Nw,A>1}.
notion of locally Lipschitz functions and related concepts A reflex vertexv of @ is ananchor ofp € @ if it is visible

Let us start by introducing the set of lines on the planfromp and if{g € S(v) | ¢ = Av+ (1 — A)p, A > 1} is not
R2. For (a,b,c) € R®\ {(0,0,c) € R? | c € R}, define the empty.

Il. THE AREA VISIBLE FROM AN OBSERVER

equivalence clasga, b, c)] by In other words, a reflex vertex is an anchor ofif it
occludes a portion of the environment frgmGiven a point
[(a,b, )] ¢ and a linel, let dist(q,!) denote the distance between
= {(a, V) €R®| (a,b,c) = A(a', b/, ), A€ R}. thbem. Figure 2 illustrates the various quantities defined
above.

The set of lines orR? is defined as
L = {[(a,b,¢)] CR®| (a,b,c) € R®, a* +b*> #0}.

It is possible to show that is a 2-dimensional manifold,
sometimes referred to as the affine Grassmannian of lines
in R?; see [13].

Next, two simple and useful functions are introduced.
Let fu : R2 x R2\ {(p,p) eR?xR? |[peR?} — L
map two distinct points irR? to the line passing through Fig. 2. A reflex vertexv, a generalized inflection segmentv, w), an
them. For(xl, yl)’ (1,2’ yz) c R2, the functionfp| admits anchorv, of p and the visibility polygon (shaded region) from
the expression

Theorem 2.2:Let {I,}.c4 be the set of generalized in-
for ((z1,91), (2, y2)) = [(y2 — y1, 21 — x2, Y122 — T1y2)].  flection segments af, and letP be a connected component



of @\ Uyealo For al p € P, the visibility polygon that fu(p,va) 4 £. Therefore, for alp € P, fip(foi(p, va),€)
S(p) is simple and has a constant number of vertices, say C; this implies thatp — w;(p) is alsoC*. The formula
Ve(S(p)) = {ui(p),...,ur(p)}. Foralli € {1,...,k}, the for the derivative can be verified directly. |

map P > p — u;(p) is C¥ and either
Next, the area of a visibility polygon as a function of the
dui(p) =0 observer location is studied, see Figure 1. Recall that the
if u;(p) € Ve(Q), or area of a simple polygoy with counterclockwise-ordered

pverticesVe(Q) = ((z1,41), - - ., (zn, yn)) is given by
dist (v, 1) [_b} {y — Y

WilP) = it (o) = dist (v )2V T L) |70 —a AQ) =3 wilyi1 — yin),
if u;(p) = fip(foi(va,p),1), Wherev, = (z4,y,) iS an =1
anchor ofp and wherd = [(a, b, ¢)] is a line defined by an where (zo,y0) = (Tn,yn) and (Tn41,Yn+1) = (T1,91).
edge ofQ. As in the previous theorem, letl,},c4 be the set of
Proof: The first part of the proof is by contradiction. generalized inflection segments @f and let P be a con-
Let | Ve(S(p))| > | Ve(S(p))| for some pointy’ € P. This nected component of) \ J,c 4 lo- Next, if p € P, the
means that at least one additional vertex is visible frondisibility polygon fromp has a constant number of vertices,
p’ that was occluded by an anchor pf Two cases may sayk = | Ve(S(p))|, is simple, and satisfiegl o S(p) =
arise. First, when the additional vertex belongsvid @), Zle i (yi—1 — yiv1) WhereVe(S(p)) = (uq,...,u;) are
then by our definitionp and p’ must lie on opposite sides ordered counterclockwisey;(p) = (z;,y;:), uo = ug, and
of a generalized inflection segment. This is a contradiction:;+1 = u,. Therefore,P > p — Ao S(p) is alsoC¥ and

Secondly, if the additional vertex does not belong/tgQ), %
it must be the proj_ection of a reflex vertex (acting as an d(409)(p) = Z Mdm(p). (1)
anchor). Here again two cases may arise: (1) the reflex =1 du;

yertex IS visible _fromp, and (2) it IS n(?t: The first case To illustrate this equality, it is convenient to introdudest
is possible only if the reflex vertex is visible but does no(/ersoroperator defined byers(X) = X/| X| if X € R2\

act as an anchor. So, positive lengths of both sides adg)inlqo} and byvers(0) — 0. We depict the normalized gradient
the reflex vertex must also be visible frgnand at least one vers(d(A+ S)) of the visible area function in Figure 3
of the sides is completely not visible froph since there is a '

projection. This means thatandp’ lie on opposite sides of

a generalized inflection segment generated by the reflex ver-
tex and one of its adjacent vertices. This is a contradiction
The second case is possible if the reflex vertex in question
is occluded by another reflex vertex. But this means that
p andp’ lie on opposite sides of the generalized inflection
segment from the reflex vertex to the anchor occluding the
reflex vertex; again this is a contradiction. If, on the other
hand,| Ve(S(p'))| < | Ve(S(p))|, then the above arguments
hold by interchangingy and p’. Hence,p and p’ lie on
opposite sides of a generalized inflection segment which is

a contradiction. This completes the proof thake(S(p’ Fig. 3. Normalized gradient of the visible area function ovke
P P ”] ( (p ))| nonconvex polygon depicted in Figure 1. The dashed lineesept some

is constant for a!lp’ €Pp. o . of the generalized inflection segments.
Let p € P. Since the visibility polygonS(p) is star-

shaped and since any ray emanating froman intersect ~ Theorem 2.3:The mapA o S restricted toQ \ Ve, (Q) is
the environment at most at two distinct points, th&{p) locally Lipschitz.
is simple. (Indeed, if the ray emanating fromintersect Proof: By Theorem 2.2, it suffices to consider
the environment at three points, thenmust belong to a points lying on generalized inflection segments. lzet
generalized inflection segment.) belongs to multiple, say:, generalized inflection segments
Regarding the second statement, it is clear that;(p) {In}aeqi,...m}- Let B(p,e) be the open ball of radius
is a vertex of@ then it is independent op. Instead, if ¢ centered atp; let ¢ be small enough such that no
u;(p) ¢ Ve(Q), then generalized inflection segments inters&p, ¢) other than
R InYoeqi,...my- Fora e {1,...,m}, letv;, be the anchor
ui(p) = fio(for((z,9), (Ta,Ya)), £) éetgrmi{ning tile generaﬁzed infle}ction segmént Without
wherep = (z,y), vo = (24,¥a) iS @an anchor ofp, and¢ loss of generality, it can be assumed that no anchor is eisibl
is the line, determined by an edge ©f that identifiesu;.  from p other thanvy,,...,vx,, . Fora € {1,...,m}, lines
Now, p € P impliesp # v,. It follows that fu(p,v.) is C* 1o L fu(p,vk,) can be constructed with the property that
for all p € P. Also, from the definition ofu;(p), it is clear [,NQ = () and the vectop,_ —p points toward,,. Let, A,




be the line parallel td,, tangent taB (e, p), and intersecting Lemma 2.4:Let {I,}.c4 be the set of generalized in-
the segment fronp to v, . Let p’ and p” belong to flection segments of). There exists a unique partition
B(p,€)N(Q \ Ve (Q)). Next, letq, = fio(fo(P',vk,):la) {Ps}pes of Q where Ps is a connected component of
andq), = fio(fp(p", vk, ), la); See Figure 4. Let), andv), Q\ |J,c4 Io and P3 denotes its closure.

Figure 6 illustrates this partition for the given nonconvex
polygon. For3 € B, defineAs : P3 — R, by

l ° ! Ap(p) = AoS(p), forpe Pg,

. .\ and by continuity on the boundary 6. It turns out that the
ot \ ° mapsAg, 3 € B, are continuously differentiableon Pg.
ok, =PIl =€ Equation (1) gives the value of the gradient forc Pgs.
S However, in general, fop € Ps, ...\ Ps,, \ Ve (Q),
based on Theorem 2.3 and Lemma 2.4, it can be written

that
d(’l}kﬂ s l(y)

(A0 8)(p) = co {dds, (p), ... d4s, () }. ()

!

dh @ Lo

Fig. 4. Definition of the lined., ha, and the pointsy,, 7/, vl,, vl

» Yot

be the intersections betweén, and the linesfy (p’, vy, )
and fu(p”, v, ), respectively.

Now, |A(v. . dh,g0)| = 3llas — ai]l dist(vg,, la). But
from Figure 4, it is easy to see thaly, — ¢/l =

dist(vi, ,la) *

Tor, —pi—e lva — vall and thatflv, — vill < [lp" = p"||

dist(vi, la) g . .
For K.(p) = %mg";miz dist(vg,,, 1), the following is
rue:

[A(S(P') — A(S(P"))] <

NE

|A(Uka?q(l)uq/oi)| . . . . .
Fig. 6. Partition of@. The generalized gradient of the area function at
p is the convex hull of the gradient of four function, ..., A4 atp.
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a(P)lP" =27 This completes our study of the generalized gradient of

the locally Lipschitz functiond o.S. Next, it is shown how
Othis function is not regular in many interesting situations

Lemma 2.5:There exists a nonconvex polyg@p such
that the mapsAd S and —A oS restricted toQ \ Ve, (Q)
are not regular.

Proof: We present two examples to justify the above
statement. In Figure 79(A°S)(p') = co{dA;,dAs}
where ||dA4;|| > ||/dAz||. Take a vectorn’ perpendic-
ular to the generalized inflection segment to whigh
belongs (see Figure 7). It is clear thatioS) (p;n’) =~
IdAs || However, (A0 8)°(ps7/) = max{((,n)|¢ €
I(A-S)(p')} =~ |[dAi|| > |dAs]. Again, in Figure 7,
I(—AS)(p") = co{—dAs,—dA4}, where| — dAy| >
||—dAs]|. Take a vector)” perpendicular to the generalized
inflection segment to whichy” belongs (see Figure 7).
It is clear that—(A-S) (p";n") ~ —|dA4||. However,
(Ae8)0(p" ") = max{(C,")|¢ € AAS)(P")} ~

Fig. 5. Upper bounds on the change in area. Here= 3. —[ldAs]| > —([dAl]. u

a=1

This fact is illustrated by Figure 5. This completes the [pro

that Q \ Ver(Q) Spr Ao S(p) is IocaIIy LipSChitZ. u 1A function is continuously differentiable on a closed se(d) it is

To obtain th . f h lized di cpntinuously differentiable on the interior, and (2) thaitiof the derivative
0 obtain the expression for the generalized gradient Qta point in the boundary does not depend on the directiam frdnich

Ao S, the polygon@ is partitioned as follows. the point is approached.



' A, (iii) if M consists of a finite number of points, then each
\é ;1;” Filippov solution of X with initial condition in S
D dA3 converges to a point o/ ast — +oc.
dd, vl Proof: Fact (i) is a consequence of Assumptions (Al),
(A2) and (A3), and of Lemma 3.1.
Fig. 7. Example polygon for whicdoS and —Ao S restricted to .In what follows we Shaljl\, require the foI_IO\{vmg notion.
Q\ Ve, (Q) are not regular. Note here thatig and d45 are not perfectly Given a curvey : Ry — R, the positive limit set ofy,
aligned withn’. Also, dA3 and d44 are not perfectly aligned withy”’. denoted byQ(y), is the set ofy € RY for which there
exists a sequencéy}reny C R such thatt, < txqq, for
k€ N, limg_yootpy = 400, and limg_ oo Y(tx) = y.
[1l. AN INVARIANCE PRINCIPLE IN NONSMOOTH For x € S, let 44 be a Filippov solution ofX with
STABILITY ANALYSIS ~v1(0) = z and letQ(v1) be the limit set ofy;. Under this

setting,2(y;) is nonempty, bounded, connected and weakly

Thls section pregents r_esults on stability analysis f0f d'sfnvariant, see [10]. Furthermor€(y,) C S becauses is
continuous vector fields via nonsmooth Lyapunov functions

The results extend the work in [12] and will be useful in o9l invariant

the next control design section. We refer the reader to [1(% To Lﬁ)gvﬁ'rif\f};l (")fil(lt )s,gﬁgecs g) fg,?w ethgﬂ((vﬁ)\ g
for some useful nonsmooth analysis concepts. X f = AR ' y m

In what follows we shall study differential equations of?tok;::;f sli !ﬁiﬁ!ﬁi;iicfizﬁa)Tieyr.eg ;( é?jsifsfjij?sn ce
the form monotonically nonincreasing andlis bounded from below,
i(t) = X(z(1)), limy_ 4o f(71(t)) exists and is equal to, say,c R. Now,
by continuity of f, a = limg_, o0 foy1(tx) = f(y). This
proves thatf(y) = a for all y € Q(~1) \ C. At this point
X ~ we distinguish two cases. First, assume thia an isolated
essentially locally bounded and I¢t: R™ — R be locally it in (+,). Then clearly, there exists a Filippov solution
Lipschitz. Lety : [to, t;1] — RY be a Filippov solution of{ of X, say~s, such thatys(t) = y for all ¢ > 0. Hence
such thatf(v(t)) is regular for almost ali € [to,?1]. Then %f(“;z(t)) = 0 and, by Lemma 3.1) € fo(_vz(t)) or in

where X is a discontinuous vector field dR".
Lemma 3.1:Let X : RY — RN be measurable and

() §(f(x(t))) exists for almost alt € [to, 1], and other wordsy € Zx ;. Second, assume thais not isolated
(i) d%(f(’Y(t))) € Lx f(y(t)) for almost allt € [to, t1]. in Q(v1), and let~, be a Filippov solution ofX with
Proof: The result is an immediate consequence of2(0) = y. Since f is continuous ay and Q(~;) contains

Lemma 1 in [12]. m a finite number of points of discontinuity ¢f, there exists

The following result is a generalization of the classi®@ > 0 such thatf(y’) = a for all ¥ € B(y,d) N Q(m).
LaSalle Invariance Principle for smooth vector fields and herefore, there exist$ > 0 such thatf(v2(t)) = a for all
smooth Lyapunov functions to the setting of discontinuous € [0,#']. Hence, we havél f(v2(t)) = 0 for all ¢ € [0, ¢'].
vector fields and nonsmooth Lyapunov functions. It follows from Lemma 3.1 that for alt € [0,#'], we have

Theorem 3.2 (LaSalle Invariance Principledet X : 0 € Lxf(72(t)) or in other wordsy,(t) € Zx ;. By
RN — RM be measurable and essentially locally boundedontinuity of v, at¢ = 0, we have that(0) =y € Zx ;.
and letS ¢ RY be compact and strongly invariant fof. ~ SinceQ(v:) is weakly invariant, we hav€(y,;) C M and
Let C c S consist of a finite number of points and lethencey, approaches\/.

f S — R be locally Lipschitz onS'\ C and bounded from  We now prove fact (iii). If}/ consists of a finite number

below onS. Assume the following properties hold: of _points, and sincé(v) ¢ M is connected,(_)(fyl) is a
(Al) if z € S\ C, then eithermax Ly f(z) < 0 or point. Hence, by the argument in the preceding paragraph,
Exf(:c) =0 - each Filippov solution ofX approaches a point af/. In

(A2) if + € C and if v is a Filippov solution ofX with ~ Other words, it converges to a point 8f. =

7(0) =, thenlim,_o- f(7(t)) 2 limy_o+ f(7(1)), IV. MAXIMIZING THE AREA VISIBLE FROM A MOBILE

and
(A3) if v: R, — S is a Filippov solution ofX, then f o~ OBSERVER
is regular almost everywhere. In this section we build on the analysis results obtained

' 5 thus far to design an algorithm that maximizes the area
Define Zx.; = { } and letas u . . .
eline 2x.1 v E_S \Q [0€ EXf(m)_ a”_ﬂ et be visible to a mobile observer. We aim to reach local maxima
the largest weakly invariant set contained (x,; UC).  of the visible aread oS by designing some appropriate

Then the following statements hold: form of a gradient flow for the discontinuous functidr .
(i) if v: Ry — Sis a Filippov solution ofX, thenfo~y We now present amtroductory and incompleteersion of
is monotonically nonincreasing; the algorithm: the objective is to steer the mobile observer

(i) each Filippov solution ofX with initial condition in  along a path for which the visible area is guaranteed to be
S approachesV/ ast — +oc; nondecreasing.



Name: Increase visible area fap
Goal: Maximize the area visible

i to a mobile observer
Assumption: Generalized inflection segments @f

do not intersect.
Initial position does not belong to a
generalized inflection segment.

Let p(t) denote the observer position at timeinside
the nonconvex polygorQ. The observer performs the
following tasks at each time instant:

compute VISIb'“ty polygonS(p(t)) cQ, Fig. 8. Thee-expansionQ© of the simple polygonQ, an open sefs
if p(t) does not belong to any generalized inflectionand the corresponding outward norme(prjg (p))-
segment or to the boundary ¢f then
move along the versor of the gradient 4k S i
else ifp(t) belongs to a generalized inflection segmentX« i well-defined because ate Q\{Ia}«c the function
but not to the boundary af then A0S is analytic. CIear!y,XQ is nqt _con_tlnuou_s orQE._
depending on the generalized gradientiof S, either However, the set of points where it is discontinuous is of

slide along the segment or leave the segment in afeasure zero. Almost everywhere in the interiorchfthe
appropriate direction vector field X is equal to the normalized gradient dfo S

as depicted in Figure 3. We now present the differential
equation describing the motion of the observer:

else if p(t) belongs to the boundary @ but not to 3
reflex vertex,then
depending on the projection of the generalized gra- p(t) = Xo(p(t)). 3)
dient along the boundary, either slide along |th
boundary or move in an appropriate direction towar
the interior ofQ

e
dA Filippov solution of (3) on an intervalto,t1] C R is
defined as a solution of the differential inclusion

else p(t) € K[Xql(p(t)), 4
either follow a direction of ascent ol .S or stop . - . .
end if where the operataK [X ] is the usual Filippov differential

inclusion associated witlX, see [10]. SinceX, is mea-
The remainder of this section is dedicated to formalizingurable and bounded, the existence of a Filippov solution
these loose ideas. is guaranteed. We study uniqueness and completeness as

A. A modified gradient vector field follows.

- : - Lemma 4.1:The following statements hold true:

Before describing the algorithm to maximize the area h i o) | ¢ hich th
visible to the mobile observer, we introduce the following () there exists a simple polygo@ for which the cor-
useful notions. Given a simple polyga@ with Ve(Q) = responding vector field(p admits multiple Filippov

(v1,...,v,) ande > 0, define the following quantities: . Solutions; _ o
(i) let the e-expansion ofQ be Q< — {p | |jp — ¢l| < (i) any simple polygon@ is a strongly invariant set
 for someq € Q} - for the corresponding vector field, so that any

(i) for i e {1,...,n}, let Pf be the open set delimited by PF'I'F}PO\\//VSOM'W tls defined (I)thRi“' {ify the stat N
the edgev;v;;11, the bisectors of the external angles roof: We present an example to justify the statemen

. i). In Figure 9, at the poinp, on the generalized inflection
at v; andv;, 1 and the boundary of)¢, (i) .
(iii) for small+énough and for any point in Q¢, let segment, both directiong andn, belong tod(A - S)(po).

. . . Three distinct Filippov solutions of equation (3) exist.dw
be uniquely equal t — ! . T
ggq]f(];)nd quely eq arg min{[[p’—pl| [ p' € of the solutions start frompg along the two directions);

and . while the third solution isp(t) = po for all ¢ > 0.
Statement (i) is a consequence of the definitionkef on

(iv) let the outward normaln(prj(p)) be the unit vector
directed fromprjg, (p) to p.
We illustrate these notions in Figure 8. Note thaj, (p)
can never be a reflex vertex. We can now define a vector
field on Q¢ as follows:

vers(d(A > S)(p)), if peQ\{Iataca,
XQ (p) — —n(per(p)), if pe va Fig. 9. Three Filippov solutions exist starting from the .

0, otherwise Prforie{l1,...,n}. |
(Recall that the versor operator is defined \ays(Y) = Remark 4.2:An important observation in this setting is

Y/|Y| if Y € R?\ {0} and byvers(0) = 0.) Note that that at all pointg whereA o S is locally Lipschitz, we have



K[d(A°9)](p) = 9(A°S)(p). In such a case itis also true  In the following theorem, the functiondy, and —Ag,
that for alln € 9(A - S)(p), there exists at least orde> 0 are used as candidate Lyapunov functions to show the
such thatén € K[Xg](p) and vice versa. convergence properties of Filippov solutions .

We now claim that any solution of the differential in-  Theorem 4.5:Any Filippov solutiony : Ry — @ of Xg
clusion (4) has the property that the visible area increaséas the following properties:
monotonically. To prove these desirable properties, we firs Q) t — AoS(y(t))

; . ! is continuous and monotonically
present the following results in nonsmooth analysis.

nondecreasing,
B. Properties of solutions (i) ~ approaches the set of critical points BfX].

To prove the convergence properties of the solution of (4) Theorem 4.5 implies that the single observer converges
using the results presented in Section Ill, we must firdP @ critical point of Ao S or to a reflex vertex ofQ.
define a suitable Lyapunov function. Intuitively since outiOWever, as shown in Figure 11, the presence of noise
objective is to maximize the visible area, our Lyapunow' computational inaccuracies actually WOI’.k to drive the
function should be closely related to it. Fer> 0, we Observer away from a reflex vertex that is not a local
now define theextended area functionlf, at all points Maximum. This will be true for other critical points too
p € QU{U; Pr}. The extended function coincides with that are not local maxima.
the original function on the interior and on the boundary of

@ and is defined appropriately outside: V. SIMULATION RESULTS
. AoS(p), pEQ, Figures 11 and 14 illustrate the performance of the gradi-
Ag(p) = Ao S(prig(p)) — [Ip — prig@)ll,  p € Ui P, ent algorithm in equation (4). The algorithm is implemented

in Matl ab®. The vertices of the environment that are
For allp € 9Q \ Ve Q, Aj, satisfies (see Figure 10): visible to a point observer is first obtained by means of a

AS (3 n(prip () = —1. simple O(n?) algorithm, wheren is the number of vertices

Q\ Q of the polygonal environment. This is then used to compute

the visibility polygon of the observer. The calculation bét
generalized gradient of the visible area function is then a
natural outcome of (1) and (2). Computational inaccuracies
in the implementation of the algorithm to calculate the
visibility polygon have been noticed in some configurations
see Figure 12 and the plot of the variation of visible
area with time in Figure 11. See Figure 13 for the phase
portrait of the vector field{, for the polygon in Figure 12.
Our experiments suggest that the observer reaches a local
maximum of the visible area in finite time, however this
can be shown not to be true in general.

VI. CONCLUSIONS

This paper introduces a gradient-based algorithm to op-

timally locate a mobile observer in a nonconvex envi-
ronment. We presented nonsmooth analysis and control
design results. The simulation results illustrate thatthie
presence of noise, the observer reaches a local maximum
of the visible area. In an “highly nonconvex” environment,
a single observer may not be able to see a large fraction
of the environment. In such a case, a team of observers
. : > can be deployed to achieve the same task. We therefore
Lipschitz on (@ \ Ve,(Q)) U{Ui Fi'} and analytic almost 2 1o investigate this same visibility objective for team

everywhere orQ (J{U; P} of observers. Other directions of future research include

The following theorem is important to prove that such &5 tical robotic implementation issues as well as other
function leads to a monotonically nondecreasing value Qf;hined mobility and visibility problems.

the area of the visibility polygon.

Theorem 4.4:Let G(Q) be the set of points where both
mapsp +— —Agz(p) andp — Agz(p) are not regular. Then
any Filippov solutiony : Ry — Q of Xg has the property ~ This material is based upon work supported in part by
thatv(t) ¢ G(Q) for almost allt € R, unlessy reaches a AFOSR through Award F49620-02-1-0325 and by ONR
critical point of K[X¢)]. through YIP Award N00014-03-1-0512.

Fig. 10. Extending the functiom oS to Ag. Note the direction of
n(prig(p:)) at all pointsp;.

Remark 4.3:The extended area functioAS, is locally
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Fig. 11.
polygon depicted in Figure 1. The observer arrives, in fitiitkee, at a
local maximum. Note here that the observer visits a reflex veatesome
point in its trajectory but comes out of it due to computatidnatcuracies
because it is not a local maximum.
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