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Abstract— This paper presents a motion control algorithm
for a planar mobile observer such as, e.g., a mobile robot
equipped with an omni-directional camera. We propose a
nonsmooth gradient algorithm for the problem of maximizing
the area of the region visible to the observer in a simple
nonconvex polygon. First, we show that the visible area is
almost everywhere a locally Lipschitz function of the observer
location. Second, we provide a novel version of LaSalle Invari-
ance Principle for discontinuous vector fields and Lyapunov
functions with a finite number of discontinuities. Finally,
we establish the asymptotic convergence properties of the
nonsmooth gradient algorithm and we illustrate numerically
its performance.

I. I NTRODUCTION

Consider a single-point mobile robot in a planar non-
convex environment modeled as a simple polygon: how
should the robot move in order to monotonically increase
the area of its visible region (i.e., the region within its line of
sight)? This problem is the subject of this paper, together
with the following modeling assumptions. The dynamical
model for the robot’s motion is a first order system of the
form ṗ = u, wherep refers to the position of the robot
in the environment andu is the driving input. The robot
is equipped with an omni-directional camera and range
sensor; the range of the sensor is larger than the diameter
of the environment. The robot does not know the entire
environment and its position in it, and its instantaneous
motion depends only on what is within line of sight (this
assumption restricts our attention to memoryless feedback
laws).

In broad terms, this problem is related to numerous
optimal sensor location and motion planning problems in
the computational geometry, geometric optimization, and
robotics literature. In computational geometry [1], the clas-
sical Art Gallery Problem amounts to finding the optimum
number of guards in a nonconvex environment so that each
point of the environment is visible by at least one guard.
A heuristic for this problem is to use a greedy approach
wherein the first robot (guard) is placed at the point where
it sees the maximum area. The next robot is placed where
it sees the maximum area not visible to the first and so on.
In robotics, this approach is useful for 2D map building
wherein a robot moves in such a way so that its next
position is the best in terms of what it can see additionally.
In this robotic context, these problems are referred to as
Next Best View problems. The specific problem of interest

in this paper is that of optimally locating a guard in a
simple polygon. To the best of our knowledge, this problem
is still open and is the subject of ongoing research; see
[2], [3], [4], and the surveys on geometric optimization
and art gallery problems [5], [6]. However, randomized
algorithms for finding the optimal location up to a constant
factor approximation exist; see [4]. These algorithms can be
regarded as open-loop algorithms that require knowledge of
the environment. Closed-loop heuristic algorithms for the
Next Best View problem are proposed and simulated in [7]
and in the early work [8].

A second set of relevant references are those on nons-
mooth stability analysis. Indeed, our approach to maximiz-
ing visible area is to design a nonsmooth gradient flow.
To define our proposed algorithm we rely on the notions
of generalized gradient [9] and of Filippov solutions for
differential inclusions [10]. To study our proposed algorithm
we extend recent results on the stability and convergence
properties of nonsmooth dynamical systems, as presented
in [11], [12].

The contributions of this paper are threefold. First, we
prove some basic properties of the area visible from a
point observer in a nonconvex polygonQ, see Figure 1.
Namely, we show that the area of the visibility polygon, as

0
10

20
30

40
50

60
70

80
90

100

0

10

20

30

40

50

60

70

80

90

100

0

2000

4000

m

m

V
is

ib
le

 a
re

a 
(in

 m
2 )

Fig. 1. The visible area function over a nonconvex polygon.

a function of the observer position, is a locally Lipschitz
function almost everywhere, and that the finite set point
of discontinuities are the reflex vertices of the polygonQ.



Additionally, we compute the generalized gradient of the
function and show that it is, in general not regular. Second,
we provide a generalized version of the certain stability
theorems for discontinuous vector fields available in the
literature [11], [12]. Specifically, we provide a generalized
nonsmooth LaSalle Invariance Principle for discontinuous
vector fields, Filippov solutions, and Lyapunov functions
that are locally Lipschitz almost everywhere (except for a
finite set of discontinuities). Third and last, we use these
novel results to design a nonsmooth gradient algorithm that
monotonically increases the area visible to a point observer.
To the best of our knowledge, this is the first provably
correct algorithm for this version of the Next Best View
problem. We illustrate the performance of our algorithm
via simulations for some interesting polygons.

The paper is organized as follows. Section II contains the
analysis of the smoothness and of the generalized gradient
of the function of interest. Section III contains the novel
results on nonsmooth stability analysis. Section IV presents
the nonsmooth gradient algorithm and the properties of
the resulting closed-loop system. Finally, the simulations
in Section V illustrate the convergence properties of the
algorithm. The proofs for the results in Section II and III
are included, whereas the proofs for the results in Section IV
will be included in future submissions.

II. T HE AREA VISIBLE FROM AN OBSERVER

In this section we study the area of the region visible to
a point observer equipped with an omnidirectional camera.
We show that the visible area, as a function of the location
of the observer, is locally Lipschitz, except at a finite point
set. We prove that, for general nonconvex polygons, the
function is not regular. We also provide expressions for the
generalized gradient of the visible area function wherever
it is locally Lipschitz. We refer the reader to [9] for the
notion of locally Lipschitz functions and related concepts.

Let us start by introducing the set of lines on the plane
R2. For (a, b, c) ∈ R3 \

{
(0, 0, c) ∈ R3 | c ∈ R

}
, define the

equivalence class[(a, b, c)] by

[(a, b, c)]

=
{
(a′, b′, c′) ∈ R3 | (a, b, c) = λ(a′, b′, c′), λ ∈ R

}
.

The set of lines onR2 is defined as

L =
{
[(a, b, c)] ⊂ R3 | (a, b, c) ∈ R3, a2 + b2 6= 0

}
.

It is possible to show thatL is a 2-dimensional manifold,
sometimes referred to as the affine Grassmannian of lines
in R2; see [13].

Next, two simple and useful functions are introduced.
Let fpl : R2 × R2 \

{
(p, p) ∈ R2 × R2 | p ∈ R2

}
→ L

map two distinct points inR2 to the line passing through
them. For(x1, y1), (x2, y2) ∈ R2, the functionfpl admits
the expression

fpl ((x1, y1), (x2, y2)) = [(y2 − y1, x1 − x2, y1x2 − x1y2)].

If l1 ‖ l2 denotes that the two linesl1, l2 ∈ L are parallel,
let flp : L2 \

{
(l1, l2) ∈ L2 | l1 ‖ l2

}
→ R2 map two lines

that are not parallel to their unique intersection point. Given
two lines[(a1, b1, c1)] and[(a2, b2, c2)] that are not parallel,
the functionflp admits the expression

flp ([(a1, b1, c1)], [(a2, b2, c2)])

=

(
b2c1 − b1c2

a2b1 − a1b2
,
a1c2 − a2c1

a2b1 − a1b2

)
.

Note that the functionsfpl and flp are classCω, i.e., they
are analytic over their domains.

Now, let us turn our attention to the polygonal environ-
ment. Let Q be a simple polygon, possibly nonconvex.
Here as in [1], a simple polygon is a region enclosed
by a single closed polygonal chain that does not intersect
itself; thus, the region contains no holes. LetQ̊ and ∂Q
denote the interior and the boundary ofQ, respectively. Let
Ve(Q) = (v1, . . . , vn) be the list of vertices ofQ ordered
counterclockwise. Theinterior angle of a vertexv of Q is
the angle formed insideQ by the two edges of the boundary
of Q incident atv. The pointv ∈ Ve(Q) is a reflex vertex
if its interior angle is strictly greater thanπ. Let Ver(Q) be
the list of reflex vertices ofQ.

A point q ∈ Q is visible from p ∈ Q if the segment
betweenq and p is contained inQ. The visibility polygon
S(p) ⊂ Q from a pointp ∈ Q is the set of points inQ
visible from p. It is convenient to think ofp 7→ S(p) as
a map fromQ to the set of polygons contained inQ. It
must be noted that the visibility polygon is not necessarily
a simple polygon.

Definition 2.1: Let v be a reflex vertex ofQ, and letw ∈
Ve(Q) be visible fromv. The (v, w)-generalized inflection
segmentI(v, w) is the set

I(v, w) = {q ∈ S(v) | q = λv + (1 − λ)w, λ ≥ 1} .

A reflex vertexv of Q is ananchor ofp ∈ Q if it is visible
from p and if {q ∈ S(v) | q = λv + (1 − λ)p, λ > 1} is not
empty.

In other words, a reflex vertex is an anchor ofp if it
occludes a portion of the environment fromp. Given a point
q and a linel, let dist(q, l) denote the distance between
them. Figure 2 illustrates the various quantities defined
above.

I(v, w)

p

v

w

va

Fig. 2. A reflex vertexv, a generalized inflection segmentI(v, w), an
anchorva of p and the visibility polygon (shaded region) fromp.

Theorem 2.2:Let {Iα}α∈A be the set of generalized in-
flection segments ofQ, and letP be a connected component



of Q \ ⋃
α∈A Iα For all p ∈ P , the visibility polygon

S(p) is simple and has a constant number of vertices, say
Ve(S(p)) = {u1(p), . . . , uk(p)}. For all i ∈ {1, . . . , k}, the
mapP 3 p 7→ ui(p) is Cω and either

dui(p) = 0

if ui(p) ∈ Ve(Q), or

dui(p) =
dist(va, l)

(dist(p, l) − dist(va, l))2
√

a2 + b2

[
−b
a

] [
y − ya

xa − x

]T

,

if ui(p) = flp(fpl(va, p), l), where va = (xa, ya) is an
anchor ofp and wherel = [(a, b, c)] is a line defined by an
edge ofQ.

Proof: The first part of the proof is by contradiction.
Let |Ve(S(p′))| > |Ve(S(p))| for some pointp′ ∈ P . This
means that at least one additional vertex is visible from
p′ that was occluded by an anchor ofp. Two cases may
arise. First, when the additional vertex belongs toVe(Q),
then by our definition,p andp′ must lie on opposite sides
of a generalized inflection segment. This is a contradiction.
Secondly, if the additional vertex does not belong toVe(Q),
it must be the projection of a reflex vertex (acting as an
anchor). Here again two cases may arise: (1) the reflex
vertex is visible fromp, and (2) it is not. The first case
is possible only if the reflex vertex is visible but does not
act as an anchor. So, positive lengths of both sides adjoining
the reflex vertex must also be visible fromp and at least one
of the sides is completely not visible fromp′ since there is a
projection. This means thatp andp′ lie on opposite sides of
a generalized inflection segment generated by the reflex ver-
tex and one of its adjacent vertices. This is a contradiction.
The second case is possible if the reflex vertex in question
is occluded by another reflex vertex. But this means that
p andp′ lie on opposite sides of the generalized inflection
segment from the reflex vertex to the anchor occluding the
reflex vertex; again this is a contradiction. If, on the other
hand,|Ve(S(p′))| < |Ve(S(p))|, then the above arguments
hold by interchangingp and p′. Hence,p and p′ lie on
opposite sides of a generalized inflection segment which is
a contradiction. This completes the proof that|Ve(S(p′))|
is constant for allp′ ∈ P .

Let p ∈ P . Since the visibility polygonS(p) is star-
shaped and since any ray emanating fromp can intersect
the environment at most at two distinct points, thenS(p)
is simple. (Indeed, if the ray emanating fromp intersect
the environment at three points, thenp must belong to a
generalized inflection segment.)

Regarding the second statement, it is clear that ifui(p)
is a vertex ofQ then it is independent ofp. Instead, if
ui(p) /∈ Ve(Q), then

ui(p) = flp(fpl((x, y), (xa, ya)), `)

wherep = (x, y), va = (xa, ya) is an anchor ofp, and `
is the line, determined by an edge ofQ, that identifiesui.
Now, p ∈ P impliesp 6= va. It follows thatfpl(p, va) is Cω

for all p ∈ P . Also, from the definition ofui(p), it is clear

thatfpl(p, va) ∦ `. Therefore, for allp ∈ P , flp(fpl(p, va), `)
is Cω; this implies thatp 7→ ui(p) is alsoCω. The formula
for the derivative can be verified directly.

Next, the area of a visibility polygon as a function of the
observer location is studied, see Figure 1. Recall that the
area of a simple polygonQ with counterclockwise-ordered
verticesVe(Q) = ((x1, y1), . . . , (xn, yn)) is given by

A(Q) =

n∑

i=1

xi(yi−1 − yi+1),

where (x0, y0) = (xn, yn) and (xn+1, yn+1) = (x1, y1).
As in the previous theorem, let{Iα}α∈A be the set of
generalized inflection segments ofQ and letP be a con-
nected component ofQ \ ⋃

α∈A Iα. Next, if p ∈ P , the
visibility polygon fromp has a constant number of vertices,
say k = |Ve(S(p))|, is simple, and satisfiesA ◦S(p) =∑k

i=1 xi(yi−1 − yi+1) whereVe(S(p)) = (u1, . . . , uk) are
ordered counterclockwise,ui(p) = (xi, yi), u0 = uk, and
uk+1 = u1. Therefore,P 3 p 7→ A ◦S(p) is alsoCω and

d(A ◦S)(p) =

k∑

i=1

∂A(u1, . . . , uk)

∂ui

dui(p). (1)

To illustrate this equality, it is convenient to introduce the
versoroperator defined byvers(X) = X/‖X‖ if X ∈ R2 \
{0} and byvers(0) = 0. We depict the normalized gradient
vers(d(A ◦S)) of the visible area function in Figure 3.

Fig. 3. Normalized gradient of the visible area function overthe
nonconvex polygon depicted in Figure 1. The dashed lines represent some
of the generalized inflection segments.

Theorem 2.3:The mapA ◦S restricted toQ \Ver(Q) is
locally Lipschitz.

Proof: By Theorem 2.2, it suffices to consider
points lying on generalized inflection segments. Letp
belongs to multiple, saym, generalized inflection segments
{Iα}α∈{1,...,m}. Let B(p, ε) be the open ball of radius
ε centered atp; let ε be small enough such that no
generalized inflection segments intersectB(p, ε) other than
{Iα}α∈{1,...,m}. For α ∈ {1, . . . ,m}, let vkα

be the anchor
determining the generalized inflection segmentIα. Without
loss of generality, it can be assumed that no anchor is visible
from p other thanvk1

, . . . , vkm
. For α ∈ {1, . . . ,m}, lines

lα ⊥ fpl(p, vkα
) can be constructed with the property that

lα∩Q = ∅ and the vectorvkα
−p points towardlα. Let, hα



be the line parallel tolα, tangent toB(ε, p), and intersecting
the segment fromp to vkα

. Let p′ and p′′ belong to
B(p, ε)∩(Q \ Ver(Q)). Next, let q′α = flp(fpl(p

′, vkα
), lα)

andq′′α = flp(fpl(p
′′, vkα

), lα); see Figure 4. Letv′
α andv′′

α

vkα

p

‖vkα
− p‖ − ε

d(vkα
, lα)

v′
α

v′′
α

q′α q′′α lα

hα

p′′

p′

Fig. 4. Definition of the lineslα, hα, and the pointsq′α, q′′α, v′

α, v′′

α.

be the intersections betweenhα and the linesfpl(p
′, vkα

)
andfpl(p

′′, vkα
), respectively.

Now, |A(vkα
, q′α, q′′α)| = 1

2‖q′α − q′′α‖dist(vkα
, lα). But

from Figure 4, it is easy to see that‖q′α − q′′α‖ =
dist(vkα

,lα)
‖vkα

−p‖−ε
‖v′

α − v′′
α‖ and that‖v′

α − v′′
α‖ < ‖p′ − p′′‖.

For Kα(p) = 1
2

dist(vkα
,lα)

‖vkα
−p‖−ε

dist(vkα
, lα), the following is

true:

|A(S(p′)) − A(S(p′′))| ≤
m∑

α=1

|A(vkα
, q′α, q′′α)|

≤
m∑

α=1

Kα(p)‖p′ − p′′‖.

This fact is illustrated by Figure 5. This completes the proof
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��

v1

v3

p

p′′

p′

q′′3

q′3

l3

l2

q′2

q′′2

l1
q′′1q′1

v2

B(p, ε)

Fig. 5. Upper bounds on the change in area. Herem = 3.

that Q \ Ver(Q) 3 p 7→ A ◦S(p) is locally Lipschitz.
To obtain the expression for the generalized gradient of

A ◦S, the polygonQ is partitioned as follows.

Lemma 2.4:Let {Iα}α∈A be the set of generalized in-
flection segments ofQ. There exists a unique partition
{Pβ}β∈B of Q where Pβ is a connected component of
Q \ ⋃

α∈A Iα andPβ denotes its closure.
Figure 6 illustrates this partition for the given nonconvex

polygon. Forβ ∈ B, defineAβ : Pβ → R+ by

Aβ(p) = A ◦S(p), for p ∈ Pβ ,

and by continuity on the boundary ofPβ . It turns out that the
mapsAβ , β ∈ B, are continuously differentiable1 on P β .
Equation (1) gives the value of the gradient forp ∈ Pβ .
However, in general, forp ∈ Pβ1

⋂
. . .

⋂
Pβm

\ Ver(Q),
based on Theorem 2.3 and Lemma 2.4, it can be written
that

∂(A ◦S)(p) = co
{

dAβ1
(p), . . . , dAβm

(p)
}

. (2)

p

P1

P2

P4

P3

Fig. 6. Partition ofQ. The generalized gradient of the area function at
p is the convex hull of the gradient of four functionsA1, . . . , A4 at p.

This completes our study of the generalized gradient of
the locally Lipschitz functionA ◦S. Next, it is shown how
this function is not regular in many interesting situations.

Lemma 2.5:There exists a nonconvex polygonQ such
that the mapsA ◦S and −A ◦S restricted toQ \ Ver(Q)
are not regular.

Proof: We present two examples to justify the above
statement. In Figure 7,∂(A ◦S)(p′) = co{dA1, dA2}
where ‖dA1‖ � ‖dA2‖. Take a vectorη′ perpendic-
ular to the generalized inflection segment to whichp′

belongs (see Figure 7). It is clear that(A ◦S)′(p; η′) ≈
‖dA2‖. However, (A ◦S)0(p′; η′) = max{〈ζ, η′〉|ζ ∈
∂(A ◦S)(p′)} ≈ ‖dA1‖ > ‖dA2‖. Again, in Figure 7,
∂(−A ◦S)(p′′) = co{−dA3,−dA4}, where‖ − dA4‖ �
‖−dA3‖. Take a vectorη′′ perpendicular to the generalized
inflection segment to whichp′′ belongs (see Figure 7).
It is clear that−(A ◦S)′(p′′; η′′) ≈ −‖dA4‖. However,
(A ◦S)0(p′′; η′′) = max{〈ζ, η′′〉|ζ ∈ ∂(A ◦S)(p′′)} ≈
−‖dA3‖ > −‖dA4‖.

1A function is continuously differentiable on a closed set if(1) it is
continuously differentiable on the interior, and (2) the limit of the derivative
at a point in the boundary does not depend on the direction from which
the point is approached.



dA2

η′′

p′

dA1

η′

dA4

dA3

p′′

Fig. 7. Example polygon for whichA ◦S and −A ◦S restricted to
Q\Ver(Q) are not regular. Note here that dA1 and dA2 are not perfectly
aligned withη′. Also, dA3 and dA4 are not perfectly aligned withη′′.

III. A N INVARIANCE PRINCIPLE IN NONSMOOTH

STABILITY ANALYSIS

This section presents results on stability analysis for dis-
continuous vector fields via nonsmooth Lyapunov functions.
The results extend the work in [12] and will be useful in
the next control design section. We refer the reader to [10]
for some useful nonsmooth analysis concepts.

In what follows we shall study differential equations of
the form

ẋ(t) = X(x(t)),

whereX is a discontinuous vector field onRN .
Lemma 3.1:Let X : RN → RN be measurable and

essentially locally bounded and letf : RN → R be locally
Lipschitz. Letγ : [t0, t1] → RN be a Filippov solution ofX
such thatf(γ(t)) is regular for almost allt ∈ [t0, t1]. Then

(i) d
dt

(f(γ(t))) exists for almost allt ∈ [t0, t1], and
(ii) d

dt
(f(γ(t))) ∈ L̃Xf(γ(t)) for almost allt ∈ [t0, t1].

Proof: The result is an immediate consequence of
Lemma 1 in [12].

The following result is a generalization of the classic
LaSalle Invariance Principle for smooth vector fields and
smooth Lyapunov functions to the setting of discontinuous
vector fields and nonsmooth Lyapunov functions.

Theorem 3.2 (LaSalle Invariance Principle):Let X :
RN → RN be measurable and essentially locally bounded
and letS ⊂ RN be compact and strongly invariant forX.
Let C ⊂ S consist of a finite number of points and let
f : S → R be locally Lipschitz onS \C and bounded from
below onS. Assume the following properties hold:

(A1) if x ∈ S \ C, then eithermax L̃Xf(x) ≤ 0 or
L̃Xf(x) = ∅,

(A2) if x ∈ C and if γ is a Filippov solution ofX with
γ(0) = x, then limt→0− f(γ(t)) ≥ limt→0+ f(γ(t)),
and

(A3) if γ : R+ → S is a Filippov solution ofX, thenf ◦γ
is regular almost everywhere.

Define ZX,f =
{

x ∈ S \ C | 0 ∈ L̃Xf(x)
}

and letM be

the largest weakly invariant set contained in(ZX,f ∪C).
Then the following statements hold:

(i) if γ : R+ → S is a Filippov solution ofX, thenf ◦γ
is monotonically nonincreasing;

(ii) each Filippov solution ofX with initial condition in
S approachesM as t → +∞;

(iii) if M consists of a finite number of points, then each
Filippov solution of X with initial condition in S
converges to a point ofM as t → +∞.

Proof: Fact (i) is a consequence of Assumptions (A1),
(A2) and (A3), and of Lemma 3.1.

In what follows we shall require the following notion.
Given a curveγ : R+ → RN , the positive limit set ofγ,
denoted byΩ(γ), is the set ofy ∈ RN for which there
exists a sequence{tk}k∈N ⊂ R such thattk < tk+1, for
k ∈ N, limk→+∞ tk = +∞, and limk→+∞ γ(tk) = y.
For x ∈ S, let γ1 be a Filippov solution ofX with
γ1(0) = x and letΩ(γ1) be the limit set ofγ1. Under this
setting,Ω(γ1) is nonempty, bounded, connected and weakly
invariant, see [10]. Furthermore,Ω(γ1) ⊂ S becauseS is
strongly invariant.

To prove fact (ii), it suffices to show thatΩ(γ1) ⊂
ZX,f ∪C. Trivially, Ω(γ1)∩C ⊂ C. Let y ∈ Ω(γ1) \ C
so thatf is locally Lipschitz aty. There exists a sequence
{tk}k∈N such thatlimk→+∞ γ1(tk) = y. Becausef ◦ γ1 is
monotonically nonincreasing andf is bounded from below,
limt→+∞ f(γ1(t)) exists and is equal to, say,a ∈ R. Now,
by continuity of f , a = limk→+∞ f ◦γ1(tk) = f(y). This
proves thatf(y) = a for all y ∈ Ω(γ1) \ C. At this point
we distinguish two cases. First, assume thaty is an isolated
point inΩ(γ1). Then clearly, there exists a Filippov solution
of X, say γ2, such thatγ2(t) = y for all t ≥ 0. Hence
d
dt

f(γ2(t)) = 0, and, by Lemma 3.1,0 ∈ L̃Xf(γ2(t)) or in
other wordsy ∈ ZX,f . Second, assume thaty is not isolated
in Ω(γ1), and let γ2 be a Filippov solution ofX with
γ2(0) = y. Sincef is continuous aty andΩ(γ1) contains
a finite number of points of discontinuity off , there exists
δ > 0 such thatf(y′) = a for all y′ ∈ B(y, δ) ∩ Ω(γ1).
Therefore, there existst′ > 0 such thatf(γ2(t)) = a for all
t ∈ [0, t′]. Hence, we haved

dt
f(γ2(t)) = 0 for all t ∈ [0, t′].

It follows from Lemma 3.1 that for allt ∈ [0, t′], we have
0 ∈ L̃Xf(γ2(t)) or in other wordsγ2(t) ∈ ZX,f . By
continuity of γ2 at t = 0, we have thatγ2(0) = y ∈ ZX,f .
SinceΩ(γ1) is weakly invariant, we haveΩ(γ1) ⊂ M and
henceγ2 approachesM .

We now prove fact (iii). IfM consists of a finite number
of points, and sinceΩ(γ1) ⊂ M is connected,Ω(γ1) is a
point. Hence, by the argument in the preceding paragraph,
each Filippov solution ofX approaches a point ofM . In
other words, it converges to a point ofM .

IV. M AXIMIZING THE AREA VISIBLE FROM A MOBILE

OBSERVER

In this section we build on the analysis results obtained
thus far to design an algorithm that maximizes the area
visible to a mobile observer. We aim to reach local maxima
of the visible areaA ◦S by designing some appropriate
form of a gradient flow for the discontinuous functionA ◦S.
We now present anintroductory and incompleteversion of
the algorithm: the objective is to steer the mobile observer
along a path for which the visible area is guaranteed to be
nondecreasing.



Name: Increase visible area forQ
Goal: Maximize the area visible

to a mobile observer
Assumption: Generalized inflection segments ofQ

do not intersect.
Initial position does not belong to a
generalized inflection segment.

Let p(t) denote the observer position at timet inside
the nonconvex polygonQ. The observer performs the
following tasks at each time instant:

compute visibility polygonS(p(t)) ⊂ Q,

if p(t) does not belong to any generalized inflection
segment or to the boundary ofQ then

move along the versor of the gradient ofA ◦S

else if p(t) belongs to a generalized inflection segment
but not to the boundary ofQ then

depending on the generalized gradient ofA ◦S, either
slide along the segment or leave the segment in an
appropriate direction

else if p(t) belongs to the boundary ofQ but not to a
reflex vertex,then

depending on the projection of the generalized gra-
dient along the boundary, either slide along the
boundary or move in an appropriate direction toward
the interior ofQ

else
either follow a direction of ascent ofA ◦S or stop

end if

The remainder of this section is dedicated to formalizing
these loose ideas.

A. A modified gradient vector field

Before describing the algorithm to maximize the area
visible to the mobile observer, we introduce the following
useful notions. Given a simple polygonQ with Ve(Q) =
(v1, . . . , vn) and ε > 0, define the following quantities:

(i) let the ε-expansion ofQ be Qε = {p | ||p − q|| ≤
ε for someq ∈ Q},

(ii) for i ∈ {1, . . . , n}, let P ε
i be the open set delimited by

the edgevivi+1, the bisectors of the external angles
at vi andvi+1 and the boundary ofQε,

(iii) for ε small enough and for any pointp in Qε, let
prjQ(p) be uniquely equal toarg min{||p′−p|| | p′ ∈
∂Q}, and

(iv) let the outward normaln(prjQ(p)) be the unit vector
directed fromprjQ(p) to p.

We illustrate these notions in Figure 8. Note thatprjQ(p)
can never be a reflex vertex. We can now define a vector
field on Qε as follows:

XQ(p) =





vers(d(A ◦S)(p)), if p ∈ Q̊ \ {Iα}α∈A,

−n(prjQ(p)), if p ∈ P ε
i ,

0, otherwise.

(Recall that the versor operator is defined byvers(Y ) =
Y/‖Y ‖ if Y ∈ R2 \ {0} and byvers(0) = 0.) Note that

vi+1

vi

n(prjQ(p))

P ε
iprjQ(p)

p

Fig. 8. Theε-expansionQε of the simple polygonQ, an open setP ε
i

and the corresponding outward normaln(prjQ(p)).

XQ is well-defined because atp ∈ Q̊\{Iα}α∈A the function
A ◦S is analytic. Clearly,XQ is not continuous onQε.
However, the set of points where it is discontinuous is of
measure zero. Almost everywhere in the interior ofQ, the
vector fieldXQ is equal to the normalized gradient ofA ◦S
as depicted in Figure 3. We now present the differential
equation describing the motion of the observer:

ṗ(t) = XQ(p(t)). (3)

A Filippov solution of (3) on an interval[t0, t1] ⊂ R is
defined as a solution of the differential inclusion

ṗ(t) ∈ K[XQ](p(t)), (4)

where the operatorK[XQ] is the usual Filippov differential
inclusion associated withXQ, see [10]. SinceXQ is mea-
surable and bounded, the existence of a Filippov solution
is guaranteed. We study uniqueness and completeness as
follows.

Lemma 4.1:The following statements hold true:
(i) there exists a simple polygonQ for which the cor-

responding vector fieldXQ admits multiple Filippov
solutions;

(ii) any simple polygonQ is a strongly invariant set
for the corresponding vector fieldXQ, so that any
Filippov solution is defined overR+.

Proof: We present an example to justify the statement
(i). In Figure 9, at the pointp0 on the generalized inflection
segment, both directionsη1 andη2 belong to∂(A ◦S)(p0).
Three distinct Filippov solutions of equation (3) exist. Two
of the solutions start fromp0 along the two directionsη1

and η2 while the third solution isp(t) = p0 for all t ≥ 0.
Statement (ii) is a consequence of the definition ofXQ on

η1
p0
η2

Fig. 9. Three Filippov solutions exist starting from the point p0.

P ε
i for i ∈ {1, . . . , n}.
Remark 4.2:An important observation in this setting is

that at all pointsp whereA ◦S is locally Lipschitz, we have



K[d(A ◦S)](p) = ∂(A ◦S)(p). In such a case it is also true
that for all η ∈ ∂(A ◦S)(p), there exists at least oneδ > 0
such thatδη ∈ K[XQ](p) and vice versa.

We now claim that any solution of the differential in-
clusion (4) has the property that the visible area increases
monotonically. To prove these desirable properties, we first
present the following results in nonsmooth analysis.

B. Properties of solutions

To prove the convergence properties of the solution of (4)
using the results presented in Section III, we must first
define a suitable Lyapunov function. Intuitively since our
objective is to maximize the visible area, our Lyapunov
function should be closely related to it. Forε > 0, we
now define theextended area functionAε

Q at all points
p ∈ Q

⋃{∪i P ε
i }. The extended function coincides with

the original function on the interior and on the boundary of
Q and is defined appropriately outside:

Aε
Q(p) =

{
A ◦S(p), p ∈ Q,

A ◦S(prjQ(p)) − ||p − prjQ(p)||, p ∈ ∪i P ε
i .

For all p ∈ ∂Q \ Ve Q, Aε
Q satisfies (see Figure 10):

Aε
Q
′(p;n(prjQ(p))) = −1.
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n(prjQ(p2))
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n(prjQ(p3))

prjQ(p1)

vi = prjQ(p2)
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ε

Fig. 10. Extending the functionA ◦S to Aε
Q

. Note the direction of
n(prjQ(pi)) at all pointspi.

Remark 4.3:The extended area functionAε
Q is locally

Lipschitz on (Q \ Ver(Q))
⋃{∪i P ε

i } and analytic almost
everywhere onQ

⋃{∪i P ε
i }.

The following theorem is important to prove that such a
function leads to a monotonically nondecreasing value of
the area of the visibility polygon.

Theorem 4.4:Let G(Q) be the set of points where both
mapsp 7→ −Aε

Q(p) andp 7→ Aε
Q(p) are not regular. Then

any Filippov solutionγ : R+ → Q of XQ has the property
that γ(t) /∈ G(Q) for almost allt ∈ R+ unlessγ reaches a
critical point of K[XQ].

In the following theorem, the functionsAε
Q and −Aε

Q

are used as candidate Lyapunov functions to show the
convergence properties of Filippov solutions ofXQ.

Theorem 4.5:Any Filippov solutionγ : R+ → Q of XQ

has the following properties:

(i) t 7→ A ◦S(γ(t)) is continuous and monotonically
nondecreasing,

(ii) γ approaches the set of critical points ofK[XQ].
Theorem 4.5 implies that the single observer converges

to a critical point of A ◦S or to a reflex vertex ofQ.
However, as shown in Figure 11, the presence of noise
or computational inaccuracies actually work to drive the
observer away from a reflex vertex that is not a local
maximum. This will be true for other critical points too
that are not local maxima.

V. SIMULATION RESULTS

Figures 11 and 14 illustrate the performance of the gradi-
ent algorithm in equation (4). The algorithm is implemented
in Matlab R©. The vertices of the environment that are
visible to a point observer is first obtained by means of a
simpleO(n2) algorithm, wheren is the number of vertices
of the polygonal environment. This is then used to compute
the visibility polygon of the observer. The calculation of the
generalized gradient of the visible area function is then a
natural outcome of (1) and (2). Computational inaccuracies
in the implementation of the algorithm to calculate the
visibility polygon have been noticed in some configurations;
see Figure 12 and the plot of the variation of visible
area with time in Figure 11. See Figure 13 for the phase
portrait of the vector fieldXQ for the polygon in Figure 12.
Our experiments suggest that the observer reaches a local
maximum of the visible area in finite time, however this
can be shown not to be true in general.

VI. CONCLUSIONS

This paper introduces a gradient-based algorithm to op-
timally locate a mobile observer in a nonconvex envi-
ronment. We presented nonsmooth analysis and control
design results. The simulation results illustrate that, inthe
presence of noise, the observer reaches a local maximum
of the visible area. In an “highly nonconvex” environment,
a single observer may not be able to see a large fraction
of the environment. In such a case, a team of observers
can be deployed to achieve the same task. We therefore
plan to investigate this same visibility objective for teams
of observers. Other directions of future research include
practical robotic implementation issues as well as other
combined mobility and visibility problems.
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Fig. 11. Simulation results of the gradient algorithm for thenonconvex
polygon depicted in Figure 1. The observer arrives, in finitetime, at a
local maximum. Note here that the observer visits a reflex vertexat some
point in its trajectory but comes out of it due to computationalinaccuracies
because it is not a local maximum.
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Fig. 12. Example of visible area function over a polygon in theshape of
a floor plan of a building.
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