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Abstract

Making use of the geometric setting proposed in [7] to formulate optimal control
problems, we address here the treatment of general symmetries. This viewpoint allows
us to reduce the number of equations associated with optimal control problems with
symmetry and compare the solutions of the original system with the solutions of the
reduced one. The reconstruction of the optimal controls starting from the reduced
problem is also explored.
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1 Introduction

As is well known, symmetries are a valuable tool for integrating the equations of motion in
Classical Mechanics. Indeed, Noether’s theorem asserts that each symmetry gives rise to
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a first integral of the equations of motion, which allows us to reduce the total number of
differential equations to be integrated. In case the symmetries form a Lie group, the reduction
procedure, known as symplectic reduction, is performed via the momentum mapping [21,
22, 25]. Usually, the symplectic reduction procedure is presented in a Hamiltonian context,
tough it can also be developed in a Lagrangian setting. Indeed, several extensions of it
have been proposed to deal with more general situations, such as systems with singular
Lagrangians, or presymplectic systems [10, 12, 18].

As in Classical Mechanics, the existence of symmetries may simplify the equations associated
with optimal control problems (see [15, 27, 32, 33]). The usual formulation of optimal control
problems is Hamiltonian and is based on Pontryagin’s Maximum Principle. If L = L(z¢, u®),
1 <i<m 1< a<k, is the cost function of the problem and ' = T'(z,u) is the
control equation, one introduces a set of co-states p;, and defines a Hamiltonian function as
H(z,p,u) = p;I"(z,u) —L(x,u). Then the Maximum Principle leads to the following system
of differential equations,

., OH . 0H _ 0H
r = 8pz (xapa U) y pbi = 83’,‘1 (.T,p, U) , Yg = aua (x)p’ u) , (1)

where y, are considered as the outputs of the system. A necessary condition for an admissible
control u* to be optimal is that the outputs corresponding to u* are constantly zero, that is,
Y. =0,1<a <k

A possible set of symmetries for the above optimal control problem could be given by a Lie
group acting on the space of states and controls, while leaving invariant the cost function
and the control equation. Applying then a reduction procedure to the (regular) optimal
control problem leads to a new optimal control problem, with the same controls and a lower
dimensional state space. These are essentially the results in [27, 32]; more general symmetries
are considered for instance in [33] (see also [5, 6, 9, 11, 28, 31]). A recent approach to the
study of symmetries in optimal control problems is due to Blankenstein and van der Schaft
in the framework of implicit Hamiltonian systems and Dirac structures [3, 4]. They show
that the application of the Maximum Principle gives rise to an implicit Hamiltonian system,
and that symmetries of the optimal control problem naturally lift to symmetries of the
corresponding implicit Hamiltonian system. The reduction is investigated and constrained
optimal control problems are also considered.

In this paper we present a different approach to study the symmetry properties of op-
timal control problems. We start by describing an optimal control problem as a wvako-
nomic system. In a few words, a vakonomic system is given by a Lagrangian function
L = L(¢g* ¢"), 1 < A < n, subject to some non-holonomic constraints ®*(g,q) = 0,
1 < a < m. The vakonomic problem consists of finding the curves ¢(t) that extremize
the functional fDT L(q,q) dt among all the curves satisfying the constraints. Using tech-
niques from Constrained Variational Calculus, one can obtain the normal solutions of the
vakonomic problem as the extremals of the functional defined by the extended (singular)



Lagrangian £(g%, Aa, ¢, M) = L(g?, ¢%) + X ®*(¢?, ¢*), where )\, are arbitrary Lagrange
multipliers [1] (see [23, 24] for a recent exploration of this setting).

On the other hand, inspired by the so-called Skinner and Rusk formalism [30] for singular
Lagrangian systems, we have developed in [7] an intrinsic geometric setting for vakonomic
dynamics. This description is formalized by means of a presymplectic system in the fibered
product Wy = T*Q) xo M, where M C TQ) represents the constraint submanifold, locally
described by the vanishing of the functions ®*. The presymplectic system is established by
taking the pullback of the canonical symplectic form on 7@ as the presymplectic 2-form,
and Hy = (, ) — L, as Hamiltonian function, where (, ) is the canonical pairing between
tangent vectors and covectors, and L is the restriction of the Lagrangian function to M.

One of the main advantages of this framework is that it provides an intrinsic and coordinate-
free setting for the description of optimal control problems, allowing us to develop a theory
of general symmetries. In this setting, previous results by Grizzle, Marcus and van der
Schaft [15, 32, 33| can be naturally recovered. Other problems can also be undertaken, as
for instance the issue of the consistency of the optimal equations and the treatment of singu-
lar optimal control problems. This is done here by means of a constraint algorithm yielding
a final submanifold W; C W, where a well-defined dynamics exist. Equations (1) are readily
obtained, and the outputs appear as the functions defining the secondary constraint sub-
manifold. For regular control problems, W = Wj is symplectic, and therefore there is a
unique dynamics defined on it. When considering symmetries, we identify the notions of in-
finitesimal, Noether and Cartan symmetries in this context, and provide the corresponding
Noether’s theorems. We also hint on how non-autonomous optimal control problems can
be casted within this framework, and consequently how the results on symmetries can be
incorporated in their analysis. Finally, we describe the reduction and reconstruction pro-
cesses, not necessarily restricting our attention to the zero-momentum case as is the case for
instance in [3, 4]. One of the further possibilities of this framework that will be explored in
the future is the extension to optimal control problems whose evolution equations are given
by partial differential equations.

The paper is organized as follows. In Section 2, we recall the geometric formulation of
vakonomic dynamics given in [7], within the framework of presymplectic geometry. A classi-
fication of infinitesimal symmetries in this context is analyzed then in Section 3. Section 4 is
devoted to discuss optimal control problems in the above framework, and a constraint algo-
rithm is developed providing a well-defined dynamics at the final step. The classification of
infinitesimal symmetries is the subject of Section 5. Finally, in Section 6 we give a reduction
procedure for optimal control systems with a Lie group of symmetries. The reconstruction
problem is also considered (see Grizzle [14] for a related approach). Along the paper, several
examples are worked out in order to illustrate the results.



2 Geometric formulation of constrained variational pro-
blems

In this section, we present the presymplectic description of variational problems given by
a Lagrangian function subject to nonholonomic constraints (see [7]). This description is
strongly inspired by Skinner and Rusk’s formulation of singular Lagrangian systems [30].

Consider a vakonomic problem given by a Lagrangian function L : T'() — R and a constraint
submanifold M of T'Q), where ) is an n-dimensional manifold. Take the Whitney sum
T*Q @ T with its canonical projections

pri:T*QeTQ —T°Q, pro T 'QTQ — TQ .

We assume that (7g)|,, : M — @ is a fiber bundle, but not necessarily a vector subbundle

(v
of ¢ : TQ) — . In other words, the constraints may be linear or not.

Now, consider the fiber product Wy = T*Q) x¢ M with canonical projections 7 = (pry)w,
Wo — T*Q and w5 = (pra)jw, : Wo — M. Notice that Wy = (pr2)~'(M). We define a
presymplectic form on Wy by w = mjwg, where w is the canonical symplectic form on 7@,
and introduce a Hamiltonian function Hy = (my, 7o) — L, where (71, m2) is the restriction of
the natural pairing (pry, pro) on T%Q @ TQ, and L : M — R is the restriction of L to M,
ile. L= L|M.

Take local coordinates (¢) in @ such that (¢*, pa) and (¢, ¢?) are bundle coordinates
in T%() and T'Q), respectively. The constraint submanifold M is locally defined by some
independent constraint functions ®* = ®*(¢*, ¢), i.e. M is characterized by the equations
®* = (0, where 1 < a < m, and dim M = 2n — m. It is usually assumed the following
admissibility condition [7]. The matrix

o(d',..., ™)
G, ....d")

has rank m for any choice of bundle coordinates in 7T'Q). Then, by the implicit function
theorem, we can locally express the constraints (reordering coordinates if necessary) as

§* = ¥*(q* 4%),

where 1 <a<m,1 <a<n-—m,and 1 < A < n. In this way, we can take (qA,qa) as
coordinates for M.

In [7] it was shown that the vakonomic problem given by L and M is equivalent to the
presymplectic system (Wy,w, Hy) in the sense that both give rise to the same solutions.
Thus, in order to obtain the vakonomic solutions, one is to apply a presymplectic constraint
algorithm, which is just the geometrization and extension of Dirac’s constraint algorithm for
degenerate Lagrangian systems (see [13] for details). We do this in the following.
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In first place, consider the points of T*Q) x¢ M where the equation
ixw = dH,, (2)
has a solution. This determines a submanifold W as,
Wy ={zeT"Q xg M| dHy(z)(V)=0, YV € kerw(z)} .

However, the solutions on W7 may not be tangent to ;. In such a case, we have to restrict
Wy to the submanifold W5 where the solutions are tangent to W;. Proceeding further, we
obtain a sequence of subsets

_c_>ch_>...C—)W2<—)Wlc—}WOZT*QXQM7

which will be assumed to be submanifolds of Wy. Algebraically, these constraint submanifolds
may be described as

Wi={zeT'Q xo M| dHy(z)(v) =0, Yo e W, }, i>1,

where T,Wit, = {v € T,(T*Q xg M) | w(x)(u,v) =0, Yu € T,W;_; }. If this constraint
algorithm stabilizes, i.e., if there exists a positive integer £ € N such that Wy, = W) and
dim W, # 0, then we will have obtained a final constraint submanifold W; = W), on which
a vector field X exists such that

('LXCL) = dHO)\Wf .

In local coordinates the algorithm can be described as follows. Notice that we can introduce
coordinates (¢, ¢, Pa, Pa, %) on Wy so that

Ho = ¢"pa + Upa — L(q", ¢%,4"), w =dg" A dpa + dg® A dp, .

A direct computation shows that a solution X of equation ixyw = dH,, is of the form

0 oL ove 9 oL ovs_ 9 0

. 0 o a
X =4 dq” v dq~ +(8q“ Do 8(1“)8]9@ +(8q“ be 8q0‘)8pa 2 9q" )

for some arbitrary functions Z¢ = Z%(¢*,pa, ¢*). In addition, W is locally defined by the
constraint functions,

oL ove

Pa = aq.a - paa—q.a7

In this way, we can introduce local coordinates (¢%, ¢%, pa,¢*) on Wi.

1<a<n—m.

As we have said before, the vector field given in (3) is a solution of the vakonomic problem
which may not be

tangent to Wj. Imposing this tangency condition leads to new constraints defining W5. The
algorithm goes on until the stabilization is reached. On W we will have an explicit and well-
defined solution of the vakonomic problem. Notice that this solution is not unique due to
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the gauge freedom arising from the presymplectic character of w. Indeed, given a particular
solution X on Wy, we obtain the whole family of solutions as X + (kerw NTWy).

A special case representative of many examples is that of Wy = W;. A sufficient condition
for this to hold is that
L PPue

This condition allows to determine Z¢ in (3) such that X w, € TWi. Denote by w; the
restriction of the presymplectic 2-form w to W7. We have w; = dq® A dp, + dqg® A dp,,.

Proposition 2.1 ([7]). (Wi,w1) is a symplectic manifold if and only if, for any choice of
coordinates (¢*,pa,q*) on T*Q xg M, equation (4) is satisfied on W1.

In case the constraints are linear on the velocities, we can write ¢* = ¥%(q)¢*. Then, from
Proposition 2.1, we can decide about the symplecticity of w; by checking the condition

9L
det (W) 7é 0

This condition can be loosely stated as asking for the restriction of the cost function to the
constraint submanifold to be non-degenerate.

3 Symmetries

Now, we make use of the intrinsic formulation described in the previous section to study
the symmetry properties of vakonomic systems. To do so, we will build on the results
of [18], where symmetries of presymplectic systems were considered (see also [2, 8, 12]). The
following notation will be useful [19]. Let ¢ : Q@ — @ be a diffeomorphism on ). Consider
the mapping T*¢~! x T'¢, where T'¢p : TQQ — TQ and T*¢ ! : T*Q — TQ are the induced
diffeomorphisms by tangent and cotangent prolongations, respectively. Then we can define
the following.

Definition 3.1 ([1, 24]). A vakonomic symmetry for the vakonomic problem given by L
and M s a diffeomorphism ¢ : Q — @) such that

(i) the induced diffeomorphism T¢ leaves M invariant, i.e. To$(M) C M;

From this definition, it follows that T*¢~! x T'¢ is a symmetry of the presymplectic system
(Wo, w, Ho) That iS,

(i) T*¢~! x T¢ leaves Wy invariant, i.e. (T*¢p~! x T¢)(Wy) C W,
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(ii) ¢*w = w, and
(i) ¢*Hy = H,,

where é denotes de restriction of T*¢ =t x T'¢ to Wy. From [18], we have that these symmetries
are preserved by the constraint algorithm or, equivalently, the constraint submanifolds are
preserved by ¢. If W, denotes the final constraint submanifold, then ¢(Wy) = W;.

Assume now that Y is a vector field on ) such that its flow ¢; consists of vakonomic
symmetries. From Definition 3.1 it is straightforward to see that,

(i) the complete lift Y of Y to T'Q is tangent to the submanifold M,

(i6) (Y)ua(Lias) = 0.

Definition 3.2 ([24]). A vector field Y on @ whose flow consists of vakonomic symmetries
will be called an infinitesimal vakonomic symmetry.

Taking into account that the tangent flow T'¢; on T'() is generated by the complete lift
Y'Y, and that the cotangent flow T*(¢;)~' = T¢_, on T*(Q is generated by the complete
lift Y, we deduce that the induced flow T*(¢;)~! x T'¢; is generated by the vector field

* * a
YOO = (YO, YY) on T*Q xo TQ. Locally, if Y = Y4

B we have that
q

. 0 oYE 0o 0 oY4 o
YC — YA . YC — YA— -B .
9t PP oqt ap 9¢h T4 g8 oA
oo _ a0 AYE 9 LOYA 9

907 PP ot opa T4 BP0

With the above hypotheses the vector field Y¢C is tangent to W), since this manifold is
preserved by its flow. We denote by Y the restriction of Y€ to Wj. In addition, Y (Hy) = 0
and Lyw = 0. Thus, Y is an infinitesimal symmetry of the presymplectic system (W, w, Hy)
in the sense studied in [18]. A direct computation shows that

iyore (pri)'wo = d((pri)"Y),

where /Y : T*Q) — R is the evaluation function, i.e. Y (a,) = (o, Yy,), for all o, € T*Q).
Therefore, if we denote by (Y the restriction of (pry)*tY” to Wy, we have

ivw=d(Y). (5)

Let us now recall a general result obtained in [18] for infinitesimal symmetries of presymplec-
tic systems. Consider a presymplectic system given by a presymplectic manifold (U, w) and
a Hamiltonian function H : U — R. After applying the constraint algorithm, we obtain a
final constraint submanifold Uy where a solution X exists. In this case, we have the following
result.



Proposition 3.1 (Noether’s theorem [18]). Let Z be a vector field on U preserving the
Hamiltonian function; Z(H) = 0. If Z is Hamiltonian for w,

tzw = dg
for some function g, then g restricted to Uy is a constant of the motion for any solution X.

Notice that a vector field Z satisfying the hypothesis of Proposition 3.1 is necessarily tangent
to U f-

Corollary 3.1. Let Y be an infinitesimal vakonomic symmetry, then the restriction of Y
to the final constraint submanifold Wy is a conserved quantity for the vakonomic problem.

0 —~
Locally, if Y = Y4 then we have 1Y = p,Y“. An improvement of the above result can

dqA’
be given if we consider a more general kind of symmetries.

Definition 3.3 ([24]). A Noether symmetry of the vakonomic problem given by L and M
1s a vector field Y on Q) such that,

(i) the complete lift YO of Y to TQ is tangent to the submanifold M,
(i) (Y)m (L) = Fﬁ}, for some function F' on Q.

Note that an infinitesimal vakonomic symmetry is a Noether symmetry.

Corollary 3.2. LetY be a Noether symmetry of the vakonomic problem given by L and M .
Then, the restriction to Wy of the function Y — F is a constant of the motion (here, we
denote by the same letter the function F and its pull-back to Wy ).

Proof. Let X be the Hamiltonian vector field on 7@ of the function 77 (F) with respect to
the canonical symplectic form wq, where mg : T*() — () denotes the canonical projection.
In local coordinates, we have

oF 0
Xp=-2 9
" 0" Opa
Take now the vector field Y = Y — Xp. Then, Y (Hy) = 0 and igw = d(tY — F). From
Proposition 3.1 we conclude the result. O

The infinitesimal symmetries discussed above are usually called point-wise or geometric, since
they are vector fields on the configuration manifold ). However, Proposition 3.1 suggests
that a more general kind of infinitesimal symmetries may be considered.

Definition 3.4. A Hamiltonian vector field on Wy, which is tangent to Wy and preserves H
along Wy s called a Cartan symmetry of the vakonomic problem given by L and M.

Proposition 3.1 implies that if i;w = dg and Z(H,) = 0 along W/, then g, restricted to Wy,
is a constant of the motion. Notice that the lift to Wy of a Noether symmetry is a Cartan
symmetry.



3.1 Vakonomic Lie group actions

Assume that a Lie group G acts on the configuration manifold @ of a vakonomic system
determined by a Lagrangian function L : T'() — R and a constraint submanifold M of T'Q).

Definition 3.5 ([24]). An action ¢ : G x Q — Q of G on Q is called vakonomic if L and
M are invariant by G, that is, we have

(1) Topg(M) C M;

(i4) Ly o (Thg) i = Ly
for all g € G, where ¢, : QQ — Q is defined by ¢,(q) = ¢(g,q).

In other words, the transformations ¢, are vakonomic symmetries. Also, the fundamental
vector fields g determined by the action are infinitesimal vakonomic symmetries for all
¢ € g, where g denotes the Lie algebra of G.

Proposition 3.2. Let ® be a vakonomic action of a Lie group G on Q, then it lifts to a
presymplectic action on the presymplectic system (Wo = T*Q x¢g M,wo, Hy), and this action
admits a momentum mapping.

Proof. The first assertion follows from Section 3. For the second assertion, define a mapping
J: Wy — g by

(J(og: Xq), &) = (aq,&q(q)),  for all (ay, Xy) € Woand £ € g.
A direct computation in local coordinates shows that &y, = (£9)¢7¢ from which we obtain
igwou)o = d(Jﬁ),

where J€ : Wy — R is defined by jzf(aq,Xq) = (J(ag, Xy),€). Thus, the induced vector
field &y, is Hamiltonian for the presymplectic form which completes the proof. O

Since the algorithm is preserved by the group action one deduces the following conse-
quence [8].

Corollary 3.3. The restriction of functions jE, & € g to the final constraint submanifold
W are constants of the motion.

In local coordinates, we have jz(qA,pA,q'A) = pa ALE where € = ¢'E;, {E;} is a basis of g,

(Ei)g = Af% and {E'} is the dual basis of {E;}.



4 Optimal control problems

A control system of ordinary differential equations is usually given by
it =TNx(t),ul), 1<i<m, (6)

where (z') are called state variables and (u®), 1 < a < k are the control functions.

The optimal control problem is the following. Given initial and final states zo, xy, the
objective is to find a C*-piecewise smooth curve c(t) = (x(t),u(t)) such that x(ty) = =z,
x(ty) = xy, satisfying the control equations (6) and minimizing the functional

for some cost function L = L(x,u).

The usual formulation of optimal control problems is based on Pontryagin’s Maximum Prin-
ciple, which we will briefly describe below. Firstly, one introduces a Hamiltonian function
H(x,p,u) = p;T(x,u) — L(z,u), where p; are the co-states. The Maximum Principle leads
to the following system of differential equations
. OH OH OH
ijlz—xa ), 'i:_—<$a W), a = 7 &I, p,u), 7
api(p)p 5 (O Yo = 5 (2,0,u) (7)

a

where y, are called the outputs of the system. A necessary condition for a control u* to be
optimal is that the outputs resulting from u* are constantly zero.

Remark 4.1. It should be observed that here we focus our attention on normal curves.
Otherwise, one has to consider a Hamiltonian of the form H = p;T" (see [1, 20, 29]).

Now, we adopt a presymplectic approach which is equivalent to the Maximum Principle.
In a global description, one assumes a fiber bundle structure = : ¢ — B, where B is
the configuration manifold with local coordinates z* and C' is the bundle of controls, with
local coordinates (x%,u®). The ordinary differential equations (6) on B depending on the
parameters u can be seen as a vector field I' along the projection map =, that is, I' is a
smooth map I' : C' — T'B such that the following diagram

r
C TB
™ B
B
is commutative. In local coordinates, we have
, 0
r=r1" -,
(z,) or’
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This optimal control problem (C,L,I") can be described as a vakonomic problem associ-
ated with the Lagrangian function L : TC' — R, where L = L o 7¢, and the constraint
submanifold,

M ={veTC|n.(v) =T(rc(v))},

which can be viewed as M = Tr }(T'(C)). Locally this submanifold is defined by the
conditions ' = T"(z,u), 1 < ¢ < m, which are just equations (6). Therefore, we can

introduce local coordinates (z¢,u®,4%) on M. The local expressions for w and Hy are

w=du® ANdp, +dz' Ndp;, Hy = 1u"ps + D'p; — L(x,u).

In what follows, we discuss the behavior of the constraint algorithm in this case. In bundle
coordinates (z*,u®), a solution X of the equation ix w = dHy has the form

;0,0 IL oo 0L or:. o L0
X =T+ amﬂﬁ pﬂ%>a_m+(aua p,a—ua)apaJFZ Fa (8)

and W is locally defined by the constraint functions

Pa = 0.

Therefore, we have coordinates (z*,u?, p;,u®) for Wy such that w; reads as w; = dz’ A dp;.
This shows that (W7, w;) is a presymplectic manifold of constant rank 2m. Proceeding with
the algorithm, we obtain new constraint functions

oL or®

- X 5
(M (Pa) e Pigga

whose vanishing guarantees the tangency of the solution. Thus, the next constraint subman-
ifold W5 is locally characterized by the constraints

pa:Oa 1/%1:0-

Now we can assume that X, restricted to Ws, is tangent to Wi, but in order to ensure the
tangency to W, we have to ask the new conditions X, (1,) =0, 1 < a < k. But

PO R L)
where ,
oL orv
Ki = % - pj@»
so we obtain
Pa = Xjw, (ta) = pi % + Q% + K Wo _, (9)

oxt oub " Op;
The constraints ¢, = 0, along with p, = 0 and ¢, = 0, 1 < a < k define the submanifold Ws.
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Now, consider the case when the matrix

(8% 2L 82T )

oub — Outdud bi OutOub

(10)

is regular, which is just the condition defining the so-called reqular optimal control problems
(see [16, 17]). We can use the implicit function theorem on the equations ¥, = 0 to get u®
as a function of 2% and p;,

u® = (2%, p), V1<a<m, (11)
and, in addition, to obtain explicitly the @*. Combining Eqs. (9) and (11),

u* = &4(a', pi) . (12)

Therefore, for regular control problems, we can choose local coordinates (z°,p;) on Wj.
Notice that, by applying Xw, to the constraints u® = £4(z", p;), we determine the remaining
components Z*’s of X.

Summarizing, we have the following.

Proposition 4.1. Assume that the optimal control problem is reqular, and denote by ws
the restriction of w to Ws. Then (Ws,ws) is a symplectic manifold, (z*,p;) are canonical
coordinates, and the restriction of Xyw, to Ws is the Hamiltonian vector field corresponding
to the restriction of Hy to Wi.

If the control problem is not regular, then, in general, one has to continue the algorithm to
obtain the final constraint submanifold W;. Assume for instance that the matrix (10) has
constant rank r on Wy. In this case, using the implicit function theorem, we can select some
controls in terms of the others,

v* = x*(2', ppa), 1<a<r,1<I<s,r+s=k.
Therefore, we introduce new r (local) constraints Y* = v® — x® and assume that these new
constraints determine completely W5,. Then, we obtain

N Ox® L 0x* . ox
X @ — _Fl—. - a_ P~
(xX*) o ow TV T Mgy

=0. (13)
From (13) one can get a well-defined dynamics (up to a gauge freedom) on the submanifolds

characterized by the equations @' = (@')o, @' = 0, where (@')y are arbitrary constants.

Remark 4.2 (Interpretation of the results in terms of control theory). Note that

_0H ‘81”' B oL
Yo = ou® bi ou®  Ju®

= _1/)117
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and hence the outputs are just the constraint functions defining Ws. If the problem is regular,
then we can obtain the optimal control v* using the implicit function theorem,

(w)* = ¢"(a", pi)-

In addition, we have determined a unique dynamics on W3 giving the optimal trajectories for
such optimal control problem. If the problem is singular, but the matrix (10) has constant
rank, say r, we can obtain r optimal controls for arbitrary choices of the remainder k — r.

Remark 4.3. The formulation of the optimal control problem by means of a constraint
manifold leads us to consider additional variables, given by the momenta p, and the time
derivatives of the control functions, ©*. The momentum coordinates are readily determined
(po, = 0) in the first step of the constraint algorithm. The determination of the time deriva-
tives of the control functions relies on the specific nature of the problem under consideration.
For regular problems, as stated in Proposition 4.1, they are obtained in the third step of the
constraint algorithm. In general, however, the situations encountered in the determination
of the optimal u* can be quite diverse. The drawback of dealing with these additional vari-
ables gets compensated by the advantages that one obtains by formulating optimal control
problems as vakonomic dynamical problems within the framework proposed in Section 2.
Among them, we highlight the intrinsic and coordinate-free modeling with nontrivial control
bundles, the identification in a systematic way of dynamically relevant geometric objects,
and the study of the consistency problem of the optimal equations by means of the constraint
algorithm. Some of these issues are not addressed in recent works such as [4, 11].

Remark 4.4. One can also consider non-autonomous optimal control problems within the
above-developed framework. Consider the equations

dz’

=T'(t,z,u), 1<i<m,

a cost function IL(¢, z, u), and some boundary conditions. This time-dependent problem can
be treated as an autonomous problem simply by enlarging the configuration space adding
extra variables. To do that, one takes the control equations (2" = t),

dx? dx’ . 0

E:L dT:F’(x,x,u), 1<i<m,

a cost function ]L(xo,:c,u) = L(2° x,u), and the corresponding boundary conditions. An
alternative formulation [26] consists of introducing a new extra control variable v and a new
state zg. In such a case, one considers as control equations (z° = t),

dr ' dr

= ol"(2°, z,u,v), 1<i<m,

a cost function L(z°, z, u,v) = vL(2°, 2, u), and the corresponding boundary conditions. We
leave to the reader the development of the appropriate discussion in this setting.
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Example 4.1. Consider the optimal control problem determined by the following system of
differential equations
T = Y, y =z, Z=u

and the cost function

1
L(l‘,y, Z7U) = 5(&72 - y2 + 22)‘

This problem corresponds to a slight variation of Hardy-Littlewood systems (see [16] for more
details). We introduce local coordinates (z,v, 2, u, Py, Py, Dz, Pu, @) on Wy. The constraint
algorithm provides the following family of submanifolds

Wy =Won{p, =0}, Wy=WsN{u=—(y+pe)},
Wy =W Nn{p. =0}, W5 =WyN{p, =0},
Wiy =Won{z=p,}, We = W5,

and the dynamics on the final constraint submanifold W; = Wj is given by

x 0 N 0 (5 + pa) 0 (24 2) 0 n 0 N 0 (5 + 1) 0
=y—+z2— — e)— — (x+2)—+=x U— — u) = .

Yor y YT Pl ou Op» Opy 4 ot
The optimal controls are u = —(y + p,), with @ = —(z + z). Therefore, we can choose local

coordinates (x,y, p., py) on Wy, and the dynamics is finally given by the following system of
differential equations on Wy,

i‘:y, y:pya pm:l’, py: _(y+px)-

5 Symmetries in optimal control problems

In order to study the symmetries for the vakonomic or optimal control problem (W,
=T*C xc M,w, Hy) we will take into account the geometry of the fiber bundle 7 : C' — B.
Let ¢ : ¢ — C be a fiber bundle isomorphism over a transformation ¢p : B — B,
locally written as

po(r', ut) = (¢'(x), ¢*(z,u)),
where é(z) = (6/(x)).
Definition 5.1. The fiber bundle morphism (¢c, ¢p) preserves I if

Tépol =T o ¢c. (14)

Lemma 5.1. T'¢¢ preserves M if and only if (¢c, ¢p) preserves I,

14



Proof. <) Let v € M. We have

L(7e(Toc(v)) = T(oc(re(v))
=Topol'(1c(v)) (since (¢, ¢p) preserves I)
=T¢goTn(v

(v) (since v € M)
=TrnoToc(v)

Y

which proves that T'¢o preserves M.
=) Assume that T'¢c(v) € M for all v € M. Then we have

[(¢c(1c(v))) = T(1e(Téo(v)))
=TrnoT¢c(v) =TegoTm(v) (since (¢c, Pp) is a fibered mapping)
=T¢poTl(1c(v)) (since v € M)

Therefore, we have deduced that T'(pc(7¢(v))) = Topol' (1¢(v)), which implies that T'ogpo =
T¢p ol since 7a(M) = C. O

Now, the preservation of the restriction of L to M by T'¢¢ is equivalent to the preservation
of L by ¢¢. Therefore, we can adapt Definition 3.1 as follows.

Definition 5.2. A symmetry of the optimal control problem (L, C') consists of a fiber bundle
isomorphism (¢c, o) preserving I' and L.

Then, a symmetry for the optimal control problem (C,L,T") is always a symmetry for the
vakonomic problem (Wy = T*C x¢ M,w, Hy), but the converse does not hold in general (in
fact, we can consider symmetries that are diffeomorphisms of C, but not necessarily bundle
morphisms).

Consider now a vector field Yo on C' whose associated flow ((¢¢)c, (¢¢)5) consists of local
symmetries. Such a vector field is always m-projectable to a vector field Yz on B which
generates the flow (¢;)p, and, in addition, verifies

Ly, T =0, Yo(L)=0.

The converse is also true for projectable vector fields and we thus introduce the next termi-
nology.

Definition 5.3. An infinitesimal symmetry of the optimal control problem (C,L,T") is a
projectable vector field Yo such that

(i) Ly.T =0,

(ii) Yo(L) = 0.

15



The local expressions of Yo and Yp are the following

0

Yo :YZ<I)i+Ua($7U)i Yp :Yz(x) ot

ozt ous ’

Thus, an infinitesimal symmetry of the optimal control problem (C,L,I") is always an in-
finitesimal symmetry of the vakonomic problem (Wy = T*C x¢ M,w, Hy), but the converse
does not hold in general.

Corollary 3.1 can be reformulated in this context to give an appropriate version of Noether’s
theorem for optimal control problems.

Corollary 5.1 (Noether’s theorem). Let Y be an infinitesimal symmetry for the optimal
control problem (C,1L,T), then the function 1Y : T*C xg M — R restricted to the final
constraint submanifold Wy is a conserved quantity.

8' + U"“i, then we have 1Y = piY.
ox? ou®

Concerning Noether symmetries, we make first the following remark. Assume that Yy is a

If Y is locally expressed as Y = Y

projectable vector field which is a Noether symmetry for the vakonomic problem associated
with the control problem (C,L,T"). This means that

(i) the complete lift (Yo)¢ of Y to T'C' is tangent to M;

(i) ((Yo)9)m(Liar) = (F€) 1, for some function F on C.

If Yo = Yii + Y“i then condition (ii) above implies that
Ox? Jue
0L L , OF OF
t— ¢ =TI — +ut—. 1
Y Ozt Y ou? (, u) Ox? T ou® (15)

Since the first member in (15) does not depend on the derivatives of the controls, we deduce
that F' = F(2'), i.e. F is the pull-back via 7 of a function defined on B (and denoted by the
same letter). Therefore (15) becomes

OF

AL e 0L
ozt

oz’ r ous Mz, u)

This leads to the following definition.

Y

(16)

Definition 5.4. A Noether symmetry for the control problem (C,LL,T") is a projectable vector
field Yo on C such that

(Z) ‘CYCF = 0,’

(i) Yo(L) =T'(F), for some function F' on B.

16



Now, a direct application of Corollary 3.2 gives the following.

Corollary 5.2 (Noether’s theorem). Let Yo be a Noether symmetry of the control problem
(C,L,T") with associated function F. Then, the function (Yo — F restricted to the final
constraint submanifold Wy is a conserved quantity.

Notice that since I' is a vector field on C' along 7, then I'(F') is a well-defined function on
C. In local coordinates, the conservation law reads

Yip; — F(x").

Remark 5.1. The Noether and infinitesimal symmetries of the optimal control problem
described above were previously considered by Grizzle and Marcus [15].

Finally, we consider Cartan-like symmetries.
Definition 5.5. A Cartan symmetry for the control problem (C,LL,T") is a vector field Y on
Wy such that

(1) Y is tangent to Wy and preserves Hy along Wy;
(1t) Y is Hamiltonian for some function g, iyw = dg, along W.

Corollary 5.3. Let Y be a Cartan symmetry as in Definition 5.5. Then, the function g
restricted to the final constraint submanifold Wy is a conserved quantity.

Example 5.1. We will revisit an example considered in [33]. Consider a mathematical
pendulum in space (Q = R?) with mass m = 1 and length [ = 1, and assume that there
is horizontal force with components u; and u, in the z and y directions, respectively. The
equations of motion are given by

¢ =—gsind + uy cosfcosd + ussinfcosp, 6 = —uy sinb + us cos (17)

where (¢, ) denotes coordinates in S?. We consider the cost function L : TS? x R? — R,

1
L(x17$27'r37x47u17u2) - 5(“’% + U%)

The control bundle is 7 = pry : C = TS? x R?> — B = T'S?. We introduce coordinates
r1 = ¢,x9 = 0,23 = ¢,x4 = 0, and the controls are just the force components uy,us. The
control equations are given by equations (17), so that

0

I'=23— + 24— + (—gsinx; + uy cos xo COS T1 + Ug Sin Ty COS T1) ——

0, 0xs Ox3

+ (—uy sin zg + ug oS T3) =—

81:4
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Then, Wy = T*(TS? x R?) X pse g2 M, where M is the constraint submanifold of T(T'S? x R?)
defined by I'. The submanifold W; is defined by p,, =0, p,, = 0. We also have

11 = Uy — P3 COSTo COST| + PgSiN Ty, Yy = Uy — P3 SIN Tg COS T — Py COS Tg ,

so that the submanifold W, is defined by the constraints p,, = 0, p,, = 0, ¥ = 0, 1y = 0.
Therefore, we deduce that this control problem is regular, and, consequently, the algorithm
stabilizes at the third step, W3. To determine W3, we first compute

K1 = pP3g COS T1 + P3uq COS To SIN T1 + P3us SIN T9 SIN T1 kg =0,

K9 = P31 SIN Lo COS L1 — P3ls COS Tg COS T1 + Pally COS Ty + Palie SIN Ty, ke =10
Thus, we have

(¢1 = Uy — T3Pz COS T SIN X1 + T4P3 SIN Ty COS T1 + T4P4 COS Tq

(o = Uy — T3P3 SIN To SIN T — T4P3 COS Ty COS T1 + T4P4 SIN To.

: . J . : . :
A direct computation shows that — is a Cartan symmetry with associated function ps,
4]
which is a conserved quantity on Wj.

6 Reducing control systems by a Lie group of symme-

tries

In this section we will discuss the reduction and reconstruction of optimal control problems
with symmetries. This kind of problems was studied for instance in [14, 27, 32, 33] in
a Hamiltonian setting. Here, we adopt a different point of view based on the vakonomic
approach. In doing that, the treatment of the dynamics become more natural, and, in
addition, we recover much of the spirit of the usual reduction and reconstruction schemes of
Hamiltonian systems with symmetry. Our approach also allows to compare the constraint
algorithms for the original optimal control problem and the corresponding one for the reduced
problem.

Consider, as in the preceding section, an optimal control problem given by a fiber bundle 7 :
C — B, with a control equation I' : C' — T'B and a cost function L : C' — R. Suppose
that a Lie group G acts on C' by bundle morphisms, that is, the action ® : G x C — C
covers an action ¢ : G X B — B in the sense that mo &, = ¢, o7, for all g € G.

Definition 6.1. Assume that

(1) L is G-invariant, so that we have Lo ®, =1L;

(i1) T is G-invariant, that is, we have I'o &, = T¢, 0T,

18



for all g € G. Under these hypotheses we say that G is a Lie group of symmetries of the
control problem (C,L,T").

This essentially means that each ®, is a symmetry in the sense of Definition 5.2. We also
assume that the actions on C' and B are free and proper so that pc : C — C = C/G and
pp : B — B = C/G are principal bundles with structure group G. In [27] it is proved that
7 : C — B is again a fiber bundle. In addition, if 7 : C' — B is a vector (affine, principal)
bundle the same happens with 7 : C — B.

A direct computation shows that I' projects onto a vector field I' on C' along the projection
7. Indeed, T is defined by

[(2) = Tpo(D(2)) (18)

for all z € C, where z is an arbitrary point in the fiber over Z.

Remark 6.1. Equation (18) opens the possibility to consider more general kind of sym-
metries, named partial symmetries in [27]. Indeed, for reduction purposes we only need
that (18) holds. But this property is ensured if we have

Tppol'o®, =TpgoTp,ol

for all ¢ € G. This kind of symmetries was exploited in [27] to study feedback in control
theory. To simplify the exposition, we will consider symmetries as in Definition 6.1, though
our results are also verified by partial symmetries.

It is clear that the cost function L will also project onto a function L : C' — R. Therefore,
we obtain a new optimal control problem given by the fiber bundle 7 : C — B, with a
control equation I : C' — TB and a cost function L : C' — R. This new system (C,L,T)
will be called the reduced control system. We now can develop the corresponding constraint
algorithm for the presymplectic system (Wy, @o, Hy). We notice that the reduced constraint
submanifold M is just the quotient of M by G; in fact, (Tpc)y : M — M is a principal
bundle with structure group G.

We are interested in comparing the dynamics of the original and the reduced system, the
motivation for this being the possibility of reconstructing the original dynamics from the
reduced one, in a similar way to the case of symplectic reduction. One interesting feature of
this reduction procedure is that the number of controls is constant along the process.

In order to compare both dynamics it will be convenient to introduce local coordinates
adapted to the reduced system. Since po : C — C'is a principal G-bundle, we can choose
bundle coordinates (7,y* u®) on C such that (z!,u?) are local coordinates on C and,
simultaneously, (Z7,y®) are bundle coordinates on B. In this way, (z!) are local coordinates
on B. Moreover, since I is projectable, it takes the local expression

0 0
_ 1= af=
F_F (zjy,U)ai'I +F ($ay7u)aya (19)
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Since I' is G-invariant, then the local components I'' actually do not depend on the coordi-
nates ¢ (they are constant along the fibers of po) so that the expression of T is

)
F:FI(‘T,U,)@

where I''(Z,u) = I'/(Z,y,u) for arbitrary coordinates y. In other words, the reduced control

(20)

problem is given by a cost function I = L.(Z, u) and a control equation #/ = I''(z, u).
The original constraint submanifold M is locally characterized by the equations

=1 _ I/~ o Tof =

z —F(Z‘,U), Y —F(x,y,u)

(The above equations are referred as in normal form in [27]). Correspondingly, the constraint
submanifold M is locally described as,

' =Tz, u) (21)

Since G acts on T*C by lifting the action on C' we have a quotient manifold 7*C/G. Next,
we shall define the mappings

A:T*Cxg M —TC/GxcM, B:TCxgM — T*C/G xc M
as follows,

e The mapping A by,
Ay, X,) = ([7.), [X.]), with~, e TC, X, e M, z € C,
where [7.], [X,] denote the corresponding equivalence classes.

e The mapping B by,

8(727)(2) = ([%],Xz)

where 7; € TFC, . is the pull-back of 4; to an arbitrary point z in the fiber over Z.
A simple computation shows that B is well defined.

In local coordinates, we have
A(i‘7y7u7pfapy7pu7u) = (j7u7pfapy7pu7u) (22)
B('Tauap:fapuau) = (i>uapiapy = Oapuau) (23)

where we have eliminated the indexes for simplicity. From (22) and (23) we deduce that A
is a submersion, and B is an embedding.

Next, we shall investigate the behavior of both mappings with respect to the constraint
algorithms

Wi— o — Wy — W, — Wy, and Wy — - — Wy — W) — W,
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In order to compare both algorithms it will be convenient to give the local characterizations
of the corresponding constraint submanifolds. Before the reduction procedure, we have

WO . (j7 y7 u’pi?py?pu?‘%’ y.7 u)’ i‘I = Fl(i’7 u)7 ya = Fa(j7 y? u)’

g - oL or’ ore
=1 I/~ e af=
N = F —= F w = s a = — — 7 _ @ = s
2 T (x7 u)? y (x7 y? u)7 p 0 ¢ 8ua’ p I 8“,0’ py aua O

and the further constraint submanifolds are determined by imposing the tangency condition
to an arbitrary solution on W5,

0 0 0 0 0 0
Xuw, =T1 e ¢ o 70— 24
W = o T A T A T T ope T B (24)
where
JL or’ or« ors
Ky = — Dz — Pya Ko = —Pys——,
1= 9zt~ Pelgzr TP Py gye
oL orf
since — = —— = 0. Here, Z are arbitrary functions.
Ay~ Oy
After the reduction procedure, we obtain
Wo : (Z,u, pg, pu, T, 1), 31 =TH(Z,u),
Wy 2! =T1(z,u), p, =0,
- ~ OL or!
W& =T!(7,u), pu=0, o= 5= = poi5—,

and the further constraint submanifolds are determined by imposing the tangency condition
to an arbitrary solution on Ws,

) 9 ) o _ 0
Xy, =11 19 R 74 25
W = g T g T T e (25)
where _ _
L or!
N gt T P g

is the projection of k7, and Z® are arbitrary functions. From the above expressions we deduce
the following result.

Lemma 6.1. We have

(i) B(W1) C A(Wh),
(ii) B(Ws) C A(Wa),

Moreover, B(W1) and B(Ws) are submanifolds of A(Wy) and A(W,), respectively.
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Notice that Lemma 6.1 implies that A and B induce mappings
A W, —T*C/Gx M, Bi:W;, —T*C/Gx M, fori=1,2.

Take Xy, with projectable components Z“, and denote by Z® the corresponding projections
used to construct the vector field X W, Using Lemma 6.1 we can prove the next result.

Theorem 6.1. For the choices (24) and (25) of vector field solutions, we have

(T A2 Xwa)) 15y 0) = TB2(Xpyw,) -

Therefore, we obtain, by restriction, mappings A; - Wy — T*C/G x M and B; : W; —
T*C/G x M, fori > 3, such that the relation B(W;) C A(W;) holds for all positive integer
1. Moreover, we have

(TA(X\w,))i5:ovyy) = TBi(Xpw,),  for all i

Reconstruction of the dynamics

Here, we discuss the reconstruction of the dynamics process. For a related treatment, see [14].
Based on Theorem 6.1, one can compare the original and the reduced dynamics. The first
important fact is that A : Wy — T*C/G x& M is a principal G-bundle. As a consequence,
we have the following result.

Proposition 6.1. W; is a principal G-bundle over A;(W;). In particular, Wy is a principal
G-bundle over As(Wy).

Since By (Wy) is a submanifold of Az (W) we have a principal G-bundle (W), B, — B (Wy).
Now we can proceed in the following manner in order to reconstruct the original dynamics:

e First, take a solution X; of the reduced dynamics on W;.
e Secondly, that solution is transported to A;(Wy) by means of By.

e Finally, the solution is lifted to Wy using the canonical section 3 : B(W;) — (Wy), BOW;)
induced by the pull-back pf : T*C — T*C.

Remark 6.2 (Interpretation in terms of control theory). Assume for simplicity that
our control problem is regular. Then, both algorithms stop at the same level, say at W3 and
W5, respectively. Notice that the controls u® are the same for the non-reduced and reduced
systems. The advantage here is that we have reduced the number of states to consider.
Indeed, for the reduced problem, one has to apply the implicit function theorem to the
function 1, so that we get

ut = (2", par )
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which contains less variables than the functions £ in the non-reduced problem.

In the singular case, the problem is more involved. The reduction procedure leads to a re-
duced control problem which consists of integrating the dynamics on Wy, and then recovering
the original one. To do that, we have to integrate the control equations

y* =Tz, y,u)
with fixed momenta pyo = 0, for all a.

Remark 6.3. The above described reduction and reconstruction process is a particular
case of the following, more general, situation. Consider the momentum mapping J : Wy =
T*C x M — g*, defined in Section 3.1. Fix a regular value 1 € g* and let G, be its isotropy
group with respect to the coadjoint action. Now, we can perform a standard symplectic
reduction scheme [21] to obtain a reduced dynamics on J~*(u)/G,,. Note that this space can
be identified with J;'(1)/G, x M/G,,, where J, : T*C' — g* is defined by < Jy(a),& >=
< a,€c >. In case u = 0, we have G, = G and J; *(0)/G ~ T*C, so we recover the former
reduced space T*C' x M.

Making use of the cotangent bundle reduction theorem of Satzer, Marsden and Kummer [21],
we can embed J; ' (1) /G, in T*(C/G,). To do so, we first select a principal connection A4, on
the principal fiber bundle C' — C/G,,. Let B be the pullback by 7¢/q, : T*(C/G,) — C/G,
of the two-form on C/G,, induced by p' o curv(4,), where p// = pg € g, and curv(4,) is
the curvature of A,. Then there exists a symplectic embbeding ¢, : (J7 " (1)/Gp,w,) —
(T*(C’/Gu),wc/(;u — B). In case u = 0, this embedding is a symplectomorphism.

Consequently, we can regard the reduced system as living in 7*(C/G,,) x M /G,,. In this way,
we can compare it with the original dynamics living in W, by means of the next diagram,

Wo A,
T*C/G, x M/G,
T(C/Gu) x M/G,, B,
where A, (a,v) = (pu(a), [v]) and B(a,[v]) = (pu(mia + @' o Ay), [v]),with p, : T*C —
T7*C/G, and 7, : C — C/G, the canonical projections. Proceeding as above, we can

recover the original control problem by integrating the control equations g, = I'(Z,, y,, u)
for fixed values p,, = —u. Finally, note that if u = 0, we precisely recover the former scheme.
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