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Abstract: This paper presents coordination algorithms for networks of mobile
autonomous agents. The objective of the proposed algorithms is to achieve
rendezvous, that is, agreement over the location of the agents in the network.
We provide analysis and design results for multi-agent networks in arbitrary
dimensions under weak requirements on the switching and failing communication
topology. The correctness proof relies on proximity graphs and their properties
and on a LaSalle Invariance Principle for nondeterministic discrete-time systems.
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1. INTRODUCTION

This work is a contribution to the emerging disci-
pline of motion coordination for ad-hoc networks
of mobile autonomous agents. With this loose
terminology we refer to groups of robotic agents
with limited mobility and communication capa-
bilities. In the future these groups of coordinated
devices will perform a variety of challenging tasks
including search and recovery operations, surveil-
lance, exploration and environmental monitoring.
The potential advantages of employing arrays of
agents have recently motivated vast interest in
this topic. From a control viewpoint, a group of
agents inherently provides robustness to failures
of single agents or of communication links.

The motion coordination problem for groups of
autonomous agents is a control problem in the
presence of communication constraints. Typically,

each agents makes decisions based only on partial
information about the state of the entire net-
work that is obtained via communication with its
immediate neighbors. An important difficulty is
that the topology of the communication network
depends on the agents’ locations and, therefore,
changes with the evolution of the network.

The “multi-agent rendezvous” problem and a first
“circumcenter algorithm” have been introduced
by Ando and coworkers in (Ando et al., 1999).
This algorithm has been extended to various
(a)synchronous stop-and-go strategies in (Lin et
al., 2003; Lin et al., 2004a). A related algorithm,
in which connectivity constraints are not im-
posed, is proposed in (Lin et al., 2004b). These
schemes are memoryless (static feedback), anony-
mous (all agents are indistinguishable), and spa-
tially distributed (only local information is re-
quired). An incomplete list of recent works on



motion coordination algorithms includes (Suzuki
and Yamashita, 1999; Justh and Krishnaprasad,
2004) on pattern formation, (Jadbabaie et al.,
2003) on flocking, (Klavins et al., 2004) on
self-assembly, (Liu and Passino, 2004) on for-
aging, (Ögren et al., 2004) on gradient climb-
ing, and (Cortés et al., 2004b) on deployment.
Consensus and distributed decision making pro-
tocols are discussed in (Olfati-Saber and Mur-
ray, 2004; Moreau, 2003).

In this paper we provide novel analysis and design
results on a class of rendezvous algorithms. First,
we define and analyze a class of “circumcenter al-
gorithms” defined over switching communication
topologies. We classify communication topologies
for our algorithms via the notion of “proximity
graphs,” see (Jaromczyk and Toussaint, 1992)
and (Cortés et al., 2004b). Admissible communi-
cation topologies are proximity graphs with the
property of being “spatially distributed” over the
disk graph (i.e., they can be computed with only
the local information encoded in the disk graph)
and such that their connected components have
the same vertices as the disk graph. This is a
more general class of communication topologies
than the ones adopted in most works on motion
coordination including (Ando et al., 1999; Lin et
al., 2004a; Lin et al., 2004b). The ability to rely
on general communication topologies is advan-
tageous in the design of wireless communication
strategies and is referred to as “topology control”,
see (Li, 2003) and references therein.

Second, we consider networks of agents whose
state space is R

d, where d ∈ N. We prove that
our proposed class of circumcenter algorithms is
correct in arbitrary dimensions and include simu-
lations in two and three dimensions. As a natural
outcome, we prove that the original circumcenter
algorithm in (Ando et al., 1999) can be adapted
to work in higher dimensions, and that it is guar-
anteed to converge in finite time.

Third, we establish a general theorem on the ro-
bustness of the proposed class of circumcenter al-
gorithms with respect to communication link fail-
ures. Rendezvous is guaranteed even if each agent
experiences link failures, provided the resulting
directed communication graph is strongly con-
nected at least once every finite number of time
instants. Our results provide the first contribution
to the theoretical explanation of the robustness
properties of the circumcenter algorithm observed
in computer simulations in (Ando et al., 1999).

Because of length constraints, we refer the inter-
ested reader to (Cortés et al., 2004a) for all the
proofs. We only mention here that the (novel)
method of proof is based on a recently-developed
LaSalle Invariance Principle for nondeterministic
discrete-time systems, see (Cortés et al., 2004b).

2. PRELIMINARY DEVELOPMENTS

2.1 LaSalle Invariance Principle for nondeterministic
discrete-time systems

We review some concepts regarding the stability
of discrete-time dynamical systems and set-valued
maps following (Luenberger, 1984; Cortés et al.,
2004b). For d ∈ N, an algorithm on R

d is a set-

valued map T : R
d → 2(Rd) with the property

that T (p) 6= ∅ for all p ∈ R
d. A map from R

d

to R
d can be interpreted as a singleton-valued

map. A trajectory of an algorithm T is a sequence
{pm}m∈N∪{0} ⊂ R

d such that

pm+1 ∈ T (pm) , m ∈ N ∪ {0} .

In other words, given any initial p0 ∈ R
d, a

trajectory of T is computed by recursively setting
pm+1 equal to an arbitrary element in T (pm). An
algorithm T is closed at p ∈ R

d if for all pairs of
convergent sequences pk → p and p′k → p′ such
that p′k ∈ T (pk), one has that p′ ∈ T (p). An
algorithm is closed on W ⊂ R

d if it is closed at p,
for all p ∈ W . In particular, every continuous map
T : R

d → R
d is closed on R

d. A set C is weakly
positively invariant with respect to T if, for any
p0 ∈ C, there exists p ∈ T (p0) such that p ∈ C.
A point p0 is said to be a fixed point of T if p0 ∈
T (p0). The function V : R

d → R is non-increasing
along T on W ⊂ R

d if V (p′) ≤ V (p) for all p ∈ W

and p′ ∈ T (p). The proof of the following result is
provided in (Cortés et al., 2004b).

Theorem 1. (LaSalle Invariance Principle for closed
algorithms) Let T be a closed algorithm on W ⊂
R

d and let V : R
d → R be a continuous function

non-increasing along T on W . Assume the trajec-
tory {pm}m∈N∪{0} of T takes values in W and is
bounded. Then there exists c ∈ R such that

pm −→ M ∩ V −1(c) ,

where M is the largest weakly positively invariant
set contained in

{p ∈ W | ∃p′ ∈ T (p) such that V (p′) = V (p)}.

2.2 Basic geometric notions

We review some notation for standard geometric
objects; for additional information we refer the
reader to (de Berg et al., 1997) and references
therein. For a bounded set S ⊂ R

d, d ∈ N,
we let co(S) denote the convex hull of S. For
p, q ∈ R

d, we let ]p, q[= {λp + (1 − λ)q | λ ∈
]0, 1[} and [p, q] = co({p, q}) denote the open
and closed segment with extreme points p and
q, respectively. For a bounded set S ⊂ R

d, we
let CC(S) and CR(S) denote the circumcenter
and circumradius of S, respectively, that is, the
center and radius of the smallest-radius d-sphere



enclosing S. The computation of the circumcenter
and circumradius of a bounded set is a strictly
convex problem and in particular a quadratically
constrained linear program. For p ∈ R

d, we let
B(p, r) and B(p, r) denote the open and closed ball
of radius r ∈ R+ centered at p, respectively. Here,
we let R+ and R+ denote the positive and the
nonnegative real numbers, respectively. A polytope
is the convex hull of a finite point set. We let
Ve(Q) denote the set of vertices of a polytope Q,
and we emphasize that any vertex of Q is strictly
convex, i.e., v ∈ Ve(Q) if and only if there exists
u ∈ R

d such that (s−v) ·u > 0 for all s ∈ Q\{v}.

Proposition 2. Let S be a bounded set in R
d. The

following statements hold:

(i) CC(S) ∈ co(S) \ Ve(co(S));
(ii) if p ∈ S \ CC(S) and r ∈ R+ satisfy

S ⊂ B(p, r), then ]p,CC(S)[ has nonempty
intersection with B( p+q

2 , r
2 ) for all q ∈ S.

2.3 Proximity graphs and their properties

We introduce some concepts regarding proximity
graphs for point sets in R

d. We assume the reader
is familiar with the standard notions of graph
theory as defined in (Diestel, 2000, Chapter 1).
Given a vector space V, let F(V) be the collection
of finite subsets of V. We shall denote an element
of F(Rd) by P = {p1, . . . , pn} ⊂ R

d, where
p1, . . . , pn are distinct points in R

d. Let G(Rd) be
the set of undirected graphs whose vertex set is
an element of F(Rd). A proximity graph function
G : F(Rd) → G(Rd) associates to a point set P an
undirected graph with vertex set P and edge set
EG(P), where EG : F(Rd) → F(Rd × R

d) has the
property that EG(P) ⊆ P × P \ diag(P × P) for
any P. Here, diag(P ×P) = {(p, p) ∈ P ×P | p ∈
P}. In other words, the edge set of a proximity
graph depends on the location of its vertices.
General properties of proximity graphs and the
following examples are defined in (de Berg et
al., 1997; Jaromczyk and Toussaint, 1992; Cortés
et al., 2004b):

(i) the r-disk graph Gdisk(r), for r ∈ R+, with
(pi, pj) ∈ EGdisk(r)(P) if ‖pi − pj‖ ≤ r;

(ii) the Delaunay graph GD, with (pi, pj) ∈
EGD

(P) if the Voronoi regions of pi and pj

have non-empty intersection;
(iii) the Relative Neighborhood graph GRN, with

(pi, pj) ∈ EGRN
(P) if, for all pk ∈ P \{pi, pj},

pk 6∈ B(pi, ‖pi − pj‖)∩B(pj , ‖pi − pj‖);
(iv) the Gabriel graph GG, with (pi, pj) ∈ EGG

(P)

if, for all pk ∈ P\{pi, pj}, pk 6∈ B(
pi+pj

2 ,
‖pi−pj‖

2 );
(v) the Euclidean Minimum Spanning Tree GEMST,

which for each P, is a minimum-weight span-
ning tree of the complete graph (P,P × P \
diag(P × P)) whose edge (pi, pj) has weight
‖pi − pj‖.

If needed, we write Gdisk(P, r) to denote Gdisk(r)
at P. In what follows, we will consider the prox-
imity graphs GRN ∩disk(r) and GG ∩disk(r) defined
by the intersection of GRN and GG with Gdisk(r),
r ∈ R+, respectively. A different proximity graph
related to, but different from, the intersection
GD ∩disk(r) of GD with Gdisk(r) is the r-limited De-
launay graph GLD(r) (see (Cortés et al., 2004b)).

To each proximity graph function G, one can
associate the set of neighbors map NG : R

d ×
F(Rd) → F(Rd), defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪ {p})}.

Typically, p is a point in P, but the definition
is well-posed for any p ∈ R

d. Given p ∈ R
d, it

is convenient to define the map NG,p : F(Rd) →
F(Rd) by NG,p(P) = NG(p,P). Let G1 and G2 be
two proximity graph functions. We say that G1 is
spatially distributed over G2 if, for all p ∈ P,

NG1,p(P) = NG1,p

(

NG2,p(P)
)

.

It is clear that if G1 is spatially distributed over
G2, then G1 is a subgraph of G2, that is, G1(P) ⊂
G2(P) for all P ∈ F(Rd). The converse is in
general not true (for instance, the graph GD ∩disk

is a subgraph of Gdisk, but it is not spatially
distributed over it, see (Cortés et al., 2004b)).
Finally, we say that two proximity graph functions
G1 and G2 have the same connected components if,
for all point sets P, the graphs G1(P) and G2(P)
have the same number of connected components
consisting of the same vertices.

We conclude this section with some examples of
proximity graphs in R

2 and R
3; see Figs 1 and 2.
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Fig. 1. From left to right, r-disk, r-limited Delaunay, and

Euclidean Minimum Spanning Tree graphs in R
2 for a

configuration of 25 agents with coordinates uniformly

randomly generated within the square [−7, 7] ×

[−7, 7]. The parameter r is taken equal to 4.
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Fig. 2. From left to right, r-disk, Gabriel, and Relative

Neighborhood graphs in R
3 for a configuration of 25

agents with coordinates uniformly randomly gener-

ated within the square [−7, 7]× [−7, 7]× [−7, 7]. The

parameter r is taken equal to 4.



2.4 Proximity graphs over point tuples and spatially
distributed maps

The notion of proximity graph is defined for sets
of distinct points P = {p1, . . . , pn}. However,
we will often consider tuples of elements of R

d

of the form P = (p1, . . . , pn), i.e., ordered sets
of possibly coincident points. Let iF : (Rd)n →
F(Rd) be the natural immersion, i.e., iF(P ) is the
point set that contains only the distinct points
in P = (p1, . . . , pn). Note that iF is invariant
under permutations of its arguments and that the
cardinality of iF(p1, . . . , pn) is in general less than
or equal to n. In what follows, P = iF(P ) always
denotes the point set associated to P ∈ (Rd)n.

We can now extend the notion of proximity graphs
to this setting. Given a proximity graph function
G with edge set function EG , we define (with a
slight abuse of notation)

G = G ◦ iF : (Rd)n → G(Rd),

EG = EG ◦ iF : (Rd)n → F(Rd × R
d).

We define the set of neighbors map NG : (Rd)n →
(F(Rd))n as the function whose jth component is

NG,j(p1, . . . , pn) = NG(pj , iF(p1, . . . , pn)).

Note that coincident points in the tuple (p1, . . . , pn)
will have the same set of neighbors.

Given a set Y and a proximity graph function G, a
map T : (Rd)n → Y n is spatially distributed over
G if there exists T̃ : R

d×F(Rd) → Y , such that, for
all (p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,j(p1, . . . , pn)) ,

where Tj denotes the jth-component of T . In
other words, the jth component of a spatially
distributed map at (p1, . . . , pn) can be computed
with only the knowledge of the vertex pj and the
neighboring vertices in the graph G({p1, . . . , pn}).

3. RENDEZVOUS VIA PROXIMITY GRAPHS

In this section we state the model, the control
objective, the motion coordination algorithm, and
the properties of the resulting closed-loop system.

3.1 Modeling a network of robotic agents

We introduce the notions of robotic agent and of
network of robotic agents. Let n be the number
of agents in the network. The ith agent has
a processor with the ability of allocating and
operating on continuous and discrete states. The
ith agent occupies a location pi ∈ R

d, d ∈ N, and
it is capable of moving at any time m ∈ N, for any
unit period of time, according to

pi(m + 1) = pi(m) + ui. (1)

The control ui takes values in a bounded subset of
R

d. We assume that there is a maximum step size
sm ∈ R+ common to all agents, i.e., ‖ui‖ ≤ sm, for
all i ∈ {1, . . . , n}. The sensing and communication
model is the following. The processor of each
agent has access to its location, and transmits this
information to any other agent within a closed
disk of radius r ∈ R+. The communication radius
is the same for all agents.

3.2 The rendezvous motion coordination problem

We now state the control design problem for
the network of robotic agents. The rendezvous
objective is to achieve agreement over the location
of the agents in the network, that is, to steer
each agent to a common location. This objective is
to be achieved with the limited information flow
described in the model above. Typically, it will
be impossible to solve the rendezvous problem if
the agents are placed in such a way that they
do not form a connected communication graph.
Arguably, a good property of any algorithm for
rendezvous is that of maintaining some form of
connectivity between agents.

3.3 The Circumcenter Algorithm

Here is an informal description of the Circumcen-
ter Algorithm over a proximity graph G:

Each agent performs the following tasks: (i)
it detects its neighbors according to G; (ii) it
computes the circumcenter of the point set
comprised of its neighbors and of itself, and
(iii) it moves toward this circumcenter while
maintaining connectivity with its neighbors.

This algorithm is an extension of the one intro-
duced in (Ando et al., 1999). Let us clarify two
which proximity graphs are allowable and how
connectivity is maintained. First, we are allowed
to design motion coordination algorithms that
are spatially distributed over the r-disk graph
Gdisk(r), or more generally, over any proximity
graph G that is spatially distributed over Gdisk(r).
This is a consequence of our modeling assumption
that each agent can acquire the location of each
other agent within distance less than or equal to r.
Second, we maintain connectivity by restricting
the allowable motion of each agent. In particular,
it suffices to restrict the motion of each agent as
follows. If agents pi and pj are neighbors in G, then
their subsequent positions are required to belong
to B(

pi+pj

2 , r
2 ). If agent pi has its neighbors at

locations {q1, . . . , ql}, then its constraint set is

Cpi,r({q1, . . . , ql}) =
⋂

q∈{q1,...,ql}

B
(pi + q

2
,
r

2

)

.



Finally, for q0 and q1 in R
d, and for a convex closed

set Q ⊂ R
d with q0 ∈ Q, let λ(q0, q1, Q) denote

the solution of the strictly convex problem:

maximize λ

subject to λ ≤ 1, (1 − λ)q0 + λq1 ∈ Q.
(2)

This convex optimization problem has the follow-
ing interpretation: move along the segment from
q0 to q1 the maximum possible distance while
remaining in Q. Under the stated assumptions the
solution exists and is unique. We are now ready
to formally describe the algorithm.

Name: Circumcenter Algorithm over G
Goal: Solve the rendezvous problem
Assumes: (i) sm ∈ R+ maximum step size

(ii) r ∈ R+ communication radius
(iii) G spatially distributed prox-
imity graph over Gdisk(r)

Agent i ∈ {1, . . . , n} executes at each time
instant in N:

1: acquire {q1, . . . , qk} := NGdisk(r),pi
(P)

2: compute Mi := NG,pi
({q1, . . . , qk}) ∪ {pi}

3: compute Qi := Cpi,r(Mi\{pi})∩B(pi, sm)

4: compute λ∗
i := λ(pi,CC(Mi), Qi)

5: set ui := λ∗
i (CC(Mi) − pi), i.e.,

move from pi to (1−λ∗
i )pi +λ∗

i CC(Mi)

In what follows we refer to the Circumcenter
Algorithm over G as the map TG : (Rd)n → (Rd)n.

3.4 Correctness of the Circumcenter Algorithm

We now state the main convergence result, whose
proof is provided in (Cortés et al., 2004a).

Theorem 3. Let p1, . . . , pn be a network of robotic
agents in R

d, for d ∈ N, with maximum step size
sm ∈ R+ and communication radius r ∈ R+.
Let the proximity graph G be spatially distributed
over Gdisk(r) and have the same connected com-
ponents as Gdisk(r). Any trajectory {Pm}m∈N∪{0}

of TG has the following properties:

(i) if the locations of two agents belong to the
same connected component of Gdisk(Pk, r) for
some k ∈ N ∪ {0}, then they remain in the
same connected component of Gdisk(Pm, r)
for all m ≥ k;

(ii) there exists P ∗ = (p∗1, . . . , p
∗
n) ∈ (Rd)n with

the following properties: Pm → P ∗ as m →
+∞, and p∗i = p∗j or ‖p∗i − p∗j‖ > r for each
i, j ∈ {1, . . . , n};

(iii) if G = Gdisk(r), then there exists k ∈ N

such that Pm = P ∗ for all m ≥ k, that is,
convergence is achieved in finite time.

A consequence of Theorem 3(i) and (ii) is that, if
the locations of two agents belong to the same
connected component of G at some time, then
they converge to the same point in R

d. The
statements Theorem 3(i) and (ii) were originally
proved in (Ando et al., 1999) for the Circumcenter
Algorithm over Gdisk and for d = 2. This result
was extended to other control policies by (Lin et
al., 2003; Lin et al., 2004a) (still on the plane and
with Gdisk communication topology).

3.5 Robustness of the Circumcenter Algorithm

Here we characterize the robustness of the Cir-
cumcenter Algorithm with respect to link failures.
We provide no physical model to motivate the
occurrence for link failures; rather we analyze the
resulting closed-loop network.

Definition 4. A link failure in Gdisk(r) at P ∈
(Rd)n is said to occur at agent pi if (pi, pj) is
an edge in Gdisk(P, r) and the agent pi does not
detect agent pj . For P = iF(P ), we denote this
link failure by the directed edge (pi, pj) ∈ P × P.

Remark 5. Consider an application of the Cir-
cumcenter Algorithm over a proximity graph G as
described in the steps 1-5 above. If the link failure
(pi, pj) takes place at step 1, then the following
two events will ensue:

(i) if pj is a neighbor of pi according to G, then
pi looses the neighbor pj at step 2,

(ii) if pk is not a neighbor of pi according to G
because of the presence of pj , then pi gains
the neighbor pk at step 2.

After steps 1 and 2, the collection of neighbors
has been computed inaccurately. Nevertheless the
execution of steps 3 through 5 can continue. �

Definition 6. For P ∈ (Rd)n, let P = iF(P ). Let
G be a proximity graph spatially distributed over
Gdisk(r) and F ⊂ P×P be a set of link failures. Let

(i) Gdisk(P, r) 8 F be the directed graph with
vertex set P and with edge set Edisk(P, r)\F ;

(ii) G(P) 8 F be the directed graph with vertex
set P and with edges determined as follows;
the neighbors of p ∈ P are

NG,p

(

{q | (p, q) ∈ Edisk(P, r) \ F}
)

,

that is, the edges of G(P) 8 F arise from the
computation of G(P) with the link failures F ,
as described in Remark 5;

(iii) TG8F (P ) is the configuration obtained from
applying the Circumcenter Algorithm over G
(steps 1-5) at configuration P with the link
failures F at step 1.

Note that only a finite number of possible link fail-
ures can occur at any configuration. Consequently,



the set of possible directed graphs arising from
link failures is finite. We are now ready to state
the main robust convergence result, whose proof
is provided in (Cortés et al., 2004a).

Theorem 7. Let the network p1, . . . , pn and the
proximity graph G have the same properties as
in Theorem 3. Given P0 ∈ (Rd)n, consider the
two sequences {Pm}m∈N∪{0} and {Fm}m∈N∪{0}

defined recursively by

(i) Fm is a set of link failures in Gdisk(r) at Pm,
(ii) Pm+1 = TG8Fm

(Pm).

If there is ` ∈ N such that at least one graph of any
` consecutive elements of {G(Pm) 8 Fm}m∈N∪{0}

is strongly connected, then there exists p∗ ∈ R
d

such that Pm → (p∗, . . . , p∗) as m → +∞.

This theorem provides the first theoretical expla-
nation for the robustness behavior against sensor
and control errors of the Circumcenter Algorithm
over Gdisk(r) observed in (Ando et al., 1999).

Corollary 8. With the same notation as in Theo-
rem 7, if at each step m ∈ N, the proximity graph
G(Pm) is km-connected and if Fm contains at most
km−1 link failures, then there exists p∗ ∈ R

d such
that Pm → (p∗, . . . , p∗) as m → +∞.

Next, we analyze the performance of the Circum-
center Algorithm when each agent of the mobile
network at each time step is allowed to use a dif-
ferent proximity graph to compute its neighbors.

Definition 9. Let S be a set of proximity graph
functions that are spatially distributed over Gdisk(r).
The Circumcenter Algorithm over S is the Cir-
cumcenter Algorithm where step 2 is replaced by

2(a): choose any G ∈ S

2(b): compute Mi := NG,pi
({q1, . . . , qk}) ∪ {pi}.

The selection algorithm for each agent at each
execution of step 2(a) is left unspecified.

Corollary 10. Let the network p1, . . . , pn be as in
Theorem 3. Let S be a set of proximity graph func-
tions that are spatially distributed over Gdisk(r).
Assume there exists a proximity graph F with
the same connected components as Gdisk(r) such
that F ⊂ G, for all G ∈ S. Then any trajectory
{Pm}m∈N∪{0} of the Circumcenter Algorithm over
S has properties (i) and (ii) in Theorem 3.

For r ∈ R+, GRN ∩disk(r), GG ∩disk(r) and GLD(r)
are spatially distributed over Gdisk(r) and con-
tain GEMST ∩disk(r), which has the same con-
nected components as Gdisk(r) (cf. (Cortés et
al., 2004a)). As a consequence, any subset of

{GRN ∩disk(r),GG ∩disk(r),GLD(r)} satisfies the hy-
pothesis of Corollary 10.

4. SIMULATIONS

In order to illustrate the performance of our ren-
dezvous algorithms, we developed a library of ba-
sic geometric routines. The resulting Mathematica r©

packages PlanGeom.m (containing the 2-dimensional
routines) and SpatialGeom.m (containing the
3-dimensional routines) are freely available at
http://motion.csl.uiuc.edu.

The simulation run for the Circumcenter Algo-
rithm in the plane, d = 2, over GLD(r) with link
failures is illustrated in Figure 3. The 25 vehicles
have a maximum step size sm = .15, and a com-
munication radius r = 4. At each time step, a

Fig. 3. Evolution (in light gray) of the Circumcenter

Algorithm over the r-limited Delaunay graph GLD(r)

with link failures. The initial configuration of the

network is as in Figure 1.

set consisting of 18 numbers between 1 and 25 is
randomly selected, corresponding to the identities
of the agents where link failures occur. For each of
them, a randomly selected link failure in Gdisk(r)
is chosen. Since the identity of an agent might
appear more than once in the random set, more
than one link failure may occur at the same agent.
However, rendezvous is asymptotically achieved
according to Theorem 7 (usually after 80 steps).

The simulation run for the Circumcenter Algo-
rithm in space, d = 3, over the set of prox-
imity graphs {Gdisk(r),GG(r) ∩ Gdisk(r),GRN(r) ∩
Gdisk(r)} is illustrated in Figure 4. The 25 vehicles
have, as before, a maximum step size sm = .15,
and a communication radius r = 4. At each time
step, each agent randomly selects one of the prox-
imity graphs in {Gdisk(r),GRN∩disk(r),GG∩disk(r)}
and computes its corresponding set of neighbors
according to it. Then, it executes steps 3 through
5 of the Circumcenter Algorithm. Rendezvous is
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Fig. 4. Evolution (in light gray) of the Circumcenter Algorithm over {Gdisk(r),GG(r) ∩ Gdisk(r),GRN(r) ∩ Gdisk(r)}. The

initial configuration of the network is as in Figure 2. The right figure is a rotated view of the left figure by 45 degrees.

achieved in a finite number of steps (usually after
100 steps).

5. CONCLUSIONS

We have designed and analyzed a class of cir-
cumcenter algorithms over proximity graphs for
multi-agent rendezvous. Also, we have provided
a set of novel tools that we believe are impor-
tant in the design and analysis of general motion
coordination algorithms. Future directions of re-
search in motion coordination include the study
of increasingly realistic communication settings
(asynchronicity (Lin et al., 2004a), quantization,
media access and power control issues), the anal-
ysis of the performance and complexity of the al-
gorithms, and the formal design of other spatially
distributed coordination primitives.
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