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Abstract. In this survey, we present a geometric description of Lagrangian
and Hamiltonian Mechanics on Lie algebroids. The flexibility of the Lie al-
gebroid formalism allows us to analyze systems subject to nonholonomic con-
straints, mechanical control systems, Discrete Mechanics and extensions to
Classical Field Theory within a single framework. Various examples along the
discussion illustrate the soundness of the approach.
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1. Introduction

The theory of Lie algebroids and Lie groupoids has proved to be very useful in
different areas of mathematics including algebraic and differential geometry, alge-
braic topology, and symmetry analysis. In this survey, we illustrate the wide range
of applications of this formalism to Mechanics. Specifically, we show how the flexi-
bility provided by Lie algebroids and groupoids allows us to analyze, within a single
framework, different classes of situations such as systems subject to nonholonomic
constraints, mechanical control systems, Discrete Mechanics and Field Theory.

The notions of Lie algebroid and Lie groupoid allow to study general Lagrangian
and Hamiltonian systems beyond the ones defined on the tangent and cotangent
bundles of the configuration manifold, respectively. These include systems deter-
mined by Lagrangian and Hamiltonian functions defined on Lie algebras, Lie groups,
Cartesian products of manifolds, and reduced spaces.

The inclusive feature of the Lie algebroid formalism is particularly relevant for
the class of Lagrangian systems invariant under the action of a Lie group of symme-
tries. Given a standard Lagrangian system, one associates to the Lagrangian func-
tion a Poincaré-Cartan symplectic form and an energy function using the particular
geometry of the tangent bundle. The dynamics is then obtained as the Hamiltonian
vector field associated to the energy function through the Poincaré-Cartan form.
The reduction by the Lie group action of the dynamics of this system yields a
reduced dynamics evolving on a quotient space (which is not a tangent bundle).
However, the interplay between the geometry of this quotient space and the reduced
dynamics is not as transparent as in the tangent bundle case. Recent efforts have
lead to a unifying geometric framework to overcome this drawback. It is precisely
the underlying structure of Lie algebroid on the phase space what allows a unified
treatment. This idea was introduced by Weinstein [54] (see also [31]), who devel-
oped a generalized theory of Lagrangian Mechanics on Lie algebroids. He obtained
the equations of motion using the linear Poisson structure on the dual of the Lie
algebroid and the Legendre transformation associated with a (regular) Lagrangian.
In [54], Weinstein also posed the question of whether it was possible to develop a
treatment on Lie algebroids and groupoids similar to Klein’s formalism for ordinary
Lagrangian Mechanics [22]. This question was answered positively by E. Mart́ınez
in [38] (see also [13, 39, 41, 49]). The main notion was that of prolongation of a Lie
algebroid over a mapping, introduced by P.J. Higgins and K. Mackenzie [19]. More
recently, the work [26] has developed a description of Hamiltonian and Lagrangian
dynamics on a Lie algebroid in terms of Lagrangian submanifolds of symplectic Lie
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algebroids. An alternative approach, using the linear Poisson structure on the dual
of the Lie algebroid was discussed in [18].

In this paper, we present an overview of these developments. We make special
emphasis on one of the main advantages of the Lie algebroid formalism: the pos-
sibility of establishing appropriate maps (called morphisms) between systems that
respect the structure of the phase space, and allow to relate their respective prop-
erties. As we will show, this will allow us to present a comprehensive study of the
reduction process of Lagrangian systems while remaining within the same category
of mathematical objects.

We also consider nonholonomic systems (i.e., systems subject to constraints in-
volving the velocities, see [10] for a list of references) and control systems evolving
on Lie algebroids [13]. This is motivated by the renewed interest in the study of
nonholonomic mechanical systems for new applications in the areas of robotics and
control. In particular, we provide widely applicable tests to decide the accessi-
bility and controllability properties of mechanical control systems defined on Lie
algebroids.

We end this survey by paying attention to two recent developments in the context
of Lie algebroids and groupoids: Discrete Mechanics and Classical Field Theory.
Discrete Mechanics seeks to develop a complete discrete-time counterpart of the
usual continuous-time treatment of Mechanics. The ultimate objective of this effort
is the construction of numerical integrators for Lagrangian and Hamiltonian systems
(see [37] and references therein). Up to now, this effort has been mainly focused
on the case of discrete Lagrangian functions defined on the Cartesian product of
the configuration manifold with itself. This Cartesian product is just an example
of a Lie groupoid. Here, we review the recent developments in [35], where we
proposed a complete description of Lagrangian and Hamiltonian Mechanics on Lie
groupoids. In particular, this description covers the analysis of discrete systems
with symmetries, and naturally produces reduced geometric integrators. Another
extension that we consider is the study of Classical Field Theory on Lie algebroids.
Thinking of a Lie algebroid as a substitute of the tangent bundle of a manifold, we
substitute the classical notion of fibration bundle by a surjective morphism of Lie
algebroids π : E −→ F . Then, we construct the jet space Jπ as the affine bundle
whose elements are linear maps from a fiber of F to a fiber of E, i.e., sections of
the projection π. After a suitable choice of the space of variations, we derive the
Euler-Lagrange equations for this problem.

The paper is organized as follows. In Section 2 we present some basic facts on
Lie algebroids, including results from differential calculus, morphisms and prolon-
gations of Lie algebroids, and linear connections. We also introduce the notion
of Lie groupoid, Lie algebroid associated to a Lie groupoid, and morphisms and
prolongations of Lie groupoids. Various examples are given in order to illustrate
the generality of the theory. In Section 3, we give a brief introduction to the La-
grangian formalism of Mechanics on Lie algebroids, determined by a Lagrangian
function L : E −→ R on the Lie algebroid τ : E −→ M . Likewise, we introduce the
Hamiltonian formalism on Lie algebroids, determined by a Hamiltonian function
H : E∗ −→ R, where τ∗ : E∗ −→ M is the dual of the Lie algebroid E −→ M . In
Section 4 we introduce the class of nonholonomic Lagrangian systems. We study
the existence and uniqueness of solutions, and characterize the notion of regularity
of a nonholonomic system. Under this property, we derive a procedure to obtain
the solution of the nonholonomic problem from the solution of the free problem by
means of projection techniques. Moreover, we construct a nonholonomic bracket
that measures the evolution of the observables, and we study the reduction of
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nonholonomic systems in terms of morphisms of Lie algebroids. In Section 5 we
introduce the class of mechanical control systems defined on a Lie algebroid. We
generalize the notion of affine connection control system to the setting of Lie alge-
broids, and introduce the notions of (base) accessibility and (base) controllability.
We provide sufficient conditions to check these properties for a given mechanical
control system. In Section 6, we study Discrete Mechanics on Lie groupoids. In
particular, we construct the discrete Euler-Lagrange equations, discrete Poincaré-
Cartan sections, discrete Legendre transformations, and Noether’s theorem, and
identify the preservation properties of the discrete flow. In the last section, we
extend the variational formalism for Classical Field Theory to the setting of Lie
algebroids. Given a Lagrangian function, we study the problem of finding criti-
cal points of the action functional when we restrict the fields to be morphisms of
Lie algebroids. Throughout the paper, various examples illustrate the results. We
conclude the paper by identifying future directions of research.

2. Lie algebroids and Lie groupoids

2.1. Lie algebroids. Given a real vector bundle τ : E −→ M , let Sec(τ) denote
the space of the global cross sections of τ : E −→ M . A Lie algebroid E over a
manifold M is a real vector bundle τ : E −→ M together with a Lie bracket [[·, ·]]
on Sec(τ) and a bundle map ρ : E −→ TM over the identity, called the anchor
map, such that the homomorphism (denoted also ρ : Sec(τ) −→ X(M)) of C∞(M)-
modules induced by the anchor map verifies

[[X, fY ]] = f [[X, Y ]] + ρ(X)(f)Y,

for X,Y ∈ Sec(τ) and f ∈ C∞(M). The triple (E, [[·, ·]], ρ) is called a Lie algebroid
over M (see [32, 33]). If (E, [[·, ·]], ρ) is a Lie algebroid over M, then the anchor map
ρ : Sec(τ) −→ X(M) is a homomorphism between the Lie algebras (Sec(τ), [[·, ·]])
and (X(M), [·, ·]).

In what concerns to Mechanics, it is convenient to think of a Lie algebroid as
a generalization of the tangent bundle of M . One regards an element a of E as
a generalized velocity, and the actual velocity v is obtained when applying the
anchor to a, i.e., v = ρ(a). A curve a : [t0, t1] −→ E is said to be admissible if
ṁ(t) = ρ(a(t)), where m(t) = τ(a(t)) is the base curve.

Given local coordinates (xi) in the base manifold M and a local basis of sections
(eα) of E, then local coordinates of a point a ∈ E are (xi, yα) where a = yαeα(τ(a)).
In local form, the Lie algebroid structure is determined by the local functions ρi

α

and Cγ
αβ on M . Both are determined by the relations

ρ(eα) = ρi
α

∂

∂xi
, (2.1)

[[eα, eβ ]] = Cγ
αβ eγ (2.2)

and they satisfy the following equations

ρj
α

∂ρi
β

∂xj
− ρj

β

∂ρi
α

∂xj
= ρi

γCγ
αβ and

∑

cyclic(α,β,γ)

[
ρi

α

∂Cν
βγ

∂xi
+ Cµ

βγCν
αµ

]
= 0. (2.3)
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Cartan calculus. One may define the exterior differential of E, d : Sec(∧kτ∗) −→
Sec(∧k+1τ∗), as follows

dω(X0, . . . , Xk) =
k∑

i=0

(−1)iρ(Xi)(ω(X0, . . . , X̂i, . . . , Xk))

+
∑

i<j

(−1)i+jω([[Xi, Xj ]], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),
(2.4)

for ω ∈ Sec(∧kτ∗) and X0, . . . , Xk ∈ Sec(τ). d is a cohomology operator, that is,
d2 = 0. In particular, if f : M −→ R is a real smooth function then df(X) = ρ(X)f,
for X ∈ Sec(τ). Locally,

dxi = ρi
αeα and deγ = −1

2
Cγ

αβeα ∧ eβ ,

where {eα} is the dual basis of {eα}. We may also define the Lie derivative with
respect to a section X of E as the operator LX : Sec(∧kτ∗) −→ Sec(∧kτ∗) given
by LX = iX ◦ d + d ◦ iX (for more details, see [32, 33]).
Morphisms. Let (E, [[·, ·]], ρ) (resp., (E′, [[·, ·]]′, ρ′)) be a Lie algebroid over a man-
ifold M (resp., M ′) and suppose that Ψ: E −→ E′ is a vector bundle morphism
over the map Ψ0 : M −→ M ′. Then, the pair (Ψ, Ψ0) is said to be a Lie algebroid
morphism if

d((Ψ, Ψ0)∗φ′) = (Ψ, Ψ0)∗(d′φ′), for all φ′ ∈ Sec(∧k(E′)∗) and for all k, (2.5)

where d (resp., d′) is the differential of the Lie algebroid E (resp., E′) (see [26]).
Note that (Ψ,Ψ0)∗φ′ is the section of the vector bundle ∧kE∗ −→ M defined for
k > 0 by

((Ψ,Ψ0)∗φ′)x(a1, . . . , ak) = φ′Ψ0(x)(Ψ(a1), . . . , Ψ(ak)),

for x ∈ M and a1, . . . , ak ∈ Ex, and by (Ψ,Ψ0)∗f = f ◦ Ψ0 for f ∈ Sec(∧0E′∗) =
C∞(M ′). In the particular case when M = M ′ and Ψ0 = idM then (2.5) holds if
and only if

[[Ψ ◦X, Ψ ◦ Y ]]′ = Ψ[[X, Y ]], ρ′(ΨX) = ρ(X), for X, Y ∈ Sec(τ).

Linear connections on Lie algebroids. Let τ : E −→ M be a Lie algebroid over
M . A connection on E is a R-bilinear map ∇ : Sec(E)×Sec(E) −→ Sec(E) such
that

∇fXY = f∇XY , ∇X(fY ) = ρ(X)(f)Y + f∇XY

for f ∈ C∞(M) and X,Y ∈ Sec(E).
Given a local basis {eα} of Sec(E) such that X = Xαeα and Y = Y βeβ then

∇XY = Xα

(
ρi

α

∂Y γ

∂xi
+ Γγ

αβY β

)
eγ .

The terms Γγ
αβ are called the connection coefficients. The symmetric product

associated with ∇ is given by

〈X : Y 〉 = ∇XY +∇Y X, X, Y ∈ Sec(E).

Since the connection is C∞(M)-linear in the first argument, it is possible to
define the derivative of a section Y ∈ Sec(E) with respect to an element a ∈ Em

by simply putting
∇aY = (∇XY )(m),

with X ∈ Sec(E) satisfying X(m) = a. Moreover, the connection allows us to
take the derivative of sections along maps and, as a particular case, of sections
along curves. If we have a morphism of Lie algebroids Φ : F −→ E over the map
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ϕ : N −→ M and a section X : N −→ E along ϕ (i.e., X(n) ∈ Eϕ(n), for n ∈ N),
then X may be written as

X =
p∑

l=1

Fl(Xl ◦ ϕ),

for some sections {X1, . . . , Xp} of E and for some functions F1, . . . , Fp ∈ C∞(N),
and the derivative of X along ϕ is given by

∇bX =
p∑

l=1

[
(ρF (b)Fl)Xl(ϕ(n)) + Fl(n)∇Φ(b)Xl

]
, for b ∈ Fn ,

where ρF is the anchor map of the Lie algebroid F −→ N .
A particular case of the above general situation is the following. Let a : I −→ E

be an admissible curve and b : I −→ E be a curve in E, both of them projecting by
τ onto the same base curve in M , τ(a(t)) = m(t) = τ(b(t)). Take the Lie algebroid
structure TI −→ I and consider the morphism Φ : TI −→ E, Φ(t, ṫ) = ṫa(t) over
m : I −→ M . Then one can define the derivative of b(t) along a(t) as ∇d/dtb(t).
This derivative is usually denoted by ∇a(t)b(t). In local coordinates, this reads

∇a(t)b(t) =
[
dbγ

dt
+ Γγ

αβaαbβ

]
eγ(m(t)), for all t.

The admissible curve a : I −→ E is said to be a geodesic for ∇ if ∇a(t)a(t) = 0
(see [13]).

Now, let G : E ×M E −→ R be a bundle metric on a Lie algebroid τ : E −→ M .
In a parallel way to the situation in the tangent bundle geometry, one can see that
there is a canonical connection ∇G on E associated with G. In fact, the connection
∇G is determined by the formula

2G(∇G
XY,Z) = ρ(X)(G(Y,Z)) + ρ(Y )(G(X, Z))− ρ(Z)(G(X, Y ))

+G(X, [[Z, Y ]]) + G(Y, [[Z, X]])− G(Z, [[Y, X]]),

for X, Y, Z ∈ Sec(E). ∇G is a torsion-less connection and it is metric with respect
to G. In other words

[[X,Y ]] = ∇G
XY −∇G

Y X ,

ρ(X)(G(Y, Z)) = G(∇G
XY, Z) + G(Y,∇G

XZ) .

∇G is called the Levi-Civita connection of G (see [13]).
Finally, suppose that E = D ⊕ Dc, with D and Dc vector subbundles of E,

and denote by P : E −→ D and Q : E −→ Dc the corresponding complementary
projectors induced by the decomposition. Then, the constrained connection is
the connection ∇̌ on E defined by

∇̌XY = P (∇XY ) +∇X(QY ),

for X,Y ∈ Sec(E) (for the properties of the constrained connection ∇̌, see [13]).
Examples. We will present some examples of Lie algebroids.

1.- Real Lie algebras of finite dimension. Let g be a real Lie algebra of
finite dimension. Then, it is clear that g is a Lie algebroid over a single point.

2.- The tangent bundle. Let TM be the tangent bundle of a manifold M .
Then, the triple (TM, [·, ·], idTM ) is a Lie algebroid over M , where idTM : TM −→
TM is the identity map.

3.- Foliations. Let F be a foliation of finite dimension on a manifold P and
τF : TF −→ P be the tangent bundle to the foliation F. Then, τF : TF −→ P is a
Lie algebroid over P . The anchor map is the canonical inclusion ρF : TF −→ TP
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and the Lie bracket on the space Sec(τF) is the restriction to Sec(τF) of the standard
Lie bracket of vector fields on P . In particular, if π : P −→ M is a fibration,
τP : TP −→ P is the canonical projection and (τP )|V π : V π −→ P is the restriction
of τP to the vertical bundle to π, then (τP )|V π : V π −→ P is a Lie algebroid over P .

4.- Atiyah algebroids. Let p : Q −→ M be a principal G-bundle. Denote by
Φ : G × Q −→ Q the free action of G on Q and by TΦ : G × TQ −→ TQ the
tangent action of G on TQ. Then, one may consider the quotient vector bundle
τQ|G : TQ/G −→ M = Q/G, and the sections of this vector bundle may be
identified with the vector fields on Q which are invariant under the action Φ. Using
that every G-invariant vector field on Q is p-projectable and that the usual Lie
bracket on vector fields is closed with respect to G-invariant vector fields, we can
induce a Lie algebroid structure on TQ/G. This Lie algebroid is called the Atiyah
algebroid associated with the principal G-bundle p : Q −→ M (see [26, 32]).

5.- Action Lie algebroids. Let (E, [[·, ·]], ρ) be a Lie algebroid over a manifold
M and f : M ′ −→ M be a smooth map. Then, the pull-back of E over f , f∗E =
{ (x′, a) ∈ M ′ × E | f(x′) = τ(a) } , is a vector bundle over M ′ whose vector bundle
projection is the restriction to f∗E of the first canonical projection pr1 : M ′×E →
M ′. However, f∗E is not, in general, a Lie algebroid.

Now, suppose that Φ: Sec(τ) −→ X(M ′) is an action of E on f , that is, Φ is a
R-linear map which satisfies the following conditions

Φ(hX) = (h ◦ f)ΦX, Φ[[X, Y ]] = [ΦX, ΦY ], ΦX(h ◦ f) = ρ(X)(h) ◦ f,

for X, Y ∈ Sec(τ) and h ∈ C∞(M). Then, one may introduce a Lie algebroid
structure ([[·, ·]]Φ, ρΦ) on the vector bundle f∗E → M ′ which is characterized by the
following conditions

[[X ◦ f, Y ◦ f ]]Φ = [[X, Y ]] ◦ f, ρΦ(X ◦ f) = Φ(X), for X, Y ∈ Sec(τ). (2.6)

The resultant Lie algebroid is denoted by E n f and we call it an action Lie
algebroid (for more details, see [26]).

6.- The prolongation of a Lie algebroid over a fibration [19, 26, 39]. Let
(E, [[·, ·]], ρ) be a Lie algebroid over a manifold M and π : P −→ M be a fibration.
We consider the subset of E × TP

T E
p P = { (b, v) ∈ Ex × TpP | ρ(b) = Tpπ(v) } ,

where Tπ : TP −→ TM is the tangent map to π, p ∈ Px and π(p) = x . We will
frequently use the redundant notation (p, b, v) to denote the element (b, v) ∈ T E

p P .
T EP = ∪p∈PT E

p P is a vector bundle over P and the vector bundle projection τE
P

is just the projection onto the first factor. The anchor of T EP is the projection
onto the third factor, that is, the map ρπ : T EP −→ TP given by ρπ(p, b, v) = v.
The projection onto the second factor will be denoted by T π : T EP −→ E, and it
is a morphism of Lie algebroids over π. Explicitly, T π(p, b, v) = b.

An element z ∈ T EP is said to be vertical if it projects to zero, that is T π(z) =
0. Therefore it is of the form (p, 0, v), with v a π-vertical vector tangent to P at p.

Given local coordinates (xi, uA) on P and a local basis {eα} of sections of E, we
can define a local basis {Xα, VA} of sections of T EP by

Xα(p) =
(
p, eα(π(p)), ρi

α

∂

∂xi

∣∣∣
p

)
and VA(p) =

(
p, 0,

∂

∂uA

∣∣∣
p

)
.

If z = (p, b, v) is an element of T EP , with b = zαeα, then v is of the form v =
ρi

αzα ∂
∂xi + vA ∂

∂uA , and we can write

z = zαXα(p) + vAVA(p).



8 J. CORTÉS, M. DE LEÓN, J. C. MARRERO, D. MARTÍN DE DIEGO, AND E. MARTÍNEZ

Vertical elements are linear combinations of {VA}.
The anchor map ρπ applied to a section Z of T EP with local expression Z =

ZαXα + V AVA is the vector field on P whose coordinate expression is

ρπ(Z) = ρi
αZα ∂

∂xi
+ V A ∂

∂uA
.

Next, we will see that it is possible to induce a Lie bracket structure on the
space of sections of T EP . For that, we say that a section X̃ of τE

P : T EP −→ P
is projectable if there exists a section X of τ : E −→ M and a vector field
U ∈ X(P ) which is π-projectable to the vector field ρ(X) and such that X̃(p) =
(X(π(p)), U(p)), for all p ∈ P . For such a projectable section X̃, we will use the
following notation X̃ ≡ (X,U). It is easy to prove that one may choose a local
basis of projectable sections of the space Sec(τE

P ).
The Lie bracket of two projectable sections Z1 = (X1, U1) and Z2 = (X2, U2) is

then given by

[[Z1, Z2]]π(p) = (p, [[X1, X2]](x), [U1, U2](p)), p ∈ P, x = π(p).

Since any section of T EP can be locally written as a linear combination of pro-
jectable sections, the definition of the Lie bracket for arbitrary sections of T EP
follows. In particular, the Lie brackets of the elements of the basis are

[[Xα,Xβ ]]π = Cγ
αβ Xγ , [[Xα, VB ]]π = 0 and [[VA,VB ]]π = 0,

and, therefore, the exterior differential is determined by

dxi = ρi
αXα, duA = VA,

dXγ = −1
2
Cγ

αβXα ∧ Xβ , dVA = 0,

where {Xα, VA} is the dual basis to {Xα, VA}.
The Lie algebroid T EP is called the prolongation of E over π or the E-

tangent bundle to π.

2.2. Lie groupoids. In this section, we review the definition of a Lie groupoid and
present some basic facts generalities about them (see [32, 33] for more details). A
groupoid over a set M is a set G together with the following structural maps:

• A pair of maps α : G −→ M , the source, and β : G −→ M , the target.
These maps define the set of composable pairs

G2 = { (g, h) ∈ G×G | β(g) = α(h) } .

• A multiplication m : G2 −→ G, to be denoted simply by m(g, h) = gh,
such that

– α(gh) = α(g) and β(gh) = β(h),
– g(hk) = (gh)k.

• An identity section ε : M −→ G such that
– ε(α(g))g = g and gε(β(g)) = g.

• An inversion map i : G −→ G, to be denoted simply by i(g) = g−1,
such that

– g−1g = ε(β(g)) and gg−1 = ε(α(g)).

A groupoid G over a set M will be denoted simply by the symbol G ⇒ M .
The groupoid G ⇒ M is said to be a Lie groupoid if G and M are manifolds and

all the structural maps are differentiable with α and β differentiable submersions.
If G ⇒ M is a Lie groupoid then m is a submersion, ε is an immersion and i is
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a diffeomorphism. Moreover, if x ∈ M , α−1(x) (resp., β−1(x)) will be said the
α-fiber (resp., the β-fiber) of x.

On the other hand, if g ∈ G then the left-translation by g ∈ G and the
right-translation by g are the diffeomorphisms

lg : α−1(β(g)) −→ α−1(α(g)) ; h −→ lg(h) = gh,
rg : β−1(α(g)) −→ β−1(β(g)) ; h −→ rg(h) = hg.

Note that l−1
g = lg−1 and r−1

g = rg−1 .

A vector field X̃ on G is said to be left-invariant (resp., right-invariant) if
it is tangent to the fibers of α (resp., β) and X̃(gh) = (Thlg)(X̃h) (resp., X̃(gh) =
(Tgrh)(X̃(g)), for (g, h) ∈ G2.

Now, we will recall the definition of the Lie algebroid associated with G.
We consider the vector bundle τ : EG −→ M , whose fiber at a point x ∈ M

is (EG)x = Vε(x)α = Ker(Tε(x)α). It is easy to prove that there exists a bijection
between the space Sec(τ) and the set of left-invariant (resp., right-invariant) vector
fields on G. If X is a section of τ : EG −→ M , the corresponding left-invariant
(resp., right-invariant) vector field on G will be denoted

←−
X (resp.,

−→
X ), where

←−
X (g) = (Tε(β(g))lg)(X(β(g))), (2.7)

−→
X (g) = −(Tε(α(g))rg)((Tε(α(g))i)(X(α(g)))), (2.8)

for g ∈ G. Using the above facts, we may introduce a Lie algebroid structure
([[·, ·]], ρ) on EG, which is defined by

←−−−−
[[X,Y ]] = [

←−
X,
←−
Y ], ρ(X)(x) = (Tε(x)β)(X(x)), (2.9)

for X,Y ∈ Sec(τ) and x ∈ M (for more details, see [9, 32]).
Given two Lie groupoids G ⇒ M and G′ ⇒ M ′, a morphism of Lie groupoids

is a smooth map Ψ : G −→ G′ such that

(g, h) ∈ G2 =⇒ (Ψ(g),Ψ(h)) ∈ (G′)2

and

Ψ(gh) = Ψ(g)Ψ(h).

A morphism of Lie groupoids Ψ : G −→ G′ induces a smooth map Φ0 : M −→ M ′

in such a way that

α′ ◦Ψ = Φ0 ◦ α, β′ ◦Ψ = Φ0 ◦ β, Ψ ◦ ε = ε′ ◦ Φ0,

α, β and ε (resp., α′, β′ and ε′) being the source, the target and the identity section
of G (resp., G′).

Suppose that (Ψ, Φ0) is a morphism between the Lie groupoids G ⇒ M and
G′ ⇒ M ′ and that τ : EG −→ M (resp., τ ′ : EG′ −→ M ′) is the Lie algebroid of
G (resp., G′). Then, if x ∈ M we may consider the linear map Φx : (EG)x −→
(EG′)Φ0(x) defined by

Φx(vε(x)) = (Tε(x)Ψ)(vε(x)), for vε(x) ∈ AxG. (2.10)

In fact, we have that the pair (Φ,Φ0) is a morphism between the Lie algebroids
τ : EG −→ M and τ ′ : EG′ −→ M ′ (see [32, 33]).
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Examples. We will present some examples of Lie groupoids.
1.- Lie groups. Any Lie group G is a Lie groupoid over {e}, the identity element

of G. The Lie algebroid associated with G is just the Lie algebra g of G.
2.- The pair or banal groupoid. Let M be a manifold. The product manifold

M × M is a Lie groupoid over M in the following way: α is the projection onto
the first factor and β is the projection onto the second factor; ε(x) = (x, x), for all
x ∈ M , m((x, y), (y, z)) = (x, z), for (x, y), (y, z) ∈ M × M and i(x, y) = (y, x).
M ×M ⇒ M is called the pair or banal groupoid. If x is a point of M , it follows
that

Vε(x)α = {0x} × TxM ⊆ TxM × TxM ∼= T(x,x)(M ×M).

Thus, the linear maps

Φx : TxM −→ Vε(x)α, vx −→ (0x, vx),

induce an isomorphism (over the identity of M) between the Lie algebroids τM :
TM −→ M and τ : EM×M −→ M.

3.- The Lie groupoid associated with a fibration. Let π : P −→ M be
a fibration, that is, π is a surjective submersion and denote by Gπ the subset of
P × P given by

Gπ = { (p, p′) ∈ P × P | π(p) = π(p′) } .

Then, Gπ is a Lie groupoid over P and the structural maps απ, βπ, mπ, επ and iπ
are the restrictions to Gπ of the structural maps of the pair groupoid P × P ⇒ P .

If p is a point of P it follows that

Vεπ(p)απ = { (0p, Yp) ∈ TpP × TpP | (Tpπ)(Yp) = 0 } .

Thus, if (τP )|V π : V π −→ P is the vertical bundle to π then the linear maps

(Φπ)p : Vpπ −→ Vεπ(p)απ, Yp −→ (0p, Yp)

induce an isomorphism (over the identity of M) between the Lie algebroids (τP )|V π :
V π −→ P and τ : EGπ −→ P .

4.- Atiyah or gauge groupoids. Let p : Q −→ M be a principal left G-bundle.
Then, the free action Φ : G×Q −→ Q, (g, q) −→ Φ(g, q) = gq, of G on Q induces,
in a natural way, a free action Φ×Φ : G× (Q×Q) −→ Q×Q of G on Q×Q given
by (Φ×Φ)(g, (q, q′)) = (gq, gq′), for g ∈ G and (q, q′) ∈ Q×Q. Moreover, one may
consider the quotient manifold (Q × Q)/G which admits a Lie groupoid structure
over M with structural maps given by

α̃ : (Q×Q)/G −→ M ; [(q, q′)] −→ p(q),
β̃ : (Q×Q)/G −→ M ; [(q, q′)] −→ p(q′),
ε̃ : M −→ (Q×Q)/G ; x −→ [(q, q)], if p(q) = x,
m̃ : ((Q×Q)/G)2 −→ (Q×Q)/G ; ([(q, q′)], [(gq′, q′′)]) −→ [(gq, q′′)],
ĩ : (Q×Q)/G −→ (Q×Q)/G ; [(q, q′)] −→ [(q′, q)].

This Lie groupoid is called the Atiyah (gauge) groupoid associated with the
principal G-bundle p : Q −→ M (see [31]).

If x is a point of M such that p(q) = x, with q ∈ Q, and pQ×Q : Q × Q −→
(Q×Q)/G is the canonical projection then it is clear that

Vε̃(x)α̃ = (T(q,q)pQ×Q)({0q} × TqQ).

Thus, if τQ|G : TQ/G −→ M is the Atiyah algebroid associated with the principal
G-bundle p : G −→ M then the linear maps

(TQ/G)x −→ Vε̃(x)α̃ ; [vq] −→ (T(q,q)pQ×Q)(0q, vq), with vq ∈ TqQ,
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induce an isomorphism (over the identity of M) between the Lie algebroids τ :
E(Q×Q)/G −→ M and τQ|G : TQ/G −→ M .

5.- Action Lie groupoids. Let G ⇒ M be a Lie groupoid and f : M ′ −→ M
be a smooth map. If M ′

f×α G = { (p, g) ∈ P ×G | f(p) = α(g) } then a right
action of G on f is a smooth map

M ′
f×α G −→ M ′, (x′, g) −→ x′g,

which satisfies the following relations

f(x′g) = β(g), for (x′, g) ∈ M ′
f×α G,

(x′g)h = x′(gh), for (x′, g) ∈ M ′
f×α G and (g, h) ∈ G2, and

x′ε(f(x′)) = x′, for x′ ∈ M ′.

Given such an action one constructs the action Lie groupoid M ′
f×α G over

M ′ by defining

α̃f : M ′
f×α G −→ M ′ ; (x′, g) −→ x′,

β̃f : M ′
f×α G −→ M ′ ; (x′, g) −→ x′g,

ε̃f : M ′ −→ M ′
f×α G ; x′ −→ (x′, ε(f(x′))),

m̃f : (M ′
f×α G)2 −→ M ′

f×α G ; ((x′, g), (x′g, h)) −→ (x′, gh),
ĩf : M ′

f×α G −→ M ′
f×α G ; (x′, g) −→ (x′g, g−1).

Now, if x′ ∈ M ′, we consider the map x′ · : α−1(f(x′)) −→ M ′ given by

x′ · (g) = x′g.

Then, if τ : EG −→ M is the Lie algebroid of G, the R-linear map Φ: Sec(τ) −→
X(M ′) defined by

Φ(X)(x′) = (Tε(f(x′))x
′ ·)(X(f(x′))), for X ∈ Sec(τ) and x′ ∈ M ′,

induces an action of EG on f : M ′ −→ M . In addition, the Lie algebroid associated
with the Lie groupoid M ′

f×α G ⇒ P is the action Lie algebroid EG n f (for more
details, see [19]).

6.- The prolongation of a Lie groupoid over a fibration. Given a Lie
groupoid G ⇒ M and a fibration π : P −→ M , we consider the set

P
G×P ≡ P π×α G β×π P = { (p, g, p′) ∈ P ×G× P | π(p) = α(g), β(g) = π(p′) } .

Then, P
G× P is a Lie groupoid over P with structural maps given by

απ : P
G× P −→ P ; (p, g, p′) −→ p,

βπ : P
G× P −→ P ; (p, g, p′) −→ p′,

επ : P −→ P
G× P ; p −→ (p, ε(π(p)), p),

mπ : (P
G× P )2 −→ P

G× P ; ((p, g, p′), (p′, h, p′′)) −→ (p, gh, p′′),

iπ : P
G× P −→ P

G× P ; (p, g, p′) −→ (p′, g−1, p).

P
G× P is called the prolongation of G over π : P −→ M .
Now, denote by τ : EG −→ M the Lie algebroid of G, by E

P
G×P

the Lie algebroid

of P
G× P and by T EGP the prolongation of τ : EG −→ M over the fibration π. If

p ∈ P and m = π(p), then it follows that
(

E
P

G×P

)

p

=
{

(0p, vε(m), Xp) ∈ TpP × (EG)m × TpP
∣∣ (Tpπ)(Xp) = (Tε(m)β)(vε(m))

}
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and, thus, one may consider the linear isomorphism

(Φπ)p : (E
P

G×P
)p −→ T EG

p P, (0p, vε(m), Xp) −→ (vε(m), Xp). (2.11)

In addition, one may prove that the maps (Φπ)p, p ∈ P , induce an isomorphism
Φπ : E

P
G×P

−→ T EGP between the Lie algebroids E
P

G×P
and T EGP (for more

details, see [19]).
A particular case. Next, suppose that P = EG and that the map π is just the

vector bundle projection τ : EG −→ M . In this case,

EG

G× EG = EG τ×α G β×τ EG

and we may define the map Θ : EG

G× EG −→ V β ⊕G V α as follows

Θ(uε(α(g)), g, vε(β(g))) = ((Tε(α(g))(rg ◦ i))(uε(α(g))), (Tε(β(g))lg)(vε(β(g)))),

for (uε(α(g)), g, vε(β(g))) ∈ (EG)α(g) ×G× (EG)β(g). Θ is a bijective map and

Θ−1(Xg, Yg) = ((Tg(i ◦ rg−1))(Xg), g, (Tglg−1)(Yg)),

for (Xg, Yg) ∈ Vgβ ⊕ Vgα. Thus, the spaces EG

G× EG and V β ⊕G V α may be
identified and, under this identification, the structural maps of the Lie groupoid
structure on V β ⊕G V α are given by

ατ : V β ⊕G V α −→ EG ; (Xg, Yg) −→ (Tg(i ◦ rg−1))(Xg),
βτ : V β ⊕G V α −→ EG ; (Xg, Yg) −→ (Tglg−1)(Yg),
ετ : EG −→ V β ⊕G V α ; vε(x) −→ ((Tε(x)i)(vε(x)), vε(x)),
iτ : V β ⊕G V α −→ V β ⊕G V α ; (Xg, Yg) −→ ((Tgi)(Yg), (Tgi)(Xg)),

and the multiplication mτ : (V β ⊕G V α)2 −→ V β ⊕G V α is

mτ ((Xg, Yg), ((Tg(rgh ◦ i))(Yg), Zh)) = ((Tgrh)(Xg), (Thlg)(Zh)).

This Lie groupoid structure was considered by Saunders [53]. We remark that the

Lie algebroid of EG

G× EG
∼= V β ⊕G V α ⇒ EG is isomorphic to the prolongation

T EGEG of EG over τ : EG −→ M .

3. Mechanics on Lie algebroids

We recall that a symplectic section on a vector bundle π : F −→ M is a section
ω of ∧2π∗ which is regular at every point when it is considered as a bilinear form.
By a symplectic Lie algebroid we mean a pair (E, ω) where τ : E −→ M is a
Lie algebroid and ω is a symplectic section on the vector bundle E satisfying the
compatibility condition dω = 0, where d is the exterior differential of E.

On a symplectic Lie algebroid (E, ω) we can define a dynamical system for every
function on the base, as in the standard case of a tangent bundle. Given a function
H ∈ C∞(M) there is a unique section σH ∈ Sec(τ) such that

iσH
ω = dH.

The section σH is said to be the Hamiltonian section defined by H and the
vector field XH = ρ(σH) is said to be the Hamiltonian vector field defined by
H. In this way we get the dynamical system ẋ = XH(x).

A symplectic structure ω on a Lie algebroid E defines a Poisson bracket { , }ω

on the base manifold M as follows. Given two functions F, G ∈ C∞(M) we define
the bracket

{F,G}ω = ω(σF , σG).
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It is easy to see that the closure condition dω = 0 implies that { , }ω is a Poisson
structure on M . In other words, if we denote by Λ the inverse of ω as bilinear form,
then {F, G}ω = Λ(dF, dG). The Hamiltonian dynamical system associated to H
can be written in terms of the Poisson bracket as ẋ = {x,H}ω.

By a symplectomorphism between two symplectic Lie algebroids (E, ω) and
(E′, ω′) we mean an isomorphism of Lie algebroids (Ψ, Ψ0) from E to E′ such that
(Ψ,Ψ0)∗ω′ = ω. In this case the base map Ψ0 is a Poisson diffeomorphism, that is,
it satisfies Ψ∗0{F ′, G′}ω′ = {Ψ∗0F ′, Ψ∗0G′}ω, for all F ′, G′ ∈ C∞(M ′).

Sections 3.1 and 3.2 describe two particular and important cases of the above
construction.

3.1. Lagrangian Mechanics. In [38] (see also [26]) a geometric formalism for
Lagrangian Mechanics on Lie algebroids was introduced. It is developed in the
prolongation T EE of a Lie algebroid E over the vector bundle projection τ : E −→
M . The canonical geometrical structures defined on T EE are the following:

• The vertical lift ξV : τ∗E −→ T EE given by ξV (a, b) = (a, 0, bV
a ), where

bV
a is the vector tangent to the curve a + tb at t = 0.

• The vertical endomorphism S : T EE −→ T EE defined as follows:

S(a, b, v) = ξV (a, b) = (a, 0, bV

a ).

• The Liouville section, which is the vertical section corresponding to the
Liouville dilation vector field:

∆(a) = ξV (a, a) = (a, 0, aV

a ).

We also mention that the complete lift XC of a section X ∈ Sec(E) is the
section of T EE characterized by the following properties:

(i) projects to X, i.e., T τ ◦XC = X ◦ τ ,
(ii) LXC µ̂ = L̂Xµ,

where by α̂ ∈ C∞(E) we denote the linear function associated to α ∈ Sec(E∗).
Given a Lagrangian function L ∈ C∞(E) we define the Cartan 1-section

θL ∈ Sec((T EE)∗) and the Cartan 2-section ωL ∈ Sec(∧2(T EE)∗) and the
Lagrangian energy EL ∈ C∞(E) as

θL = S∗(dL), ωL = −dθL and EL = L∆L− L. (3.1)

If (xi, yα) are local fibred coordinates on E, (ρi
α, Cγ

αβ) are the corresponding local
structure functions on E and {Xα, Vα} is the corresponding local basis of sections
of T EE then

SXα = Vα, SVα = 0, for all α, (3.2)

∆ = yαVα, (3.3)

ωL =
∂2L

∂yα∂yβ
Xα ∧ Vβ +

1
2

(
∂2L

∂xi∂yα
ρi

β −
∂2L

∂xi∂yβ
ρi

α +
∂L

∂yγ
Cγ

αβ

)
Xα ∧ Xβ , (3.4)

EL =
∂L

∂yα
yα − L. (3.5)

From (3.2), (3.3), (3.4) and (3.5), it follows that

iSXωL = −S∗(iXωL), i∆ωL = −S∗(dEL), (3.6)

for X ∈ Sec(T EE).
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Now, a curve t −→ c(t) on E is a solution of the Euler-Lagrange equations
for L if

- c is admissible (that is, ρ(c(t)) = ṁ(t), where m = τ ◦ c) and
- i(c(t),ċ(t))ωL(c(t))− dEL(c(t)) = 0, for all t.

If c(t) = (xi(t), yα(t)) then c is a solution of the Euler-Lagrange equations for L if
and only if

ẋi = ρi
αyα,

d

dt

( ∂L

∂yα

)
+

∂L

∂yγ
Cγ

αβyβ − ρi
α

∂L

∂xi
= 0. (3.7)

Note that if E is the standard Lie algebroid TM then the above equations are
the classical Euler-Lagrange equations for L : TM −→ R.

On the other hand, the Lagrangian function L is said to be regular if ωL is a
symplectic section, that is, if ωL is regular at every point as a bilinear form. In
such a case, there exists a unique solution ΓL verifying

iΓL
ΩL − dEL = 0 .

In addition, using (3.6), it follows that iSΓLωL = i∆ωL which implies that ΓL is
a sode section, that is,

S(ΓL) = ∆,

or alternatively T τ(ΓL(a)) = a for all a ∈ E.
Thus, the integral curves of ΓL (that is, the integral curves of the vector field

ρτ (ΓL)) are solutions of the Euler-Lagrange equations for L. ΓL is called the
Euler-Lagrange section associated with L.

From (3.4), we deduce that L is regular if and only if the matrix Wαβ =
∂2L

∂yα∂yβ

is regular. Moreover, the local expression of ΓL is

ΓL = yαXα + fαVα,

where the functions fα satisfy the linear equations

∂2L

∂yβ∂yα
fβ +

∂2L

∂xi∂yα
ρi

βyβ +
∂L

∂yγ
Cγ

αβyβ − ρi
α

∂L

∂xi
= 0, for all α. (3.8)

Examples.
1.- Real Lie algebras of finite dimension. Let g be a real Lie algebra of

finite dimension and L : g −→ R be a Lagrangian function. Then, the Euler-
Lagrange equations for L are just the well-known Euler-Poincaré equations
(see, for instance, [36]).

2.- The tangent bundle. Let L : TM −→ R be a standard Lagrangian function
on the tangent bundle TM of M . Then, the resultant equations are the classical
Euler-Lagrange equations for L.

3.- Foliations. If the Lie algebroid is the tangent bundle of a foliation F on P
then one recovers the classical formalism of holonomic mechanics.

4.- Atiyah algebroids. Let τQ|G : TQ/G −→ M be the Atiyah algebroid
associated with a principal G-bundle p : Q −→ M and L : TQ|G −→ R be
a Lagrangian function. Then, the Euler-Lagrange equations for L are just the
Lagrange-Poincaré equations (see [26]).

5.- Action Lie algebroids. Suppose that g is a real Lie algebra of finite di-
mension and that Φ : g × V ∗ −→ V ∗ is a linear representation of g on V ∗. If
L : g×V ∗ −→ R is a Lagrangian function on the action Lie algebroid g×V ∗ −→ V ∗

then the Euler-Lagrange equations for L are just the so-called Euler-Poincaré
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equations with advected parameters or the Euler-Poisson-Poincaré equa-
tions (see [20]).

3.2. Hamiltonian Mechanics. In this section, we discuss how the Hamiltonian
formalism can be developed for systems evolving on Lie algebroids (for more details,
see [26, 39]).

Let τ∗ : E∗ −→ M be the vector bundle projection of the dual bundle E∗ to E.
Consider the prolongation T EE∗ of E over τ∗,

T EE∗ = { (b, v) ∈ E × TE∗ | ρ(b) = (Tτ∗)(v) }
= { (a∗, b, v) ∈ E∗ × E × TE∗ | τ∗(a∗) = τ(b), ρ(b) = (Tτ∗)(v) } .

The canonical geometrical structures defined on T EE∗ are the following:

• The Liouville section ΘE ∈ Sec((T EE∗)∗) defined by

ΘE(a∗)(b, v) = a∗(b). (3.9)

• The canonical symplectic section ΩE ∈ Sec(∧2(T EE∗)∗) is defined
by

ΩE = −dΘE . (3.10)

where d is the differential on the Lie algebroid T EE∗.

Take coordinates (xi, pα) on E∗ and denote by {Yα, Pβ} the local basis of sections
T EE∗, with

Yα(a∗) =
(

a∗, eα(τ∗(a∗)), ρi
α

∂

∂xi

)
and Pβ(a∗) =

(
a∗, 0,

∂

∂pα

)
.

In coordinates the Liouville and canonical symplectic sections are written as

ΘE = pαYα and ΩE = Yα ∧ Pα +
1
2
pγCγ

αβYα ∧ Yβ ,

where {Yα,Pβ} is the dual basis of {Yα, Pβ}.
Every function H ∈ C∞(E∗) define a unique section ΓH of T EE∗ by the equation

iΓH
ΩE = dH,

and, therefore, a vector field ρτ∗(ΓH) = XH on E∗ which gives the dynamics. In
coordinates,

ΓH =
∂H

∂pα
Yα −

(
ρi

α

∂H

∂xi
+ pγCγ

αβ

∂H

∂pβ

)
Pα,

and therefore,

XH = ρi
α

∂H

∂pα

∂

∂xi
−

(
ρi

α

∂H

∂xi
+ pγCγ

αβ

∂H

∂pβ

)
∂

∂pα
.

Thus, the Hamilton equations are

dxi

dt
= ρi

α

∂H

∂pα

dpα

dt
= −ρi

α

∂H

∂xi
− pγCγ

αβ

∂H

∂pβ
. (3.11)

The Poisson bracket { , }ΩE defined by the canonical symplectic section ΩE on
E∗ is the canonical Poisson bracket, which is known to exists on the dual of a Lie
algebroid [3].
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Examples.
1.- Real Lie algebras of finite dimension. If the Lie algebroid E is a real

Lie algebra of finite dimension then the Hamilton equations are just the well-known
Lie-Poisson equations (see, for instance, [36]).

2.- The tangent bundle. If E is the standard Lie algebroid TM and H :
T ∗M −→ R is a Hamiltonian function then the resultant equations are the classical
Hamilton equations for H.

3.- Foliations. If the Lie algebroid is the tangent bundle of a foliation F then
one recovers the classical formalism of holonomic Hamiltonian mechanics.

4.- Atiyah algebroids. Let τQ|G : TQ/G −→ M = Q|G be the Atiyah alge-
broid associated with a principal G-bundle p : Q −→ M and H : T ∗Q|G −→ R be
a Hamilton function. Then, the Hamilton equations for H are just the Hamilton-
Poincaré equations (see [26]).

5.- Action Lie algebroids. Suppose that g is a real Lie algebra of finite dimen-
sion, that V is a real vector space of finite dimension and that Φ : g×V ∗ −→ V ∗ is
a linear representation of g on V ∗. If H : g∗ × V ∗ −→ R is a Hamiltonian function
on the action Lie algebroid g× V ∗ −→ V ∗ then the Hamilton equations for H are
just the Lie-Poisson equations on the dual of the semidirect product of
Lie algebras s = gsV (see [20]).

3.3. The Legendre transformation and the equivalence between the La-
grangian and Hamiltonian formalisms. Let L : E −→ R be a Lagrangian func-
tion and θL ∈ Sec((T EE)∗) be the Poincaré-Cartan 1-section associated with L.

We introduce the Legendre transformation associated with L as the smooth
map LegL : E −→ E∗ defined by

LegL(a)(b) =
d

dt
L(a + tb)

∣∣
t=0

, (3.12)

for a, b ∈ Ex, where Ex is the fiber of E over the point x ∈ M . In other words
LegL(a)(b) = θL(a)(z), where z is a point in the fiber of T EE over the point a such
that Tτ(z) = b.

The map LegL is well-defined and its local expression in fibred coordinates on
E and E∗ is

LegL(xi, yα) = (xi,
∂L

∂yα
). (3.13)

From this local expression it is easy to prove that the Lagrangian L is regular if
and only if LegL is a local diffeomorphism.

The Legendre transformation induces a map T LegL : T EE −→ T EE∗ defined
by

(T LegL)(b, Xa) = (b, (TaLegL)(Xa)), (3.14)

for a, b ∈ E and (a, b, Xa) ∈ T E
a E ⊆ Eτ(a) × Eτ(a) × TaE, where TLegL : TE −→

TE∗ is the tangent map of LegL. Note that τ∗ ◦ LegL = τ and thus T LegL is
well-defined.

If we consider local coordinates on T EE (resp. T EE∗) induced by the local basis
{Xα, Vα} (resp., {Yα, Pα}) the local expression of T LegL is

T LegL(xi, yα; zα, vα) = (xi,
∂L

∂yα
; zα, ρi

βzβ ∂2L

∂xi∂yα
+ vβ ∂2L

∂yα∂yβ
). (3.15)

The relationship between Lagrangian and Hamiltonian Mechanics is given by
the following result.
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Theorem 3.1. [26] The pair (T LegL, LegL) is a morphism between the Lie al-
gebroids (T EE, [[·, ·]]τ , ρτ ) and (T EE∗, [[·, ·]]τ∗ , ρτ∗). Moreover, if θL and ωL (re-
spectively, ΘE and ΩE) are the Poincaré-Cartan 1-section and 2-section associated
with L (respectively, the Liouville 1-section and the canonical symplectic section on
T EE∗) then

(T LegL, LegL)∗(ΘE) = θL, (T LegL, LegL)∗(ΩE) = ωL. (3.16)

In addition, in [26], it is proved that if the Lagrangian L is hyperregular, that
is, LegL is a global diffeomorphism, then (T LegL, LegL) is a symplectomorphism
and the Euler-Lagrange section ΓL associated with L and the Hamiltonian section
ΓH are (T LegL, LegL)-related, that is,

ΓH ◦ LegL = T LegL ◦ ΓL. (3.17)

Therefore, an admissible curve a(t) on T EE is a solution of the Euler-Lagrange
equations if and only if the curve µ(t) = LegL(a(t)) is a solution of the Hamilton
equations.

4. Nonholonomic Lagrangian systems on Lie algebroids

4.1. Constrained Lagrangian systems. In this section, we will discuss La-
grangian systems on a Lie algebroid τ : E −→ M subject to nonholonomic con-
straints. The constraints are real functions on the positions and generalized veloci-
ties which constrain the motion to some submanifold M of E. M is the constraint
submanifold.

We will assume that the constraints are purely nonholonomic, that is, not all the
generalized velocities are allowable, although all the positions are permitted. So,
we will suppose that π = τ |M : M −→ M is a fibration.

The constraints are linear if they are linear functions on E or, in more geometrical
terms, if M is a vector subbundle of E over M (Lagrangian systems subject to linear
constraints were discussed in [13, 45]).

In the general case, since π is a fibration, the prolongation T EM is defined.
We will denote by r the dimension of the fibers of π : M −→ M , that is r =
dim M− dim M .

Now, we define the bundle V −→ M of virtual displacements as the subbundle
of τ∗E of rank r whose fiber at a point a ∈ M is

Va =
{

b ∈ Eτ(a)

∣∣ bV

a ∈ TaM
}

.

In other words, the elements of V are pairs of elements (a, b) ∈ E ⊕M E such that
d

dt
φ(a + tb)

∣∣∣
t=0

= 0,

for every local constraint function φ.
We also define the bundle of constraint forces Ψ by Ψ = S∗((T EM)◦). Since

π is a fibration, the transformation S∗ : (T EM)0 −→ Ψ defines an isomorphism
between the vector bundles (T EM)0 −→ M and Ψ −→ M. Therefore, the rank of
Ψ is s = n− r, where n is the rank of E.

Next, suppose that L ∈ C∞(E) is a regular Lagrangian function. Then, the pair
(L, M) is a constrained Lagrangian system. Moreover, assuming the validity
of a Chetaev’s principle in the spirit of that of standard Nonholonomic Mechanics
(see [25]), the solutions of the system (L, M) are curves t −→ c(t) on E such that:

– c is admissible (that is, ρ(c(t)) = ṁ(t), where m = τ ◦ c),
– c is contained in M and,
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– i(c(t),ċ(t))ωL(c(t))− dEL(c(t)) ∈ Ψ(c(t)), for all t.

If (xi, yα) are local fibred coordinates on E, (ρi
α, Cγ

αβ) are the corresponding
local structure functions of E and

φA(xi, yα) = 0, A = 1, . . . , s,

are the local equations defining M as a submanifold of E, then
{∂φA

∂yα
Xα

}
A=1,...,s

is a local basis of Ψ. Moreover, a curve t −→ c(t) = (xi(t), yα(t)) on E is a solution
of the problem if and only if

ẋi = ρi
αyα,

d

dt

(
∂L

∂yα

)
+

∂L

∂yγ
Cγ

αβyβ − ρi
α

∂L

∂xi
= λA

∂φA

∂yα
,

φA(xi, yα) = 0,

(4.1)

where λA are the Lagrange multipliers to be determined.
These equations are called the Lagrange-d’Alembert equations for the con-

strained system (L,M). Note that if E is the Lie algebroid TM , then the above
equations are just the standard Lagrange-d’Alembert equations for the constrained
system (L, M).

Now, we will assume that the solution curves of the problem are the integral
curves of a section Γ of T EE −→ E. Then, we may reformulate geometrically the
problem as follows: we look for a section Γ of T EE −→ E such that

(iΓωL − dEL)|M ∈ Sec(Ψ),

Γ|M ∈ Sec(T EM).
(4.2)

If Γ is a solution of the above equations then, from (3.6), we have that

(iSΓωL − i∆ωL)|M = 0,

which implies that Γ is a sode section along M, that is, (SΓ−∆)|M = 0.

4.2. Regularity, projection of the free dynamics and nonholonomic bracket.
We will discuss next the regularity of the constrained system (L,M) (the con-
strained system (L,M) is regular if equations (4.2) admit a unique solution Γ).

For this purpose, we will introduce two new vector bundles F and T VM over M.
The fibers of F and T VM at the point a ∈ M are

Fa = ω−1
L (Ψa),

T V
a M =

{
z ∈ T E

a M
∣∣ T π(z) ∈ Va

}
=

{
z ∈ T E

a M
∣∣ S(z) ∈ T E

a M
}

.

Then, one may prove the following result.

Theorem 4.1. [10] The following properties are equivalent:

(i) The constrained Lagrangian system (L, M) is regular.
(ii) T EM ∩ F = {0}.
(iii) T VM ∩ (T VM)⊥ = {0}.

Here, the orthogonal complement is taken with respect to the symplectic sec-
tion ωL.

Condition (ii) (or, equivalently, (iii)) in Theorem 4.1 is locally equivalent to the
regularity of the matrix

(
CAB =

∂φA

∂yα
Wαβ ∂φB

∂yβ

)
A,B=1,...,s
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where (Wαβ) is the inverse matrix of
(
Wαβ =

∂2L

∂yα∂yβ

)
.

Thus, if L is a Lagrangian function of mechanical type (that is, L(a) = 1
2G(a, a)−

V (τ(a)), for all a ∈ E, with G : E×M E −→ R a bundle metric on E and V : M −→
R a real function on M) then the constrained system (L,M) is always regular.

Now, assume that the constrained Lagrangian system (L, M) is regular. Then
(ii) in Theorem 4.1 is equivalent to (T EE)|M = T EM ⊕ F and we will denote by
P and Q the complementary projectors defined by this decomposition

Pa : T E
a E −→ T E

a M, Qa : T E
a E −→ Fa, for all a ∈ M.

Moreover, we have

Theorem 4.2. [10] Let (L, M) be a regular constrained Lagrangian system and let
ΓL be the solution of the free dynamics, i.e., iΓL

ωL = dEL. Then, the solution of
the constrained dynamics is the sode Γ along M obtained as follows

Γ = P (ΓL|M).

On the other hand, (3) in Theorem 4.1 is equivalent to (T EE)|M = T VM ⊕
(T VM)⊥ and we will denote by P̄ and Q̄ the corresponding projectors induced by
this decomposition, that is,

P̄a : T E
a E −→ T V

a M, Q̄a = T E
a E −→ (T V

a M)⊥, for all a ∈ M.

Theorem 4.3. [10] Let (L, M) be a regular constrained Lagrangian system, ΓL

(respectively, Γ) be the solution of the free (respectively, constrained) dynamics and
∆ be the Liouville section of T EE −→ E. Then, Γ = P̄ (ΓL|M) if and only if the
restriction to M of the vector field ρτ (∆) on E is tangent to M.

Note that if M is a vector subbundle of E then the vector field ρτ (∆) is tangent
to M. Therefore, using Theorem 4.3, it follows that

Corollary 4.4. Under the same hypotheses as in Theorem 4.3 if M is a vector
subbundle of E (that is, the constraints are linear) then Γ = P̄ (ΓL|M).

Next, we will study the conservation of the Lagrangian energy for the constrained
Lagrangian system (L, M).

Since S∗ : (T EM)0 −→ Ψ is a vector bundle isomorphism, it follows that there
exists a unique section α(L,M) of (T EM)0 −→ M such that

iQ(ΓL|M)ωL = S∗(α(L,M)).

Moreover, we have

Theorem 4.5 (Conservation of the energy). [10] If (L,M) is a regular constrained
Lagrangian system and Γ is the solution of the dynamics then LΓ(EL|M) = 0 if
and only if α(L,M)(∆|M) = 0. In particular, if the vector field ρτ (∆) is tangent to
M then LΓ(EL|M) = 0.

Now, suppose that f and g are two smooth real functions on M and take ar-
bitrary extensions to E denoted by the same letters. Then, we may define the
nonholonomic bracket of f and g as follows

{f, g}nh = ωL(P̄ (Xf ), P̄ (Xg))|M,

where Xf and Xg are the Hamiltonian sections on T EE associated with f and g,
respectively.

The nonholonomic bracket is well-defined and, furthermore, it is not difficult to
prove the following result.
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Theorem 4.6 (The nonholonomic bracket). [10] The nonholonomic bracket is an
almost-Poisson bracket, i.e., it is skew-symmetric and satisfies the Leibniz rule (it
is a derivation in each argument with respect to the usual product of functions).
Moreover, if f ∈ C∞(M) is an observable, then the evolution ḟ of f is given by

ḟ = ρτ (RL)(f) + {f, EL|M}nh,

where RL is the section of T EM −→ M defined by RL = P (ΓL|M)− P̄ (ΓL|M). In
particular, if the vector field ρτ (∆) is tangent to M then

ḟ = {f,EL|M}nh.

4.3. Reduction. Next, we will discuss a reduction process and its relation with Lie
algebroid epimorphisms. These results will be also valid for Lie algebroids without
nonholonomic constraints, simply taking M = E and M′ = E′ in the sequel.

Let (L,M) be a regular constrained Lagrangian system on a Lie algebroid τ :
E −→ M and (L′,M′) be another constrained Lagrangian system on a second Lie
algebroid τ ′ : E′ −→ M ′. Suppose also that we have a fiberwise surjective morphism
of Lie algebroids Φ : E −→ E′ over a surjective submersion φ : M −→ M ′ such
that:

i) L = L′ ◦ Φ,
ii) Φ|M : M −→ M′ is a surjective submersion and

iii) Φ(Va) = V′Φ(a), for all a ∈ M.

Note that if M and M′ are vector subbundles of E and E′, respectively, then
conditions i), ii) and iii) hold if and only if

L = L′ ◦ Φ and Φ(M) = M′.

In the general case, one may introduce the map T ΦΦ : T EM −→ T E′M′ given by

(T ΦΦ)(b, v) = (Φ(b), (TΦ)(v)), for (b, v) ∈ T EM,

and we have that T ΦΦ is a Lie algebroid epimorphism over Φ. In addition, the
following results hold

Theorem 4.7 (Reduction of the constrained dynamics). [10] Let (L,M) be a reg-
ular constrained Lagrangian system on a Lie algebroid E and (L′, M′) be a con-
strained Lagrangian system on a second Lie algebroid E′. Assume that we have a
fiberwise surjective morphism of Lie algebroids Φ : E −→ E′ over φ : M −→ M ′

such that conditions i), ii) and iii) hold. Then:

(i) The constrained Lagrangian system (L′,M′) is regular.
(ii) If Γ (respectively, Γ′) is the constrained dynamics for L (respectively, for

L′) then T ΦΦ ◦ Γ = Γ′ ◦ Φ.
(iii) If t −→ c(t) is a solution of Lagrange-d’Alembert differential equations for

L then Φ(c(t)) is a solution of Lagrange-d’Alembert differential equations
for L′.

Theorem 4.8 (Reduction of the nonholonomic bracket). [10] Under the same
hypotheses as in Theorem 4.7, we have that

{f ′ ◦ Φ, g′ ◦ Φ}nh = {f ′, g′}′nh ◦ Φ

for f ′, g′ ∈ C∞(M′), where {·, ·}nh (respectively, {·, ·}′nh) is the nonholonomic
bracket for the constrained system (L,M) (respectively, (L′,M′)). In other words,
Φ : M −→ M′ is an almost-Poisson morphism when on M and M′ we consider the
almost-Poisson structures defined by the corresponding nonholonomic brackets.
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Reduction by symmetries. Let φ : Q −→ M be a principal G-bundle and τ :
E −→ Q be a Lie algebroid over Q. In addition, assume that we have an action of
G on E such that the quotient vector bundle E/G is defined and the set Sec(E)G

of equivariant sections of E is a Lie subalgebra of Sec(E). Then, E′ = E/G
has a canonical Lie algebroid structure over M such that the canonical projection
Φ : E −→ E′ is a fiberwise bijective Lie algebroid morphism over φ (see [26]).

Next, suppose that (L, M) is a G-invariant regular constrained Lagrangian sys-
tem, that is, the Lagrangian function L and the constraint submanifold M are
G-invariant. Assume also that M is closed. Then, one may define a Lagrangian
function L′ : E′ −→ R on E′ such that

L = L′ ◦ Φ.

Moreover, G acts on M and the set of orbits M′ = M/G of this action is a quotient
manifold, that is, M′ is a smooth manifold and the canonical projection Φ|M :
M −→ M′ = M/G is a submersion. Thus, one may consider the constrained
Lagrangian system (L′,M′) on E′.

Since the orbits of the action of G on E are the fibers of Φ and M is G-invariant,
we deduce that

Va(Φ) ⊆ TaM, for all a ∈ M,

V (Φ) being the vertical bundle of Φ. This implies that Φ|Va
: Va −→ V′Φ(a) is a

linear isomorphism, for all a ∈ M.

Therefore, from Theorem 4.7, we conclude that the constrained Lagrangian sys-
tem (L′, M′) is regular and that

T ΦΦ ◦ Γ = Γ′ ◦ Φ,

where Γ (resp., Γ′) is the constrained dynamics for L (resp., L′). In addition, using
Theorem 4.8, we obtain that Φ : M −→ M′ is an almost-Poisson morphism when on
M and M′ we consider the almost-Poisson structures induced by the corresponding
nonholonomic brackets.

4.4. Example: a rolling ball on a rotating table. We apply the results in this
section to the case of a ball rolling without sliding on a rotating table with constant
angular velocity [1, 4, 10, 30, 48]. A (homogeneous) sphere of radius r > 0, unit
mass m = 1 and inertia k2 about any axis, rolls without sliding on a horizontal
table which rotates with constant angular velocity Ω about a vertical axis through
one of its points. Apart from the constant gravitational force, no other external
forces are assumed to act on the sphere.

Choose a Cartesian reference frame with origin at the center of rotation of the
table and z-axis along the rotation axis. Let (x, y) denote the position of the point
of contact of the sphere with the table. The configuration space for the sphere on
the table is Q = R2 × SO(3), where SO(3) may be parameterized by the Eulerian
angles θ, ϕ and ψ. The kinetic energy of the sphere is then given by

T =
1
2
(ẋ2 + ẏ2 + k2(θ̇2 + ψ̇2 + 2ϕ̇ψ̇ cos θ)).

With the potential energy being constant, we may put V = 0. Thus, the Lagrangian
function L is T and the constraint equations are

ẋ− rθ̇ sinψ + rϕ̇ sin θ cosψ = −Ωy,

ẏ + rθ̇ cos ψ + rϕ̇ sin θ sin ψ = Ωx.

Since the Lagrangian function is of mechanical type, the constrained system is
regular. Note that the constraints are not linear and that the restriction to the
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constraint submanifold M of the Liouville vector field on TQ is not tangent to M.
Indeed, the constraints are linear if and only if Ω = 0.

Next, following [4, 10], we will consider local coordinates (x̄, ȳ, θ̄, ϕ̄, ψ̄; πi)i=1,...,5

on TQ = TR2 × T (SO(3)), where

x̄ = x, ȳ = y, θ̄ = θ, ϕ̄ = ϕ, ψ̄ = ψ,

π1 = rẋ + k2q̇2, π2 = rẏ − k2q̇1, π3 = k2q̇3,

π4 =
k2

(k2 + r2)
(ẋ− rq̇2 + Ωy), π5 =

k2

(k2 + r2)
(ẏ + rq̇1 − Ωx),

(q̇1, q̇2, q̇3) are the quasi-coordinates defined by

q̇1 = ωx, q̇2 = ωy, q̇3 = ωz,

and ωx, ωy and ωz are the components of the angular velocity of the sphere.
Then, the constrained dynamics is the sode Γ along M defined by

Γ = (PΓL|M) = (ẋ
∂

∂x̄
+ ẏ

∂

∂ȳ
+ θ̇

∂

∂θ̄
+ ϕ̇

∂

∂ϕ̄
+ ψ̇

∂

∂ψ̄
)|M

= (ẋ
∂

∂x̄
+ ẏ

∂

∂ȳ
+ q̇1

∂

∂q1
+ q̇2

∂

∂q2
+ q̇3

∂

∂q3
)|M.

(4.3)

On the other hand, when constructing the nonholonomic bracket on M, we find
that the only non-zero fundamental brackets are

{x, π1}nh = r, {y, π2}nh = r,
{q1, π2}nh = −1, {q2, π1}nh = 1, {q3, π3}nh = 1,

{π1, π2}nh = π3, {π2, π3}nh =
k2

(k2 + r2)
π1 +

rk2Ω
(k2 + r2)

y,

{π3, π1}nh =
k2

(k2 + r2)
π2 − rk2Ω

(k2 + r2)
x,

(4.4)

in which the “appropriate operational” meaning has to be attached to the quasi-
coordinates qi.

Thus, we have that

ḟ = RL(f) + {f, L}nh, for f ∈ C∞(M),

where RL is the vector field on M given by

RL = (
k2Ω

(k2 + r2)
(x

∂

∂y
− y

∂

∂x
) +

rΩ
(k2 + r2)

(x
∂

∂q1
+ y

∂

∂q2

+x(π3 − k2Ω)
∂

∂π1
+ y(π3 − k2Ω)

∂

∂π2
− k2(π1x + π2y)

∂

∂π3
))|M.

Note that RL = 0 if and only if Ω = 0.
Now, it is clear that Q = R2×SO(3) is the total space of a trivial principal SO(3)-

bundle over R2 and the bundle projection φ : Q −→ M = R2 is just the canonical
projection on the first factor. Therefore, we may consider the corresponding Atiyah
algebroid E′ = TQ/SO(3) over M = R2.

One may prove that E′ is isomorphic to the real vector bundle TR2×R3 −→ R2

in such a way that the anchor map ρ′ : E′ ∼= TR2×R3 −→ TR2 is just the canonical
projection on the first factor. Moreover, one may choose a global basis {e′i}i=1,...,5

of Sec(E′) and the only non-zero fundamental Lie brackets are

[[e′4, e
′
3]]
′ = e′5, [[e′5, e

′
4]]
′ = e′3, [[e′3, e

′
5]]
′ = e′4.

We have that the Lagrangian function L = T and the constraint submanifold
M are SO(3)-invariant. Consequently, L induces a Lagrangian function L′ on
E′ = TQ/SO(3) and the set of orbits M′ = M/SO(3) is a submanifold of E′ =
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TQ/SO(3) in such a way that the canonical projection Φ|M : M −→ M′ =
M/SO(3) is a surjective submersion.

Under the identification between E′ = TQ/SO(3) and TR2 ×R3, L′ is given by

L′(x, y, ẋ, ẏ; ω1, ω2, ω3) =
1
2
(ẋ2 + ẏ2) +

k2

2
(ω2

1 + ω2
2 + ω2

3),

where (x, y, ẋ, ẏ) and (ω1, ω2, ω3) are the standard coordinates on TR2 and R3,
respectively. Moreover, the equations defining M′ as a submanifold of TR2 × R3

are
ẋ− rω2 + Ωy = 0, ẏ + rω1 − Ωx = 0.

So, we have the constrained Lagrangian system (L′,M′) on the Atiyah algebroid
E′ = TQ/SO(3) ∼= TR2 × R3. Note that the constraints are not linear and that if
∆′ is the Liouville section of the prolongation T E′E′ then the restriction to M′ of
the vector field (ρ′)τ ′(∆′) is not tangent to M′.

Now, if we put

x′ = x, y′ = y,
π′1 = rẋ + k2ω2, π′2 = rẏ − k2ω1, π′3 = k2ω3,

π′4 =
k2

(k2 + r2)
(ẋ− rω2 + Ωy), π′5 =

k2

(k2 + r2)
(ẏ + rω1 − Ωx),

then (x′, y′, π′1, π
′
2, π

′
3, π

′
4, π

′
5) is a system of global coordinates on TQ/SO(3) ∼=

TR2 × R3. In these coordinates the equations defining the submanifold M′ are
π′4 = 0 and π′5 = 0 and the canonical projection Φ : TQ −→ TQ/SO(3) is given by

Φ(x̄, ȳ, θ̄, ϕ̄, ψ̄; π1, π2, π3, π4, π5) = (x̄, ȳ;π1, π2, π3, π4, π5). (4.5)

Thus, if Γ′ is the constrained dynamics for the system (L′, M′), it follows that
(see (4.3))

(ρ′)τ ′(Γ′) = (ẋ′
∂

∂x′
+ ẏ′

∂

∂y′
)|M′.

On the other hand, from (4.4), (4.5) and Theorem 4.8, we deduce that the only
non-zero fundamental nonholonomic brackets for the system (L′,M′) are

{x′, π′1}′nh = r, {y′, π′2}′nh = r,

{π′1, π′2}′nh = π′3, {π′2, π′3}′nh =
k2

(k2 + r2)
π′1 +

rk2Ω
(k2 + r2)

y′,

{π′3, π′1}′nh =
k2

(k2 + r2)
π′2 −

rk2Ω
(k2 + r2)

x′.

Therefore, we have that

ḟ ′ = (ρ′)τ ′(RL′)(f ′) + {f ′, L′}′nh, for f ′ ∈ C∞(M′),

where (ρ′)τ ′(RL′) is the vector field on M′ given by

(ρ′)τ ′(RL′) = { k2Ω
k2 + r2

(x′
∂

∂y′
− y′

∂

∂x′
) +

rΩ
(k2 + r2)

(x′(π′3 − k2Ω)
∂

∂π′1
+y′(π′3 − k2Ω)

∂

∂π′2
− k2(π′1x

′ + π′2y
′)

∂

∂π′3
)}|M′ .

4.5. Hamiltonian formalism. Let (L, M) be a constrained Lagrangian system
on a Lie algebroid E and assume that the Lagrangian function L is hyperregular.
Then, since the LegL is a diffeomorphism then, it is clear that one may develop
a Hamiltonian formalism which is equivalent, via the Legendre transformation, to
the Lagrangian formalism.
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5. Mechanical control systems on Lie algebroids

5.1. General control systems on Lie algebroids. Consider a Lie algebroid
τ : E −→ M , with anchor map ρ : E −→ TM . Let {σ, η1, . . . , ηk} be sections of E.
A control problem on the Lie algebroid τ : E −→ M with drift section σ
and input sections η1, . . . , ηk is defined by the following equation on M ,

ṁ(t) = ρ
(
σ(m(t)) +

k∑

i=1

ui(t)ηi(m(t))
)
, (5.1)

where u = (u1, . . . , uk) ∈ U , and U is an open set of Rk containing 0. The function
t 7→ u(t) = (u1(t), . . . , uk(t)) belongs to a certain class of functions of time, denoted
by U, called the set of admissible controls. For our purposes, we may restrict the
admissible controls to be the piecewise constant functions with values in U . Notice
that the trajectories of the control system are admissible curves of the Lie algebroid,
and therefore they must lie on a leaf of E. It follows that if E is not transitive,
then there are points that cannot be connected by solutions of any control system
defined on such a Lie algebroid. In particular, the system (5.1) cannot be locally
accessible at points m ∈ M where ρ is not surjective. Since the emphasis here is
put on the controllability analysis, without loss of generality we will restrict our
attention to locally transitive Lie algebroids.

Denoting by f = ρ(σ) and gi = ρ(ηi), i ∈ 1, . . . , k, we can rewrite the system (5.1)
as

ṁ(t) = f(m(t)) +
k∑

i=1

ui(t)gi(m(t)), (5.2)

which is a standard nonlinear control system on M affine in the inputs [47]. Here
we make use of the additional geometric structure provided by the Lie algebroid
in order to carry over the analysis of the controllability properties of the control
system (5.1). We refer to [47] for a comprehensive discussion of the notions of
reachable sets, accessibility algebra and computable accessibility tests.

Definition 5.1. The accessibility algebra D of the control system (5.1) in
the Lie algebroid is the smallest subalgebra of Sec(E) that contains the sections
{σ, η1, . . . , ηk}.

Using the Jacobi identity, one can deduce that any element of accessibility alge-
bra D is a linear combination of repeated Lie brackets of sections of the form

[[ζl, [[ζl−1, [[. . . , [[ζ2, ζ1]] . . .]]]]]],

where ζi ∈ {σ, η1, . . . , ηk}, 1 ≤ i ≤ l and l ∈ N.

Definition 5.2. The accessibility subbundle in the Lie algebroid, denoted
by Lie({σ, η1, . . . , ηk}), is the vector subbundle of E generated by the accessibility
algebra D,

Lie({σ, η1, . . . , ηk}) = span {ζ(m) | ζ section of E in D} , m ∈ M.

If the dimension of Lie({σ, η1, . . . , ηk}) is constant, then Lie({σ, η1, . . . , ηk}) is
the smallest Lie subalgebroid of E that has {σ, η1, . . . , ηk} as sections.

5.2. Mechanical control systems. Let τ : E −→ M be a Lie algebroid, let ∇ be
a connection on E, and let {η, η1, . . . , ηk} be sections of E. A mechanical control
system on the Lie algebroid τ : E −→ M is defined by the following equation

∇a(t)a(t) + η(m(t)) =
k∑

i=1

ui(t)ηi(m(t)). (5.3)
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We will often refer to η as the potential energy term in equations (5.3). Associated
with this equation, there is always a control system on the Lie algebroid T EE −→ E
given by

ȧ(t) = ρτ
(
(Γ∇ − ηV )(a(t)) +

k∑

i=1

ui(t)ηV

i (a(t))
)
, (5.4)

where ηV (resp. ηV
i ) denotes the vertical lift of η (resp. ηi) and Γ∇ is the sode

section associated with ∇. Γ∇ is locally given by (see [13])

Γ∇ = yαXα − 1
2

(
Γα

βγ + Γα
γβ

)
yβyγVα.

There are two distinguished families within the class of mechanical control sys-
tems. We introduce them next.
Mechanical control systems. Consider a Lagrangian system with L : E −→ R
of the form

L(a) =
1
2
G(a, a)− V ◦ τ(a), a ∈ E,

with G : E ×M E −→ R a bundle metric on E and V a function on M . This
Lagrangian function gives rise to the Euler-Lagrange equations as explained in
Section 3.1.

Consider now the situation when the Lagrangian system is subject to some ex-
ternal forces, represented by a collection {θ1, . . . , θk} of sections of E∗. Denote by
{η1, . . . , ηk} the input sections of E determined by the control forces {θ1, . . . , θk} via
the metric, i.e., θi(X) = G(ηi, X) for all X ∈ Sec(E). If Γ∇G denotes the sode sec-
tion associated with the Levi-Civita connection ∇G, the controlled Euler-Lagrange
equations can be written as

ȧ(t) = ρτ
(
Γ∇G(a(t))− (gradG V )V (a(t)) +

k∑

i=1

ui(t)ηV

i (a(t))
)
. (5.5)

Here gradG V is the section of E characterized by G(gradG V, X) = dV (X) for
X ∈ Sec(E). Note that system (5.5) is a control problem on the Lie algebroid
T EE −→ E as defined in Section 5.1. Locally, the equations can be written as

ẋi = ρi
αyα,

ẏα = −1
2

(
Γα

βγ(x) + Γα
γβ(x)

)
yβyγ − Gαβρi

β

∂V

∂xi
+

k∑

i=1

ui(t)ηα
i (x),

where (Gαβ) are the components of the metric G and (Gαβ) is the inverse matrix of
(Gαβ).

Alternatively, one can describe the dynamical behavior of the mechanical control
system by means of an equation on E via the covariant derivative. An admissible
curve a : t 7→ a(t) is a solution of the system (5.5) if and only if

∇G
a(t)a(t) + gradG V (m(t)) =

k∑

i=1

ui(t)ηi(m(t)). (5.6)

This equation corresponds to a mechanical control system (5.3) with connection
∇ = ∇G and sections {gradG V, η1, . . . , ηk}.
Mechanical control systems with constraints. Assume a mechanical control
system with data (G, V, {θ1, . . . , θk}) is subject to the constraints determined by a
subbundle D of E. Consider the orthogonal decomposition E = D ⊕ D⊥ an the
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associated orthogonal projectors P : E −→ D, Q : E −→ D⊥. Then, one can write
the controlled Lagrange-d’Alembert equations as

P (∇G
a(t)a(t)) + P (gradG V (m(t))) =

k∑

i=1

ui(t)P (ηi(m(t))), Q(a) = 0.

In terms of the constrained connection ∇̌ση = P (∇G
ση) + ∇G

σ(Qη), with σ, η ∈
Sec(E), the controlled equations can be rewritten as ∇̌a(t)a(t)+P (gradG V (m(t))) =∑k

i=1 ui(t)P (ηi(m(t))), Q(a) = 0. Since the forcing terms coming from the poten-
tial and the inputs belong to D, the solutions of the total controlled dynamics
initially belonging to D also remain in D. As a consequence, an admissible curve
a : t 7→ a(t) is a solution of the system (5.8) if and only if

∇̌a(t)a(t) + P (gradG V (m(t))) =
k∑

i=1

ui(t)P (ηi(m(t))), a0 ∈ D. (5.7)

This equation corresponds to a mechanical control system (5.3) with connection
∇ = ∇̌ and sections {P (gradG V ), P (η1), . . . , P (ηk)}.

Note that one can write the controlled dynamics as a control system on the Lie
algebroid T EE −→ E,

ȧ(t) = ρτ
(
Γ∇̌(a(t))− P (gradG V )V (a(t)) +

k∑

i=1

ui(t)P (ηi)V (a(t))
)
. (5.8)

The coordinate expression of these equations is greatly simplified if we take a basis
{eα} = {ea, eA} of E adapted to the orthogonal decomposition E = D ⊕ D⊥,
i.e., D = span{ea}, D⊥ = span{eA}. Denoting by (yα) = (ya, yA) the induced
coordinates, the constraint equations Q(a) = 0 just read yA = 0. The controlled
equations (5.7) are then

ẋi = ρi
aya,

ẏa = −1
2
Sa

bcy
byc − Gaβρi

β

∂V

∂xi
+

k∑

i=1

ui(t)P (ηi)a,

yA = 0.

where Sa
bc = Γb

ca + Γc
ba are the components of the symmetric product.

5.3. Accessibility and controllability notions. Here we introduce the notions
of accessibility and controllability that are specialized to mechanical control systems
on Lie algebroids. Let m ∈ M and consider a neighborhood V of m in M . Define
the set of reachable points in the base manifold M starting from m as

RV
M (m, T ) = {m′ ∈ M | ∃u ∈ U defined on [0, T ] such that the evolution of (5.4)

for a(0) = 0m satisfies τ(a(t)) ∈ V, t ∈ [0, T ] and τ(a(T )) = m′} .

Alternatively, one may write RV
M (m,T ) = τ(Rτ−1(V )

E (0m, T )). Denote

RV
M (m,≤ T ) =

⋃

t≤T

RV
M (m, t).

Definition 5.3. The system (5.4) is locally base accessible from m (respec-
tively, locally base controllable from m) if RV

M (m,≤ T ) contains a non-empty
open set of M (respectively, RV

M (m,≤ T ) contains a non-empty open set of M to
which m belongs) for all neighborhoods V of m and all T > 0. If this holds for any
m ∈ M , then the system is called locally base accessible (respectively, locally
base controllable).
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In addition to the notions of base accessibility and base controllability, we shall
also consider full-state accessibility and controllability starting from points of the
form 0m ∈ E, m ∈ M (note that full-state is meant here with regards to E, not to
TM).

Definition 5.4. The system (5.4) is locally accessible from m at zero (re-
spectively, locally controllable from m at zero) if RW

E (0m,≤ T ) contains a
non-empty open set of E (respectively, RW

E (0m,≤ T ) contains a non-empty open
set of E to which 0m belongs) for all neighborhoods W of 0m in E and all T > 0.
If this holds for any m ∈ M , then the system is called locally accessible at zero
(respectively, locally controllable at zero).

The relevance of the above definitions stems from the fact that, frequently, one
needs to control a system by starting at rest. Nevertheless it is important to notice
that not every equilibrium point at m corresponds to the point 0m. Finally, we also
introduce the notion of accessibility and controllability with regards to a manifold.

Definition 5.5. Let ψ : M −→ N be an open mapping. The system (5.4) is lo-
cally base accessible from m with regards to N (respectively, locally base
controllable from m with regards to N) if ψ(RV

M (m,≤ T )) contains a non-empty
open set of N (respectively, ψ(RV

M (m,≤ T )) contains a non-empty open set of N
to which ψ(m) belongs) for all neighborhoods V of m and all T > 0. If this holds
for any m ∈ M , then the system is called locally base accessible with regards
to N (respectively, locally base controllable with regards to N).

Note that base accessibility and controllability with regards to M with idM :
M −→ M corresponds to the notions of base accessibility and controllability (cf.
Definition 5.3). Moreover, if the system is base accessible, then it is base accessible
with regards to N . The analogous implication for base controllability also holds
true.

5.4. The structure of the control Lie algebra. The aim of this section is to
show that the analysis of the structure of the control Lie algebra of affine connection
control systems carried out in [29] can be further extended to control systems
defined on a Lie algebroid. The enabling technical notion exploited here is that of
homogeneity.

Let B be a Lie bracket formed with sections of the family X = {Γ∇, ηV
1 , . . . , ηV

k , ηV }.
The degree of B is the number of occurrences of all its factors, and is therefore
given by δ(B) = δ0(B) + δ1(B) + · · · + δk(B), where δ0(B), δi(B), i ∈ {1, . . . , k},
and δk+1(B) correspond, respectively, to the number of times that Γ∇, ηV

i , i ∈
{1, . . . , k}, and ηV appear in B. For each l, consider the following sets

Brl(X) = {B bracket in X | δ(B) = l}, Brl(X) = {B bracket in X | B ∈ Pl},
where Pl denotes the set of homogeneous sections of T E of degree l. The notion
of primitive bracket will also be useful. Given a bracket B in X, it is clear that
we can write B = [B1, B2], with Bi brackets in X. In turn, we can also write
Bα = [Bα1, Bα2] for α = 1, 2, and continue these decompositions until we end up
with elements belonging to X. The collection of brackets B1, B2, B11, B12, . . . are
called the components of B. The components of B which do not admit further
decompositions are called irreducible. A bracket B is called primitive if all of its
components are brackets in Br−1(X) ∪ Br0(X) ∪ {Γ∇}.

Consider the set X′ = {Γ∇ − ηV , ηV
1 , . . . , ηV

k }. Clearly, the elements in Lie(X′)
are linear combinations of the elements in Lie(X). In fact, for each bracket B′

of elements in X′, let us define the subset S(B′) ⊂ Br(X) formed by all possible
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brackets B ∈ Br(X) obtained by replacing each occurrence of Γ∇ − ηV in B′ by
either Γ∇ or ηV . Then, one can prove by induction (cf. [28]) that

B′ =
∑

B∈S(B′)

(−1)δk+1(B)B. (5.9)

Reciprocally, given an element B ∈ Br(X), one can determine the bracket B′ of
elements in X′ such that B ∈ S(B′) simply by substituting each occurrence of Γ∇
or ηV in B by Γ∇− ηV . We denote this operation by pseudoinv(B) = B′. For each
k ∈ N, define the following families of sections in E,

C(k)
ver(η; η1, . . . , ηk) =

{σ ∈ Sec(E) | σV = B′′, B′′ =
∑

B̃∈S(pseudoinv(B))
∩Br−1(X)∩Br0(X)

(−1)δk+1(B̃)B̃, B ∈ Br2k−1(X) primitive},

C
(k)
hor(η; η1, . . . , ηk) =

{σ ∈ Sec(E) | σ = σB′′ , B
′′ =

∑

B̃∈S(pseudoinv(B))
∩Br−1(X)∩Br0(X)

(−1)δk+1(B̃)B̃, B ∈ Br2k(X) primitive}.

Consider

Cver(η; η1, . . . , ηk) = ∪k∈NC(k)
ver(η; η1, . . . , ηk),

Chor(η; η1, . . . , ηk) = ∪k∈NC
(k)
hor(η; η1, . . . , ηk),

and denote by Cver(η; η1, . . . , ηk) and Chor(η; η1, . . . , ηk), respectively, the subbun-
dles of the Lie algebroid E generated by the latter families.

Taking into account the previous discussion, we are now ready to compute Lie({Γ∇−
ηV , ηV

1 , . . . , ηV

k }) for a mechanical control system defined on a Lie algebroid.

Proposition 5.6. ([13]) Let m ∈ M . Then,

Lie({Γ∇ − ηV , ηV

1 , . . . , ηV

k }) ∩Ver0m(T E) = Cver(η; η1, . . . , ηk)(m)V ,

Lie({Γ∇ − ηV , ηV

1 , . . . , ηV

k }) ∩Horm(T E) = Chor(η; η1, . . . , ηk)(m).

Remark 5.7. In the absence of potential terms, i.e., η = 0, one has that

Cver(0; η1, . . . , ηk) = Sym({η1, . . . , ηk}), Chor(0; η1, . . . , ηk) = Lie(Sym({η1, . . . , ηk})),
where Sym({η1, . . . , ηk}) denotes the distribution obtained by closing (the distri-
bution defined by) {η1, . . . , ηk} under the symmetric product associated with ∇. It
is worth noticing that, in this case, Cver(0; η1, . . . , ηk) ⊆ Chor(0; η1, . . . , ηk). This is
not true in general. ¦

5.5. Accessibility and controllability tests. In this section we merge the no-
tions introduced in Section 5.3 with the results obtained in Section 5.4 to give tests
for accessibility and controllability.

Proposition 5.8. [13] Let m ∈ M and assume the Lie algebroid E is locally
transitive at m. Then the mechanical control system (5.4) is

• locally base accessible from m if Chor(η; η1, . . . , ηk)(m) + ker ρ = Em,
• locally accessible from m at zero if Chor(η; η1, . . . , ηk)(m) + ker ρ = Em

and Cver(η; η1, . . . , ηk)(m) = Em.

In order to state controllability tests, we need to introduce the notions of good
and bad symmetric products. We say that a symmetric product P in the sections
{η, η1, . . . , ηk} is bad if the number of occurrences of each ηi in P is even. Otherwise,
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P is good. Accordingly, 〈ηi : ηi〉 is bad and 〈〈η : ηj〉 : 〈ηi : ηi〉〉 is good. The
following theorem gives sufficient conditions for local controllability.

Proposition 5.9. [13] Let m ∈ M . The mechanical control system (5.4) is

• locally base controllable from m if it is locally base accessible from m and
every bad symmetric product in {η, η1, . . . , ηk} evaluated at m can be put
as an R-linear combination of good symmetric products of lower degree and
elements of ker ρ,

• locally controllable from m at zero if it is locally accessible from m at zero
and every bad symmetric product in {η, η1, . . . , ηk} evaluated at m can be
put as an R-linear combination of good symmetric products of lower degree.

The corresponding tests for base accessibility and controllability with regards to
a manifold can be proved in a similar way.

Proposition 5.10. [13] Let ψ : M −→ N be an open map. Let m ∈ M and assume
ψ∗(ρ(Em)) = Tψ(m)N . Then the mechanical control system (5.4) is

• locally base accessible from m with regards to N if Chor(η; η1, . . . , ηk)(m)+
ρ−1(ker ψ∗) = Em,

• locally base controllable from m with regards to N if the system is locally
base accessible from m with regards to N and every bad symmetric product
in {η, η1, . . . , ηk} evaluated at m can be put as an R-linear combination of
good symmetric products of lower degree and elements of ρ−1(ker ψ∗).

6. Discrete Mechanics on Lie groupoids

In this section, we discuss discrete Lagrangian Mechanics on a Lie groupoid
G ⇒ M . Instead of the usual Euler-Lagrange equations (3.7) for a Lie algebroid
τ : E −→ M equipped with a Lagrange function L : E −→ R, we obtain a
set of difference equations called Discrete Euler-Lagrange equations for a discrete
Lagrangian Ld : G −→ R [35]. When the Lie algebroid is precisely E = EG and Ld

is a suitable approximation of the continuous Lagrangian L : EG −→ R, then we
will obtain a geometric integrator for the Euler-Lagrange equations. In the next
subsections we will carefully analyze this construction and its geometric properties.

6.1. Lie algebroid structure on the vector bundle πτ : EG

G×EG −→ G. Let
G ⇒ M be a Lie groupoid with structural maps

α, β : G −→ M, ε : M −→ G, i : G −→ G, m : G2 −→ G.

We know that EG

G×EG ⇒ EG is a Lie groupoid. The following theorem shows that

the vector bundle πτ : EG

G× EG
∼= V β ⊕G V α −→ G is equipped with a natural

structure of Lie algebroid.

Theorem 6.1 (See Theorem 3.3 in [35]). The vector bundle πτ : EG

G× EG
∼=

V β ⊕G V α −→ G admits a Lie algebroid structure, where the anchor map is given
by

ρEG

G×EG(Xg, Yg) = Xg + Yg, for (Xg, Yg) ∈ Vgβ ⊕ Vgα, (6.1)

and the Lie bracket [[·, ·]]EG

G×EG on the space Sec(πτ ) is characterized by the following
relation

[[(
−→
X,
←−
Y ), (

−→
X ′,

←−
Y ′)]]EG

G×EG =
(
−−−−−−→[[X, X ′]],

←−−−−
[[Y, Y ′]]

)
, (6.2)

for X, Y, X ′, Y ′ ∈ Sec(τ).
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We also remark that, if we denote by (G,α) the fibration α : G −→ M and
by (G, β) the fibration β : G −→ M , then it is not difficult to prove that the Lie
algebroid prolongations T EG(G,α) −→ G and T EG(G, β) −→ G are isomorphic, as
Lie algebroids, and both are isomorphic to the Lie algebroid V β⊕G V α −→ G and

hence to EG

G× EG −→ G (see [35] for the details).

The following diagram shows both structures of EG

G× EG,

EG

G× EG

ατ

βτ
+3

ρEG
G
×EG

$$HH
HH

HH
HH

H

πτ

²²

EG

ρ

!!CC
CC

CC
CC

C

τ

²²

TG
Tα

Tβ
+3

τG

yyssssssssss
TM

τM||yy
yy

yy
yy

G
α

β
+3 M

where the vertical maps are morphisms of Lie groupoids and the horizontal maps
are morphisms of Lie algebroids.

Given a section X of EG −→ M , we define the sections X(1,0), X(0,1) (the β and

α- lifts) and X(1,1) (the complete lift) of X to πτ : EG

G× EG −→ G as follows:

X(1,0)(g) = (
−→
X (g), 0g), X(0,1)(g) = (0g,

←−
X (g)) and X(1,1)(g) = (−−→X (g),

←−
X (g))

We can easily see that

[[X(1,0), Y (1,0)]]EG

G×EG = −[[X,Y ]](1,0)

[[X(0,1), Y (0,1)]]EG

G×EG = [[X,Y ]](0,1)
and [[X(0,1), Y (1,0)]]EG

G×EG = 0 (6.3)

and, as a consequence,

[[X(1,1), Y (1,0)]]EG

G×EG = [[X, Y ]](1,0)

[[X(1,1), Y (0,1)]]EG

G×EG = [[X, Y ]](0,1)
and [[X(1,1), Y (1,1)]]EG

G×EG = [[X, Y ]](1,1).

(6.4)

6.2. Discrete Variational Mechanics on Lie groupoids. Discrete Lagrangian
systems on Lie groupoids have a variational origin, as we explain next. A discrete
Lagrangian system consists of a Lie groupoid G ⇒ M (the discrete space) and
a discrete Lagrangian Ld : G −→ R.
Discrete Euler-Lagrange equations. For g ∈ G fixed, we consider the set of
admissible sequences:

CN
g =

{
(g1, . . . , gN ) ∈ GN

∣∣ (gk, gk+1) ∈ G2 for k = 1, . . . , N − 1 and g1 . . . gn = g
}

.

It is easy to show that we may identify the tangent space to CN
g with

T(g1,...,gN )C
N
g ≡ { (v1, . . . , vN−1) | vk ∈ (EG)xk

and xk = β(gk), 1 ≤ k ≤ N − 1 } .

An element of T(g1,...,gN )C
N
g is called an infinitesimal variation. Now, we define

the discrete action sum associated to the discrete Lagrangian Ld : G −→ R by

SLd((g1, . . . , gN ) =
N∑

k=1

Ld(gk).
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Hamilton’s principle requires that this discrete action sum be stationary with re-
spect to all the infinitesimal variations. This requirement gives the following alter-
native expressions for the discrete Euler-Lagrange equations (see [35]):

←−
X

(
gk)(Ld)−−→X

(
gk+1)(Ld) = 0, (6.5)

or

〈dLd, X
(0,1)〉(gk)− 〈dLd, X

(1,0)〉(gk+1) = 0,

for all sections X of τ : EG −→ M . Here, d denotes the differential of the Lie

algebroid πτ : EG

G× EG ≡ V β ⊕G V α −→ G. Alternatively, we may rewrite the
Discrete Euler-Lagrange equations as

d◦
[
Ld ◦ lgk

+ Ld ◦ rgk+1 ◦ i
]
(ε(xk))∣∣(EG)xk

= 0,

where β(gk) = α(gk+1) = xk, and where d◦ denotes the standard differential on G,
that is, the differential of the Lie algebroid τG : TG −→ G.

Thus, we may define the discrete Euler-Lagrange operator:

DDELLd : G2 −→ E∗
G ,

where E∗
G is the dual of EG. This operator is given by

DDELLd(g, h) = d◦ [Ld ◦ lg + Ld ◦ rh ◦ i] (ε(x))∣∣(EG)xk

with β(g) = α(h) = x.

Discrete Poincaré-Cartan sections. Consider the Lie algebroid πτ : EG

G×EG
∼=

V β ⊕G V α −→ G, and define the Poincaré-Cartan 1-sections Θ−Ld
, Θ+

Ld
∈

Sec((πτ )∗) as follows

Θ−Ld
(g)(Xg, Yg) = −Xg(Ld), Θ+

Ld
(g)(Xg, Yg) = Yg(Ld), (6.6)

for each g ∈ G and (Xg, Yg) ∈ Vgβ ⊕ Vgα.

Since dLd = Θ+
Ld
−Θ−Ld

and so, using d2 = 0, it follows that dΘ+
Ld

= dΘ−Ld
. This

means that there exists a unique 2-section ΩLd
= −dΘ+

Ld
= −dΘ−Ld

, that will be
called the Poincaré-Cartan 2-section. This 2-section will be important to study
the symplectic character of the discrete Euler-Lagrange equations.

If {Xi} is a local basis of Sec(τ) then {X(1,0)
i , X

(0,1)
i } is a local basis of Sec(πτ ).

Moreover, if {(Xi)(1,0), (Xi)(0,1)} is the dual basis of {X(1,0)
i , X

(0,1)
i }, it follows that

Θ−Ld
= −−→X i(Ld)(Xi)(1,0), Θ+

Ld
=
←−
X i(Ld)(Xi)(0,1),

ΩLd
= −−→X i(

←−
X jLd)(Xi)(1,0) ∧ (Xj)(0,1).

Discrete Lagrangian evolution operator. Let ξ : G −→ G be a smooth map
such that:

- graph(ξ) ⊆ G2, that is, (g, ξ(g)) ∈ G2, for all g ∈ G (ξ is a second order
operator).

- (g, ξ(g)) is a solution of the discrete Euler-Lagrange equations, for all g ∈
G, that is, (DDELLd)(g, ξ(g)) = 0, for all g ∈ G.

In such case ←−
X (g)(Ld)−−→X (ξ(g))(Ld) = 0 (6.7)

for every section X of EG and every g ∈ G. The map ξ : G −→ G is called a
discrete flow or a discrete Lagrangian evolution operator for Ld.
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Now, let ξ : G −→ G be a second order operator. Then, the prolongation
T ξ : V β⊕G V α −→ V β⊕G V α of ξ is the Lie algebroid morphism over ξ : G −→ G
defined as follows (see [35]):

Tgξ(Xg, Yg) = ((Tg(rgξ(g)◦i))(Yg), (Tgξ)(Xg)+(Tgξ)(Yg)−Tg(rgξ(g)◦i)(Yg)), (6.8)

for all (Xg, Yg) ∈ Vgβ⊕Vgα. Moreover, from (2.7), (2.8) and (6.8), we obtain that

Tgξ(
−→
X (g),

←−
Y (g)) = (−−→Y (ξ(g)), (Tgξ)(

−→
X (g) +

←−
Y (g)) +

−→
Y (ξ(g))), (6.9)

for all X, Y sections of EG.
Using (6.8), one may prove that (see [35]):

(i) The map ξ is a discrete Lagrangian evolution operator for Ld if and only
if (T ξ, ξ)∗Θ−Ld

= Θ+
Ld

.
(ii) The map ξ is a discrete Lagrangian evolution operator for Ld if and only

if (T ξ, ξ)∗Θ−Ld
−Θ−Ld

= dLd.
(iii) If ξ is discrete Lagrangian evolution operator then (T ξ, ξ)∗ΩLd

= ΩLd
.

Discrete Legendre transformations. Given a Lagrangian Ld : G −→ R we
define the discrete Legendre transformations F−Ld : G −→ E∗

G and F+Ld :
G −→ E∗

G by

(F−Ld)(h)(vε(α(h))) = −vε(α(h))(Ld ◦ rh ◦ i), for vε(α(h)) ∈ (EG)α(h),

(F+L)(g)(vε(β(g))) = vε(β(g))(Ld ◦ lg), for vε(β(g)) ∈ (EG)β(g).

Now, we introduce the prolongations T F−Ld : EG

G×EG ≡ V β⊕G V α −→ T EGE∗
G

and T F+Ld : EG

G× EG ≡ V β ⊕G V α −→ T EGE∗
G by

ThF−Ld(Xh, Yh) = (Th(i ◦ rh−1)(Xh), (ThF−L)(Xh) + (ThF−L)(Yh)),

ThF+Ld(Xh, Yh) = (Thlh−1(Yh), (ThF+L)(Xh) + (ThF+L)(Yh)),

for all h ∈ G and (Xh, Yh) ∈ Vhβ ⊕ Vhα. We observe that the discrete Poincaré-
Cartan 1-sections and 2-section are related to the canonical Liouville section of
(T EGE∗

G)∗ −→ E∗
G and the canonical symplectic section of ∧2(T EGE∗

G)∗ −→ E∗
G

by pull-back under the discrete Legendre transformations, that is,

(T F−Ld,F−Ld)∗ΘEG
= Θ−Ld

, (T F+Ld,F+Ld)∗ΘEG
= Θ+

Ld
,

(T F−Ld,F−Ld)∗ΩEG = ΩLd
, (T F+Ld,F+Ld)∗ΩEG = ΩLd

.

Discrete regular Lagrangians. A discrete Lagrangian Ld : G −→ R is said to be
regular if the set of solutions of the discrete Euler-Lagrange equations is locally the
graph of a diffeomorphism, that is, there exists locally a unique discrete Lagrangian
evolution operator ξLd

: G −→ G for Ld. In such a case, ξLd
is called the discrete

Euler-Lagrange evolution operator. In [35] (see Theorem 4.13 in [35]), we obtained
some necessary and sufficient conditions for a discrete Lagrangian on a Lie groupoid
G to be regular that we summarize as follows:

Ld is regular ⇐⇒ The Legendre transformation F+Ld is a local diffeomorphism
⇐⇒ The Legendre transformation F−Ld is a local diffeomorphism
⇐⇒ The Poincaré-Cartan 2-section ΩLd

is symplectic

on the Lie algebroid EG

G× EG ≡ V β ⊕G V α −→ G.

Locally, we deduce that Ld is regular if and only if for every local basis {Xi} of
Sec(τ) the local matrix (

−→
X i(

←−
X jLd)) is regular.
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Discrete Hamiltonian evolution operator. If Ld : G −→ R is a regular La-
grangian, then pushing forward to E∗

G with the discrete Legendre transformations,
we obtain the discrete Hamiltonian evolution operator, ξ̃Ld

: E∗
G −→ E∗

G

which is given by
ξ̃Ld

= F±Ld ◦ ξLd
◦ (F±Ld)−1 . (6.10)

Defining the prolongation T ξ̃Ld
: T EGE∗

G −→ T EGE∗
G of ξ̃Ld

by

T ξ̃Ld
= T F±Ld ◦ T ξLd

◦ (T F±Ld)−1,

we deduce that (see [35]):

(T ξ̃Ld
, ξ̃Ld

)∗ΘEG
= ΘEG

+ d(Ld ◦ (F−Ld)−1), (T ξ̃Ld
, ξ̃Ld

)∗ΩEG
= ΩEG

.

Noether’s theorem. In Discrete Mechanics is also possible to relate invariance
of the discrete Lagrangian under some transformation group with the existence of
constants of the motion. In fact, we will say that a section X of EG is a Noether’s
symmetry of the Lagrangian Ld if there exists a function f ∈ C∞(M) such that

dLd(X(1,1)) = β∗f − α∗f.

In the particular case when dLd(X(1,1)) = −−→XLd +
←−
XLd = 0, we will say that X

is an infinitesimal symmetry of the discrete Lagrangian Ld.
If Ld : G −→ R is a regular discrete Lagrangian, by a constant of the mo-

tion we mean a function F invariant under the discrete Euler-Lagrange evolution
operator ξLd

, that is, F ◦ ξLd
= F . Then, we have the following result.

Theorem 6.2 (Discrete Noether’s theorem). [35] If X is a Noether symmetry of
a discrete Lagrangian Ld, then the function F = Θ−Ld

(X(1,1))− α∗f is a constant
of the motion for the discrete dynamics defined by Ld.

7. Classical Field Theory on Lie algebroids

In this section, we study Classical Field Theories on Lie algebroids. We consider
a fiber bundle ν : M −→ N , a Lie algebroid structure on a vector bundle τE

M : E −→
M and a surjective morphism of Lie algebroids π : E −→ TN over ν. The physical
interpretation of the above data is as follows: we will consider a field theory in
which the fields are the sections of the bundle ν and the partial derivatives of the
fields are parameterized by linear sections of π.

We will find the equations for the extremals of a variational problem which
roughly speaking is the following: given a Lagrangian function L defined on the
set of sections of π, and a volume form ω on the manifold N , we look for those
morphisms of Lie algebroids which are critical points of the action functional

S(Φ) =
∫

N

L(Φ) ω.

This is a constrained variational problem, because we are restricting the fields Φ to
be morphisms of Lie algebroids, which is a condition on the derivatives of Φ.

7.1. Jets. We consider two vector bundles τE
M : E −→ M and τF

N : F −→ N and
a surjective vector bundle map π : E −→ F over the map ν : M −→ N . Moreover,
we will assume that ν : M −→ N is a smooth fiber bundle. We will denote by
K −→ M the kernel of the map π, which is a vector bundle over M . Given a point
m ∈ M , if we denote n = ν(m), we have the following exact sequence 0 −→ Km −→
Em −→ Fn −→ 0, and we can consider the set Jmπ of splittings φ of such sequence.
More concretely, we define the following sets Lmπ = {w : Fn −→ Em | w is linear },
Jmπ = {φ ∈ Lmπ | π ◦ φ = idFn } and Vmπ = {ψ ∈ Lmπ | π ◦ ψ = 0 }. Therefore
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Lmπ is a vector space, Vmπ is a vector subspace of Lmπ and Jmπ is an affine
subspace of Lmπ modeled on the vector space Vmπ. By taking the union, Lπ =
∪m∈MLmπ, Jπ = ∪m∈MJmπ and Vπ = ∪m∈MVmπ, we get the vector bundle
π̃10 : Lπ −→ M and the affine subbundle π10 : Jπ −→ M modeled on the vector
bundle π10 : Vπ −→ M . We will also consider the projection π1 : Jπ −→ N defined
by composition π1 = ν ◦ π10. An element of Jmπ will be simply called a jet at the
point m ∈ M and accordingly the bundle Jπ is said to be the first jet bundle of π.

Notice that the standard case [52] is recovered when we have a bundle ν : M −→
N and one considers the standard Lie algebroids E = TM −→ M and F = TN −→
N together with the differential of the projection π = Tν : TM −→ TN . With the
standard notations, we have that J1ν ≡ J(Tν).

Local coordinates on Jπ are given as follows. We consider local coordinates
(xi) on N and (xi, uA) on M adapted to the projection ν. We also consider local
basis of sections {ēa} of F and {ea, eα} of E adapted to the projection π, that is
π ◦ ea = ēa ◦ ν and π ◦ eα = 0. In this way {eα} is a base of sections of K. An
element w in Lmπ is of the form w = (wb

aeb + wα
a eα)⊗ ēa, and it is in Jmπ if and

only if wb
a = δb

a, i.e., an element φ in Jπ is of the form φ = (ea + φα
aeα)⊗ ēa. If we

set yα
a (φ) = φα

a , we have adapted local coordinates (xi, uA, yα
a ) on Jπ. Similarly,

an element ψ ∈ Vmπ is of the form ψ = ψα
a eα ⊗ ēa. If we set yα

a (ψ) = ψα
a , we have

adapted local coordinates (xi, uA, yα
a ) on Vπ. As usual, we use the same name for

the coordinates in an affine bundle and in the associated vector bundle.
An element z ∈ L∗mπ defines an affine function ẑ on Jmπ by contraction ẑ(φ) =

〈z, φ〉 where 〈·, ·〉 is the pairing 〈z, φ〉 = Tr(z◦φ) = Tr(φ◦z). Therefore, a section θ of
L∗π defines a fiberwise affine function θ̂ on Jπ, θ̂(φ) = 〈θπ10(φ), φ〉 = Tr(θπ10(φ) ◦φ).
In local coordinates, a section of L∗π is of the form θ = (θa

b (x)eb + θa
α(x)eα) ⊗ ēa,

and the affine function defined by θ is θ̂ = θa
a(x) + θa

α(x)yα
a .

Anchor. Consider now anchored structures on the bundles E and F , that is, we
have two vector bundle maps ρF : F −→ TN and ρE : E −→ TM over the identity
in N and M respectively. We will assume that the map π is admissible, that is
ρF ◦ π = Tν ◦ ρE . Therefore we have

ρF (ēa) = ρi
a

∂

∂xi
and





ρE(ea) = ρi
a

∂

∂xi
+ ρA

a

∂

∂uA
,

ρE(eα) = ρA
α

∂

∂uA
,

with ρi
a = ρi

a(x), ρA
a = ρA

a (x, u) and ρA
α = ρA

α (x, u).
The anchor allows us to define the concept of total derivative of a function with

respect to a section. Given a section σ ∈ Sec(F ), the total derivative of a function
f ∈ C∞(M) with respect to σ is the function d̂f ⊗ σ, i.e., the affine function
associated to df ⊗ σ ∈ Sec(L∗π). In particular, the total derivative with respect to
an element ēa of the local basis of sections of F , will be denoted by f́|a. In this
way, if σ = σaēa then d̂f ⊗ σ = f́|aσa, where the coordinate expression of f́|a is

f́|a = ρi
a

∂f

∂xi
+ (ρA

a + ρA
αyα

a )
∂f

∂uA
.

Notice that, for a function f in the base N , we have that f́|a = ρi
a

∂f
∂xi are just the

components of df in the basis {ēa}.
Bracket. Finally, let us assume that we have Lie algebroid structures on τF

N : F −→
N and on τE

M : E −→ M , and that the projection π is a morphism of Lie algebroids.
This condition implies the vanishing of some structure functions.
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We have the following expressions for the brackets of elements in the basis of
sections

[[ēa, ēb]] = Cc
abēc and





[[ea, eb]] = Cγ
abeγ + Cc

abec

[[ea, eβ [[= Cγ
aβeγ

[[eα, eβ ]] = Cγ
αβeγ ,

where Ca
bc = Ca

bc(x) is a basic function.
The structure functions can be conveniently combined as terms of some affine

function as follows

Zα
aγ = Cα

aγ + Cα
βγyβ

a and Zα
ac = Cα

ac + Cα
βcy

β
a .

In particular, such functions will appear in the Euler-Lagrange equations of the
variational problem.

7.2. Morphisms and admissible maps. By a section of π we mean a vector
bundle map Φ such that π ◦ Φ = idF , (i.e., we consider only linear sections of π
(see also [16])). It follows that the base map φ : N −→ M is a section of ν, i.e.,
ν ◦ φ = idN . The set of sections of π will be denoted by Sec(π). The set of those
sections of π which are a morphism of Lie algebroids will be denoted by M(π). We
will find local conditions for Φ ∈ Sec(π) to be an admissible map between anchored
vector bundles and also local conditions for Φ to be a morphism of Lie algebroids.

Taking adapted local coordinates (xi, uA) on M , the map φ has the expression
φ(xi) = (xi, uA(x)). If we moreover take an adapted basis {ea, eα} of local sections
of E, then the expression of Φ is given by Φ(ēa) = ea + yα

a (x)eα, so that the map Φ
is determined by the functions

(
uA(x), yα

a (x)
)

locally defined on N . The action on
the dual basis is Φ?ea = ēa, and Φ?eα = yα

a (x)ēa, and for the coordinate functions
Φ?xi = xi and Φ?uA = uA(x).

The admissibility condition reads Φ?(df) = d(Φ?f) for every function f ∈
C∞(M). Taking f = xi we get an identity, while taking f = uA we get the
condition

ρi
a

∂uA

∂xi
= ρA

a + ρA
αyα

a .

In addition to the admissibility condition, the morphism condition reads Φ?dθ =
d(Φ?θ) for every section θ of E∗. For θ = ea we get an identity, while for θ = eα

we find the

ρi
b

∂yα
c

∂xi
− ρi

c

∂yα
b

∂xi
− yα

a Ca
bc + Cα

βγyβ
b yγ

c + Cα
bγyγ

c − Cα
cγyγ

b + Cα
bc = 0.

7.3. Variational Calculus. In what follows in this paper we consider the case
where the Lie algebroid F is the tangent bundle F = TN with ρF = idTN and [·, ·]
the usual Lie bracket of vector fields on N . The Lie algebroid E remains a general
Lie algebroid. Moreover, for local expressions on F , the local basis of sections of
F which we will consider is a basis of coordinate vector fields ēi = ∂

∂xi , so that
ρi

a = δi
a and Ca

bc = 0.
Variational problem. Given a Lagrangian function L ∈ C∞(Jπ) and a volume
form ω ∈ ∧r (TN), where r = dim(N), we consider the following variational prob-
lem: find the critical points of the action functional S(Φ) =

∫
N

L(Φ) ω defined on
the set of sections of π which are moreover morphisms of Lie algebroids, that is,
defined on the set M(π). Here by L(Φ) we mean the function n 7→ L(Φn), where
Φn ∈ Jπ is the restriction of Φ the fiber Fn = TnN .

It is important to notice that the above variational problem is a constrained
problem, not only because the condition π ◦ Φ = idF , which can be easily solved,
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but because of the condition of Φ being a morphism of Lie algebroids, which is a
condition on the derivatives of Φ. Taking coordinates on N such that the volume
form is ω = dx1 ∧ · · · ∧ dxr, the problem is to find the critical points of∫

N

L(xi, uA(x), yα
a (x)) dx1 ∧ · · · ∧ dxr,

subject to the constraints

∂uA

∂xa
= ρA

a + ρA
αyα

a and
∂yα

c

∂xb
− ∂yα

b

∂xc
+ Cα

bγyγ
c − Cα

cγyγ
b + Cα

βγyβ
b yγ

c + Cα
bc = 0.

The first method one can try to solve the problem is to use Lagrange multipliers.
Nevertheless, one has no warranties that all solutions to this problem are normal
(i.e., not strictly abnormal). In fact, in simple cases such as the problem of a heavy
top [38], one can easily see that there will be strictly abnormal solutions. Therefore
we take another approach, which consists of finding explicitly finite variations of a
solution, that is, defining a curve in M(π) starting at the given solution.
Variations and infinitesimal variations. In order to find admissible variations,
we consider sections of E and the associated flow. With the help of this flow we
can transform morphisms of Lie algebroids into morphisms of Lie algebroids.
Flow defined by a section. We recall that every section of a Lie algebroid has
an associated local flow composed of morphisms of Lie algebroids [42, 34]. More
explicitly, given a section σ of a Lie algebroid E, there exists a local flow Φs : E −→
E such that

Lσθ =
d

ds
Φ?

sθ
∣∣∣
s=0

,

for any section θ of
∧

E. Moreover, for every fixed s, the map Φs is a morphism of
Lie algebroids, and the base map φs : M −→ M , the (ordinary) flow of the vector
field ρ(σ) ∈ X(M).
Complete lift of a section. In this section we will define the lift of a projectable
section of E to a vector field on Jπ, in a similar way to the definition of the first jet
prolongations of a projectable vector field in the standard theory of jet bundles [52].

We consider a section σ of a Lie algebroid E projectable over a section η of F .
We denote by Ψs the flow on E associated to σ and by Φs the flow on F associated
to η. We recall that, for every fixed s, the maps Ψs and Φs are morphisms of Lie
algebroids. Moreover, the base maps ψs and φs, are but the flows of the vector
fields ρE(σ) and ρF (η), respectively.

The projectability of the section implies the projectability of the flow. It follows
that (locally, in the domain of the flows) we have defined a map LΨs : Lπ −→ Lπ
by means of LΨs(w) = Ψs ◦ w ◦ Φ−s. By restriction of LΨs to Jπ we get a map
JΨs, which is a local flow in Jπ. We will denote by X(1)

σ the vector field on Jπ
generating the flow JΨs. The vector field X(1)

σ will be called the complete lift to
Jπ of the section σ. Since JΨs projects to the flow ψs it follows that the vector
field X(1)

σ projects to the vector field ρE(σ) in M .
Locally, a section σ = σaea + σαeα is projectable if σa = σa(xi) depends only

on xi. Its complete lift X(1)
σ has the local expression

X(1)
σ = σa ∂

∂xa
+ (ρA

a σa + ρA
ασα)

∂

∂uA
+ σα

a

∂

∂yα
a

,

where σα
a = σ́α

|a + Zα
abσ

b + Zα
aβσβ − yα

b

(
σ́b
|a + σcCb

ac

)
. In particular, if σ projects to

the zero section, i.e., σa = 0, we have

X(1)
σ = ρA

ασα ∂

∂uA
+

(
σ́α
|a + Zα

aβσβ
) ∂

∂yα
a

.
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Euler-Lagrange equations. Let Φ ∈ M(π) be a critical point of S. In order
to find admissible variations we consider a π-vertical section σ of E. Its flow
Ψs : E −→ E projects to the identity in F = TN . Moreover we will require σ to
have compact support. Since for every fixed s, the map Ψs is a morphism of Lie
algebroids, it follows that the map Φs = Ψs ◦ Φ is a section of π and a morphism
of Lie algebroids, that is, s 7→ Φs is a curve in M(π). Using this kind of variations
we have the following result.

Theorem 7.1. [42] Select local coordinates such that the volume form is expressed
as ω = dx1 ∧ · · · ∧ dxr. A map Φ is a critical section of S if and only if the
components yα

a of Φ satisfy the system of partial differential equations

∂uA

∂xa
= ρA

a + ρA
αyα

a ,

∂yα
a

∂xb
− ∂yα

b

∂xa
+ Cα

bγyγ
a − Cα

aγyγ
b + Cα

βγyβ
b yγ

a + Cα
ba = 0,

d

dxa

(
∂L

∂yα
a

)
=

∂L

∂yγ
a

Zγ
aα +

∂L

∂uA
ρA

α .

Proof. Recall that by L(Φ) we mean the function in N given by L(Φ)(n) = L(Φn),
where Φn is the restriction of Φ: F −→ E to the fiber Fn. The function L(Φs) is

L(Φs)(n) = L(Ψs ◦ Φn) = L(JΨs(Φn)) = (JΨ∗sL)(Φ)(n),

and therefore the variation of the action along the curve s 7→ Φs is

0 =
d

ds
S(Φs)

∣∣∣
s=0

=
∫

N

d

ds
L(Φs)

∣∣∣
s=0

ω =
∫

N

(L
X

(1)
σ

L)(Φ)ω.

Taking into account the local expression of X(1)
σ for a π-vertical σ, we have that

L
X

(1)
σ

L = ρA
ασα ∂L

∂uA
+

(
dσα

dxa
+ Zα

aβσβ

)
∂L

∂yα
a

= σα

[
ρA

α

∂L

∂uA
+ Zγ

aα

∂L

∂yγ
a
− d

dxa

(
∂L

∂yα
a

)]
+

d

dxa

(
σα ∂L

∂yα
a

)
.

Let us denote by δL the expression with components

δLα =
d

dxa

(
∂L

∂yα
a

)
− Zγ

aα

∂L

∂yγ
a
− ρA

α

∂L

∂uA
,

and by Jσ the (r − 1)-form (along π1) Jσ = σα ∂L
∂yα

a
ωa with ωa = i ∂

∂xa
ω. Then we

have that
0 =

d

ds
S(Φs)

∣∣∣
s=0

= −
∫

N

(δLα σα)ω +
∫

N

d(Jσ ◦ Φ).

Since σ has compact support the second term vanishes by Stokes theorem. More-
over, since the section σ is arbitrary, by the fundamental theorem of the Calculus
of Variations, we get δL = 0, which are the Euler-Lagrange equations. Notice
that the first two equations in the above statement are nothing but the morphism
conditions. ¤

7.4. Examples.

Standard case. In the standard case, we consider a bundle ν : M −→ N , the stan-
dard Lie algebroids F = TN and E = TM and the tangent map π = Tν : TM −→
TN . Then we have that Jπ = J1ν. When we choose coordinate basis of vector
fields (i.e., of sections of TN and TM) we recover the equations for the standard
first-order field theory. Moreover, if we consider a different basis, what we get are
the equations for a first-order field theory written in pseudo-coordinates [5, 14, 42].
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Time-dependent Mechanics. In [50, 51] we developed a theory of Lagrangian Me-
chanics for time dependent systems defined on Lie algebroids, where the base man-
ifold is fibered over the real line R. Since time-dependent Mechanics is nothing but
a 1-dimensional field theory, our results must reduce to that.

The morphism condition is just the admissibility condition so that, if we write
x0 ≡ t and yα

0 ≡ yα, the Euler-Lagrange equations are

duA

dt
= ρA

0 + ρA
αyα,

d

dt

(
∂L

∂yα

)
=

∂L

∂yγ
(Cγ

0α + Cγ
βαyβ) +

∂L

∂uA
ρA

α ,

in full agreement with [44]. In particular, for an autonomous system on a Lie
algebroid V −→ Q, one considers E = TR×V −→ R×M with π the projection onto
the first factor TR. Our results provide yet another indication of the variational
character of autonomous mechanical systems on Lie algebroids.

Topological field theories. Given a closed r-form Ω on a Lie algebroid V −→ Q,
we can define a topological field theory as follows. For an r-dimensional manifold
N we consider F = TN −→ N , E = TN × V −→ N × Q and π the projection
onto the first factor TN . The Lagrangian of the theory is L(Φ) = Φ?Ω. Then it is
easy to see that the Euler-Lagrange equations reduce to the morphism condition.
In this way, one can cope with systems such as Poisson σ-models or Chern-Simons
theories [2, 42, 43].

Systems with symmetry. The case of a system with symmetry is very important
in Physics. We consider a principal bundle ν : P −→ M with structure group G
and we set N = M , F = TN and E = TP/G (the Atiyah algebroid of P ), with
π([v]) = Tν(v). Sections of π are just principal connections on P and a section is
a morphism if and only if it is a flat connection. The kernel K is just the adjoint
bundle (P×g)/G −→ M . By an adequate choice of a local basis of sections of F , K
and E one easily find the covariant Euler-Poincaré equations [7, 8]. The covariant
Lagrange-Poincaré equations [6] can also be recovered within this formalism.

8. Future work

We have illustrated the generality of the theory of Lie algebroids and groupoids
in a wide range of situations, from nonholonomic Lagrangian and Hamiltonian
systems and mechanical control systems to Discrete Mechanics and extensions to
Field Theory. Current and future directions of research include the following:

Hamilton-Jacobi equation for a Hamiltonian system on a Lie algebroid: It wo-
uld be interesting to continue with the study started in [26] of Hamilton-
Jacobi theory for Hamiltonian systems on Lie algebroids. In particular, it
would be interesting to introduce a suitable definition of a local (global)
complete integral of the Hamilton-Jacobi equation. The idea would be
that the knowledge of an integral of the equation would allow the “direct
determination” of some integral curves of the corresponding Hamiltonian
vector field.

Geometric formalism for Vakonomic Mechanics on Lie algebroids: An inter-
esting topic to study is the case of constrained variational problems on Lie
algebroids. In this case, to derive the equations of motion for a Lagrangian
system subject to nonholonomic constraints, one invokes a variational prin-
ciple, rather than the Lagrange-D’Alembert’s principle (cf. Section 4). The
differential equations obtained, called vakonomic equations, are in general
different. From an optimal control perspective, it seems interesting to
generalize the formalism developed in [11].
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Mechanical control systems on Lie algebroids: Topics of interest related to
mechanical control systems on Lie algebroids include the investigation of
controllability tests along relative equilibria and the study of systems that
include gyroscopic and dissipative forces.

Discrete Mechanics on Lie groupoids: We are currently studying the construc-
tion of geometric integrators for mechanical systems on Lie algebroids.
We have introduced the exact discrete Lagrangian in the Lie groupoid
formalism, and are discussing different types of discretizations of continu-
ous Lagrangians and their numerical implementation. We plan to explore
natural extensions to forced systems and to systems with holonomic and
nonholonomic constraints as in [12, 27].

Classical Field Theory and Lie algebroids: In [16, 44] the authors have intro-
duced the notion of a Lie affgebroid structure [17, 41, 44] (see also [21]).
They have developed a Lagrangian (and Hamiltonian) formalism on Lie af-
fgebroids, which generalizes some classical formalisms for time-dependent
Mechanics and, in addition, may be applied to other situations. Since
time-dependent Mechanics is a 1-dimensional field theory, it would be in-
teresting to define the notion of a “Lie multialgebroid”, as a generalization
of the notion of a Lie affgebroid. This mathematical object should en-
code the geometric structure necessary to develop field theories. The first
example of a Lie multialgebroid¡ should be Jπ. The notion of a Lie multi-
algebroid will potentially allow to study other aspects of the theory, such
as Tulczyjew’s triples associated with a Lie multialgebroid and Hamilton-
Jacobi equation for classical field theories on Lie multialgebroids.
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ucts with applications to Continuum theories, Adv. in Math. 37 (1998), 1–81.

[21] Iglesias D, Marrero JC, Padron E and Sosa D, Lagrangian submanifolds and dynamics
on Lie affgebroid, arXiv:math-ph/0505117, preprint 2005.
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