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Abstract

Making use of the geometric setting proposed in [7] to formulate optimal control

problems, we address here the treatment of general symmetries. This viewpoint allows

us to reduce the number of equations associated with optimal control problems with

symmetry and compare the solutions of the original system with the solutions of the

reduced one. The reconstruction of the optimal controls starting from the reduced

problem is also explored.
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1 Introduction

As is well known, symmetries are a valuable tool for integrating the equations of motion in

Classical Mechanics. Indeed, Noether’s theorem asserts that each symmetry gives rise to
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a first integral of the equations of motion, which allows us to reduce the total number of

differential equations to be integrated. In case the symmetries form a Lie group, the reduction

procedure, known as symplectic reduction, is performed via the momentum mapping [21,

22, 25]. Usually, the symplectic reduction procedure is presented in a Hamiltonian context,

tough it can also be developed in a Lagrangian setting. Indeed, several extensions of it

have been proposed to deal with more general situations, such as systems with singular

Lagrangians, or presymplectic systems [10, 12, 18].

As in Classical Mechanics, the existence of symmetries may simplify the equations associated

with optimal control problems (see [15, 27, 32, 33]). The usual formulation of optimal control

problems is Hamiltonian and is based on Pontryagin’s Maximum Principle. If L = L(xi, ua),

1 ≤ i ≤ m, 1 ≤ a ≤ k, is the cost function of the problem and ẋi = Γ(x, u) is the

control equation, one introduces a set of co-states pi, and defines a Hamiltonian function as

H(x, p, u) = piΓ
i(x, u)−L(x, u). Then the Maximum Principle leads to the following system

of differential equations,

ẋi =
∂H

∂pi

(x, p, u) , ṗi = −
∂H

∂xi
(x, p, u) , ya =

∂H

∂ua

(x, p, u) , (1)

where ya are considered as the outputs of the system. A necessary condition for an admissible

control u∗ to be optimal is that the outputs corresponding to u∗ are constantly zero, that is,

ya ≡ 0, 1 ≤ a ≤ k.

A possible set of symmetries for the above optimal control problem could be given by a Lie

group acting on the space of states and controls, while leaving invariant the cost function

and the control equation. Applying then a reduction procedure to the (regular) optimal

control problem leads to a new optimal control problem, with the same controls and a lower

dimensional state space. These are essentially the results in [27, 32]; more general symmetries

are considered for instance in [33] (see also [5, 6, 9, 11, 28, 31]). A recent approach to the

study of symmetries in optimal control problems is due to Blankenstein and van der Schaft

in the framework of implicit Hamiltonian systems and Dirac structures [3, 4]. They show

that the application of the Maximum Principle gives rise to an implicit Hamiltonian system,

and that symmetries of the optimal control problem naturally lift to symmetries of the

corresponding implicit Hamiltonian system. The reduction is investigated and constrained

optimal control problems are also considered.

In this paper we present a different approach to study the symmetry properties of op-

timal control problems. We start by describing an optimal control problem as a vako-

nomic system. In a few words, a vakonomic system is given by a Lagrangian function

L = L(qA, q̇A), 1 ≤ A ≤ n, subject to some non-holonomic constraints Φα(q, q̇) = 0,

1 ≤ α ≤ m. The vakonomic problem consists of finding the curves q(t) that extremize

the functional
∫ T

0
L(q, q̇) dt among all the curves satisfying the constraints. Using tech-

niques from Constrained Variational Calculus, one can obtain the normal solutions of the

vakonomic problem as the extremals of the functional defined by the extended (singular)
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Lagrangian L(qA, λα, q̇
A, λ̇α) = L(qA, q̇A) + λαΦα(qA, q̇A), where λα are arbitrary Lagrange

multipliers [1] (see [23, 24] for a recent exploration of this setting).

On the other hand, inspired by the so-called Skinner and Rusk formalism [30] for singular

Lagrangian systems, we have developed in [7] an intrinsic geometric setting for vakonomic

dynamics. This description is formalized by means of a presymplectic system in the fibered

product W0 = T ∗Q ×Q M , where M ⊂ TQ represents the constraint submanifold, locally

described by the vanishing of the functions Φα. The presymplectic system is established by

taking the pullback of the canonical symplectic form on T ∗Q as the presymplectic 2-form,

and H0 = 〈 , 〉 − L̃, as Hamiltonian function, where 〈 , 〉 is the canonical pairing between

tangent vectors and covectors, and L̃ is the restriction of the Lagrangian function to M .

One of the main advantages of this framework is that it provides an intrinsic and coordinate-

free setting for the description of optimal control problems, allowing us to develop a theory

of general symmetries. In this setting, previous results by Grizzle, Marcus and van der

Schaft [15, 32, 33] can be naturally recovered. Other problems can also be undertaken, as

for instance the issue of the consistency of the optimal equations and the treatment of singu-

lar optimal control problems. This is done here by means of a constraint algorithm yielding

a final submanifold Wf ⊂ W0 where a well-defined dynamics exist. Equations (1) are readily

obtained, and the outputs appear as the functions defining the secondary constraint sub-

manifold. For regular control problems, Wf = W3 is symplectic, and therefore there is a

unique dynamics defined on it. When considering symmetries, we identify the notions of in-

finitesimal, Noether and Cartan symmetries in this context, and provide the corresponding

Noether’s theorems. We also hint on how non-autonomous optimal control problems can

be casted within this framework, and consequently how the results on symmetries can be

incorporated in their analysis. Finally, we describe the reduction and reconstruction pro-

cesses, not necessarily restricting our attention to the zero-momentum case as is the case for

instance in [3, 4]. One of the further possibilities of this framework that will be explored in

the future is the extension to optimal control problems whose evolution equations are given

by partial differential equations.

The paper is organized as follows. In Section 2, we recall the geometric formulation of

vakonomic dynamics given in [7], within the framework of presymplectic geometry. A classi-

fication of infinitesimal symmetries in this context is analyzed then in Section 3. Section 4 is

devoted to discuss optimal control problems in the above framework, and a constraint algo-

rithm is developed providing a well-defined dynamics at the final step. The classification of

infinitesimal symmetries is the subject of Section 5. Finally, in Section 6 we give a reduction

procedure for optimal control systems with a Lie group of symmetries. The reconstruction

problem is also considered (see Grizzle [14] for a related approach). Along the paper, several

examples are worked out in order to illustrate the results.
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2 Geometric formulation of constrained variational pro-

blems

In this section, we present the presymplectic description of variational problems given by

a Lagrangian function subject to nonholonomic constraints (see [7]). This description is

strongly inspired by Skinner and Rusk’s formulation of singular Lagrangian systems [30].

Consider a vakonomic problem given by a Lagrangian function L : TQ −→ R and a constraint

submanifold M of TQ, where Q is an n-dimensional manifold. Take the Whitney sum

T ∗Q⊕ TQ with its canonical projections

pr1 : T ∗Q⊕ TQ −→ T ∗Q , pr2 : T ∗Q⊕ TQ −→ TQ .

We assume that (τQ)|M : M −→ Q is a fiber bundle, but not necessarily a vector subbundle

of τQ : TQ −→ Q. In other words, the constraints may be linear or not.

Now, consider the fiber product W0 = T ∗Q×Q M with canonical projections π1 = (pr1)|W0
:

W0 −→ T ∗Q and π2 = (pr2)|W0
: W0 −→ M . Notice that W0 = (pr2)

−1(M). We define a

presymplectic form on W0 by ω = π∗
1ωQ, where ωQ is the canonical symplectic form on T ∗Q,

and introduce a Hamiltonian function H0 = 〈π1, π2〉 − L̃, where 〈π1, π2〉 is the restriction of

the natural pairing 〈pr1, pr2〉 on T ∗Q⊕ TQ, and L̃ : M −→ R is the restriction of L to M ,

i.e. L̃ = L|M .

Take local coordinates (qA) in Q such that (qA, pA) and (qA, q̇A) are bundle coordinates

in T ∗Q and TQ, respectively. The constraint submanifold M is locally defined by some

independent constraint functions Φα = Φα(qA, q̇A), i.e. M is characterized by the equations

Φα = 0, where 1 ≤ α ≤ m, and dimM = 2n − m. It is usually assumed the following

admissibility condition [7]. The matrix

∂(Φ1, . . . ,Φm)

∂(q̇1, . . . , q̇n)

has rank m for any choice of bundle coordinates in TQ. Then, by the implicit function

theorem, we can locally express the constraints (reordering coordinates if necessary) as

q̇α = Ψα(qA, q̇a),

where 1 ≤ α ≤ m, 1 ≤ a ≤ n − m, and 1 ≤ A ≤ n. In this way, we can take (qA, q̇a) as

coordinates for M .

In [7] it was shown that the vakonomic problem given by L and M is equivalent to the

presymplectic system (W0, ω,H0) in the sense that both give rise to the same solutions.

Thus, in order to obtain the vakonomic solutions, one is to apply a presymplectic constraint

algorithm, which is just the geometrization and extension of Dirac’s constraint algorithm for

degenerate Lagrangian systems (see [13] for details). We do this in the following.
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In first place, consider the points of T ∗Q×Q M where the equation

iX ω = dH0, (2)

has a solution. This determines a submanifold W1 as,

W1 = {x ∈ T ∗Q×Q M | dH0(x)(V ) = 0, ∀V ∈ kerω(x)} .

However, the solutions on W1 may not be tangent to W1. In such a case, we have to restrict

W1 to the submanifold W2 where the solutions are tangent to W1. Proceeding further, we

obtain a sequence of subsets

· · · ↪→ Wk ↪→ · · · ↪→ W2 ↪→ W1 ↪→ W0 = T ∗Q×Q M ,

which will be assumed to be submanifolds ofW0. Algebraically, these constraint submanifolds

may be described as

Wi = {x ∈ T ∗Q×Q M | dH0(x)(v) = 0 , ∀v ∈ TxW
⊥
i−1 } , i ≥ 1 ,

where TxW
⊥
i−1 = {v ∈ Tx(T

∗Q ×Q M) | ω(x)(u, v) = 0 , ∀u ∈ TxWi−1 }. If this constraint

algorithm stabilizes, i.e., if there exists a positive integer k ∈ N such that Wk+1 = Wk and

dimWk 6= 0, then we will have obtained a final constraint submanifold Wf = Wk on which

a vector field X exists such that

(iXω = dH0)|Wf
.

In local coordinates the algorithm can be described as follows. Notice that we can introduce

coordinates (qa, qα, pa, pα, q̇
a) on W0 so that

H0 = q̇apa + Ψαpα − L̃(qa, qα, q̇a) , ω = dqa ∧ dpa + dqα ∧ dpα .

A direct computation shows that a solution X of equation iXω = dH0, is of the form

X = q̇a ∂

∂qa
+ Ψα ∂

∂qα
+ (

∂L̃

∂qa
− pα

∂Ψα

∂qa
)
∂

∂pa

+ (
∂L̃

∂qα
− pβ

∂Ψβ

∂qα
)
∂

∂pα

+ Za ∂

∂q̇a
(3)

for some arbitrary functions Za = Za(qA, pA, q̇
b). In addition, W1 is locally defined by the

constraint functions,

pa =
∂L̃

∂q̇a
− pα

∂Ψα

∂q̇a
, 1 ≤ a ≤ n−m.

In this way, we can introduce local coordinates (qa, qα, pα, q̇
a) on W1.

As we have said before, the vector field given in (3) is a solution of the vakonomic problem

which may not be

tangent to W1. Imposing this tangency condition leads to new constraints defining W2. The

algorithm goes on until the stabilization is reached. On Wf we will have an explicit and well-

defined solution of the vakonomic problem. Notice that this solution is not unique due to
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the gauge freedom arising from the presymplectic character of ω. Indeed, given a particular

solution X on Wf , we obtain the whole family of solutions as X + (kerω ∩ TWf ).

A special case representative of many examples is that of Wf = W1. A sufficient condition

for this to hold is that

det

(
∂2L̃

∂q̇a∂q̇b
− pα

∂2Ψα

∂q̇a∂q̇b

)
6= 0 . (4)

This condition allows to determine Za in (3) such that X
|W2

∈ TW1. Denote by ω1 the

restriction of the presymplectic 2-form ω to W1. We have ω1 = dqa ∧ dpa + dqα ∧ dpα.

Proposition 2.1 ([7]). (W1, ω1) is a symplectic manifold if and only if, for any choice of

coordinates (qA, pA, q̇
a) on T ∗Q×Q M , equation (4) is satisfied on W1.

In case the constraints are linear on the velocities, we can write q̇α = Ψα
a (q)q̇a. Then, from

Proposition 2.1, we can decide about the symplecticity of ω1 by checking the condition

det

(
∂2L̃

∂q̇a∂q̇b

)
6= 0 .

This condition can be loosely stated as asking for the restriction of the cost function to the

constraint submanifold to be non-degenerate.

3 Symmetries

Now, we make use of the intrinsic formulation described in the previous section to study

the symmetry properties of vakonomic systems. To do so, we will build on the results

of [18], where symmetries of presymplectic systems were considered (see also [2, 8, 12]). The

following notation will be useful [19]. Let φ : Q −→ Q be a diffeomorphism on Q. Consider

the mapping T ∗φ−1×Tφ, where Tφ : TQ −→ TQ and T ∗φ−1 : T ∗Q −→ TQ are the induced

diffeomorphisms by tangent and cotangent prolongations, respectively. Then we can define

the following.

Definition 3.1 ([1, 24]). A vakonomic symmetry for the vakonomic problem given by L

and M is a diffeomorphism φ : Q −→ Q such that

(i) the induced diffeomorphism Tφ leaves M invariant, i.e. Tφ(M) ⊂M ;

(ii) L|M ◦ Tφ|M = L|M .

From this definition, it follows that T ∗φ−1 × Tφ is a symmetry of the presymplectic system

(W0, ω,H0). That is,

(i) T ∗φ−1 × Tφ leaves W0 invariant, i.e. (T ∗φ−1 × Tφ)(W0) ⊂ W0,
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(ii) φ̃∗ω = ω, and

(iii) φ̃∗H0 = H0,

where φ̃ denotes de restriction of T ∗φ−1×Tφ toW0. From [18], we have that these symmetries

are preserved by the constraint algorithm or, equivalently, the constraint submanifolds are

preserved by φ̃. If Wf denotes the final constraint submanifold, then φ̃(Wf ) = Wf .

Assume now that Y is a vector field on Q such that its flow φt consists of vakonomic

symmetries. From Definition 3.1 it is straightforward to see that,

(i) the complete lift Y C of Y to TQ is tangent to the submanifold M ,

(ii) (Y C)|M(L|M) = 0.

Definition 3.2 ([24]). A vector field Y on Q whose flow consists of vakonomic symmetries

will be called an infinitesimal vakonomic symmetry.

Taking into account that the tangent flow Tφt on TQ is generated by the complete lift

Y C , and that the cotangent flow T ∗(φt)
−1 = Tφ−t on T ∗Q is generated by the complete

lift Y C∗
, we deduce that the induced flow T ∗(φt)

−1 × Tφt is generated by the vector field

Y C∗,C = (Y C∗
, Y C) on T ∗Q×Q TQ. Locally, if Y = Y A ∂

∂qA
, we have that

Y C∗

= Y A ∂

∂qA
− pB

∂Y B

∂qA

∂

∂pA

, Y C = Y A ∂

∂qA
+ q̇B ∂Y

A

∂qB

∂

∂q̇A

Y C∗,C = Y A ∂

∂qA
− pB

∂Y B

∂qA

∂

∂pA

+ q̇B ∂Y
A

∂qB

∂

∂q̇A
.

With the above hypotheses the vector field Y C∗,C is tangent to W0, since this manifold is

preserved by its flow. We denote by Ỹ the restriction of Y C∗,C to W0. In addition, Ỹ (H0) = 0

and LỸ ω = 0. Thus, Ỹ is an infinitesimal symmetry of the presymplectic system (W0, ω,H0)

in the sense studied in [18]. A direct computation shows that

iY C∗,C (pr1)
∗ωQ = d((pr1)

∗ιY ),

where ιY : T ∗Q −→ R is the evaluation function, i.e. ιY (αq) = 〈αq, Yq〉, for all αq ∈ T ∗Q.

Therefore, if we denote by ι̃Y the restriction of (pr1)
∗ιY to W0, we have

iỸ ω = d(ι̃Y ). (5)

Let us now recall a general result obtained in [18] for infinitesimal symmetries of presymplec-

tic systems. Consider a presymplectic system given by a presymplectic manifold (U, ω) and

a Hamiltonian function H : U → R. After applying the constraint algorithm, we obtain a

final constraint submanifold Uf where a solution X exists. In this case, we have the following

result.
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Proposition 3.1 (Noether’s theorem [18]). Let Z be a vector field on U preserving the

Hamiltonian function; Z(H) = 0. If Z is Hamiltonian for ω,

iZω = dg

for some function g, then g restricted to Uf is a constant of the motion for any solution X.

Notice that a vector field Z satisfying the hypothesis of Proposition 3.1 is necessarily tangent

to Uf .

Corollary 3.1. Let Y be an infinitesimal vakonomic symmetry, then the restriction of ι̃Y

to the final constraint submanifold Wf is a conserved quantity for the vakonomic problem.

Locally, if Y = Y A ∂

∂qA
, then we have ι̃Y = pAY

A. An improvement of the above result can

be given if we consider a more general kind of symmetries.

Definition 3.3 ([24]). A Noether symmetry of the vakonomic problem given by L and M

is a vector field Y on Q such that,

(i) the complete lift Y C of Y to TQ is tangent to the submanifold M ,

(ii) (Y C)|M(L|M) = FC
|M , for some function F on Q.

Note that an infinitesimal vakonomic symmetry is a Noether symmetry.

Corollary 3.2. Let Y be a Noether symmetry of the vakonomic problem given by L and M .

Then, the restriction to Wf of the function ι̃Y − F is a constant of the motion (here, we

denote by the same letter the function F and its pull-back to W0).

Proof. Let XF be the Hamiltonian vector field on T ∗Q of the function π∗
Q(F ) with respect to

the canonical symplectic form ωQ, where πQ : T ∗Q −→ Q denotes the canonical projection.

In local coordinates, we have

XF = −
∂F

∂qA

∂

∂pA

.

Take now the vector field Ỹ = Y C∗,C −XF . Then, Ỹ (H0) = 0 and iỸ ω = d(ι̃Y − F ). From

Proposition 3.1 we conclude the result.

The infinitesimal symmetries discussed above are usually called point-wise or geometric, since

they are vector fields on the configuration manifold Q. However, Proposition 3.1 suggests

that a more general kind of infinitesimal symmetries may be considered.

Definition 3.4. A Hamiltonian vector field on W0 which is tangent to Wf and preserves H0

along Wf is called a Cartan symmetry of the vakonomic problem given by L and M .

Proposition 3.1 implies that if iZω = dg and Z(H0) = 0 along Wf , then g, restricted to Wf ,

is a constant of the motion. Notice that the lift to W0 of a Noether symmetry is a Cartan

symmetry.
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3.1 Vakonomic Lie group actions

Assume that a Lie group G acts on the configuration manifold Q of a vakonomic system

determined by a Lagrangian function L : TQ −→ R and a constraint submanifold M of TQ.

Definition 3.5 ([24]). An action φ : G×Q −→ Q of G on Q is called vakonomic if L and

M are invariant by G, that is, we have

(i) Tφg(M) ⊂M ;

(ii) L|M ◦ (Tφg)|M = L|M

for all g ∈ G, where φg : Q −→ Q is defined by φg(q) = φ(g, q).

In other words, the transformations φg are vakonomic symmetries. Also, the fundamental

vector fields ξQ determined by the action are infinitesimal vakonomic symmetries for all

ξ ∈ g, where g denotes the Lie algebra of G.

Proposition 3.2. Let Φ be a vakonomic action of a Lie group G on Q, then it lifts to a

presymplectic action on the presymplectic system (W0 = T ∗Q×QM,ω0, H0), and this action

admits a momentum mapping.

Proof. The first assertion follows from Section 3. For the second assertion, define a mapping

J : W0 −→ g
∗ by

〈J(αq, Xq), ξ〉 = 〈αq, ξQ(q)〉 , for all (αq, Xq) ∈ W0 and ξ ∈ g .

A direct computation in local coordinates shows that ξW0
= (ξQ)C∗,C from which we obtain

iξW0
ω0 = d(Ĵξ),

where Ĵξ : W0 −→ R is defined by Ĵξ(αq, Xq) = 〈J(αq, Xq), ξ〉. Thus, the induced vector

field ξW0
is Hamiltonian for the presymplectic form which completes the proof.

Since the algorithm is preserved by the group action one deduces the following conse-

quence [8].

Corollary 3.3. The restriction of functions Ĵξ, ξ ∈ g to the final constraint submanifold

Wf are constants of the motion.

In local coordinates, we have Ĵξ(qA, pA, q̇
A) = pAA

A
i ξ

i, where ξ = ξiEi, {Ei} is a basis of g,

(Ei)Q = AA
i

∂

∂qA
and {Ei} is the dual basis of {Ei}.
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4 Optimal control problems

A control system of ordinary differential equations is usually given by

ẋi = Γi(x(t), u(t)) , 1 ≤ i ≤ m, (6)

where (xi) are called state variables and (ua), 1 ≤ a ≤ k are the control functions.

The optimal control problem is the following. Given initial and final states x0, xf , the

objective is to find a C2-piecewise smooth curve c(t) = (x(t), u(t)) such that x(t0) = x0,

x(tf ) = xf , satisfying the control equations (6) and minimizing the functional

J (c) =

∫ tf

t0

L(x(t), u(t))dt ,

for some cost function L = L(x, u).

The usual formulation of optimal control problems is based on Pontryagin’s Maximum Prin-

ciple, which we will briefly describe below. Firstly, one introduces a Hamiltonian function

H(x, p, u) = piΓ
i(x, u) − L(x, u), where pi are the co-states. The Maximum Principle leads

to the following system of differential equations

ẋi =
∂H

∂pi

(x, p, u) , ṗi = −
∂H

∂xi
(x, p, u) , ya =

∂H

∂ua

(x, p, u) , (7)

where ya are called the outputs of the system. A necessary condition for a control u∗ to be

optimal is that the outputs resulting from u∗ are constantly zero.

Remark 4.1. It should be observed that here we focus our attention on normal curves.

Otherwise, one has to consider a Hamiltonian of the form H = piΓ
i (see [1, 20, 29]).

Now, we adopt a presymplectic approach which is equivalent to the Maximum Principle.

In a global description, one assumes a fiber bundle structure π : C −→ B, where B is

the configuration manifold with local coordinates xi and C is the bundle of controls, with

local coordinates (xi, ua). The ordinary differential equations (6) on B depending on the

parameters u can be seen as a vector field Γ along the projection map π, that is, Γ is a

smooth map Γ : C −→ TB such that the following diagram

C TB

B

-Γ

@
@

@
@@R

�
�

�
��	

π τB

is commutative. In local coordinates, we have

Γ = Γi(x, u)
∂

∂xi
.
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This optimal control problem (C,L,Γ) can be described as a vakonomic problem associ-

ated with the Lagrangian function L : TC −→ R, where L = L ◦ τC , and the constraint

submanifold,

M = {v ∈ TC |π∗(v) = Γ(τC(v))} ,

which can be viewed as M = Tπ−1(Γ(C)). Locally this submanifold is defined by the

conditions ẋi = Γi(x, u), 1 ≤ i ≤ m, which are just equations (6). Therefore, we can

introduce local coordinates (xi, ua, u̇a) on M . The local expressions for ω and H0 are

ω = dua ∧ dpa + dxi ∧ dpi , H0 = u̇apa + Γipi − L(x, u) .

In what follows, we discuss the behavior of the constraint algorithm in this case. In bundle

coordinates (xi, ua), a solution X of the equation iX ω = dH0 has the form

X = Γi ∂

∂xi
+ u̇a ∂

∂ua
+ (

∂L

∂xi
− pj

∂Γj

∂xi
)
∂

∂pi

+ (
∂L

∂ua
− pi

∂Γi

∂ua
)
∂

∂pa

+ Za ∂

∂u̇a
, (8)

and W1 is locally defined by the constraint functions

pa = 0.

Therefore, we have coordinates (xi, ua, pi, u̇
a) for W1 such that ω1 reads as ω1 = dxi ∧ dpi.

This shows that (W1, ω1) is a presymplectic manifold of constant rank 2m. Proceeding with

the algorithm, we obtain new constraint functions

ψa = X(pa) =
∂L

∂ua
− pi

∂Γi

∂ua
,

whose vanishing guarantees the tangency of the solution. Thus, the next constraint subman-

ifold W2 is locally characterized by the constraints

pa = 0, ψa = 0.

Now we can assume that X, restricted to W2, is tangent to W1, but in order to ensure the

tangency to W2 we have to ask the new conditions X|W2
(ψa) = 0, 1 ≤ a ≤ k. But

X|W2
= Γi ∂

∂xi
+ u̇a ∂

∂ua
+ κi

∂

∂pi

+ Za ∂

∂u̇a
,

where

κi =
∂L

∂xi
− pj

∂Γj

∂xi
,

so we obtain

ϕa = X|W2
(ψa) = Γi∂ψa

∂xi
+ u̇b∂ψa

∂ub
+ κi

∂ψa

∂pi

= 0. (9)

The constraints ϕa = 0, along with pa = 0 and ψa = 0, 1 ≤ a ≤ k define the submanifold W3.

11



Now, consider the case when the matrix

(
∂ψa

∂ub
=

∂2
L

∂ua∂ub
− pi

∂2Γi

∂ua∂ub

)
(10)

is regular, which is just the condition defining the so-called regular optimal control problems

(see [16, 17]). We can use the implicit function theorem on the equations ψa = 0 to get ua

as a function of xi and pi,

ua = ζa(xi, pi) , ∀1 ≤ a ≤ m, (11)

and, in addition, to obtain explicitly the u̇a. Combining Eqs. (9) and (11),

u̇a = ξa(xi, pi) . (12)

Therefore, for regular control problems, we can choose local coordinates (xi, pi) on W3.

Notice that, by applying X|W2
to the constraints u̇a = ξa(xi, pi), we determine the remaining

components Za’s of X.

Summarizing, we have the following.

Proposition 4.1. Assume that the optimal control problem is regular, and denote by ω3

the restriction of ω to W3. Then (W3, ω3) is a symplectic manifold, (xi, pi) are canonical

coordinates, and the restriction of X|W2
to W3 is the Hamiltonian vector field corresponding

to the restriction of H0 to W3.

If the control problem is not regular, then, in general, one has to continue the algorithm to

obtain the final constraint submanifold Wf . Assume for instance that the matrix (10) has

constant rank r on W2. In this case, using the implicit function theorem, we can select some

controls in terms of the others,

vα = χα(xi, pi, ū
l) , 1 ≤ α ≤ r , 1 ≤ l ≤ s , r + s = k.

Therefore, we introduce new r (local) constraints χ̃α = vα − χα and assume that these new

constraints determine completely W2. Then, we obtain

X(χ̃α) = −Γi∂χ
α

∂xi
− ˙̄ul∂χ

α

∂ūl
+ v̇α − κi

∂χα

∂pi

= 0. (13)

From (13) one can get a well-defined dynamics (up to a gauge freedom) on the submanifolds

characterized by the equations ūl = (ūl)0, ˙̄ul = 0, where (ūl)0 are arbitrary constants.

Remark 4.2 (Interpretation of the results in terms of control theory). Note that

ya =
∂H

∂ua
= pi

∂Γi

∂ua
−
∂L

∂ua
= −ψa,
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and hence the outputs are just the constraint functions definingW2. If the problem is regular,

then we can obtain the optimal control u∗ using the implicit function theorem,

(u∗)a = ζa(xi, pi).

In addition, we have determined a unique dynamics on W3 giving the optimal trajectories for

such optimal control problem. If the problem is singular, but the matrix (10) has constant

rank, say r, we can obtain r optimal controls for arbitrary choices of the remainder k − r.

Remark 4.3. The formulation of the optimal control problem by means of a constraint

manifold leads us to consider additional variables, given by the momenta pa and the time

derivatives of the control functions, u̇a. The momentum coordinates are readily determined

(pa = 0) in the first step of the constraint algorithm. The determination of the time deriva-

tives of the control functions relies on the specific nature of the problem under consideration.

For regular problems, as stated in Proposition 4.1, they are obtained in the third step of the

constraint algorithm. In general, however, the situations encountered in the determination

of the optimal u̇a can be quite diverse. The drawback of dealing with these additional vari-

ables gets compensated by the advantages that one obtains by formulating optimal control

problems as vakonomic dynamical problems within the framework proposed in Section 2.

Among them, we highlight the intrinsic and coordinate-free modeling with nontrivial control

bundles, the identification in a systematic way of dynamically relevant geometric objects,

and the study of the consistency problem of the optimal equations by means of the constraint

algorithm. Some of these issues are not addressed in recent works such as [4, 11].

Remark 4.4. One can also consider non-autonomous optimal control problems within the

above-developed framework. Consider the equations

dxi

dt
= Γi(t, x, u), 1 ≤ i ≤ m,

a cost function L(t, x, u), and some boundary conditions. This time-dependent problem can

be treated as an autonomous problem simply by enlarging the configuration space adding

extra variables. To do that, one takes the control equations (x0 ≡ t),

dx0

dτ
= 1,

dxi

dτ
= Γi(x0, x, u), 1 ≤ i ≤ m,

a cost function L̃(x0, x, u) = L(x0, x, u), and the corresponding boundary conditions. An

alternative formulation [26] consists of introducing a new extra control variable v and a new

state x0. In such a case, one considers as control equations (x0 ≡ t),

dx0

dτ
= v,

dxi

dτ
= vΓi(x0, x, u, v), 1 ≤ i ≤ m,

a cost function L̃(x0, x, u, v) = vL(x0, x, u), and the corresponding boundary conditions. We

leave to the reader the development of the appropriate discussion in this setting.
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Example 4.1. Consider the optimal control problem determined by the following system of

differential equations

ẋ = y, ẏ = z, ż = u

and the cost function

L(x, y, z, u) =
1

2
(x2 − y2 + z2).

This problem corresponds to a slight variation of Hardy-Littlewood systems (see [16] for more

details). We introduce local coordinates (x, y, z, u, px, py, pz, pu, u̇) on W0. The constraint

algorithm provides the following family of submanifolds

W1 = W0 ∩ {pu = 0} , W4 = W3 ∩ {u = −(y + px)} ,

W2 = W1 ∩ {pz = 0} , W5 = W4 ∩ {pu = 0} ,

W3 = W2 ∩ {z = py} , W6 = W5 ,

and the dynamics on the final constraint submanifold Wf = W5 is given by

X = y
∂

∂x
+ z

∂

∂y
− (y + px)

∂

∂z
− (x+ z)

∂

∂u
+ x

∂

∂px

+ u
∂

∂py

− (y + u)
∂

∂u̇
.

The optimal controls are u = −(y + px), with u̇ = −(x+ z). Therefore, we can choose local

coordinates (x, y, px, py) on Wf , and the dynamics is finally given by the following system of

differential equations on Wf ,

ẋ = y, ẏ = py, ṗx = x, ṗy = −(y + px).

5 Symmetries in optimal control problems

In order to study the symmetries for the vakonomic or optimal control problem (W0

= T ∗C×C M,ω,H0) we will take into account the geometry of the fiber bundle π : C −→ B.

Let φC : C −→ C be a fiber bundle isomorphism over a transformation φB : B −→ B,

locally written as

φC(xi, ua) = (φi(x), φa(x, u)),

where φB(xi) = (φi(x)).

Definition 5.1. The fiber bundle morphism (φC , φB) preserves Γ if

TφB ◦ Γ = Γ ◦ φC . (14)

Lemma 5.1. TφC preserves M if and only if (φC , φB) preserves Γ.

14



Proof. ⇐) Let v ∈M . We have

Γ(τC(TφC(v))) = Γ(φC(τC(v)))

= TφB ◦ Γ(τC(v)) (since (φC , φB) preserves Γ)

= TφB ◦ Tπ(v) (since v ∈M)

= Tπ ◦ TφC(v),

which proves that TφC preserves M .

⇒) Assume that TφC(v) ∈M for all v ∈M . Then we have

Γ(φC(τC(v))) = Γ(τC(TφC(v)))

= Tπ ◦ TφC(v) = TφB ◦ Tπ(v) (since (φC , φB) is a fibered mapping)

= TφB ◦ Γ(τC(v)) (since v ∈M)

Therefore, we have deduced that Γ(φC(τC(v))) = TφB◦Γ(τC(v)), which implies that Γ◦φC =

TφB ◦ Γ since τC(M) = C.

Now, the preservation of the restriction of L to M by TφC is equivalent to the preservation

of L by φC . Therefore, we can adapt Definition 3.1 as follows.

Definition 5.2. A symmetry of the optimal control problem (L, C) consists of a fiber bundle

isomorphism (φC , φB) preserving Γ and L.

Then, a symmetry for the optimal control problem (C,L,Γ) is always a symmetry for the

vakonomic problem (W0 = T ∗C ×C M,ω,H0), but the converse does not hold in general (in

fact, we can consider symmetries that are diffeomorphisms of C, but not necessarily bundle

morphisms).

Consider now a vector field YC on C whose associated flow ((φt)C , (φt)B) consists of local

symmetries. Such a vector field is always π-projectable to a vector field YB on B which

generates the flow (φt)B, and, in addition, verifies

LYC
Γ = 0, YC(L) = 0.

The converse is also true for projectable vector fields and we thus introduce the next termi-

nology.

Definition 5.3. An infinitesimal symmetry of the optimal control problem (C,L,Γ) is a

projectable vector field YC such that

(i) LYC
Γ = 0,

(ii) YC(L) = 0.
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The local expressions of YC and YB are the following

YC = Y i(x)
∂

∂xi
+ Ua(x, u)

∂

∂ua
, YB = Y i(x)

∂

∂xi
.

Thus, an infinitesimal symmetry of the optimal control problem (C,L,Γ) is always an in-

finitesimal symmetry of the vakonomic problem (W0 = T ∗C ×C M,ω,H0), but the converse

does not hold in general.

Corollary 3.1 can be reformulated in this context to give an appropriate version of Noether’s

theorem for optimal control problems.

Corollary 5.1 (Noether’s theorem). Let Y be an infinitesimal symmetry for the optimal

control problem (C,L,Γ), then the function ι̃Y : T ∗C ×C M −→ R restricted to the final

constraint submanifold Wf is a conserved quantity.

If Y is locally expressed as Y = Y i ∂

∂xi
+ Ua ∂

∂ua
, then we have ι̃Y = piY

i.

Concerning Noether symmetries, we make first the following remark. Assume that YC is a

projectable vector field which is a Noether symmetry for the vakonomic problem associated

with the control problem (C,L,Γ). This means that

(i) the complete lift (YC)C of Y to TC is tangent to M ;

(ii) ((YC)C)|M(L|M) = (FC)|M , for some function F on C.

If YC = Y i ∂

∂xi
+ Y a ∂

∂ua
then condition (ii) above implies that

Y i ∂L

∂xi
+ Y a ∂L

∂ua
= Γi(x, u)

∂F

∂xi
+ u̇a ∂F

∂ua
. (15)

Since the first member in (15) does not depend on the derivatives of the controls, we deduce

that F = F (xi), i.e. F is the pull-back via π of a function defined on B (and denoted by the

same letter). Therefore (15) becomes

Y i ∂L

∂xi
+ Y a ∂L

∂ua
= Γi(x, u)

∂F

∂xi
. (16)

This leads to the following definition.

Definition 5.4. A Noether symmetry for the control problem (C,L,Γ) is a projectable vector

field YC on C such that

(i) LYC
Γ = 0;

(ii) YC(L) = Γ(F ), for some function F on B.
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Now, a direct application of Corollary 3.2 gives the following.

Corollary 5.2 (Noether’s theorem). Let YC be a Noether symmetry of the control problem

(C,L,Γ) with associated function F . Then, the function ι̃YC − F restricted to the final

constraint submanifold Wf is a conserved quantity.

Notice that since Γ is a vector field on C along π, then Γ(F ) is a well-defined function on

C. In local coordinates, the conservation law reads

Y ipi − F (xi) .

Remark 5.1. The Noether and infinitesimal symmetries of the optimal control problem

described above were previously considered by Grizzle and Marcus [15].

Finally, we consider Cartan-like symmetries.

Definition 5.5. A Cartan symmetry for the control problem (C,L,Γ) is a vector field Y on

W0 such that

(i) Y is tangent to Wf and preserves H0 along Wf ;

(ii) Y is Hamiltonian for some function g, iY ω = dg, along Wf .

Corollary 5.3. Let Y be a Cartan symmetry as in Definition 5.5. Then, the function g

restricted to the final constraint submanifold Wf is a conserved quantity.

Example 5.1. We will revisit an example considered in [33]. Consider a mathematical

pendulum in space (Q = R
3) with mass m = 1 and length l = 1, and assume that there

is horizontal force with components u1 and u2 in the x and y directions, respectively. The

equations of motion are given by

φ̈ = −g sinφ+ u1 cos θ cosφ+ u2 sin θ cosφ , θ̈ = −u1 sin θ + u2 cos θ (17)

where (φ, θ) denotes coordinates in S
2. We consider the cost function L : TS

2 × R
2 −→ R,

L(x1, x2, x3, x4, u1, u2) =
1

2
(u2

1 + u2
2).

The control bundle is π = pr1 : C = TS
2 × R

2 −→ B = TS
2. We introduce coordinates

x1 = φ, x2 = θ, x3 = φ̇, x4 = θ̇, and the controls are just the force components u1, u2. The

control equations are given by equations (17), so that

Γ = x3
∂

∂x1

+ x4
∂

∂x2

+ (−g sinx1 + u1 cos x2 cos x1 + u2 sin x2 cos x1)
∂

∂x3

+ (−u1 sinx2 + u2 cos x2)
∂

∂x4
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Then, W0 = T ∗(TS
2×R

2)×TS2×R2M , where M is the constraint submanifold of T (TS
2×R

2)

defined by Γ. The submanifold W1 is defined by pu1
= 0, pu2

= 0. We also have

ψ1 = u1 − p3 cos x2 cos x1 + p4 sinx2 , ψ2 = u2 − p3 sin x2 cos x1 − p4 cos x2 ,

so that the submanifold W2 is defined by the constraints pu1
= 0, pu2

= 0, ψ1 = 0, ψ2 = 0.

Therefore, we deduce that this control problem is regular, and, consequently, the algorithm

stabilizes at the third step, W3. To determine W3, we first compute

κ1 = p3g cos x1 + p3u1 cosx2 sinx1 + p3u2 sinx2 sinx1 , κ3 = 0 ,

κ2 = p3u1 sin x2 cos x1 − p3u2 cos x2 cosx1 + p4u1 cos x2 + p4u2 sin x2 , κ4 = 0 .

Thus, we have

φ1 = u̇1 − x3p3 cos x2 sinx1 + x4p3 sin x2 cos x1 + x4p4 cosx1

φ2 = u̇2 − x3p3 sinx2 sinx1 − x4p3 cos x2 cos x1 + x4p4 sinx2.

A direct computation shows that
∂

∂x2

is a Cartan symmetry with associated function p2,

which is a conserved quantity on W3.

6 Reducing control systems by a Lie group of symme-

tries

In this section we will discuss the reduction and reconstruction of optimal control problems

with symmetries. This kind of problems was studied for instance in [14, 27, 32, 33] in

a Hamiltonian setting. Here, we adopt a different point of view based on the vakonomic

approach. In doing that, the treatment of the dynamics become more natural, and, in

addition, we recover much of the spirit of the usual reduction and reconstruction schemes of

Hamiltonian systems with symmetry. Our approach also allows to compare the constraint

algorithms for the original optimal control problem and the corresponding one for the reduced

problem.

Consider, as in the preceding section, an optimal control problem given by a fiber bundle π :

C −→ B, with a control equation Γ : C −→ TB and a cost function L : C −→ R. Suppose

that a Lie group G acts on C by bundle morphisms, that is, the action Φ : G × C −→ C

covers an action φ : G×B −→ B in the sense that π ◦ Φg = φg ◦ π, for all g ∈ G.

Definition 6.1. Assume that

(i) L is G-invariant, so that we have L ◦ Φg = L;

(ii) Γ is G-invariant, that is, we have Γ ◦ Φg = Tφg ◦ Γ,
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for all g ∈ G. Under these hypotheses we say that G is a Lie group of symmetries of the

control problem (C,L,Γ).

This essentially means that each Φg is a symmetry in the sense of Definition 5.2. We also

assume that the actions on C and B are free and proper so that ρC : C −→ C̄ = C/G and

ρB : B −→ B̄ = C/G are principal bundles with structure group G. In [27] it is proved that

π̄ : C̄ −→ B̄ is again a fiber bundle. In addition, if π : C −→ B is a vector (affine, principal)

bundle the same happens with π̄ : C̄ −→ B̄.

A direct computation shows that Γ projects onto a vector field Γ̄ on C̄ along the projection

π̄. Indeed, Γ̄ is defined by

Γ̄(z̄) = TρC(Γ(z)) (18)

for all z̄ ∈ C̄, where z is an arbitrary point in the fiber over z̄.

Remark 6.1. Equation (18) opens the possibility to consider more general kind of sym-

metries, named partial symmetries in [27]. Indeed, for reduction purposes we only need

that (18) holds. But this property is ensured if we have

TρB ◦ Γ ◦ Φg = TρB ◦ Tφg ◦ Γ

for all g ∈ G. This kind of symmetries was exploited in [27] to study feedback in control

theory. To simplify the exposition, we will consider symmetries as in Definition 6.1, though

our results are also verified by partial symmetries.

It is clear that the cost function L will also project onto a function L̄ : C̄ −→ R. Therefore,

we obtain a new optimal control problem given by the fiber bundle π̄ : C̄ −→ B̄, with a

control equation Γ̄ : C̄ −→ TB̄ and a cost function L̄ : C̄ −→ R. This new system (C̄, L̄, Γ̄)

will be called the reduced control system. We now can develop the corresponding constraint

algorithm for the presymplectic system (W̄0, ω̄0, H̄0). We notice that the reduced constraint

submanifold M̄ is just the quotient of M by G; in fact, (TρC)M : M −→ M̄ is a principal

bundle with structure group G.

We are interested in comparing the dynamics of the original and the reduced system, the

motivation for this being the possibility of reconstructing the original dynamics from the

reduced one, in a similar way to the case of symplectic reduction. One interesting feature of

this reduction procedure is that the number of controls is constant along the process.

In order to compare both dynamics it will be convenient to introduce local coordinates

adapted to the reduced system. Since ρC : C −→ C̄ is a principal G-bundle, we can choose

bundle coordinates (x̄I , yα, ua) on C such that (x̄I , ua) are local coordinates on C̄ and,

simultaneously, (x̄I , yα) are bundle coordinates on B. In this way, (x̄I) are local coordinates

on B̄. Moreover, since Γ is projectable, it takes the local expression

Γ = ΓI(x̄, y, u)
∂

∂x̄I
+ Γα(x̄, y, u)

∂

∂yα
(19)
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Since Γ is G-invariant, then the local components ΓI actually do not depend on the coordi-

nates ya (they are constant along the fibers of ρC) so that the expression of Γ̄ is

Γ̄ = Γ̄I(x̄, u)
∂

∂x̄I
(20)

where Γ̄I(x̄, u) = ΓI(x̄, y, u) for arbitrary coordinates y. In other words, the reduced control

problem is given by a cost function L̄ = L̄(x̄, u) and a control equation ˙̄xI = Γ̄I(x̄, u).

The original constraint submanifold M is locally characterized by the equations

˙̄xI = Γ̄I(x̄, u) , ẏα = Γα(x̄, y, u) .

(The above equations are referred as in normal form in [27]). Correspondingly, the constraint

submanifold M̄ is locally described as,

˙̄xI = Γ̄I(x̄, u) (21)

Since G acts on T ∗C by lifting the action on C we have a quotient manifold T ∗C/G. Next,

we shall define the mappings

A : T ∗C ×C M −→ T ∗C/G×C̄ M̄ , B : T ∗C̄ ×C̄ M̄ −→ T ∗C/G×C̄ M̄

as follows,

• The mapping A by,

A(γz, Xz) = ([γz], [Xz]) , with γz ∈ T ∗
zC, Xz ∈M , z ∈ C ,

where [γz], [Xz] denote the corresponding equivalence classes.

• The mapping B by,

B(γ̄z̄, X̄z̄) = ([γz], X̄z̄)

where γ̄z̄ ∈ T ∗
z̄ C̄, γz is the pull-back of γ̄z̄ to an arbitrary point z in the fiber over z̄.

A simple computation shows that B is well defined.

In local coordinates, we have

A(x̄, y, u, px̄, py, pu, u̇) = (x̄, u, px̄, py, pu, u̇) (22)

B(x̄, u, px̄, pu, u̇) = (x̄, u, px̄, py = 0, pu, u̇) (23)

where we have eliminated the indexes for simplicity. From (22) and (23) we deduce that A

is a submersion, and B is an embedding.

Next, we shall investigate the behavior of both mappings with respect to the constraint

algorithms

Wf −→ · · · −→ W2 −→ W1 −→ W0 , and W̄f −→ · · · −→ W̄2 −→ W̄1 −→ W̄0 .
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In order to compare both algorithms it will be convenient to give the local characterizations

of the corresponding constraint submanifolds. Before the reduction procedure, we have

W0 : (x̄, y, u, px̄, py, pu, ˙̄x, ẏ, u̇), ˙̄xI = Γ̄I(x̄, u), ẏα = Γα(x̄, y, u),

W1 : ˙̄xI = Γ̄I(x̄, u), ẏα = Γα(x̄, y, u), pu = 0,

W2 : ˙̄xI = Γ̄I(x̄, u), ẏα = Γα(x̄, y, u), pu = 0, ψa =
∂L

∂ua
− px̄I

∂Γ̄I

∂ua
− pyα

∂Γα

∂ua
= 0,

and the further constraint submanifolds are determined by imposing the tangency condition

to an arbitrary solution on W2,

X|W2
= ΓI ∂

∂x̄I
+ Γα ∂

∂yα
+ u̇a ∂

∂ua
+ κI

∂

∂px̄I

+ κα
∂

∂pyα

+ Za ∂

∂ua
, (24)

where

κI =
∂L

∂x̄I
− px̄J

∂ΓJ

∂x̄I
− pyα

∂Γα

∂x̄I
, κα = −pyβ

∂Γβ

∂yα
,

since
∂L

∂yα
=
∂ΓI

∂yα
= 0. Here, Za are arbitrary functions.

After the reduction procedure, we obtain

W̄0 : (x̄, u, px̄, pu, ˙̄x, u̇), ˙̄xI = Γ̄I(x̄, u),

W̄1 : ˙̄xI = Γ̄I(x̄, u), pu = 0,

W̄2 : ˙̄xI = Γ̄I(x̄, u), pu = 0, ψ̄a =
∂L̄

∂ua
− px̄I

∂Γ̄I

∂ua
,

and the further constraint submanifolds are determined by imposing the tangency condition

to an arbitrary solution on W̄2,

X̄|W̄2
= Γ̄I ∂

∂x̄I
+ u̇a ∂

∂ua
+ κ̄I

∂

∂px̄I

+ Z̄a ∂

∂ua
(25)

where

κ̄I =
∂L̄

∂x̄I
− px̄J

∂Γ̄I

∂x̄J

is the projection of κI , and Z̄a are arbitrary functions. From the above expressions we deduce

the following result.

Lemma 6.1. We have

(i) B(W̄1) ⊂ A(W1),

(ii) B(W̄2) ⊂ A(W2),

Moreover, B(W̄1) and B(W̄2) are submanifolds of A(W1) and A(W1), respectively.
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Notice that Lemma 6.1 implies that A and B induce mappings

Ai : Wi −→ T ∗C/G× M̄ , Bi : W̄i −→ T ∗C/G× M̄ , for i = 1, 2 .

Take X|W2
with projectable components Za, and denote by Z̄a the corresponding projections

used to construct the vector field X̄|W̄2
. Using Lemma 6.1 we can prove the next result.

Theorem 6.1. For the choices (24) and (25) of vector field solutions, we have

(TA2(X|W2
))|B2(W̄2) = TB2(X̄|W̄2

) .

Therefore, we obtain, by restriction, mappings Ai : Wi −→ T ∗C/G × M̄ and Bi : W̄i −→

T ∗C/G× M̄ , for i ≥ 3, such that the relation B(W̄i) ⊂ A(Wi) holds for all positive integer

i. Moreover, we have

(TAi(X|Wi
))|Bi(W̄i) = TBi(X̄|W̄i

) , for all i .

Reconstruction of the dynamics

Here, we discuss the reconstruction of the dynamics process. For a related treatment, see [14].

Based on Theorem 6.1, one can compare the original and the reduced dynamics. The first

important fact is that A : W0 → T ∗C/G ×C̄ M̄ is a principal G-bundle. As a consequence,

we have the following result.

Proposition 6.1. Wi is a principal G-bundle over Ai(Wi). In particular, Wf is a principal

G-bundle over Af (Wf ).

Since Bf (W̄f ) is a submanifold of Af (Wf ) we have a principalG-bundle (Wf )|B(W̄f ) → B(W̄f ).

Now we can proceed in the following manner in order to reconstruct the original dynamics:

• First, take a solution X̄f of the reduced dynamics on W̄f .

• Secondly, that solution is transported to Af (Wf ) by means of Bf .

• Finally, the solution is lifted toWf using the canonical section β : B(W̄f ) −→ (Wf )|B(W̄f )

induced by the pull-back ρ∗C : T ∗C̄ −→ T ∗C.

Remark 6.2 (Interpretation in terms of control theory). Assume for simplicity that

our control problem is regular. Then, both algorithms stop at the same level, say at W3 and

W̄3, respectively. Notice that the controls ua are the same for the non-reduced and reduced

systems. The advantage here is that we have reduced the number of states to consider.

Indeed, for the reduced problem, one has to apply the implicit function theorem to the

function ψ̄a, so that we get

ua = ξ̄a(x̄I , px̄I )
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which contains less variables than the functions ξa in the non-reduced problem.

In the singular case, the problem is more involved. The reduction procedure leads to a re-

duced control problem which consists of integrating the dynamics on W̄f , and then recovering

the original one. To do that, we have to integrate the control equations

ẏα = Γα(x̄, y, u)

with fixed momenta pyα = 0, for all α.

Remark 6.3. The above described reduction and reconstruction process is a particular

case of the following, more general, situation. Consider the momentum mapping J : W0 =

T ∗C ×M → g
∗, defined in Section 3.1. Fix a regular value µ ∈ g

∗ and let Gµ be its isotropy

group with respect to the coadjoint action. Now, we can perform a standard symplectic

reduction scheme [21] to obtain a reduced dynamics on J−1(µ)/Gµ. Note that this space can

be identified with J−1
1 (µ)/Gµ ×M/Gµ, where J1 : T ∗C → g

∗ is defined by < J1(α), ξ >=

< α, ξC >. In case µ = 0, we have Gµ = G and J−1
1 (0)/G ' T ∗C̄, so we recover the former

reduced space T ∗C̄ × M̄ .

Making use of the cotangent bundle reduction theorem of Satzer, Marsden and Kummer [21],

we can embed J−1
1 (µ)/Gµ in T ∗(C/Gµ). To do so, we first select a principal connection Aµ on

the principal fiber bundle C → C/Gµ. Let B be the pullback by πC/Gµ
: T ∗(C/Gµ) → C/Gµ

of the two-form on C/Gµ induced by µ′ ◦ curv(Aµ), where µ′ = µ|g
µ
∈ g

∗
µ and curv(Aµ) is

the curvature of Aµ. Then there exists a symplectic embbeding ϕµ :
(
J−1

1 (µ)/Gµ, ωµ

)
→(

T ∗(C/Gµ), ωC/Gµ
−B

)
. In case µ = 0, this embedding is a symplectomorphism.

Consequently, we can regard the reduced system as living in T ∗(C/Gµ)×M/Gµ. In this way,

we can compare it with the original dynamics living in W0 by means of the next diagram,

W0

T ∗(C/Gµ) ×M/Gµ

T ∗C/Gµ ×M/Gµ

XXXXXXXXz

Aµ

��������:

Bµ

where Aµ(α, v) = (ρµ(α), [v]) and Bµ(ᾱ, [v]) = (ρµ(π∗
µᾱ + µ′ ◦ Aµ), [v]),with ρµ : T ∗C →

T ∗C/Gµ and πµ : C → C/Gµ the canonical projections. Proceeding as above, we can

recover the original control problem by integrating the control equations ẏµ = Γ(x̄µ, yµ, u)

for fixed values pyµ
= −µ. Finally, note that if µ = 0, we precisely recover the former scheme.
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