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Abstract

This paper introduces the normalized and signed gradient dynamical systems associated with a differentiable function. Ex-
tending recent results on nonsmooth stability analysis, we characterize their asymptotic convergence properties and identify
conditions that guarantee finite-time convergence. We discuss the application of the results to consensus problems in multi-
agent systems and show how the proposed nonsmooth gradient flows achieve consensus in finite time.
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1 Introduction

Consider the gradient flow ẋ = − grad(f)(x) of a differ-
entiable function f : R

d → R, d ∈ N. It is well known
(see e.g. [13]) that the minima of f are stable equilib-
ria of this system, and that, if the level sets of f are
bounded, then the trajectories converge asymptotically
to the set of critical points of f . Gradient dynamical
systems are employed in a wide range of applications,
including optimization, parallel computing and motion
planning. In robotics, potential field methods are used
to autonomously navigate a robot in a cluttered envi-
ronment. Gradient algorithms enjoy many features: they
are naturally robust to perturbations and measurement
errors, amenable to asynchronous implementations, and
admit efficient numerical approximations.

In this note, we provide an answer to the following ques-
tion: how could one modify the gradient vector field
above so that the trajectories converge to the critical
points of the function in finite time? - as opposed to over
an infinite-time horizon. There are a number of settings
where finite-time convergence is a desirable property.
We study this problem with the aim of designing gra-
dient coordination algorithms for multi-agent systems
that achieve the desired task in finite time.

Our answer to the question above is the flows

ẋ = − grad(f)(x)

‖ grad(f)(x)‖2
, ẋ = − sgn(grad(f)(x)),
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where ‖·‖2 denotes the Euclidean distance and sgn(x) =
(sgn(x1), . . . , sgn(xd)). Using tools from nonsmooth sta-
bility analysis, we show that, under some assumptions
on f , both systems are guaranteed to achieve the set of
critical points in finite time.

Literature review. Guidelines on how to design dy-
namical systems for optimization purposes, with a
special emphasis on gradient systems, are described
in [12]. The book [2] thoroughly discusses gradient
descent flows in distributed computation in settings
with fixed-communication topologies. Nonsmooth anal-
ysis studies the notion and computational properties
of the generalized gradient [4]. Tools for establishing
stability and convergence properties of nonsmooth dy-
namical systems via Lyapunov functions are presented
in [1, 5, 6, 19] (see also references therein). Finite-time
discontinuous feedback stabilizers for a class of planar
systems are proposed in [18]. Finite-time stability of
continuous autonomous systems is rigorously studied
in [3]. The reference [7] develops finite-time stabilization
strategies based on time-varying feedback. Previous
work on motion coordination of multi-agent systems
has proposed cooperative algorithms based on gradient
flows to achieve tasks such as cohesiveness [11, 14, 20],
deployment [8, 9] and consensus [15, 16, 17], The dis-
tributed algorithms in these works achieve the desired
coordination task over an infinite-time horizon.

Statement of contributions. In this paper we intro-
duce the normalized and signed gradient descent flows
associated to a differentiable function. We character-
ize their convergence properties via nonsmooth stability
analysis. We also identify general conditions under which
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these flows reach the set of critical points of the function
in finite time. To do this, we extend recent results on the
convergence properties of general nonsmooth dynamical
systems via locally Lipschitz and regular Lyapunov func-
tions (e.g. [1, 8, 19]). In particular, we develop two novel
results involving second-order information on the evo-
lution of the Lyapunov function to establish finite-time
convergence. These results are not restricted to gradient
flows, and can indeed be used in other setups with dis-
continuous vector fields and locally Lipschitz functions.
We discuss in detail the application of these results to
network consensus problems. We propose two coordina-
tion algorithms based on the Laplacian of the network
graph that achieve consensus in finite time. The normal-
ized gradient descent of the Laplacian potential is not
distributed over the network graph and achieves average-
consensus, i.e., consensus on the average of the initial
agents’ states. The signed gradient descent of the Lapla-
cian potential is distributed over the network graph and
achieves average-max-min-consensus, i.e., consensus on
the average of the maximum and the minimum values
of the initial agents’ states. We also consider networks
with switching connected network topologies.

Organization. Section 2 introduces differential equa-
tions with discontinuous right-hand sides and presents
various nonsmooth tools for stability analysis. Section 3
introduces the normalized and signed versions of the
gradient descent flow of a function and characterizes
their convergence properties. Conditions are given un-
der which these flows converge in finite time. Section 4
discusses the application of the results to network con-
sensus problems. Section 5 presents our conclusions.

Notation. The set of strictly positive natural (resp.
real) numbers is denoted by N (resp. R+). For d ∈ N,
e1, . . . , ed is the standard orthonormal basis of R

d. For
x ∈ R

d, let sgn(x) = (sgn(x1), . . . , sgn(xd)) ∈ R
d, let

x′ be the transpose of x, and let ‖x‖1 and ‖x‖2 be the
1-norm and the 2-norm of x, resp. For x, y ∈ R

d, let
x · y be the inner product. Let 1 = (1, . . . , 1)′ ∈ R

d.
For S ∈ R

d, let co(S) denote its convex closure. De-
fine also diag((Rd)n) =

{
(x, . . . , x) ∈ (Rd)n | x ∈ R

d
}

for n ∈ N. Given a positive semidefinite d × d-matrix
A, let H0(A) ⊂ R

d denote the eigenspace correspond-
ing to 0 (if A is positive definite, set H0(A) = {0}).
We denote by πH0(A) : R

d → H0(A) the orthogonal
projection onto H0(A). Let λ2(A) and λd(A) be the
smallest non-zero and greatest eigenvalue of A, resp.,
i.e. λ2(A) = min {λ | λ > 0 and λ eigenvalue of A} and
λd(A) = max {λ | λ eigenvalue of A}. It is easy to see

x′Ax ≥ λ2(A) ‖x − πH0(A)(x)‖2
2, x ∈ R

d. (1)

2 Nonsmooth stability analysis

This section introduces discontinuous differential equa-
tions and presents various nonsmooth tools to analyze
their stability properties. We present two novel results
on the second-order evolution of locally Lipschitz func-
tions and on finite-time convergence.

2.1 Discontinuous differential equations

For differential equations with discontinuous right-hand
sides we understand the solutions in terms of differential
inclusions following [10]. Let F : R

d → 2R
d

be a set-
valued map. Consider the differential inclusion

ẋ ∈ F (x) . (2)

A solution to this equation on an interval [t0, t1] ⊂ R

is defined as an absolutely continuous function x :
[t0, t1] → R

d such that ẋ(t) ∈ F (x(t)) for almost all
t ∈ [t0, t1]. Now, consider the differential equation

ẋ(t) = X(x(t)) , (3)

where X : R
d → R

d is measurable and essentially locally
bounded [10]. We understand the solution of (3) in the
Filippov sense. For each x ∈ R

d, consider the set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(Bd(x, δ) \ S)} , (4)

where µ denotes the usual Lebesgue measure in R
d. In-

tuitively, this set is the convexification of the limits of
the values of the vector field X around x. A Filippov so-
lution of (3) on an interval [t0, t1] ⊂ R is defined as a
solution of the differential inclusion

ẋ ∈ K[X](x) . (5)

Since the set-valued map K[X] : R
d → 2R

d

is upper
semicontinuous with nonempty, compact, convex values
and locally bounded, the existence of Filippov solutions
of (3) is guaranteed (cf. [10]). A maximal solution is a
Filippov solution whose domain of existence is maximal,
i.e., cannot be extended any further. A set M is weakly
invariant (resp. strongly invariant) for (3) if for each
x0 ∈ M , M contains a maximal solution (resp. all max-
imal solutions) of (3).

2.2 Stability via nonsmooth Lyapunov functions

Let f : R
d → R be locally Lipschitz and regular (see [4]

for detailed definitions). From Rademacher’s Theo-
rem [4], we know that locally Lipschitz functions are
differentiable a.e. Let Ωf ⊂ R

d denote the set of points
where f fails to be differentiable. The generalized gradi-
ent of f at x ∈ R

d (cf. [4]) is defined by

∂f(x) = co
{

lim
i→+∞

df(xi) | xi → x , xi 6∈ S ∪ Ωf

}
,

where S can be any set of zero measure. Note that if f
is continuously differentiable, then ∂f(x) = {df(x)}.
Given a locally Lipschitz function f , the set-valued Lie
derivative of f with respect to X at x (cf. [1, 8]) is

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) with

ζ · v = a , ∀ζ ∈ ∂f(x)}.
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For x ∈ R
d, L̃Xf(x) is a closed and bounded interval in

R, possibly empty. If f is continuously differentiable at x,

then L̃Xf(x) = {df · v | v ∈ K[X](x)}. If, in addition, X

is continuous at x, then L̃Xf(x) = {LXf(x)}, the usual
Lie derivative of f in the direction of X at x. The next
result, from [1], shows that this Lie derivative measures
the evolution of a function along the Filippov solutions.

Theorem 1 Let x : [t0, t1] → R
d be a Filippov solution

of (3). Let f be a locally Lipschitz and regular function.
Then t 7→ f(x(t)) is absolutely continuous, d

dt

(
f(x(t))

)

exists a.e. and d
dt

(f(x(t))) ∈ L̃Xf(x(t)) a.e.

Sometimes, we can also look at second-order informa-
tion for the evolution of a function along the Filippov
solutions. This is what we prove in the next result.

Proposition 2 Let x : [t0, t1] → R
d be a Filippov so-

lution of (3). Let f be a locally Lipschitz and regular

function. Assume that L̃Xf : R
d → 2R is single-valued,

i.e., it takes the form L̃Xf : R
d → R, and assume it is

Lipschitz and regular. Then d2

dt2
(f(x(t))) exists a.e. and

d2

dt2
(f(x(t))) ∈ L̃X(L̃Xf)(x(t)) a.e.

PROOF. Applying Theorem 1 to f and L̃Xf ,
resp., we deduce that (i) t 7→ f(x(t)) is abso-

lutely continuous, and d
dt

(
f(x(t))

)
= L̃Xf(x(t))

a.e., and, (ii) t 7→ L̃Xf(x(t)) is absolutely continu-

ous, and d
dt

(
L̃Xf(x(t))

)
= L̃X(L̃Xf)(x(t)) a.e. Since

t 7→ L̃Xf(x(t)) is continuous, the expression

f(x(t)) = f(x(t0)) +

∫ t

t0

d

dt
(f(x(s))) ds

= f(x(t0)) +

∫ t

t0

L̃Xf(x(s))ds,

and the second fundamental theorem of calculus im-
plies that t 7→ f(x(t)) is continuously differentiable, and

therefore d
dt

(f(x(t))) = L̃Xf(x(t)) for all t. Now, us-

ing (ii), we conclude that t 7→ d
dt

(f(x(t))) is differen-

tiable a.e. and d2

dt2
(f(x(t))) ∈ L̃X(L̃Xf)(x(t)) a.e. •

The following result is a generalization of LaSalle princi-
ple for discontinuous differential equations (3) with non-
smooth Lyapunov functions. The formulation is taken
from [1], and slightly generalizes [19].

Theorem 3 (LaSalle Invariance Principle): Let f :
R

d → R be a locally Lipschitz and regular function.
Let x0 ∈ S ⊂ R

d, with S compact and strongly invari-

ant for (3). Assume that either max L̃Xf(x) ≤ 0 or

L̃Xf(x) = ∅ for all x ∈ S. Let ZX,f = {x ∈ R
d | 0 ∈

L̃Xf(x)}. Then, any solution x : [t0,+∞) → R
d of (3)

starting from x0 converges to the largest weakly invari-
ant set M contained in ZX,f ∩ S. Moreover, if the set
M is a finite collection of points, then the limit of all
solutions starting at x0 exists and equals one of them.

The following result is taken from [8].

Proposition 4 (Finite-time convergence with first-
order information): Under the same assumptions of The-
orem 3, further assume that there exists a neighborhood

U of ZX,f ∩S in S such that max L̃Xf ≤ −ε < 0 a.e. on
U \ (ZX,f ∩ S). Then, any solution x : [t0,+∞) → R

d

of (3) starting at x0 ∈ S reaches ZX,f ∩S in finite time.
Moreover, if U = S, then the convergence time is upper
bounded by (f(x0) − minx∈S f(x))/ε.

Often times, first-order information is inconclusive to as-
sess finite-time convergence. The next result uses second-
order information to arrive at a satisfactory answer.

Theorem 5 (Finite-time convergence with second-
order information): Under the same assumptions of

Theorem 3, further assume that (i) x ∈ R
d 7→ L̃Xf(x)

is single-valued, Lipschitz and regular; and (ii) there
exists a neighborhood U of ZX,f ∩ S in S such that

min L̃X(L̃Xf) ≥ ε > 0 a.e. on U \ (ZX,f ∩ S). Then,
any solution x : [t0,+∞) → R

d of (3) starting at x0 ∈ S
reaches ZX,f ∩S in finite time. Moreover, if U = S, then

the convergence time is upper bounded by −L̃Xf(x0)/ε.

PROOF. Since x ∈ R
d 7→ L̃Xf(x) is single-valued and

continuous, then ZX,f = {x ∈ R
d | L̃Xf(x) = 0} is

closed. Let x : [t0,+∞) → R
d be a solution of (3) start-

ing from x0 ∈ S \ ZX,f . We reason by contradiction.
Assume it does not exist T such that x(T ) ∈ ZX,f . By
Theorem 3, x(t) → M ⊂ ZX,f ∩ S when t → +∞, and
therefore there exists t∗ ≥ t0 with x(t) ∈ U for all t ≥ t∗.
Using Proposition 2 (cf. assumption (i)) combined with
assumption (ii), we write for g(t) = d

dt

(
f(x(t))

)
,

g(t) = g(t∗) +

∫ t

t∗

d

ds
g(s)ds ≥ g(t∗) + ε(t − t∗) , t > t∗.

Since x(t∗) 6∈ ZX,f by hypothesis, then g(t∗) < 0. Not-
ing that t 7→ g(t) is continuous, we deduce that there ex-

ists T ≤ t∗− g(t∗)
ε

such that g(T ) = 0, i.e., x(T ) ∈ ZX,f ,
which is a contradiction. The upper bound on the con-
vergence time can be deduced using similar arguments.•

3 Finite-time convergent gradient flows

Here, we formally introduce the normalized and signed
gradient flows of a differentiable function, and character-
ize their convergence properties. We build on Section 2
to identify conditions for finite-time convergence. Let

ẋ = − grad(f)(x)

‖ grad(f)(x)‖2
, (6a)

ẋ = − sgn(grad(f)(x)) . (6b)

Both equations have discontinuous right-hand sides.
Hence, we understand their solutions in the Filip-
pov sense. Note that the trajectories of (6a) and of
ẋ = − grad(f)(x) describe the same paths.
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Lemma 6 The Filippov set-valued maps associated with
the discontinuous vector fields (6a) and (6b) are

K
[ grad(f)

‖ grad(f)‖2

]
(x) =

co
{

lim
i→+∞

grad(f)(xi)

‖ grad(f)(xi)‖2

∣∣ xi → x, grad(f)(xi) 6= 0
}
,

K
[
sgn(grad(f))

]
(x) =

{
v ∈ R

d | vi = sgn(gradi(f)(x)) if gradi(f)(x) 6= 0 and

vi ∈ [−1, 1] if gradi(f)(x) = 0, for i ∈ {1, . . . , d}
}
.

Note K
[ grad(f)
‖ grad(f)‖2

]
(x) = grad(f)(x)

‖ grad(f)(x)‖2
if grad(f)(x) 6= 0.

The proof of this result follows from the definition (4) of
the operator K and the particular forms of (6a) and (6b).

For a differentiable function f , let Critical(f) ={
x ∈ R

d | grad(f)(x) = 0
}

denote the set of its critical
points, and let Hess(f)(x) denote its Hessian matrix at
x ∈ R

d. The next result establishes the general asymp-
totic properties of the flows in (6).

Proposition 7 Let f : R
d → R be a differentiable func-

tion. Let x0 ∈ S ⊂ R
d, with S compact and strongly

invariant for (6a) (resp., for (6b)). Then each solution
of equation (6a) (resp. equation (6b)) starting from x0

asymptotically converges to Critical(f).

PROOF. For equation (6a), if grad(f)(x) 6= 0, then

L̃ grad(f)
‖ grad(f)‖2

f(x) =
{ grad(f)(x)

‖ grad(f)(x)‖2
· grad(f)(x)

}

=
{
‖ grad(f)(x)‖2

}
.

If, instead, grad(f)(x) = 0, then L̃ grad(f)
‖ grad(f)‖2

f(x) = {0}.
Therefore, we deduce

L̃
− grad(f)

‖ grad(f)‖2

f(x) = −‖ grad(f)(x)‖2, for all x ∈ R
d.

Consequently, Z
− grad(f)

‖ grad(f)‖2
,f

= Critical(f) is closed, and

LaSalle Invariance Principle (cf. Theorem 3) implies that
each solution of (6a) starting from x0 asymptotically
converges to the largest weakly invariant set M con-
tained in Critical(f) ∩ S, which is Critical(f) ∩ S itself.

For equation (6b), we have a ∈ L̃sgn(grad(f))f(x) if and

only if there exists v ∈ K
[
sgn(grad(f))

]
(x) such that

a = v · grad(f)(x). From Lemma 6, we deduce that a =
sgn(grad1(f)(x)) ·grad1(f)(x)+ · · ·+sgn(gradn(f)(x)) ·
gradn(f)(x) = ‖ grad(f)(x)‖1. Therefore, we deduce

L̃− sgn(grad(f))f(x) = {−‖ grad(f)(x)‖1}.

Consequently, Z− sgn(grad(f)),f = Critical(f) is closed,
and LaSalle Invariance Principle implies that each solu-
tion of (6b) starting from x0 asymptotically converges

to the largest weakly invariant set M contained in
Critical(f) ∩ S, which is Critical(f) ∩ S itself. •

Let us now discuss the finite-time convergence properties
of the vector fields (6). Note that Proposition 4 cannot
be applied. Indeed,

max L̃
− grad(f)

‖ grad(f)‖2

f(x) = −‖ grad(f)(x)‖2 ,

max L̃− sgn(grad(f))f(x) = −‖ grad(f)(x)‖1 ,

and both infx∈U\Critical(f)∩S ‖ grad(f)(x)‖2 = 0 and
infx∈U\Critical(f)∩S ‖ grad(f)(x)‖1 = 0, for any neigh-
borhood U of Critical(f)∩S in S. Hence, the hypotheses
of Proposition 4 are not verified by either (6a) or (6b).

Under additional conditions, one can establish stronger
convergence properties of (6). We show this next.

Theorem 8 Let f : R
d → R be a second-order differ-

entiable function. Let x0 ∈ S ⊂ R
d, with S compact

and strongly invariant for (6a) (resp., for (6b)). Assume
there exists a neighborhood V of Critical(f) ∩ S in S
where either one of the following conditions hold:

(i) for all x ∈ V , Hess(f)(x) is positive definite; or
(ii) for all x ∈ V \ (Critical(f) ∩ S), Hess(f)(x) is pos-

itive semidefinite, the multiplicity of the eigenvalue
0 is constant, and grad(f)(x) is orthogonal to the
eigenspace of Hess(f)(x) corresponding to 0.

Then each solution of (6a) (resp. (6b)) starting from x0

converges in finite time to a critical point of f . Further-
more, if V = S, then the convergence time of the solutions
of (6a) (resp. (6b)) starting from x0 is upper bounded by

1

λ0
‖ grad(f)(x0)‖2

(
resp.

1

λ0
‖ grad(f)(x0)‖1

)
,

where λ0 = minx∈S λ2(Hess(f)(x)).

PROOF. Our strategy is to show that the hypothe-
ses of Theorem 5 are verified by both vector fields.
From Proposition 7, we know that each solution
of (6a) (resp. (6b)) starting from x0 converges to
Critical(f). Let us take an open set U ⊂ S such that
Critical(f) ∩ S ⊂ U ⊂ U ⊂ V . Since S is compact, U is
also compact. By continuity, under either assumption (i)
or assumption (ii), the function λ2(Hess(f)) : U → R,
x 7→ λ2(Hess(f)(x)), reaches its minimum on U , i.e,
there exists λ0 > 0 such that λ2(Hess(f)(x)) ≥ λ0 for
all x ∈ U . Moreover, from (1), we have for all u ∈ R

d,

u′ Hess(f)(x)u ≥
≥ λ2(Hess(f)(x)) ‖u − πH0(Hess(f)(x))(u)‖2

2. (7)

For (6a), recall from the proof of Proposition 7, that the

function x ∈ R
d 7→ L̃ grad(f)

‖ grad(f)‖2

f(x) = ‖ grad(f)(x)‖2

is single-valued, locally Lipschitz and regular, and hy-
pothesis (i) in Theorem 5 is satisfied. Additionally,
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Z
− grad(f)

‖ grad(f)‖2
,f

= Critical(f). Let us take x 6∈ Critical(f),

and let us compute L̃ grad(f)
‖ grad(f)‖2

(L̃ grad(f)
‖ grad(f)‖2

f)(x). Noting

∂(‖ grad(f)‖2)(x) =
{

Hess(f)(x)
grad(f)(x)

‖ grad(f)(x)‖2

}
,

we deduce

L̃ grad(f)
‖ grad(f)‖2

(L̃ grad(f)
‖ grad(f)‖2

f)(x) =

grad(f)(x)′

‖ grad(f)(x)‖2
Hess(f)(x)

grad(f)(x)

‖ grad(f)(x)‖2
. (8)

Let x ∈ U \(Critical(f)∩S). Under either assumption (i)

or (ii) in the theorem, πH0(Hess f(x))

( grad(f)(x)
‖ grad(f)(x)‖2

)
= 0.

Then, using (7) in equation (8), we conclude

L̃ grad(f)
‖ grad(f)‖2

(L̃ grad(f)
‖ grad(f)‖2

f)(x) ≥ λ2(Hess(f)(x)) ·

·
∥∥∥

grad(f)(x)

‖ grad(f)(x)‖2

∥∥∥
2

2
= λ2(Hess(f)(x)) ≥ λ0 > 0,

for x ∈ U \ (Critical(f) ∩ S). Hence, hypothesis (ii) in
Theorem 5 is also verified, and we deduce that the set
Critical(f) is reached in finite time, which in particular
implies that the limit of any solution of equation (6a)
starting from x0 ∈ S exists and is reached in finite time.

For (6b), recall from Proposition 7, that the func-

tion x ∈ R
d 7→ L̃sgn(grad(f))f(x) = ‖ grad(f)(x)‖1

is single-valued, locally Lipschitz and regular, and
hypothesis (i) in Theorem 5 is satisfied. Addition-
ally, Z− sgn(grad(f)),f = Critical(f). Let us take x 6∈
Critical(f), and compute L̃sgn(grad(f))(L̃sgn(grad(f))f)(x).

By definition, a ∈ L̃sgn(grad(f))(L̃sgn(grad(f))f)(x) if and

only if there exists v ∈ K
[
sgn(grad(f))

]
(x) such that

a = v · ζ, for any ζ ∈ ∂(‖ grad(f)‖1)(x). Note that

∂(‖ grad(f)‖1)(x) ={
ζ ∈ R

d | ζ = Hess(f)(x) η, for some η ∈ R
d with

ηi = sgn(gradi(f)(x)) if gradi(f)(x) 6= 0 and

ηi ∈ [−1, 1] if gradi(f)(x) = 0, for i ∈ {1, . . . , d}
}
.

In particular, Hess(f)(x) v ∈ ∂(‖ grad(f)‖1)(x). Then
a = v′ Hess(f)(x) v. Let us now decompose v as
v = πH0(x)(v) + (v − πH0(x)(v)), where πH0(x)(v) ∈
H0(x) and v − πH0(x)(v) ∈ H0(x)⊥. Because v ∈
K

[
sgn(grad(f))

]
(x), we deduce v · grad(f)(x) =

‖ grad(f)(x)‖1. Let x ∈ U \ (Critical(f) ∩ S). Under
either assumption (i) or (ii),

‖ grad(f)(x)‖1 = v · grad(f)(x)

= (v − πH0(x)(v)) · grad(f)(x)

≤ ‖v − πH0(x)(v)‖2‖ grad(f)(x)‖2.

Using ‖u‖1 ≥ ‖u‖2 for any u ∈ R
d, we deduce from this

equation that ‖v−πH0(x)(v)‖2 ≥ 1. Therefore, using (7)

a = v′ Hess(f)(x) v ≥ λ2(Hess(f)(x)) ‖v−πH0(x)(v)‖2
2

≥ λ2(Hess(f)(x)) ≥ λ0 > 0,

for x ∈ U \ (Critical(f) ∩ S). Consequently, we

get min L̃sgn(grad(f))(L̃sgn(grad(f))f) ≥ λ0 > 0 on

U \(Critical(f)∩S). Hence, hypothesis (ii) in Theorem 5
is also verified, and we deduce that the set Critical(f) is
reached in finite time, which in particular implies that
the limit of any solution of equation (6b) starting from
x0 ∈ S exists and is reached in finite time. The upper
bounds on the convergence time of the solutions of both
flows also follow from Theorem 5. •

Corollary 9 Let f : R
d → R be a second-order differ-

entiable function. Let x0 ∈ S ⊂ R
d, with S compact and

strongly invariant for (6a) (resp., for (6b)). Assume that
for each x ∈ Critical(f) ∩ S, Hess(f)(x) is positive def-
inite. Then each solution of (6a) (resp. (6b)) starting
from x0 converges in finite time to a minimum of f .

4 Applications to network consensus

The results of the preceding sections on nonsmooth gra-
dient dynamical systems can be applied to any multi-
agent coordination algorithm whose design involves the
gradient of meaningful aggregate objective functions. As
an illustration, we discuss here the application to net-
work consensus problems, and defer the treatment of
other coordination tasks to future work.

Consider a network of n agents. The state of the ith
agent, denoted pi ∈ R, evolves according to a first-order
dynamics ṗi(t) = ui. Let G = ({1, . . . , n}, E) be an
undirected graph with n vertices, describing the topol-
ogy of the network. The graph Laplacian matrix LG as-
sociated with G (see, for instance, [16]) is defined as
LG = ∆G−AG, where ∆G is the degree matrix and AG is
the adjacency matrix of the graph. When the graph G is
clear from the context, we will simply denote it by L. The
Laplacian matrix is symmetric, positive semidefinite and
has 0 as an eigenvalue with eigenvector 1. More impor-
tantly, G is connected if and only if rank(L) = n−1, i.e.,
if the eigenvalue 0 has multiplicity one. This is the rea-
son why λ2(L) = min {λ | λ > 0 and λ eigenvalue of L}
is termed the algebraic connectivity of G.

Two agents pi and pj agree if and only if pi = pj . The

Laplacian potential ΦG : R
n → R+ associated with G

(see [16]) quantifies the group disagreement,

ΦG(p1, . . . , pn) =
1

2
P ′LP =

1

2

∑

(i,j)∈E

(pj − pi)
2,

with P = (p1, . . . , pn)′ ∈ R
n. Clearly, ΦG(p1, . . . , pn) =

0 if and only if all neighboring nodes in the graph G
agree. If G is connected, then all nodes agree and a con-
sensus is reached. Therefore, we want the network to

5



reach the critical points of ΦG. Assume G is connected.
The Laplacian potential is smooth, and its gradient is
grad(ΦG)(P ) = LP . The gradient algorithm

ṗi(t) = −∂ΦG

∂pi

=
∑

j∈NG,i

(pj(t) − pi(t)), (9)

for i ∈ {1, . . . , n}, is distributed over G, i.e., each agent
can implement it with the information provided by its
neighbors in the graph G (see [9] for a more thorough
exposition of spatially distributed algorithms). The algo-
rithm (9) asymptotically converges to the critical points
of ΦG, i.e., asymptotically achieves consensus. Actually,
since the system is linear, the convergence is exponen-
tial with rate lower bounded by λ2(L). Additionally,
the fact that 1 · (LP ) = 0 implies that

∑n
i=1 pi is con-

stant along the solutions. Therefore, each solution of (9)
is convergent to a point of the form (p∗, . . . , p∗), with
p∗ = 1

n

∑n
i=1 pi(0) (this is called average-consensus).

Following (6), consider the discontinuous algorithms

ṗi(t) =

∑
j∈NG,i

(pj(t) − pi(t))

‖LP (t)‖2
, (10a)

ṗi(t) = sgn
( ∑

j∈NG,i

(pj(t) − pi(t))
)
, (10b)

for i ∈ {1, . . . , n}. Note that the algorithm (10b) is dis-
tributed over G, whereas the algorithm (10a) is not. Be-
fore analyzing their convergence properties, we identify
a conserved quantity for each of these flows.

Proposition 10 Define g1 : R
n → R, g2 : R

n → R by

g1(p1, . . . , pn) =

n∑

i=1

pi,

g2(p1, . . . , pn) = max
i∈{1,...,n}

{pi} + min
i∈{1,...,n}

{pi}.

Then g1 is constant along the solutions of (10a) and g2

is constant along the solutions of (10b).

PROOF. The function g1 is differentiable, with
grad(g1)(P ) = 1. For any P = (p1, . . . , pn) ∈ R

n,

L̃
−

grad(ΦG)

‖ grad(ΦG)‖2

g1(P ) = {0}. Therefore, from Theorem 1,

we conclude that g1 is constant along the solutions
of (10a). On the other hand, from [4, Proposition 2.3.12],
one deduces that g2 is locally Lipschitz and regular, with

∂g2(P ) = co
{
ej ∈ R

n | j such that pj = min
i∈{1,...,n}

{pi}
}

+ co
{
ek ∈ R

n | k such that pk = max
i∈{1,...,n}

{pi}
}
.

Let a ∈ L̃− sgn(grad(ΦG))g2(P ). By definition, there exists

v ∈ K
[
− sgn(grad(ΦG))

]
(P ) with

a = v · ζ, for all ζ ∈ ∂g2(P ). (11)

If P ∈ diag(Rn), then ∂g2(P ) = R
d, and, for (11) to

hold, necessarily v = (0, . . . , 0). Therefore, a = 0. If
P 6∈ diag(Rn), there exist j, k ∈ {1, . . . , n} with pj =
mini∈{1,...,n}{pi}, pk = maxi∈{1,...,n}{pi} such that

∑

i∈NG,j

(pi − pj) > 0,
∑

i∈NG,k

(pi − pk) < 0,

and hence, from Lemma 6, vj = 1 and vk = −1. There-
fore, we deduce a = v · (ej + ek) = 1 − 1 = 0. Note that

L̃− sgn(grad(ΦG))g2(P ) 6= ∅ because sgn(grad(ΦG)) ·ζ = 0

for all ζ ∈ ∂g2(P ), and hence 0 ∈ L̃− sgn(grad(ΦG))g2(P ).

Finally, we conclude L̃− sgn(grad(ΦG))g2(P ) = {0}, and
therefore g2 is constant along the solutions of (10b). •

The following theorem completely characterizes the
asymptotic convergence properties of the flows in (10).

Theorem 11 Let G = ({1, . . . , n}, E) be a con-
nected undirected graph. Then, the flows in (10)
achieve consensus in finite time. More specifically, for
P0 = ((p1)0, . . . , (pn)0) ∈ R

n,

(i) the solutions of (10a) starting from P0 converge in
finite time to (p∗, . . . , p∗), with p∗ = 1

n

∑n
i=1(pi)0

(average-consensus). The convergence time is upper
bounded by ‖LP0‖2/λ2(L);

(ii) the solutions of (10b) starting from P0 con-
verge in finite time to (p∗, . . . , p∗), with p∗ =
1
2

(
maxi∈{1,...,n}{(pi)0} + mini∈{1,...,n}{(pi)0}

)

(average-max-min-consensus). The convergence
time is upper bounded by ‖LP0‖1/λ2(L).

PROOF. Our strategy is to verify the assumptions
in Theorem 8. Let Φ−1

G (≤ ΦG(P0)) = {(p1, . . . , pn) ∈
R

d | ΦG(p1, . . . , pn) ≤ ΦG(P0)}. Clearly, this set is
strongly invariant for both flows. Since L is positive
semidefinite, ΦG(p1, . . . , pn) ≥ λ2(L) ‖P −πH0(A)(P )‖2

2.

Then, ‖P − πH0(A)(P )‖2
2 ≤ ΦG(P0)/λ2(L) for P ∈

Φ−1
G (≤ ΦG(P0)). Consider also the closed set

W (P0) =
{
P ∈ R

n | min
i{1,...,n}

{(pi)0} ≤
1

n
P · 1 ≤ max

i∈{1,...,n}
{(pi)0}

}
.

One can see that W (P0) is strongly invariant for (10a)
and for (10b). Now, define the set S = W (P0) ∩ Φ−1

G (≤
ΦG(P0)). From the preceding discussion, we deduce that
S is strongly invariant for (10a) and (10b). Clearly, S
is closed. Furthermore, using P = πH0(L)(P ) + P −
πH0(L)(P ), and noting πH0(L)(P ) = P ·1

n
1, we deduce

‖P‖2 = ‖πH0(L)(P )‖2 + ‖P − πH0(L)(P )‖2

≤ √
nmax

{
| min
i{1,...,n}

{(pi)0}|, | max
i{1,...,n}

{(pi)0}|
}

+
ΦG(P0)

λ2(L)
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for P ∈ S. Therefore, S is bounded, and hence com-
pact. Now, Hess(ΦG)(P ) = L is positive semidefinite
at any P ∈ R

n, with the eigenvalue 0 having a multi-
plicity 1 (not depending on P ). Additionally, for P 6∈
Critical(ΦG), grad(ΦG)(P ) = LP 6= 0 is orthogonal to
span{1}, the eigenspace of L corresponding to the eigen-
value 0. Finally, Theorem 8(ii) with V = S (together
with Proposition 10) yields the result. •

Fig. 1 illustrates the evolution of the differential equa-
tions (9), (10a) and (10b). As stated in Theorem 11,
the agents’ states evolving under (10a) achieve consen-
sus in finite time at 1

n

∑n
i=1(pi)0, and the agents’ states

evolving under (10b) achieve consensus in finite time at
1
2

(
maxi∈{1,...,n}{(pi)0} + mini∈{1,...,n}{(pi)0}

)
.

Networks with switching network topologies. For
networks with switching connected topologies, one can
derive a similar result to Theorem 11. Consider, follow-
ing [16], the next setup. Let Γn be the finite set of con-
nected undirected graphs with vertices {1, . . . , n},

Γn = {G = ({1, . . . , n}, E) | G connected, undirected} .

Let IΓn
⊂ N be an index set associated with the ele-

ments of Γn. A switching signal σ is a map σ : R+ → IΓn
.

For each time t ∈ R+, the switching signal σ establishes
the network graph Gσ(t) ∈ Γn employed by the network
agents. Now, consider a network subject to the switch-
ing network topology defined by σ and executing one of
the coordination algorithms introduced above. In other
words, consider the switching system

ṗi(t) = −
∂ΦGσ(t)

∂pi

=
∑

j∈NGσ(t),i

(pj(t) − pi(t)), (12)

for i ∈ {1, . . . , n}, and the switching systems

ṗi(t) =

∑
j∈NGσ(t),i

(pj(t) − pi(t))

‖LGσ(t)
P (t)‖2

, (13a)

ṗi(t) = sgn
( ∑

j∈NGσ(t),i

(pj(t) − pi(t))
)
. (13b)

The switching system (12) asymptotically achieves
average-consensus for an arbitrary switching signal σ.
Let G∗ ∈ Γn be such that

λ2(LG∗
)

λn(LG∗
)

= min
G∈Γn

{ λ2(LG)

λn(LG)

}
.

For the systems in (13), we have the next result.

Corollary 12 Let σ : R+ → IΓn
be a switching signal.

Then, the flow (13a) achieves average-consensus in finite

time upper bounded by
λn(LG∗ )
λ2(LG∗ )

∥∥P (0)− 1
n

∑n
i=1(pi)0 1

∥∥
2
,

and the flow (13b) achieves average-max-min-consensus
in finite time equal to 1

2

(
maxi∈{1,...,n}{(pi)0} −

mini∈{1,...,n}{(pi)0}
)
.

PROOF. For the flow (13a), consider the candidate
Lyapunov function V1 : R

n → R

V1(P ) =
1

2

∥∥P − 1

n

n∑

i=1

pi 1
∥∥2

2
.

The first-order evolution of this function along the net-

work trajectories is determined by L̃
−

grad(ΦG)

‖ grad(ΦG)‖2

V1(P ) =

− P ′LGP
‖LGP‖2

, for each G ∈ Γn, which is single-valued, Lip-

schitz and regular. Additionally, for any G ∈ Γn,

L̃
−

grad(ΦG)

‖ grad(ΦG)‖2

V1(P )≤−λ2(LG)

λn(LG)

∥∥P − 1

n

n∑

i=1

pi 1
∥∥

2
≤ 0.

The application of the LaSalle Invariance Principle en-
sures that the flow (13a) achieves average-consensus.
From the preceding inequality and the definition of V1,

∥∥P (t)− 1

n

n∑

i=1

pi 1
∥∥

2
≤

∥∥P (0) − 1

n

n∑

i=1

pi 1
∥∥

2
− λ2(LG∗

)

λn(LG∗
)
t,

which implies the result.

For the flow (13b), consider the candidate Lyapunov
function V2 : R

n → R

V2(P ) =
∥∥P − 1

2

(
max

i∈{1,...,n}
{pi} + min

i∈{1,...,n}
{pi}

)
1
∥∥
∞

=
1

2

(
max

i∈{1,...,n}
{pi} − min

i∈{1,...,n}
{pi}

)
.

This function is locally Lipschitz and regular. Let

a ∈ L̃− sgn(grad(ΦG))V2(P ). Then, there exists v ∈ K
[
−

sgn(grad(ΦG))
]
(P ) with a = v · ζ, for all ζ ∈ ∂V2(P ).

Take P with V2(P ) 6= 0. Let j, k ∈ {1, . . . , n} such that
pj = mini∈{1,...,n}{pi}, pk = maxi∈{1,...,n}{pi}. Then
1
2 (ek − ej) ∈ ∂V2(P ), vj = 1 and vk = −1. Therefore
a = −1. The result follows from Proposition 4. •

Remark 13 Note that in the proof of Corollary 12, we
have explicitly computed the convergence time of the
flow (10b) to achieve average-max-min-consensus to be
1
2

(
maxi∈{1,...,n}{(pi)0} − mini∈{1,...,n}{(pi)0}

)
. •

5 Conclusions

We have introduced the normalized and signed versions
of the gradient descent flow of a differentiable function.
We have characterized the asymptotic convergence prop-
erties of these nonsmooth gradient flows, and identified
suitable conditions that guarantee that convergence to
the critical points is achieved in finite time. In doing so,
we have built on two novel nonsmooth analysis results on
finite-time convergence and second-order information on
the evolution of Lyapunov functions. These results are
not restricted to gradient flows, and can indeed be used
in other setups involving discontinuous vector fields. We
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Fig. 1. From left to right, evolution of (9), (10a) and (10b) for 10 agents starting from a randomly gener-
ated initial configuration with pi ∈ [−7, 7], i ∈ {1, . . . , 10}. The graph G = ({1, . . . , 10}, E) has edge set
E = {(1, 4), (1, 10), (2, 10), (3, 6), (3, 9), (4, 8), (5, 6), (5, 9), (7, 10), (8, 9)}. The algebraic connectivity of G is λ2(L) = 0.12.

have discussed the application of the results to network
consensus problems.

Future work will be devoted to explore (i) the use of
the upper bounds on the convergence time of the pro-
posed nonsmooth flows in assessing the time complexity
of coordination algorithms; (ii) the application of the re-
sults to consensus-based sensor fusion algorithms, and
other coordination problems such as formation control,
deployment and rendezvous; (iii) the robustness prop-
erties of the proposed consensus flows under asynchro-
nism, delays and network topologies that are not con-
nected at all times; and (iv) the identification of other
nonsmooth distributed algorithms based on gradient in-
formation with similar convergence properties.

References

[1] A. Bacciotti and F. Ceragioli. Stability and stabilization of
discontinuous systems and nonsmooth Lyapunov functions.
ESAIM. Control, Optimisation & Calculus of Variations, 4:
361–376, 1999.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, Bel-
mont, MA, 1997. ISBN 1886529019.

[3] S. P. Bhat and D. S. Bernstein. Finite-time stability of
continuous autonomous systems. SIAM Journal on Control
and Optimization, 38(3):751–766, 2000.

[4] F. H. Clarke. Optimization and Nonsmooth Analysis. Cana-
dian Mathematical Society Series of Monographs and Ad-
vanced Texts. John Wiley, 1983. ISBN 047187504X.

[5] F. H. Clarke. Lyapunov functions and feedback in nonlinear
control. In M. S. de Queiroz, M. Malisoff, and P. Wolen-
ski, editors, Optimal Control, Stabilization and Nonsmooth
Analysis, volume 301 of Lecture Notes in Control and Infor-
mation Sciences, pages 267–282. Springer Verlag, New York,
2004.

[6] F. H. Clarke, Y. Ledyaev, L. Rifford, and R. Stern. Feedback
stabilization and Lyapunov functions. SIAM Journal on
Control and Optimization, 39:25–48, 2000.

[7] J. M. Coron. On the stabilization in finite time of locally
controllable systems by means of continuous time-varying
feedback laws. SIAM Journal on Control and Optimization,
33:804–833, 1995.

[8] J. Cortés and F. Bullo. Coordination and geometric opti-
mization via distributed dynamical systems. SIAM Journal
on Control and Optimization, 44(5):1543–1574, 2005.

[9] J. Cortés, S. Mart́ınez, and F. Bullo. Spatially-distributed
coverage optimization and control with limited-range inter-
actions. ESAIM. Control, Optimisation & Calculus of Vari-
ations, 11(4):691–719, 2005.

[10] A. F. Filippov. Differential Equations with Discontinuous
Righthand Sides, volume 18 of Mathematics and Its Applica-

tions. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1988.

[11] V. Gazi and K. M. Passino. Stability analysis of swarms.
IEEE Transactions on Automatic Control, 48(4):692–697,
2003.

[12] U. Helmke and J.B. Moore. Optimization and Dynam-
ical Systems. Springer Verlag, New York, 1994. ISBN
0387198571.

[13] W. M. Hirsch and S. Smale. Differential Equations, Dy-
namical Systems and Linear Algebra. Academic Press, New
York, 1974.
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