
Distributed deployment of asynchronous guards
in art galleries

Anurag Ganguli Jorge Cortés Francesco Bullo

Abstract— This paper presents deployment algorithms for
multiple mobile robots with line-of-sight sensing and commu-
nication capabilities in a nonconvex polygon. The objective
of the proposed algorithms is to achieve full visibility of the
environment. We solve the problem by constructing a novel
data structure called the vertex-induced tree and designing
schemes to explore the nodes of the tree by means of distributed
algorithms. The agents are assumed to have access to a memory
and their operation is partially asynchronous.

I. I NTRODUCTION

Consider a group of pointguardsequipped with sensors
with omnidirectional vision. The classical Art Gallery Prob-
lem is to find the smallest number of such guards necessary
to guard a simple polygonal environment. In other words,
the problem is to find the minimum number of guards and
locate them in a nonconvex polygonal environment so that
each point of the environment is visible to at least one
guard; see Figure 1. This problem has inspired a whole
class of geometric problems on art galleries; see for exam-
ple the beautiful survey [1]. The well known Art Gallery
Theorem [2] says thatbn

3 c guards are always sufficient and
occasionally necessary to guard a polygon withn vertices.
Fisk’s constructive proof of this theorem [3] provides an
elegant way of finding the locations of the guards. However,
there is no discussion of the problem of finding the locations
in real time with limited knowledge of the environment.

Fig. 1. A nonconvex polygon shaped like a typical floor plan: the solid
circles represent the locations ofguardswith omnidirectional vision. Note
that each portion of the environment is visible to at least oneguard.

In this paper, we consider a group of robotic agents
modeled as point masses, moving in a simple nonconvex

Anurag Ganguli is with the Coordinated Science Laboratory,University
of Illinois at Urbana-Champaign, and with the Department of Mechanical
and Environmental Engineering, University of California atSanta Barbara,
Santa Barbara, CA 93106, USA,aganguli@uiuc.edu

Jorge Cort́es is with the Department of Applied Mathematics and Statis-
tics, University of California at Santa Cruz, Santa Cruz, CA95064, USA,
jcortes@ucsc.edu

Francesco Bullo is with the Department of Mechanical and Environmental
Engineering, University of California at Santa Barbara, Santa Barbara, CA
93106, USA,bullo@engineering.ucsb.edu

polygonal environment. We assume that each member of the
group is equipped with omnidirectional line-of-sight sensors.
By a line-of-sight sensor, we mean any device or combination
of devices that can be used to determine, in its line-of-sight,
(i) the position or state of another agent, and (ii) the distance
to the boundary of environment. By omnidirectional, we
mean that the field-of-vision for the sensor is2π radians. We
also assume that each agent can communicate with any other
agent visible to it and located with a certain distance. Given
this model, the goal is to design a provably correct discrete-
time algorithm which ensures that the agents converge to
locations such that each point of the environment is visibleto
at least one agent. We shall henceforth refer to this particular
problem as thevisibility-based deployment problem.

This problem is related to many surveillance and pursuit-
evasion problems in unknown environments. For example,
imagine that one is interested in surveilling an unknown
urban or an indoor environment. It is reasonable to model
the environment as a nonconvex polygon. The problem of
deploying robots to achieve full visibility is related to this
objective. There has been a lot of research interest in the
problem of deployment of robots in indoor environment for
the purpose of surveillance. Some related works include [4]
where an incremental algorithm for deployment is proposed
and [5] in which the relevance of random walk on graphs is
discussed. In addition, this problem is related to the pursuit-
evasion problems in robotics; e.g., see [6]. This work is also
noteworthy because of the use of an appropriate data struc-
ture to navigate through unknown polygonal environments.

The contribution of this paper is three-fold. First, given
a simple nonconvex polygonal environment and one of its
vertices, we describe a way to partition the environment
into star-shaped polygons. This procedure leads us to define
a new graph, associated to the nonconvex polygon and to
the given vertex, called the vertex-induced tree. Every node
in this graph corresponds to a star-shaped polygon. The
edges between nodes are drawn whenever two star-shaped
polygons have a common side. Second, we demonstrate
how to plan paths between neighboring nodes of the vertex-
induced tree based on a limited sensing and communication
model. Third, we present two asynchronous and distributed
algorithms for multiple agents to explore the nodes of the
vertex-induced tree, and thereby solve the visibility-based
deployment problem. In the design of these algorithms, we
assume that the agents have some limited memory and are
initially placed at the same location.

Notation: We begin by introducing some basic notation.
We let R andR+ represent the set of real numbers and the
set of nonnegative real numbers respectively. Forp ∈ R

2, let

Br(p) denote theclosed ballcentered atp of radiusr ∈ R+.
Also, we let N refer to the set of natural numbers. Given
two points x, y ∈ R

2, we let [x, y] represent theclosed
segmentbetweenx and y. Similarly, (x, y) represents the
open segmentbetweenx and y, [x, y) represents the set
(x, y)∪{x} and (x, y] represents the set(x, y)∪{y}. Given
a finite setX, let |X| represent the cardinality of the set.

Now let us turn our attention to the polygonal environ-
ment. LetQ be a simple polygon, possibly nonconvex. We
say that a polygon is simple if the polygon vertices are the
only points in the plane common to two polygon edges and
every polygon vertex belongs to at most two polygon edges.
Such a polygon has a well defined interior and exterior.Note
that a simple polygon can contain holes. Let Q refer to the
set of all simple polygons. LetVe(Q) = (v1, . . . , vn) be the
list of vertices ofQ ordered counterclockwise. Throughout
this paper, we shall reserve the use of the notation,n, to
denote the number of vertices of a polygonal environment.

A point q ∈ Q is visible fromp ∈ Q if [p, q] ⊂ Q. The
visibility polygonS(p) ⊂ Q from a pointp ∈ Q is the set of
points inQ visible from p. It is convenient to think ofp 7→
S(p) as a map fromQ to the set of polygons contained inQ.
It must be noted that the visibility polygon is not necessarily
a simple polygon. Also, we shall useP to refer to tuples of
elements inR2 of the form(p1, . . . , pN). With a slight abuse
of notation, we shall useP interchangeably with a point set
of the form{p1, . . . , pN}.

II. A SYNCHRONOUS NETWORK OF VISUALLY-GUIDED

AGENTS

We begin by introducing the notions of avisually-guided
agent and of a network of visually-guided agents. By a
visually-guided agent, we mean any agent with the following
capabilities:
sensing: each agents is equipped with omnidirectional sen-

sors with the ability to sense the relative position of
any other agent within its line-of-sight and the also
relative position of any point on the boundary of the
environment that is visible from its location.

communication: each agent can communicate with any
other agent that is within its line-of-sight and lying
inside a closed disk of radiusr ∈ R+. Note that (a)r
is bounded from above by, sayR ∈ R+, the maximum
signal strength that an agent can send and, (b) at any
time an agent can choose anyr ≤ R by changing the
signal strength. Hence ifp ∈ Q represents the position
of any agent, then its communication region with a
given radiusr ∈ R+ is given byC(p) = S(p)∩Br(p).

processing: ability to perform computations on the variables
stored in its memory.

maneuvering: ability to move between two points.
A collection of such agents forms a network. LetN be the
number of agents in the network. Each agent has a unique
identifier (UID), i ∈ {1, . . . , N}, associated with it. We also
associate the following quantities to every agenti:

(i) an increasing sequence of time instantsT i =
{tl}l∈N ⊂ R+, called the wake-up schedule; each
instant is called a wake-up instant;

(ii) the position,pi(t) ∈ Q with t ∈ T i, of the agent in
the environment.

In addition, each agent may require certain memory depend-
ing upon the task that it is performing or on the algorithm
it is executing. For each agenti, let Mi(t) represent the
contents of its memory at any timet.

By communicating with any other agent, we mean that
any agent,i, can perform the following:

(i) BROADCASTi(i,Mi): Broadcast to all agents in its
communication region its UID,i, and the states in its
memory,Mi.

(ii) RECEIVEi(j,Mj): Receive a broadcast from another
agent,j.

We assume here that for any agent,i, there is a bounded
time delay between aBROADCASTi(i,Mi) message sent
by the agent and the correspondingRECEIVEj(i,Mi) mes-
sage received by another agent,j, in its communication
region. Letδ > 0 denote this upper bound.

Now, for the sake of convenience we define various actions
that any agent is capable of performing. Note that this may
be formalized by means of a finite state machine.
SPEAK: This represents the state of an agent,i, when it

sends a BROADCASTi(i,Mi) message;
LISTEN: This represents the state of an agent,i, when it is

capable of accepting a RECEIVEi(j,Mj) message for
somej ∈ {1, . . . , N}, j 6= i;

PROCESS: This represents the state of an agent performing
computations on the state in its memory;

MOVE: This represents the state of the agent when it is
moving.

Till now, in this section, we have described a general asyn-
chronous network of visually-guided agents. In the following
subsection, we describe a particular communication and state
transition model that we use in this paper.

A. Asynchronous schedule

Any agenti assumes the following states between any two
wake-up instants,T i

l andT i
l+1 :

(i) SPEAK at timest = T i
l + kδ, where k ∈ N∪{0},

T i
l + kδ < T i

l + λi
l + ρi

l, λi
l ≥ δ andρi

l ≥ 0;
(ii) LISTEN during the time interval[T i

l , T
i
l + λi

l + ρi
l);

(iii) PROCESS during the interval[T i
l + λi

l, T
i
l + λi

l + ρi
l);

(iv) MOVE during the time interval[T i
l +λi

l +ρi
l, T

i
l+1). If

the agent decides not to move thenT i
l+1 = T i

l +λi
l+ρi

l.
Remarks 2.1: (i) Note that the sequenceT i is not

prespecified. Given any wake-up instantT i
l , the next

wake-up instantT i
l+1 is decided based upon the time

the agent spends in each of the states in between the
two wake-up instants.

(ii) An agent is capable of receiving broadcasts always
except when it is moving.

See Figure 2 for a schematic illustration of the above
schedule.

Agent i, in the MOVE state, is capable of moving at any
time t ∈ [T i

l + λi
l + ρi

l, T
i
l+1) according to the following

discrete-time control system:

pi(t + ∆t) = pi(t) + ui, (1)

T i
l

T i
l+1

LISTEN

PROCESS MOVE

T i
l + λi

l
T i

l + λi
l + ρi

l

BROADCASTi(i,Mi) BROADCASTi(i,Mi)

δ δ δ

≥ δ

Fig. 2. Sequence of actions performed by an agenti in between two
wake-up instants. Note that a BROADCAST(i,Mi) is an instantaneous
event taking place where there is a vertical pulse, where as the PROCESS,
LISTEN and MOVE actions take place over an interval. The MOVEinterval
might be empty if the agent does not move.

where the control is a function of the communication, sens-
ing, memory and the action that the agent is performing at
time instantt. Again, note thatT i

l+1 is not predecided but is
the time when the agent stops performing the MOVE action.
Also, note that this model of visually-guided agents is similar
in spirit to thepartially asynchronous modeldescribed in [7].

III. T HE VISIBILITY -BASED DEPLOYMENT PROBLEM

We have introduced the Art Gallery Problem in Section I.
The formulation of this classic problem assumes a priori
knowledge of the polygonal environment. What we are
interested in here is anonline anddistributedversion of this
problem.

Definition 3.1: Given a simple polygon Q, let
p1(T

1
0), . . . , pN (TN

0) ∈ Q represent the initial positions of
an asynchronous network ofN visually-guided agents as
described in Section II. LetA : Qn → Qn represent an
algorithm which transforms a set ofn points inQ to another
set of n points in Q. We say thatA solves the visibility-
based deployment problem if the algorithm converges to a
setW ⊂ (2Q)N with the property that∪i S(pi) = Q for all
i ∈ {1, . . . , N} and all (p1, . . . , pN) ∈ W .

IV. T HE VERTEX-INDUCED TREE

Let us start by describing a procedure to partition∗ a
polygonal environment without holes,Q, into star-shaped
polygonal regions. To begin constructing this partition, we
require a starting vertex which we calls ∈ Ve(Q). First, we
introduce some notions.

Definition 4.1: (i) Given a simple polygonX, any di-
agonal[v′, v′′] of X wherev′, v′′ ∈ Ve(X) partitions
X into two polygons. If there exists a pointp ∈ X
such thatp /∈ [v′, v′′], then letXp(v

′, v′′) represent the
polygon containingp.

(ii) Given a simple polygonX and a vertexv ∈ Ve(X),
let (vu1

, . . . , vuk
) represent the list of vertices ofX

that are visible fromv whereui < ui+1 for all i ∈
{1, . . . , k − 1}. Let V(v,X) be the polygon defined

∗Recall that a partition of any setX is a collection of closed subsetsXi

of X such thatX = ∪i Xi and X̊i ∩ X̊j = ∅ for all i 6= j, whereX̊i is
the interior of the setXi.

by this list. Clearly, this is a star-shaped polygon such
that all pointsq ∈ V(v,X) are visible fromv.

(iii) A gapof the polygonV(v,X) is a segment[vuj
, vuj+1

]
where uj+1 > uj + 1. Thus each gap is a diagonal
of X and divides it into two polygonal regions, one
containingv, sayXv(vuj

, vuj+1
), and the other, given

by X \ Xv(vuj
, vuj+1

), not containingv.
In what follows, let G be a list whose elements are

segments of the form[x, y] ⊂ X with x, y ∈ Ve(X). Let
K andN be lists whose elements are vertices,v ∈ Ve(X).
Let P be a list whose elements are simple polygons. The
elementsGi, Ki, Pi andNi refer to theith element in the
lists G, K, P andN respectively. Also,nG andnK refer to
the number of elements in the listsG andK respectively.

s = v1

v2 v3

v4

v5

v6

v8

v9

v10v11

v12 v13

v14

v15

v16 v17

v20 v21

v22

v23

v24

v26 v27

v28 v29

v30v31

v32v33

v34

v35

v36 v1

v37

v42

v43
v44

v7 v19
v18

v25

v41

v38

v40v39

v45

Fig. 3. Notations in Definition 4.1. Let the nonconvex polygonal en-
vironment representX. V(s, X) is the shaded polygon in the figure
represented by the vertex list{v1, v2, v3, v15, v16, v42, v43, v44, v45}.
The gaps associated withV(s, x) are [v3, v15] and [v16, v42] be-
cause 15 > 3 + 1 and 42 > 16 + 1. The gap [v16, v42] par-
titions X into two polygonsXs(v16, v42), represented by the vertex
list {v1, . . . , v16, v42, . . . , v45}, and X \ Xs(v16, v42), represented by
the vertex list {v16, . . . , v42}. Note also thatv41 = arg min{‖v −
[v16, v42]‖ | [v16, v42] is visible fromv, v ∈ X \ Xs(v16, v42)}.

Figure 3 illustrates the notations introduced above. The
procedure then is as follows:

(i) Initialization:

a) G := ∅; K := ∅; P := ∅; N := ∅.
b) X := Q.
c) ComputeV(s,X).
d) InsertV(s,X) into P.
e) Inserts into N .
f) Compute all gaps ofV(s,X) and insert them into

G. Let the number of such gaps bens. Then insert
ns copies of s into the list K. Hence,nG =
nK = ns.

(ii) Star-shaped partitioning algorithm:
While nG > 0, execute the following steps:

a) For G1,K1, compute s′ = arg min{‖v −
G1‖ | G1 is visible fromv, v ∈
X \ XK1

(v′, v′′)}, where[v′, v′′] = G1.
b) X = X \ XK1

(v′, v′′).
c) ComputeV(s′,X).

d) InsertV(s′,X) at the end ofP.
e) Inserts′ at the end ofN .
f) RemoveG1,K1 from listsG andK respectively.
g) Compute all gaps ofV(s′,X) and insert them at

the end of the listG. Let the number of gaps of
V(s′,X) be ns′ . Then insertns′ copies ofs′ at
the end of the listK.

Remarks 4.2: (i) The computation in step (a) of the
algorithm is always well posed. To see this note that
any elementGi of G is a diagonal ofQ. Hence
X \ XKi

(v′
i, v

′′
i) with [v′

i, v
′′
i] = Gi is always a

simple polygon with at least three vertices and with
Gi representing an edge of the polygon. Since any
simple polygon can be triangulated with diagonals,
there always exists a triangle withGi as one side. It
is trivial to check that the entire segmentGi is visible
from the third vertex of this triangle.

(ii) We assume here that there is a unique vertexv ∈
Ve(X \ XKi

(v′, v′′)) which is at minimum distance
from Gi and from which the entire segmentGi is
visible. This assumption is not at all restrictive since if
such a vertex is not unique, then we can break the dead-
lock by choosing the vertex that is first in the counter-
clockwise arrangement of vertices ofX \ XKi

(v′, v′′),
the first being the end pointv′ of Gi such that the other
end point,v′′, is on the clockwise side ofv′.

(iii) At any stage of the algorithm(X \ XKi
(v′, v′′)) =

(Q \ QKi
(v′, v′′)). HenceV(s′,X) at step (c) of the

algorithm can be computed with the knowledge ofGi

andS(s′).
As an outcome of the algorithm,P is the list of star-

shaped polygons which partitionQ. In addition, all points
of Pi are visible from the vertexNi. With some abuse of
notation, henceforth, givenQ and a vertexs ∈ Q, we shall
refer to this partition asPQ(s) and to the node list asNQ(s).
Finally, we refer toPQ(s) as thevertex-induced partition.
The following lemma summarizes the important properties
of the vertex-induced partition.

Lemma 4.3:Given a simple polygonQ without holes and
any vertexs ∈ Ve(Q), the following are true:

(i) PQ(s)i is a star-shaped polygon for alli; and
(ii) the list NQ(s) belongs to the kernel† of Q, or in other

words, for anypi ∈ NQ(s), we have thatPQ(s)i ⊂
S(pi).

We now define a graph using this partition. We assume that
the reader is familiar with some standard notions of graph
theory.

Definition 4.4: Given a polygonQ ∈ Q and a vertexs ∈
Ve(Q), thevertex-induced treeGQ(s), is the graph such that
the vertex list isNQ(s) and an edge exists between any two
verticesNi,Nj ∈ NQ(s) if and only if there exists a segment
[x, y] = Pi ∩ Pj with x, y distinct.
Note that by virtue of the construction of the vertex-induced
tree, any segment[x, y] = Pi∩Pj is such thatx, y ∈ Ve(Q),

†The kernel of a star-shaped polygon is the set of points from which the
entire polygon is visible.

or in other words,[x, y] is a diagonal ofQ. Note also that
N1 = s. We refer tos as the root ofGQ(s).

Fig. 4. The vertex-induced tree of a set of points in a nonconvex polygonal
environment. The solid circles represent the vertices of thetree and the
dashed lines represent the edges. The root of the tree is denoted by the
vertexs.

We now state some important properties of the vertex-
induced tree.

Lemma 4.5:Given a simple polygonQ without holes and
any vertexs ∈ Ve(Q), the following statements are true:

(i) the graphGQ(s) is a rooted tree;
(ii) no two nodes sharing an edge are visible to each other;
(iii) the maximum number of nodes in the vertex-induced

rooted tree isbn
3 c wheren = |Ve(Q)|.

V. A LGORITHMS

In this section we present motion planning algorithms to
navigate between two points representing neighboring nodes
in the vertex-induced tree. We then describe algorithms for
multiple visually-guided agents to explore the nodes of the
vertex-induced tree.

A. Navigation algorithms

Here we design algorithms to plan paths between neigh-
boring nodes of the vertex-induced tree. Let us first state
a lemma which characterizes the shortest path between any
two neighboring nodes.

Lemma 5.1:Given a simple polygonQ without holes
and any vertexs ∈ Ve(q), let GQ(s) represent the
vertex-induced tree andNQ(s) the corresponding node
set. LetNQ(s)i,NQ(s)j represent two neighboring nodes
and PQ(s)i ∩ PQ(s)j = [v′, v′′] where v′, v′′ ∈ Ve(Q)
and v′ 6= v′′. Then the shortest path betweenNq(s)i

and Nq(s)j is given by the shorter of the two paths,
[Nq(s)i, v

′]∪[v′,Nq(s)j] and [Nq(s)i, v
′′]∪[v′′,Nq(s)j].

Any node of the vertex-induced tree has neighbors of
possibly two types: parent or child. Let us first describe how
to navigate from a node to its parent. Here are informal and
formal descriptions of what we shall refer to as theMOVE-
TO-PARENTroutine:

(i) Compute the shortest path between the parent
and the node based on Lemma 5.1; (ii) go to
the reflex vertex which is a part of the shortest
path; (iii) from the reflex vertex go to the vertex
representing the parent node.

TABLE I

MOVE-TO-PARENT

Name: MOVE-TO-PARENT ({pparent, plast, v
′, v′′})

Goal: Go from nodeNQ(s)i to its parent,
sayNQ(s)j

Requires: (i)[v′, v′′] where[v′, v′′] = NQ(s)i ∩NQ(s)j ,
(ii)pparent= NQ(s)j

.

1: plast := NQ(s)i

2: p := NQ(s)i

3: Compute shortest path fromp to NQ(s)j , say [p, v]∪[v,NQ(s)j

wherev is eitherv′ or v′′

4: while p 6= NQ(s)j do
5: if plast 6= v then
6: Compute shortest path from p to NQ(s)j , say

[p, v]∪[v,NQ(s)j] wherev is eitherv′ or v′′

7: u =
min(smax,‖v−p‖)

‖v−p‖
(v − p)

8: if u = 0 then
9: plast = v

10: end if
11: else
12: u =

min(smax,‖NQ(s)j−p‖)

‖NQ(s)j−p‖
(NQ(s)j − p)

13: end if
14: p = p + u
15: end while
16: return : {pparent, plast, v

′, v′′}

Figure 5 shows paths between nodes and the respective
parents as computed by the algorithm in Table I. Note that
at the end of the MOVE-TO-PARENT routine the variable
plast is equal to the position of a vertex that belongs to the gap
between the parent and the starting node. This information
can be later used to decide which child of the parent should
be visited next.

s

Fig. 5. The planned paths from nodes to their parent in the vertex-induced
tree.

From Lemma 5.1 it can be seen that computing the shortest
path between any two nodes requires the knowledge of the
relative positions of one node with respect to the other. In
the next section, we see that the algorithms that we design
to explore the vertex-induced tree have the property that in
order for any node to be visited by an agent, it must also
have visited its parent. Hence to plan a path from a node to
its parent, we can assume that the knowledge of the relative
position of its parent is present. However, to plan a path from
a node to any of its child, we cannot assume the knowledge
of the relative position of the child. This is because the
child might not have been visited by any other agent at
all. However, the agents can detect the location of the gap

between the node and the child. We now give informal and
formal descriptions of what we shall refer to as theMOVE-
TO-CHILD routine.

(i) Compute the mid-point of the gap between the
node and the child; (ii) go to the mid-point; (iii)
compute the nearest vertex from which the entire
gap is visible and which is on the other side of the
gap as the last node; (iv) go to that vertex.

TABLE II

MOVE-TO-CHILD

Name: MOVE-TO-CHILD ({pparent, plast, v
′, v′′})

Goal: Go from nodeNQ(s)i to its child,
sayNQ(s)j

Requires: (i)[v′, v′′] = NQ(s)i ∩ NQ(s)j

1: plast := NQ(s)i

2: p := NQ(s)i

3: ptemp = v′+v′′

2

4: while p 6= ptemp AND plast 6=
v′+v′′

2
do

5: if ptemp 6=
v′+v′′

2
then

6: u =
min(smax,‖ptemp−p‖)

‖ptemp−p‖
(ptemp− p)

7: if u = 0 then
8: ptemp = arg min{‖v −

[v′, v′′]‖ | [v′, v′′] is visible fromv, , v ∈ X}, where
X = Q \ Qplast

9: plast =
v′+v′′

2
10: end if
11: else
12: u =

min(smax,‖ptemp−p‖)
‖ptemp−p‖

(ptemp− p)

13: end if
14: p = p + u
15: end while
16: return : {pparent, plast, v

′, v′′}

s

Fig. 6. The planned paths from nodes to their respective children in the
vertex-induced tree.

Note that from the two algorithms in this section, the path
from a node to its parent is shorter than the path from the
parent to the node. Hence, we define the following notions.

Definition 5.2: Given a simple polygonal environmentQ
without holes, we define the following:

(i) the forward length of the graph GQ(s),
Lforward(GQ(s)) =

∑|NQ(s)|−1
i=1 Lforward(GQ(s))i

with Lforward(GQ(s))i = forward distance(ei), where
ei is any edge ofGQ(s);

(ii) the backward length of the graphGQ(s)

Lbackward(GQ(s)) =
∑|NQ(s)|−1

i=1 =

∑|NQ(s)|−1
i=1 Lbackward(GQ(s))i with

Lbackward(GQ(s))i = backward distance(ei);

whereei is an edge ofGQ(s) comprising of a nodeNQ(s)k

and its parentNQ(s)l. The length of the path fromNQ(s)l

to its childNQ(s)k is equal to forward distance(ei) and the
length of the path fromNQ(s)k to its parentNQ(s)l is equal
to backward distance(ei).

B. Exploration algorithms

In this section, we present algorithms to solve a relaxed
version of the visibility-based deployment problem. The
additional assumptions we make here are that the agents have
memory and that the initial positions of all the agents are
the same. We also assume here that the environment has no
holes. Note that by virtue of the construction in Section IV
and the methods to navigate between one node of the vertex-
induced tree to a neighboring node, we have converted the
original problem into a graph exploration problem.

1) Exploring the vertex-induced tree:In this section, we
design algorithms for multiple agents to cover the nodes of
the vertex-induced tree under the assumption that all agents
are initially located at the root of the tree. We present two
algorithms to solve the problem. It must be noted that the
algorithms we specify here may not be optimal in terms
of performance measures such as required time. Our aim
is mainly to give a solution that is guaranteed to solve
the visibility-based deployment problem. Performance issues
will be the subject of future research.

In Section II, we had talked about the communication
region and the memory of an agent. Now, we specify what
these are for the problem under consideration. For each agent
i, we associate the following:

(i) The communication region specified byC(pi) =
S(pi) ∩ Bpi

(r), where r = min{R, 1
2 min{‖pi −

v‖, v ∈ S(pi)}}, if pi ∈ Ve(Q).
(ii) The list Mi(t) where each element is a pointp ∈ Q.

In the algorithms that we present later, the maximum
number of required elements in the list is four. We let
Mi(t)k refer to thekth element of the list.

(iii) The list buffer-uidi whose elements are natural
numbers.

(iv) The list buffer-memoryi whose elements are lists
of the typeM.

Let us first try to formally write the sequence of tasks
performed by any agent in between two wake-up instants.
The algorithm is described in Table III. Note that in the
algorithm, we invoke two routines (i) depth-first search and
(ii) randomized search which we describe later. For the
present, we only inform the reader that they are decision
making routines to execute the MOVE state.

The following lemma characterizes the set of agents whose
messages are present in the buffer of any given agent.

Lemma 5.3:For any agent i at any time t, if
buffer-uidi 6= ∅, then pi(t) ∈ NQ(s) and there exists
τj with 0 ≤ τj ≤ δ such thatpj(t − τj) = pi(t) for all
j ∈ buffer-uidi.

TABLE III

ASYNCHRONOUS SCHEDULE

Goal: Cover the nodes of the given vertex-induced tree,
GQ(s)

Assumes: p1(T 1
0) = p1(T 2

0) = . . . = pN (T N
0) = s ∈

Ve(Q)

0: Assumek s.t.Nk = pi

0: buffer-uidi = ∅
0: buffer-memoryi = ∅
0: Mi(T

i
0) = {pi(T

i
0), pi(T

i
0)}

0: move-decision :=stay
For eachi ∈ {1, . . . , n}, the following are executed at according to the
schedule in Section II between any two wake up instants:
SPEAK
1: BROADCASTi(i,Mi(t))

LISTEN
1: RECEIVEi(j,Mj(t − τ)), where0 ≤ τ ≤ δ
2: Appendj to buffer-uidi

3: AppendMj(t − τ) to buffer-memoryi

PROCESS
1: run Depth-first search or Randomized search

MOVE
1: switch move-decision
2: casestay: Stay atNk

3: caseto-child: buffer-uidi = ∅; buffer-messagei = ∅;
run MOVE-TO-CHILD(Mi(t))

4: caseto-parent: buffer-uidi = ∅; buffer-messagei =
∅; run MOVE-TO-PARENT(Mi(t))

5: end switch

We now present a standard depth-first algorithm to dis-
tribute the agents on the nodes of the vertex-induced tree.
First, we give an informal description of the algorithm.

Each agent performs the following tasks whenever
the depth-first search routine is called: (i) Find
the maximum UID among all agents which have
communicated with it during the lastδ units of
time; (ii) If this UID is less than its own UID,
then stay else move; (iii) If the decision is to move
and there are no children of the present node, then
move to parent; (iv) If the decision is to move and
there is at least one child, then order the children
in a suitable way. If the last node visited is the
parent of the present node, then move to first child
in the ordering. Otherwise, if the last node visited
is a child that is not the last in the ordering,then
move to the child that comes next in the ordering.
Otherwise, if the last node visited is a child that is
the last in the ordering, move to the parent node.

We formally describe the depth-first search routine in
Table IV. Before presenting the correctness proof of this
algorithm, let us present a randomized search routine. We
first provide an informal description of the algorithm.

Each agent performs the following tasks whenever
the depth-first search routine is called: (i) Find
the maximum UID among all agents which have
communicated with it during the lastδ units of
time; (ii) If this UID is less than its own UID,
then stay else move; (iii) If the decision is to move
then choose one node from its children and parents
randomly and move towards it.

TABLE IV

DEPTH-FIRST SEARCH

1: l = max{j | j ∈ buffer-uidi}
2: if l < i then
3: return : stay
4: end if
5: Mi(t)k = Ml(t − τl)k for k ∈ {1, 3, 4}
6: if |Mi(t)| = 2 then
7: ComputeX = V(pi, Q)
8: else
9: ComputeX = V(pi, Qpi (Mi(t)3,Mi(t)4))

10: end if
11: Compute the list of gaps ofX excluding [Mi(t)3,Mi(t)4],

say {[v′
i1

, v′′
i1

], . . . , [v′
ik

, v′′
ik

]} such that the list of vertices
{pi, v

′
i1

, v′′
i1

, . . . , v′
ik

, v′′
ik
} is ordered counter-clockwise.

12: if k = 0 or (Mi(t)2 ∈ [v′
ik

, v′′
ik

] and |Mi(t)| > 2) then
13: return : to-parent
14: else
15: Mi(t)1 = pi

16: if Mi(t)2 ∈ [Mi(t)3,Mi(t)4] then
17: Mi(t)3 = v′

i1
; Mi(t)4 = v′′

i1
18: else
19: if Mi(t)2 ∈ [v′

im
, v′′

im
] then

20: Mi(t)3 = v′
im+1

; Mi(t)4 = v′′
im+1

21: end if
22: end if
23: return : to-child
24: end if

TABLE V

RANDOMIZED SEARCH

1: l = max{j | j ∈ buffer-uidi}
2: if l < i then
3: return : stay
4: end if
5: Mi(t)k = Ml(t − τl)k for k ∈ {1, 3, 4}
6: if |Mi(t)| = 2 then
7: ComputeX = V(pi, Q)
8: else
9: ComputeX = V(pi, Qpi (Mi(t)3,Mi(t)4))

10: end if
11: Compute the list of gaps ofX say{[v′

i1
, v′′

i1
], . . . , [v′

ik
, v′′

ik
]} such

that the list of vertices{pi, v
′
i1

, v′′
i1

, . . . , v′
ik

, v′′
ik
} is ordered counter-

clockwise.
12: Generate a random number, saya (uniformly distributed over the

interval [0, 1])
13: Let a ∈ [m

k
, m+1

k
) wherem ∈ {0, . . . , k − 1}

14: if [v′
im

, v′′
im

] = [Mi(t)3,Mi(t)4] then
15: return : to-parent
16: else
17: Mi(t)1 = pi

18: Mi(t)3 = v′
im

; Mi(t)4 = v′′
im

19: return : to-child
20: end if

A formal description of the randomized-search routine is
given in Table V. In what follows we shall refer to the
asynchronous algorithm in Table III together with the depth-
first search routine in Table IV byAdfs. Also we shall useArs

to refer to the asynchronous algorithm in Table III together
with the depth-first search routine in Table V. The following
lemma captures the fact that in the algorithmsAdfs andArs,
there is always enough information to successfully execute
the depth-first and randomized searches.

Lemma 5.4:For any agent,i, let pi(t) represent the posi-
tion of the agent at any timet ∈ T i, say t = T i

l . Then the
following statements are true:

(i) pi(t) ∈ NQ(s), saypi(t) = NQ(s)k;
(ii) Ml(t − τl)1 represents the location of the parent of

NQ(s)k, say NQ(s)j , where l = max({j | j ∈
buffer-uidi}, i);

(iii) [Ml(t−τl)3,Ml(t−τl)4] = NQ(s)k∩NQ(s)j , where
l is as defined above;

(iv) Mi(t)2 ∈ NQ(s)k ∩NQ(s)j whereNQ(s)j is the last
node ofGQ(s) occupied by agenti.

2) Convergence analysis and time complexity:In this sec-
tion, we analyze the convergence properties of the algorithms
described in Section V-B. We also give an upper bound on
the time complexity of the completion of the task. Before
presenting these results, let us state an important observation.

Lemma 5.5:Given a simple polygonal environmentQ
without holes, consider a network of visually guided agents
initially located ats ∈ Ve(Q) exploring the vertex-induced
treeGQ(s) by executing either algorithmAdfs or Ars. Then
given any nodeNQ(s)k of GQ(s), if at any time t there
exists agenti such thatpi(t) = NQ(s)k, then at any time
t′ > t, there exists agentj, such thatpj(t

′) = NQ(s)k with
the property thatj ≥ i.
In other words, the number of occupied nodes is nondecreas-
ing. We are now ready to state the main results of this paper.

Theorem 5.6:Given a simple polygonQ without holes,
let p1(T

1
0) = . . . = pN (TN

0) = s ∈ Ve(Q), represent the
initial positions of an asynchronous network ofN visually-
guided agents as described in Section II. Let the behavior
of the agents be governed by the algorithmAdfs. Then the
following are true:

(i) there exists a finite timet∗ after which there is at least
one agent onmin{|NQ(s)|, N} nodes ofGQ(s);

(ii) if N ≥ bn
3 c, then the visibility-based deployment

problem is solved in finite time;
(iii) if there exist bounds λmax and ρmax such that

λi
l ≤ λmax and ρi

l ≤ ρmax for all i ∈
{1, . . . , N} and l ∈ N ∪ {0}, then t∗ ≤ Tmotion +

Tnodes, whereTmotion ≤ 2
Lforward(GQ(s))+Lbackward(GQ(s))

v
−

min{Lbackward(GQ(s))i | i∈{1,...,|NQ(s)−1|}}
v

and Tnodes ≤
2(λmax + ρmax) (|NQ(s) − 1|), wherev is the speed
with which the agents move;

Proof: We first prove fact (i). Before beginning with the
proof, let us define astationary agent, i, to be any agent such
that pi(t) = NQ(s)k for all t ≥ t′ where t′ is some finite
time instant andk ∈ {1, . . . , |NQ(s)|}. It is easy to see that
unless an agent is stationary, it performs a depth-first search
onGQ(s). Hence, an agent that is not stationary visits all the
nodes ofGQ(s) in finite time. It is clear from steps (2)-(4) of
the depth-first search routine, that no two agents at the same
node can be stationary. Hence the number of such agents is
less or equal tomin{|NQ(s)|, N}. If however, this number is
strictly less thanmin{|NQ(s)|, N}, it means that the number
of stationary agents is strictly less thanN . Hence at least one
agent is not stationary. Also, it means that at least one node
of GQ(s) is not occupied by any agent. This is because if
all nodes were occupied then from Lemma 5.5, there would
always be an agent on every node and then in finite time there
would be a stationary agent on that node. But since there is

one agent that is not stationary, it would reach the empty
node ofGQ(s) in finite time through depth-first search. This
is a contradiction.

Fact (i) and Lemma 4.5 together imply that ifN ≥ bn
3 c,

then at time t∗, the number of occupied nodes will be
|NQ(s)|. Fact (ii) then follows trivially.

We do not include the proof of fact (iii) here in the interest
of space.

Theorem 5.7:Given a simple polygonQ without holes,
let p1(T

1
0) = . . . = pN (TN

0) = s ∈ Ve(Q), be the initial
positions of an asynchronous network ofN visually-guided
agents as described in Section II. Then in finite time with
high probability, the algorithmArs solves the visibility-based
deployment problem.

Proof: We only provide a sketch of the proof of the
theorem here. The randomized search algorithm is similar
to a random walk on a tree. An agent performing a random
walk on a tree visits each of the nodes of the tree in finite
time with high probability. Note that a random walk on a
graph can also be modeled as a Markov chain. If there are
now multiple agents performing random walks on the same
tree independently, then again with high probability each of
the agents is going to visit the all the nodes of the tree in
finite time. Following on these lines, it can then be deduced
that every empty node of vertex-induced tree is going to be
visited by an agent in finite time with high probability.

C. Simulations

In this section we present simulation results for the al-
gorithms described in the previous section. The algorithms
have been implemented inMATLAB. The environment is
chosen to represent a typical floor plan. See Figure 1 for the
environment,Q, and the vertex-induced treeGQ(s) wheres
is as shown in the figure.

Figures 7 and 8 show the results of the simulations of
the algorithmsAdfs andArs respectively. The nodes of the
vertex-induced tree of the environment in the simulations
are precisely the locations where the agents in Figure 7
are located at the end of the simulation. In Figure 8, there
are more agents than the number of nodes in the vertex-
induced tree. Hence, the extra agents keep exploring the
graph without coming to rest.

VI. CONCLUSIONS

In this paper, we provide a distributed solution to the
visibility-based deployment problem. This problem is closely
related to the classical Art Gallery problem. We also in-
troduce a new graph to represent a given nonconvex envi-
ronment without holes called the vertex-induced tree. We
then demonstrate that with limited memory and based on
information obtained through line-of-sight sensing and com-
munication, multiple agents operating asynchronously can
cover the nodes of this tree. The algorithms presented in this
paper are guaranteed to solve the visibility-based deployment
problem only if all the agents in the network are initially
located at the same point. Possible extensions of this work
include the design of algorithms that are guaranteed to work
even if the agents do not start at the same location. Another

Fig. 7. From left to right and top to bottom, evolution of a network
implementing the algorithmAdfs; see Table IV. The number of vertices of
the environment isn = 46 and the number of agents isN = 13 < b 46

3
c.

Each point of the environment is visible at the end of the simulation.

Fig. 8. From left to right and top to bottom, evolution of a network
implementing the algorithmArs; see Table V. The number of vertices of
the environment isn = 46 and the number of agentsN = 15 < b 46

3
c. The

vertex-induced tree has13 nodes, so the2 extra agents continue to explore
the vertex-induced tree. Each point of the environment is visible at the end
of the simulation.

direction is to investigate the algorithms for robustness to
agent arrivals and departures.

REFERENCES

[1] T. C. Shermer, “Recent results in art galleries,”IEEE Proceedings,
vol. 80, no. 9, pp. 1384–1399, 1992.

[2] V. Chvátal, “A combinatorial theorem in plane geometry,”Journal of
Combinatorial Theory. Series B, vol. 18, pp. 39–41, 1975.

[3] S. Fisk, “A short proof of Chv́atal’s watchman theorem,”Journal of
Combinatorial Theory. Series B, vol. 24, p. 374, 1978.

[4] A. Howard, M. J. Mataríc, and G. S. Sukhatme, “An incremental
self-deployment algorithm for mobile sensor networks,”Autonomous
Robots, vol. 13, no. 2, pp. 113–126, 2002.

[5] J. Grace and J. Baillieul, “Stochastic algorithms for autonomous robotic
surveillance,” inIEEE Conf. on Decision and Control, Seville, Spain,
Dec. 2005, to appear.

[6] L. Guilamo, B. Tovar, and S. M. LaValle, “Pursuit-evasionin an unkown
environment using gap navigation trees,” inIEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, Sendai, Japan, Sept. 2004, pp. 3456–
3462.

[7] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Computa-
tion: Numerical Methods. Belmont, MA: Athena Scientific, 1997.

