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Abstract— This note studies correctness and robustness prop-
erties of motion coordination algorithms with respect to link
failures in the network topology. The technical approach
relies on computational geometric tools such as proximity
graphs, nondeterministic systems defined via set-valued maps
and Lyapunov stability analysis. The manuscript provides two
general results to help characterize the asymptotic behavior of
spatially distributed coordination algorithms. These results are
illustrated in rendezvous and flocking coordination algorithms.

I. INTRODUCTION

Problem motivation: In the context of multi-agent net-
works, there are at least three relevant scenarios that concern
robustness: (i) errors in sensor and/or communication data,
(ii) agents arrivals and departures, and (iii) failures in the
links of the network topology. Ideally, one would like to
develop motion coordination algorithms that are robust in
all three situations. Our main objective in this paper is
to develop tools to analyze and carefully characterize the
robustness properties of coordination algorithms with respect
to link failures in the network topology. A second objective
is to get insight into the features that make algorithms
robust, and hopefully be able to provide tools that will guide
researchers in the design of distributed algorithms that are
more robust to link failures. In the future, we plan to develop
tools that help study other notions of robustness.

Literature review: Recently, many works on cooperative
control and multi-agent systems have incorporated various
novel techniques to analyze the behavior of coordination al-
gorithms. An incomplete list include ergodic, stochastic and
circulant matrices [1], [2] from linear algebra, graph Lapla-
cians and algebraic connectivity [1], [3] from algebraic graph
theory, symmetries of differential equations [4], and LaSalle
Invariance Principles for nondeterministic systems [5], [6].
Recent research efforts at developing widely applicable
analysis tools for coordination algorithms include [7], [8]
on set-valued Lyapunov theory, [9] on formal models for
networks of robotic agents, and [10] on the role of network
topology in multi-agent formation. The stability analysis for
nondeterministic systems employed here is related to the
approach for discrete-time systems in [11].

Statement of contributions: This paper generalizes in a
systematic way the technical approach taken in [6] to analyze
the circumcenter algorithm for the rendezvous problem, and
further develops it to provide broadly applicable analysis
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tools for arbitrary coordination algorithms executed in dis-
crete time. The network topology is induced by the commu-
nication or sensing capabilities of the agents. In general, co-
ordination algorithms are not amenable to standard Lyapunov
stability techniques because they are defined by maps which
are discontinuous in the agents’ states. This discontinuity
is due to the sudden changes in neighboring relationships
resulting from the agents’ mobility. Here, we build on com-
putational geometric notions (proximity graphs) and analysis
tools (continuous and closed maps with power sets in their
domain and codomain) to model the synchronous execution
of (possibly discontinuous) coordination algorithms. The
idea is to subsume the network trajectories into a larger set
of trajectories corresponding to suitably-chosen set-valued
maps. Our first contribution is a systematic procedure to
define these set-valued maps, and a characterization of their
continuity properties (Propositions 3.2 and 4.1).

This approach makes possible to apply stability techniques
for nondeterministic dynamical systems in the analysis of
the asymptotic behavior of arbitrary cooperative strategies.
The generality provided by nondeterministic systems allows
to consider also executions subject to failures in the links
of the network topology. Under appropriate assumptions on
the network evolution, we provide two convergence results
that characterize the correctness and robustness properties of
general coordination algorithms (Propositions 4.2 and 4.3).
From a practical viewpoint, this procedure has no effect
on the implementation of the coordination algorithm itself
and, therefore, does not impose any additional complexity
or computational load on the actual network execution. To
illustrate the soundness of the approach, we apply the results
obtained to rendezvous and flocking coordination tasks. In
the rendezvous case, we study the robustness properties of
the circumcenter algorithm, and obtain a characterization (cf.
Theorem 5.2) stronger than the one in [6, Theorem 3.7]. In
the flocking case, we recover the results obtained in [1],
[7] for the average-heading algorithm (cf. Theorem 5.4). For
reasons of space, we omit the proof of all results.

Organization: Section II introduces tools from graph
theory and computational geometry. Section III discusses the
continuity and closedness properties of maps with power sets
in their domain and/or codomain. Section IV blends the pre-
vious two sections to synthesize analysis tools for correctness
and robustness of coordination algorithms. Section V uses
these tools in analyzing rendezvous and flocking algorithms.
Finally, we present our conclusions in Section VI.

Notation: Given a set X , P(X) (resp. F(X)) denotes the
collection of all subsets (resp. finite subsets) of X . Accord-
ingly, elements of F(Rd) are of the form {p1, . . . , pm} ⊂ R

d,



where p1, . . . , pm are distinct points in R
d. Let iF : Xn →

F(X) be the natural immersion, i.e., iF(P ) is the point set
that contains only the distinct points in P = (p1, . . . , pn) ∈
Xn. We denote diag(Xn) = {(x, . . . , x) ∈ Xn | x ∈ X}.

II. GRAPH-THEORETIC TOOLS

In this section, we review some standard notions of graph
theory and computational geometry, and introduce some
basic constructions that will be useful later.

A (directed) graph G is a pair G = (V,E), with E ⊂
V × V . An undirected graph G′ is a pair G′ = (V ′, E′),
with E′ ⊂ V ′ ×V ′ and the property that (i, j) ∈ E ′ implies
(j, i) ∈ E′. Under this definition, any undirected graph is
trivially a directed graph. The set of neighbors of v ∈ V is
defined as NG(v) = {w ∈ V | (w, v) ∈ E}.

A graph G1 = (V1, E1) is a subgraph of another graph
G2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2. Alternatively,
G2 is said to be a supergraph of G1. Formally, we set
G1 ⊆ G2. We denote by P(G) the set of all subgraphs of a
graph G. Note that any undirected graph has directed graphs
as subgraphs. Given a collection of graphs {G1, . . . , Gs},
with a slight abuse of notation, we denote

P({G1, . . . , Gs}) =

s⋃

k=1

P(Gk).

A. Proximity graphs

The notion of proximity graph will allow us later to
rigorously characterize the distributed character of a motion
coordination algorithm. Here, we introduce some concepts
regarding proximity graphs for point sets in a d-dimensional
space X . Let G(X) be the set of undirected graphs whose
vertex set is an element of F(X). A proximity graph G :
Xn → G(X) on X associates to a tuple P ∈ Xn an
undirected graph with vertex set iF(P ) and edge set E(P ),
where E : Xn → F(X ×X). In other words, the edge set of
a proximity graph depends on the location of its vertices. To
each proximity graph G, one associates the set of neighbors
map NG : Xn → F(X)n, defined by

NG,i(P ) = {pj ∈ iF(P ) | j 6= i and (pi, pj) ∈ E(P )} .

Examples of proximity graphs on R
d include the complete

graph, the r-disk graph, the Euclidean Minimum Spanning
Tree, the Delaunay graph, etc. see [12], [13], [6]. For
instance, the r-disk graph Gdisk(r) is defined by (pi, pj) ∈
EGdisk(r)(P ) if and only if ‖pi − pj‖ ≤ r.

B. Fixed-topology graphs associated with a proximity graph

Let G be a proximity graph on X . For each P ∈ Xn,
consider the undirected graph G(P ) = (iF(P ), E(P )). Let us
define the undirected graph GP = ({1, . . . , n}, EP ), where
(i, j) ∈ EP if and only if (pi, pj) ∈ E(P ). A point P ∈ Xn

is regular with respect to G if there exists a neighborhood U
of P in Xn such that GP ′ = GP for all P ′ ∈ U . Otherwise,
the point P is called singular with respect to G. Roughly
speaking, the singular points correspond to the configurations
where topology changes occur in the proximity graph.

Let FTG(P ) = {G undirected | ∃P ′
m → P with GPm

=
G} denote the set of undirected graphs associated with G

at P . Note that P is regular if and only if FTG(P ) = {GP }.
The set of fixed-topology (undirected) graphs associated
with G is then

FTG =
⋃

P∈Xn

FTG(P ) = {GP | P ∈ Xn} .

Because there is a finite number of graphs with vertex set
{1, . . . , n}, the set FTG is finite.

In the presence of link failures, an agent located at pi

might receive information from (or might detect) an agent
at pj , and instead, the agent at pj might not receive informa-
tion from (or might not detect) the agent at pi. The effective
interaction topology is hence best described as a directed
graph. This is the reason why we define P(FTG) as the set of
fixed-topology (directed) graphs with link failures associated
with G. Note that

P(FTG) =
⋃

P∈Xn

P(GP ).

Clearly FTG ⊂ P(FTG). Moreover, since P(G) is finite for
each G ∈ FTG , then P(FTG) is also finite.

III. MAPS WITH POWER SETS IN THEIR DOMAIN AND
CODOMAIN

This section deals with the continuity and closedness
properties of maps with power sets in their domain and
codomain. The need to consider maps which take sets as both
arguments and values arises from the fact that each agent
has in general a set of other agents as neighbors, and this
set changes discontinuously with the agents’ states. Along
the section, we state various definitions and results that link
together the treatment here with various notions related to
proximity graphs.

A. Continuity properties

Consider a map of the form F : X × P(Y ) → P(Z),
where X , Y and Z are Hausdorff topological spaces. We
say that F is upper semicontinuous at (x,A) ∈ X × P(Y )
if for all ε > 0, there exists δ > 0 such that, for x′ ∈ B(x, δ)
and A′ ⊂ A + B(0, δ), one has

F (x′, A′) ⊂ F (x,A) + B(0, ε).

Similarly, F is lower semicontinuous at (x,A) ∈ X ×P(Y )
if for all ε > 0, there exists δ > 0 such that, for x′ ∈ B(x, δ)
and A′ ⊂ A + B(0, δ), one has

F (x,A) ⊂ F (x′, A′) + B(0, ε).

The map F is continuous at (x,A) if it is both upper
and lower semicontinuous at (x,A). Note that for single-
valued maps, upper semicontinuity is equivalent to lower
semicontinuity, which in turn is also equivalent to continuity.
The same notions can also be defined for maps of the form
F : X × P(Y ) → U × P(Z), simply by requiring the
desired property on each component F1 : X × P(Y ) → U ,
F2 : X × P(Y ) → P(Z). It is not difficult to verify that
(i) the composition of upper semicontinuous maps is upper
semicontinuous, and (ii) the composition of an upper semi-
continuous map with a lower semicontinuous map is also



lower semicontinuous. As a consequence, the composition
of continuous maps is also continuous.

Fixed-topology graphs give naturally rise to set of neigh-
bors maps which are continuous, as stated next.

Lemma 3.1: For a directed graph G = ({1, . . . , n}, E)
and a set X , the map EvG : Xn → F(X)n whose ith com-
ponent is P 7→ P (NG(i)) = {pj ∈ iF(P ) | pj ∈ NG(i)}, for
i ∈ {1, . . . , n}, is continuous.

B. Closedness properties

We say that T : X → P(Y ) is closed at x ∈ X if for all
pairs of convergent sequences xm → x and ym → y such
that ym ∈ T (xm), one has that y ∈ T (x). In particular, every
continuous map T : X → Y at x ∈ X is closed at x ∈ X .
The map T is closed at A ⊂ X if it is closed at x, for all
x ∈ A. The notions of upper semicontinuity and closedness
are in general different. However, if A ⊂ X is closed and T

is bounded on a neighborhood of A, then T is closed at A

if and only if T is upper semicontinuous at A (see [14]).
Proposition 3.2: Given two Hausdorff topological spaces

X and Y , let T : X → P(Y ) be a set-valued map and
x ∈ X . Assume there exists a neighborhood U of x in X

and functions f1, . . . , fs : U ⊂ X → Y continuous at x

such that T (x′) = {f1(x
′), . . . , fs(x

′)} for all x′ ∈ U . Then
T is closed at x.

The following result readily follows from Proposition 3.2.
Corollary 3.3: Given two topological spaces X and Y ,

let f1, . . . , fs : X → Y be continuous functions. Then
the set-valued map T : X → P(Y ) defined by T (x) =
{f1(x), . . . , fs(x)} is closed.

C. Spatially distributed maps

Given a proximity graph G on X , and a set Y , a map
T : Xn → Y n is spatially distributed over G if there exist
a map T̃ : X × F(X) → Y , with the property that, for all
(p1, . . . , pn) ∈ Xn and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,j(p1, . . . , pn)) ,

where Tj denotes the jth-component of T . We refer to T̃

as the map associated to T for G. In other words, the jth
component of a spatially distributed map at (p1, . . . , pn) can
be computed with only the knowledge of the vertex pj and
the neighboring vertices in the graph G(p1, . . . , pn).

D. Trajectories of set-valued maps

Let T : X → P(X) have the property that T (x) 6= ∅ for
all x ∈ X . A trajectory of T is a sequence {xm}m∈N0

⊂ X

with the property that

xm+1 ∈ T (xm) , m ∈ N0 .

In other words, given any initial x0 ∈ X , a trajectory of T is
computed by recursively setting xm+1 equal to an arbitrary
element in X(pm). A set C ⊂ X is weakly positively
invariant with respect to T if, for any x0 ∈ C, there exists
x ∈ T (x0) such that x ∈ C. A point x0 is said to be a fixed
point of T if x0 ∈ T (x0).

Lemma 3.4: Let T : X → P(X) be a closed map with
non-empty values. The ω-limit set of any bounded trajectory
{xm}m∈N0

of T is positively invariant with respect to T .

A function V : X → R is non-increasing along T : X →
P(X) on A ⊂ X if V (x′) ≤ V (x) for all x ∈ A and x′ ∈
T (x). We are ready to state the following result (see [6]).

Theorem 3.5: (LaSalle Invariance Principle for closed
set-valued maps): Let T : X → P(X) be a closed set-valued
map on W ⊂ X and let V : X → R be a continuous func-
tion non-increasing along T on W . Assume the trajectory
{xm}m∈N0

of T takes values in W and is bounded. Then
there exists c ∈ R such that xm −→ M ∩V −1(c), where M

denotes the largest weakly positively invariant set contained
in {x ∈ W | ∃x′ ∈ T (x) such that V (x′) = V (x)}.

In general, the constant c in Theorem 3.5 depends on the
specific trajectory of T .

IV. SYNCHRONOUS EXECUTIONS OF COORDINATION
ALGORITHMS

In this section, we begin by introducing the notion of
network of robotic agents. Next, we define what a syn-
chronous execution of a motion coordination algorithm by
the network of robotic agents is. Then we associate to
a spatially distributed coordination algorithm various set-
valued maps that serve to model its possible executions.
Finally, we build on the tools presented in the previous
sections to provide correctness and robustness results for
general motion coordination algorithms.

Let us begin by introducing the notions of robotic agent
and of network of robotic agents. Let n be the number
of agents in the network. Each agent has the following
sensing, computation, communication, and motion control
capabilities. The ith agent has a processor with the ability
of allocating continuous and discrete states and performing
operations on them. The ith agent’s state pi belongs to a
d-dimensional topological space X , d ∈ N, i.e., pi ∈ X .
Typically, X corresponds to the Euclidean space. The agent
can change its state at any time m ∈ N, for any unit period
of time, according to the discrete-time control system

pi(m + 1) = dyn(pi(m), ui), (1)

where dyn : X × U → X and the control ui takes
values in a bounded subset U of R

d. The sensing and
communication model is determined by a proximity graph G
over X . The processor of each agent has access to its
state, and transmits this information to any other neighboring
agent in the graph G. Equivalently, we shall consider groups
of robotic agents without communication capabilities, but
instead capable of measuring the relative state of each other
neighboring agent in the graph G.

A coordination algorithm for a network of robotic agents
is a map f : Xn → Xn. We denote by fi : Xn → X the ith
component of f . We say that f is executable by the network
of robotic agents if for each p ∈ X , there exist u1, . . . , un ∈
U such that dyn(p, ui) = fi(p), i ∈ {1, . . . , n}. We
distinguish between the absence and presence, respectively,
of link failures in the network topology. A synchronous
execution of the coordination algorithm f by the network
of robotic agents is a trajectory of f , i.e.,

pi(m + 1) = fi(p1(m), . . . , pn(m)), i ∈ {1, . . . , n}. (2)



A convenient short-hand notation is given by the sequence
{Pm = fm(P0)}m∈N0

, with P0 = (p1(0), . . . , pn(0)).
Provided the map f is spatially distributed over the proximity
graph G –which we assume in the following– the coordina-
tion algorithm is implementable over the robotic network.

Let us now introduce the notion of synchronous execution
with link failures of f . Let f̃ be the map associated to f

for G. For each G ∈ P(FTG), consider the map fG : Xn →
Xn whose jth component is given by

fG,j(p1, . . . , pn) = f̃(pj , P (NG(j))).

In particular, note that f(P ) = fGP
(P ) for all P ∈ Xn. A

synchronous execution of the coordination algorithm f with
link failures by the network of robotic agents is a sequence
{Pm}m∈N0

with the property that for each m ∈ N0, there
exists Gm ∈ P(GPm

) such that

Pm+1 = fGm
(Pm). (3)

We refer to {Gm}m∈N0
as the graphs with link failures asso-

ciated to the execution {Pm}m∈N0
. Note that a synchronous

execution of f as defined in (2) is simply a synchronous
execution of f with (no) link failures as defined in (3) with
Gm = GPm

for all m ∈ N0.

A. Closed set-valued maps associated with a spatially dis-
tributed coordination algorithm

Set-valued maps provide a flexible tool to model exe-
cutions of coordination algorithms and help establish their
correctness and robustness properties. A relevant instance
of this assertion is given by the following situation: often
times, a motion coordination algorithm is not continuous in
the agents’ position because of the discontinuous changes in
neighboring relationships of the network topology. If this is
the case, one can invoke various closed set-valued maps in
the stability analysis of the executions of the coordination
algorithm. This is what we establish next.

Given a coordination algorithm f : Xn → Xn, spatially
distributed over a proximity graph G, consider

• the set-valued map Tf : Xn → P(Xn) defined by

Tf (P ) = {fG(P ) | G ∈ FTG(P )} ,

• for ` ∈ N and S ⊂ P(FTG)`, the set-valued map Tf,S :
Xn → P(Xn)

Tf,S(P ) = {fG`
◦ · · · ◦ fG1

(P ) | (G1, . . . , G`) ∈ S} .

The difference between these maps lies in the fact that the
number of fixed-topology graphs can change with P in the
definition of Tf , whereas it remains fixed for all P ∈ Xn

in the definition of Tf,S . We will show in Section IV-
B that, depending on the properties of the coordination
algorithm, each of these set-valued maps will play a key
role in characterizing the correctness and robustness of its
executions.

Proposition 4.1: Let f : Xn → Xn be spatially dis-
tributed over a proximity graph G. Assume the map asso-
ciated to f for G is continuous. Then

(i) Tf is closed;
(ii) for any ` ∈ N and S ⊂ P(FTG)`, Tf,S is closed.

B. Correctness and robustness analysis of coordination al-
gorithms

Here, we leverage on the set-valued map approach pre-
sented in Section IV-A. The main idea is that, by associ-
ating suitable set-valued maps (i.e., Tf or Tf,S , for some
S ⊂ P(FTG)`) to the coordination algorithm, we will be
able to provide theoretical guarantees of its correctness and
robustness properties. From a practical point of view, this
“proof technique” has no effect on the actual implementation
of the coordination algorithm itself.

We start by stating a useful correctness result.
Proposition 4.2 (Correctness): Let f : Xn → Xn be

spatially distributed over a proximity graph G. Assume the
map associated to f for G is continuous, and let V : Xn → R

be continuous and non-increasing along f . Let P0 ∈ Xn

and assume the sequence {Pm = fm(P0)}m∈N0
is bounded.

Then there exists c ∈ R such that
(i) Pm −→ M1 ∩ V −1(c), where M1 denotes the largest

weakly positively invariant set with respect to Tf con-
tained in {P ∈ Xn | ∃P ′ ∈ Tf (P ) such that V (P ′) =
V (P )}.

(ii) for S ⊂ P(FTG) such that {Pm}m∈N0
is a trajectory

of Tf,S , then Pm −→ M2 ∩ V −1(c), where M2

denotes the largest weakly positively invariant set with
respect to Tf,S contained in {P ∈ Xn | ∃P ′ ∈
Tf,S(P ) such that V (P ′) = V (P )}.

It is important to realize that the choice of S = FTG is
always possible in the statement of Proposition 4.2(ii) (given
that any trajectory of f is in particular a trajectory of the set-
valued map Tf,FTG

). In general, however, the smaller the set
S, the smaller the corresponding invariant set M , and the
tighter the resulting convergence results on f .

Note also that to establish the result in Proposition 4.2, it
is enough to require that the function V : Xn → R is non-
increasing with respect to f , i.e., it is not necessary that V

is non-increasing with respect to Tf or Tf,S . Under stronger
assumptions on the evolution of V with respect to the fixed-
topology graphs associated with the proximity graph G, one
can establish an important robustness result.

Proposition 4.3 (Robustness): Let f : Xn → Xn be
spatially distributed over a proximity graph G. Assume the
map associated to f for G is continuous. Let ` ∈ N and
S ⊂ P(FTG)`. For P0 ∈ Xn, let {Pm}m∈N0

be a bounded
synchronous execution of f with link failures, i.e., Pm+1 =
fGm

(Pm) for m ∈ N0 and Gm ∈ P(GPm
), with the property

that any ` consecutive graphs with link failures belong to
S, i.e., (Gm, . . . , Gm+`−1) ∈ S for all m ∈ N0. Assume
V : Xn → R is a continuous function non-increasing along
Tf,S . Then there exists c0, . . . , c`−1 ∈ R such that

Pm −→ M ∩ (V −1(c0) ∪ · · · ∪ V −1(c`−1)),

where M denotes the largest weakly positively
invariant set with respect to Tf,S contained in
{P ∈ Xn | ∃P ′ ∈ Tf,S(P ) such that V (P ′) = V (P )}.

V. APPLICATIONS TO SAMPLE PROBLEMS

In this section we illustrate the suitability of the tools de-
veloped in the previous sections to characterize the behavior
of mobile networks executing coordination algorithms.



A. Rendezvous

Here, we consider the rendezvous coordination task orig-
inally introduced in [15], and later studied in [16], [17], [6].
Roughly speaking, rendezvous consists of achieving agree-
ment over the location of the agents. Consider a network of
robotic agents evolving on X = R

d, d ∈ N, with dynamics
pi(m + 1) = pi(m) + ui, for i ∈ {1, . . . , n}. Here, we first
introduce the circumcenter coordination algorithm fCC, we
study some of its properties, and then we characterize its
asymptotic convergence features.

1) Circumcenter coordination algorithm: In order to de-
fine the circumcenter algorithm, we need to introduce some
preliminary notation. For q0 and q1 in R

d, and for a convex
closed set Q ⊂ R

d with q0 ∈ Q, let λ(q0, q1, Q) denote the
solution of the strictly convex problem:

maximize λ

subject to λ ≤ 1, (1 − λ)q0 + λq1 ∈ Q.
(4)

Note that this convex optimization problem has the following
interpretation: move along the segment from q0 to q1 the
maximum possible distance while remaining in Q. The solu-
tion exists and is unique. Moreover, it depends continuously
on the data q0, q1 and Q. Another piece of useful notation is
the following. For p ∈ R

d, A ∈ F(Rd) and r ∈ R+, define

Cp,r(A) =
⋂

q∈A

B
(pi + q

2
,
r

2

)
.

We are now ready to define the circumcenter coordination
algorithm. Let r ∈ R+, and let G be a proximity graph
spatially distributed over Gdisk(r). Define the map fCC :
(Rd)n → (Rd)n with ith component given by

fCC,i(p1, . . . , pn) = (1 − λ∗
i ) pi + λ∗

i CC(Mi),

where λ∗
i = λ(pi,CC(Mi), Cpi,r(NG,pi

(P))) and Mi =
NG,pi

(P)∪{pi}. Here CC(S) denotes the circumcenter of
S (the center of the smallest-radius sphere that encloses S).

2) Properties of the coordination algorithm: By definition
of fCC, if ‖pi − pj‖ ≤ r, then fCC,i(P ), fCC,j(P ) ∈
B

(pi+pj

2 , r
2

)
, which in particular implies that ‖fCC,i(P ) −

fCC,j(P )‖ ≤ r. Therefore, fCC preserves neighboring rela-
tionships in the graph Gdisk(r)(P ).

Another important property of fCC is that it is spatially
distributed over the proximity graph G. The associated map
f̃CC : R

d × F(Rd) → R
d is given by

f̃CC(p,A) = (1 − λ∗) p + λ∗ CC(A ∪ {p}),

where λ∗ = λ(p,CC(A∪{p}), Cp,r(p,A)(A)) and r(p,A) =
max {r, ‖p − q‖ | q ∈ A}. Given that the circumcenter of a
finite set of points depends continuously on their location,
one can show that the function f̃CC is continuous.

A final property of interest in the discussion is the fact that
the map fCC,G associated with each G ∈ P(FTG) verifies

co(fCC,G(P )) ⊂ co(P ), P ∈ (Rd)n. (5)

Here, co(S) is the convex hull of S. Equation (5) is a con-
sequence of the fact that for S ⊂ R

d finite, the circumcenter
satisfies CC(S) ∈ co(S) \ V (co(S)), where V (Q) denotes
the set of strictly convex vertices of the polytope Q ⊂ R

d.

3) Correctness and robustness characterization: Consider
the function Vdiam : (Rd)n → R defined by
Vdiam(p1, . . . , pn) = max {‖pi − pj‖ | i, j ∈ {1, . . . , n}} .

This function is continuous. Moreover, from the discussion in
Section V-A.2, we deduce that Vdiam is non-increasing along
TfCC,P(FTG). The following result characterizes the correct-
ness properties of the circumcenter coordination algorithm
(see [15], [16], [6]).

Proposition 5.1: Let r ∈ R+, and consider the prox-
imity graph Gdisk(r). Then, for any synchronous execution
{Pm}m∈N0

of fCC such that Gdisk(r)(Pm0
) is connected for

some m0 ∈ N0, there exists (p∗, . . . , p∗) ∈ diag((Rd)n)
such that Pm → (p∗, . . . , p∗) as m → +∞.

Proposition 5.1 is a corollary of the next, stronger result.
This theorem builds on the tools introduced in Section IV
to establish the robustness properties of the circumcenter
coordination algorithm.

Theorem 5.2: Let r ∈ R+, and consider the proximity
graph Gdisk(r). Let {Pm}m∈N0

be a synchronous execution
with link failures of fCC with the following property: there
exits ` ∈ N such that the union of any ` consecutive graphs
with link failures of {Pm}m∈N0

is strongly connected. Then,
there exists (p∗, . . . , p∗) ∈ diag((Rd)n) such that Pm →
(p∗, . . . , p∗) as m → +∞.

Fig. 1 illustrates the result in Theorem 5.2.

Fig. 1. Synchronous execution of fCC with link failures over Gdisk(r). The
15 vehicles have a communication radius r = 4 and are initially deployed
over the square [−7, 7]× [−7, 7]. At each time step, two randomly selected
agents fail and are not able to detect any of its neighbors. Nevertheless,
rendezvous is asymptotically achieved (cf. Theorem 5.2).

Remark 5.3: For a synchronous execution with no link
failures, note that if Gdisk(r)(Pm0

) is connected, then
Gdisk(r)(Pm) is connected for m ≥ m0 (since fCC preserves
neighboring relationships, cf. Section V-A.2). Therefore,
Theorem 5.2 with ` = 1 implies Proposition 5.1. Both results
actually are also valid for the circumcenter algorithm exe-
cuted over any proximity graph which is spatially distributed
over Gdisk(r) and has the same connected components, but
here we only consider Gdisk(r) for simplicity. •

B. Flocking

Here, we consider the average-heading coordination al-
gorithm first analyzed in [1] and later in [7], [8] (see



also [18]). Under some assumptions, this algorithm achieves
flocking, i.e., agreement upon the direction of motion of
the agents. We show how the application of the tools in-
troduced above yields similar convergence results. Consider
a network of robotic agents evolving on X = R

2 × S
1

(position in R
2 and orientation in S

1, respectively) with
dynamics (pi(m + 1), θi(m + 1)) = (pi(m), θi(m)) + ui,
for i ∈ {1, . . . , n}. Here, we first define the average-heading
coordination algorithm fAve, we study some of its properties,
and then we characterize its asymptotic convergence features.

1) Average-heading coordination algorithm: Let G be a
proximity graph on R

2 × S
1. Define the map fAve : (R2 ×

S
1)n → (R2 × S

1)n with ith component given by

fAve,i((p1, θ1), . . . , (pn, θn)) =
(
pi + (cos θi, sin θi),

Average
(
θi ∪ {θj | (pj , θj) ∈ NG(pi, θi)}

))
.

For simplicity, we will use the short-hand notation (P,Θ) =
((p1, θ1), . . . , (pn, θn)) ∈ (R2 × S

1)n.
2) Properties of the coordination algorithm: An impor-

tant property of fAve is that it is spatially distributed over the
proximity graph G. The associated map f̃Ave : (R2 × S

1) ×
F(R2 × S

1) → R
2 × S

1 is given by

f̃Ave((p, θ), A) =
(
p + (cos θ, sin θ),

Average
(
θ ∪

{
θ̄ | (p̄, θ̄) ∈ A

}))
.

Clearly, the function f̃Ave is continuous.
3) Correctness and robustness characterization: Consider

the function Vmax-min : (S1)n → R defined by

Vmax-min(θ1, . . . , θn) =

max {θi | i ∈ {1, . . . , n}} − min {θi | i ∈ {1, . . . , n}} .

This function is continuous, and so is the composition
Vmax-min ◦ π(S1)n , with π(S1)n : (R2 × S

1)n → (S1)n the
natural projection. From the definition of fAve, we deduce
that Vmax-min ◦ π(S1)n is non-increasing along TfAve,P(FTG).
With these ingredients and the tools presented above, one is
ready to characterize the correctness and robustness proper-
ties of the average-heading coordination algorithm as in [1],
[7], [8]. We include here the proof for reference.

Theorem 5.4: Let G be a proximity graph on R
2 × S

1.
Let {(Pm,Θm)}m∈N0

be a synchronous execution with link
failures of fAve with the following property: there exits ` ∈ N

such that the union of any ` consecutive graphs with link
failures of {(Pm,Θm)}m∈N0

is strongly connected. Then,
there exists (θ∗, . . . , θ∗) ∈ diag((Rd)n) such that Θm →
(θ∗, . . . , θ∗) as m → +∞.

VI. CONCLUSIONS

We have developed some promising analysis tools for the
characterization of the correctness and robustness proper-
ties of motion coordination algorithms. The technical ap-
proach has built on computational geometric tools (proxim-
ity graphs), nondeterministic dynamical systems (set-valued
maps) and Lyapunov stability analysis (LaSalle Invariance
Principles). The results obtained here have been applied to
coordination algorithms achieving rendezvous and flocking.

Future work will be devoted to the establishment of similar
convergence properties of other cooperative strategies, the
application of the results to the design of robust coordination
algorithms for deployment and coverage, the exploration of
the applicability of this approach to asynchronous execu-
tions, and the development of similar tools to characterize
robustness to agents departures and arrivals.
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