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Abstract—This paper presents deployment algorithms for  polygonal environment. We assume that each member of the
multiple mobile robots with line-of-sight sensing and commu-  group is equipped with omnidirectional line-of-sight serss
nication capabilities in a nonconvex polygon. The objective By a line-of-sight sensor, we mean any device or combination

of the proposed algorithms is to achieve full visibility of the . . AP .
environ?neﬁt. We S%Ne the problem by constructing;ya novel Of devices that can be used to determine, in its line-oftsigh

data structure called the vertex-induced tree and designing (i) the position or state of another agent, and (i) the dis¢a
schemes to explore the nodes of the tree by means of distributed to the boundary of environment. By omnidirectional, we

algorithms. The agents are assumed to have access to a memorymean that the field-of-vision for the sensoris radians. We

and their operation is partially asynchronous. also assume that each agent can communicate with any other
I. INTRODUCTION agent visible to it and located with a certain distance. Give

this model, the goal is to design a provably correct diserete

time algorithm which ensures that the agents converge to

locations such that each point of the environment is vidible

. . Y least one agent. We shall henceforth refer to this paaticu
to guard a simple polygonal environment. In other words

. ! - roblem as thevisibility-based deployment problem
the problem is to find the minimum number of guards ang This problem is related to many surveillance and pursuit-

locate them in a nonconvex polygonal environment so th . - -
each boint of the environmepntyi% visible to at least On%\/as,lon problems in unknown environments. For example,
P agine that one is interested in surveilling an unknown

guard; see Figure 1. This problem has inspired a who rban or an indoor environment. It is reasonable to model

class of geometric problems on art galleries; see for eXaml. anvironment as a nonconvex polygon. The problem of
ple the beautiful survey [1]. The well known Art Gallery deploying robots to achieve full visibility is related toigh

nggsrg:a[”z] iiﬁ;g:%gjtoguigz e;re ;Iwiyr? Vﬁwgﬁgte:ndobjective. There has been a lot of research interest in the
y ylog polyg " problem of deployment of robots in indoor environment for

Fllsksnfsvnstrufc;:\r/]((eﬁrp])rcicr)]f ?f tht'is nthe?rtim [3] rgrovgd(\elvs 3 he purpose of surveillance. Some related works include [4]
clega ay o g the locations of the guards. HOWEVEl, ., o an incremental algorithm for deployment is proposed

there is no discussion of the problem of finding the Iocationgnd [5] in which the relevance of random walk on graphs is
in real time with limited knowledge of the environment. discussed. In addition, this problem is related to the gtirsu

evasion problems in robotics; e.g., see [6]. This work i als
JJ noteworthy because of the use of an appropriate data struc-

Consider a group of poinguards equipped with sensors
with omnidirectional vision. The classical Art Gallery Bro

ture to navigate through unknown polygonal environments.
The contribution of this paper is three-fold. First, given
a simple nonconvex polygonal environment and one of its
vertices, we describe a way to partition the environment
into star-shaped polygons. This procedure leads us to define
‘ a new graph, associated to the nonconvex polygon and to
the given vertex, called the vertex-induced tree. Everyenod
Fig. 1. A nonconvex polygon shaped like a typical floor plare solid iN this graph corresponds to a star-shaped polygon. The
circles represent the locations gfiardswith omnidirectional vision. Note edges between nodes are drawn whenever two star-shaped
that each portion of the environment is visible to at least gnard. polygons have a common side. Second, we demonstrate
In thi id ¢ roboti thow to plan paths between neighboring nodes of the vertex-
g I Ids paper, twe consider a group of rol ouc agentyquced tree based on a limited sensing and communication
modeled as point masses, moving In a Simpleé NONCONVeY{,qe| Third, we present two asynchronous and distributed
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B, (p) denote theclosed ballcentered ap of radiusr € R . (i) the position,p;(t) € Q with ¢t € T, of the agent in

Also, we letN refer to the set of natural numbers. Given the environment.

two pointsz,y € R? we let [z,y] represent theclosed |n addition, each agent may require certain memory depend-

segmentbetweenz and y. Similarly, (z,y) represents the ing upon the task that it is performing or on the algorithm

open segmenbetweenz and y, [r,y) represents the set it is executing. For each agernt let M;(t) represent the

(z,y)U{z} and (z,y] represents the s¢t,y) U{y}. Given contents of its memory at any tinte

a finite setX, let | X| represent the cardinality of the set. By communicating with any other agent, we mean that
Now let us turn our attention to the polygonal environ-any agent;, can perform the following:

ment. LetQ be a simple polygon, possibly nonconvex. We (i) BROADCAST; (i, M;): Broadcast to all agents in its

say that a polygon is simple if the polygon vertices are the ~ communication region its UIDi, and the states in its

only points in the plane common to two polygon edges and memory, M;.

every polygon vertex belongs to at most two polygon edgesgjiy RECEIVE;(j, M;): Receive a broadcast from another
Such a polygon has a well defined interior and extehtmte agent,;.

that a simple polygon can contain holdset Q refer to the We assume here that for any agentthere is a bounded
set of all simple polygons. Leéle(Q) = (v1, ..., vs) be the  ime delay between BROADCAST, (i, M,) message sent
list of vertices of@ ordered counterclockwise. Throughoutby the agent and the correspondiRECEIVE; (i, M) mes-

this paper, we shall reserve the use of the notalianio  gaqe received by another agent, in its communication
denote the number of vertices of a polygonal enwronmentregion_ Lets > 0 denote this upper bound.

A point ¢ € Q is visible fromp € Q if [p,q] C Q. The
visibility polygonS(p) C @ from a pointp € @ is the set of
points inQ visible from p. It is convenient to think op —
S(p) as a map fron) to the set of polygons contained
It must be noted that the visibility polygon is not necedgari
a simple polygon. Also, we shall uge to refer to tuples of
elements ifR? of the form(py, ..., py). With a slight abuse
of notation, we shall us# interchangeably with a point set
of the form{p1,...,pn}.

Now, for the sake of convenience we define various actions
that any agent is capable of performing. Note that this may
be formalized by means of a finite state machine.

SPEAK: This represents the state of an agentyhen it
sends a BROADCAS[T, M;) message;

LISTEN: This represents the state of an agentyhen it is
capable of accepting a RECEIVE, M ;) message for
somej € {1,...,N},j #14;

PROCESS: This represents the state of an agent performing

1. ASYNCHRONOUS NETWORK OF VISUALLYGUIDED computations on the state in its memory;
AGENTS MOVE: This represents the state of the agent when it is
We begin by introducing the notions ofvésually-guided moving.

agent and of anetwork of visually-guided agent8y a Till now, in this section, we have described a general asyn-
visually-guided agent, we mean any agent with the followinghronous network of visually-guided agents. In the follagyi
capabilities: subsection, we describe a particular communication arte sta
sensing each agents is equipped with omnidirectional serfransition model that we use in this paper.
sors with the ability to sense the relative position ofa  Asynchronous schedule
any other agent within its line-of-sight and the also . .
relative position of any point on the boundary of the Any agent; assumes the following states between any two
: Y . . wake-up instants]} and T}, :
environment that is visible from its location. . : s 5. wh
communication each agent can communicate with any () SI:EAE at t|imes§ - lTl Tf(g Wderiei E NU{0},
other agent that is within its line-of-sight and lying . 1. T k0O <T/+ A+ pj, A = andp, = O'Z. N
inside a closed disk of radius € R,. Note that (a) (") LISTEN durlng_ the time interva(T}, T} +A] + p);
is bounded from above by, sa@y € R, the maximum (1)) PROCESS during the intervally +A;, T} + Aj + p});
signal strength that an agent can send and, (b) at ang}v)

MOVE during the time intervalT} + X\ + pj, T}, ). If
time an agent can choose any< R by changing the the agent decides not to move tigf), = 77 +A; +;.

signal strength. Hence jf € O represents the position ~Reémarks 2.1: (i) Note that the sequencd” is not

of any agent, then its communication region with a  Prespecified. Given any wake-up instafjt, the next
given radiusr € R, is given byC(p) = S(p) N B, (p). wake-up instantl}, , is decided based upon the time
processingability to perform computations on the variables ~ the agent spends in each of the states in between the
stored in its memory. _ two wake-up instants. .
maneuveringability to move between two points. (i) An agent is capable of receiving broadcasts always

A collection of such agents forms a network. LStbe the except v;/h;en it is mr?ving.. " _ ¢ the ab
number of agents in the network. Each agent has a uniqtqr’(?e Figure or a schematic illustration of the above

identifier (UID), 4 € {1,..., N}, associated with it. We also schedule.. in th : ble of .
associate the following quantities to every agéent . Agenti, II’; the !\/IOVF s}ate, 'S capable of moving a_t any
(i) an increasing sequence of time instant¥ time ¢ € [T} + A + pp, Tii,) according to the following

{ti}ienx C Ry, called the wake-up schedule; eachd|screte-t|me control system:

instant is called a wake-up instant; pi(t + At) = pi(t) + uy, Q)



BROADCAST; (i, M;) BROADCAST; (i, M;)

by this list. Clearly, this is a star-shaped polygon such
that all pointsq € V(v, X) are visible fromo.
_ (iii) A gapofthe polygonV(v, X) is a segmeniv.,;, v, ]
29 R T+ X+ 0 : :
i@ ® Py 7, wherewu;y; > u; + 1. Thus each gap is a diagonal
' | of X and divides it into two polygonal regions, one
| containingv, say X, (vy,, vy, , ), and the other, given
by X \ X, (vy;,vy,,,), NOt containingu.
In what follows, let G be a list whose elements are
segments of the fornfe,y] C X with z,y € Ve(X). Let
K and\V be lists whose elements are verticess Ve(X).
Fig. 2. Sequence of actions performed by an agefit between two L€t P be a list whose elements are simple polygons. The
wake-up instants. Note that a BROADCAGTM;) is an instantaneous elementsG;, K;, P; and \; refer to theith element in the
event taking place where there is a vertical pulse, wheré@$ROCESS, lists G, K, P and\/ respectively. Alsong andn g refer to

LISTEN and MOVE actions take place over an interval. The MORftErval . . .
might be empty if the agent does not move. the number of elements in the list§ and K respectively.

~

‘ PROCESS MOVE

LISTEN

s=u

q Vg5 U3y V3T 31 V30

where the control is a function of the communication, sens-
ing, memory and the action that the agent is performing at
time instantt. Again, note thatTlﬁrl is not predecided but is

the time when the agent stops performing the MOVE action.
Also, note that this model of visually-guided agents is Emi onl
in spirit to thepartially asynchronous modelescribed in [7].

Ill. THE VISIBILITY-BASED DEPLOYMENT PROBLEM

We have introduced the Art Gallery Problem in Section I.
The formulation of this classic problem assumes a priori
knowledge of the polygonal environment. What we are

interested in here is aonline anddistributedversion of this v e N
problem.

Delflnltlon 3.1 %Iven a simple pF")/QO” Q_'_ let Fig. 3. Notations in Definition 4.1. Let the nonconvex polpgb en-
p1(Tg),...,pn(Tp") € Q represent the initial positions of vironment representX. V(s, X) is the shaded polygon in the figure

an asynchronous network a¥ visually-guided agents as fTehPfesemed by the \éenexwlés{tvl),vz,vsivls,vl]a,wa, 1[)43,v44,]v4g}-

. . . An n e gaps associated with(s,z) are [vs,vis5] and [vig,vs2] be-
descr_lbed |n_Sect|on II. Led : @ — Q_ represent an  ,ise1s > 3+ 1 and 42 > 16 + 1. The 9ap [v16, vaa] par-
algorithm which transforms a set efpoints in( to another titions X into two polygons X, (vie,v42), represented by the vertex
set of n points in Q. We say thatA solves the visibility- list {v1,...,v16,v42,...,v45}, and X \ Xs(v16,v42), represented by
based deployment problem if the algorithm converges to

tae vertex list{vie,...,v42}. Note also thatvy; = argmin{|jv —
setiW ¢ (29)N with the property that); S(p;) = @ for all [v16, va2]|| | [v16, va2] is visible fromwv, v € X \ X, (vi6, vaz)}-
1e{l,...,N}and all(p,...,pn) € W.

Figure 3 illustrates the notations introduced above. The
procedure then is as follows:
(i) Initialization:
a)G=0,K:=0;,P:=0; N :=0.
b) X :=Q.
¢) ComputeV(s, X).
d) InsertV(s,X) into P.
e) Inserts into \V.

IV. THE VERTEX-INDUCED TREE

Let us start by describing a procedure to partitice
polygonal environment without holes), into star-shaped
polygonal regions. To begin constructing this partitiore w
require a starting vertex which we calle Ve(Q). First, we
introduce some notions.

Definition 4.1: (i) Given a simple polygonX, any di-

agonal[v’,v"] of X wherev’,v"” € Ve(X) partitions
X into two polygons. If there exists a poipte X
such thap ¢ [v/,v"], then letX,,(v/,v") represent the

f) Compute all gaps o¥(s, X) and insert them into
G. Let the number of such gaps he. Then insert
ng copies ofs into the list K. Hence,ng =

polygon containingp.
(i) Given a simple polygonX and a vertexw € Ve(X),

nNKg = Ng.
(i) Star-shaped partitioning algorithm:

let (vy, ..., vy, ) represent the list of vertices ot While n¢e > 0, execute the following steps:
that are visible fromw wherew; < w;y; for all z‘_e a) For G1,K,, compute s = argmin{|jv —
{1,...,k — 1}. Let V(v, X) be the polygon defined Gl | G, is visible fromv, v c

XA\ Xg, (v, 0")}, where[v/, o] = G
b) X=X \ )(I{1 (U/7’l)l/)_
c) ComputeV(s’, X).

*Recall that a partition of any séX is a collection of closed subsefs;
of X such thatX = U; X; and X; N X; = 0 for all ¢ # j, whereX; is
the interior of the sefX;.



d) InsertV(s’, X) at the end ofP.

e) Inserts’ at the end ofV.

f) RemoveG, K, from lists G and K respectively.

g) Compute all gaps oP(s’, X) and insert them at
the end of the listG. Let the number of gaps of
V(s', X) be ng. Then insertn, copies ofs’ at
the end of the listK.

Remarks 4.2: (i) The computation in step (a) of the
algorithm is always well posed. To see this note that
any elementG; of GG is a diagonal of@. Hence

X\ Xk, (v}, v]") with [v],v!] G; is always a
simple polygon with at least three vertices and with
G, representing an edge of the polygon. Since any
S|mple polygon _Can be_ trlangul_ated with dlf_igonaISFig. 4. The vertex-induced tree of a set of points in a nonermolygonal
there always exists a triangle withi; as one side. It environment. The solid circles represent the vertices ofttae and the
is trivial to check that the entire segmeg} is visible dashed lines represent the edges. The root of the tree idedeby the
from the third vertex of this triangle. vertexs.

(i) We assume here that there is a unique vertex
Ve(X \ Xk, (v/,v")) which is at minimum distance
from G; and from which the entire segmendt; is
visible. This assumption is not at all restrictive since if,
such a vertex is not unique, then we can break the dea%
lock by choosing the vertex that is first in the counter-
clockwise arrangement of vertices &f\ X, (v/,v"),
the first being the end point of G; such that the other

or in other words |z, y] is a diagonal ofQ. Note also that
N = s. We refer tos as the root ofGg (s).

We now state some important properties of the vertex-
induced tree.
Lemma 4.5:Given a simple polygoid) without holes and
ny vertexs € Ve(Q), the following statements are true:

(i) the graphGq(s) is a rooted tree;
(i) no two nodes sharing an edge are visible to each other;
(i) the maximum number of nodes in the vertex-induced

end point,v”, is on the clockwise side af'.

(i) At any stage of the algorithm X \ X, (v/,0v")) =
(Q\ Qk, (v',v")). HenceV(s', X) at step (c) of the
algorithm can be computed with the knowledge(af
and S(s').

As an outcome of the algorithn? is the list of star-

rooted tree ig 5 | wheren = | Ve(Q)|.

V. ALGORITHMS

In this section we present motion planning algorithms to
navigate between two points representing neighboring s1ode
in the vertex-induced tree. We then describe algorithms for

shaped polygons which partitiod. In addition, all points Mmultiple visually-guided agents to explore the nodes of the
of P; are visible from the verted;. With some abuse of vertex-induced tree.

notation, henceforth, give® and a vertexs € @, we shall
refer to this partition a® (s) and to the node list a¥/(s).
Finally, we refer toPq(s) as thevertex-induced partition Here we design algorithms to plan paths between neigh-

The following lemma summarizes the important propertieboring nodes of the vertex-induced tree. Let us first state

of the vertex-induced patrtition. a lemma which characterizes the shortest path between any

Lemma 4.3:Given a simple polygoid) without holes and two neighboring nodes.

A. Navigation algorithms

any vertexs € Ve(Q), the following are true:

(i) Pg(s); is a star-shaped polygon for all and
(i) the list Mg (s) belongs to the kernklof @, or in other
words, for anyp; € Ng(s), we have thatPy(s); C

S(pi)-

We now define a graph using this partition. We assume th
the reader is familiar with some standard notions of grap

theory.

Definition 4.4: Given a polygon@ € Q and a vertexs €
Ve(@), thevertex-induced tre€q(s), is the graph such that
the vertex list isV(s) and an edge exists between any tw:
verticesN;, N; € Ng(s) if and only if there exists a segment
[z,y] = P; N'P; with z,y distinct.

Note that by virtue of the construction of the vertex-inddice
tree, any segmetit, y] = P, NP; is such thats, y € Ve(Q),

TThe kernel of a star-shaped polygon is the set of points frdrichvthe
entire polygon is visible.

Lemma 5.1:Given a simple polygon® without holes
and any vertexs € Ve(q), let Go(s) represent the
vertex-induced tree andVy(s) the corresponding node
set. LetNg(s);,Ng(s); represent two neighboring nodes
and Pg(s); N Pg(s); = [v/,v"] wherev',v" € Ve(Q)
gpd v # o". Then the shortest path betweexi,(s);

nd N,(s); is given by the shorter of the two paths,
Ny ()i, v TUR, Ny ()] and [N (), o] U0, Ny (),

Any node of the vertex-induced tree has neighbors of
possibly two types: parent or child. Let us first describe how
0 navigate from a node to its parent. Here are informal and
ormal descriptions of what we shall refer to as MI©VE-
TO-PARENTroutine:

(i) Compute the shortest path between the parent
and the node based on Lemma 5.1; (i) go to
the reflex vertex which is a part of the shortest
path; (iii) from the reflex vertex go to the vertex
representing the parent node.



TABLE |

MOVE-TO-PARENT between the node and the child. We now give informal and

formal descriptions of what we shall refer to as M©OVE-

Name:  MOVE-TO-PARENT (pparent plast, v/, v"'}) TO-CHILD routine.
Goal: Go K?HE r;Ode/\/Q(s)i to its parent, (i) Compute the mid-point of the gap between the
sayNg(s); .
Requires:  ()[v/, o] where[v,v"] = Ng(s); N\ No(s);, - node and the child; (ii) go to the mid-point; (i)
(il) pparent= N (s) ; compute the nearest vertex from which the entire
gap is visible and which is on the other side of the
1: prast:= No(s)s gap as the last node; (iv) go to that vertex.
2: p:=Ng(s);
3: Compute shortest path from to Ng(s);, say [p,v] U[v, Ng(s); TABLE Il
wherevw is eitherv’ or v”’
4: while p # Ng(s); do MOVE-TO-CHILD
5: if past # v then
6: Compute shortest path fromp to Ng(s);, say Name: MOVE-TO-CHILD ({p "
1T : parent Plast, V", V B
[p, U]:i[:,}(’SNQ(ﬁ%j_]p\\l\()herev is eitherv’ or v” Goal: Go from nodeNq(s); to its child,
7: u = W#(v -p) _ sayNg(s);
8: if w =0 then Requires:  ())[v',v"] = Ng(s)i NNg(s);
9: =
10: enzalaisf[ 1: prast : = Ng(s)i
11: else ) N 2 p:= NQ(/S)iN
12 u= mRCERe ) (W (s), — p) 3 pemp= 5" o
13- endif 4: while p # ptemp AND piast # ~ -gv do
14: p=p+u 5 if 240" then
15: end while . e e mensl)
16: return: {pparent Plast, v’> v’} : u= Tptomp—p] (Ptemp — P)
7 if w =0 then
8: Dtemp = arg min{||v —
', 0" v’,v"] is visible fromv, ,v € X}, where
Figure 5 shows paths between nodes and the respective X =Q\ Qg
parents as computed by the algorithm in Table I. Note thato: Plast = ©5"
at the end of the MOVE-TO-PARENT routine the variablg ﬂ; elsee”d i
Piast IS equal to the position of a vertex that belongs to the gdp.: u = in(smax; | pemp—pll) —p)
, g e Tptemp—pl] Premp =D
between the parent and the starting node. This informatioms: end if
can be later used to decide which child of the parent shoul%lg: %:fﬁ u
far . end wnie
be visited next. 16° return: {pparent Plass v/ v}

Fig. 5. The planned paths from nodes to their parent in theexénduced
tree.

Fig. 6. The planned paths from nodes to their respectiveli@il in the

From Lemma 5.1 it can be seen that computing the shortevs?{tex"nduwd tree.

path between any two nodes requires the knowledge of the
relative positions of one node with respect to the other. |
the next section, we see that the algorithms that we desi

Note that from the two algorithms in this section, the path
om a node to its parent is shorter than the path from the

to explore the vertex-induced tree have the property that %}%renF t_o_ the nqde_. Hence_, we define the fOIIO\.ng notions.
S . Definition 5.2: Given a simple polygonal environmett

order for any node to be visited by an agent, it must also. ! =

TR ithout holes, we define the following:
have visited its parent. Hence to plan a path from a node {0 i
its parent, we can assume that the knowledge of the relative(l) the forward  length ?;/ (St)f“f’l graph Go(s),
position of its parent is present. However, to plan a patmfro LiowardGo(s)) = =1 Lioward(GQ(s)):
a node to any of its child, we cannot assume the knowledge ~ With Liowara(Gq(s)): = forward distancge;), where
of the relative position of the child. This is because the  e; is any edge ofio(s);
child might not have been visited by any other agent at(i) the backward length of thﬁ gr?ph Gq(s)
all. However, the agents can detect the location of the gap  Loackward G0 (s)) = ZL:‘E(S”* =



Zy;f?(s)l_l Lpackward 9@ (8) )i
Lbackward G0 (s)); = backward distande;);

with

TABLE Ill
ASYNCHRONOUS SCHEDULE

wheree; is an edge ofjg(s) comprising of a nodeV(s)y Goal: Cover the nodes of the given vertex-induced tree,
and its pareni\(s);. The length of the path fromVg(s); CGols) .
to its child NV (s) is equal to forward distan¢e;) and the | ASSUMes {’}e((g’)) =) = = pnIy) = s €
length of the pgth frondVg (), to its parentNg (s); is equal 0: Assumek St — b
to backward distance;). 0: buffer-uid; =0

O: buffer-menory, =0
B. Exploration algorithms 8f %;/(ejj%)egsi{éﬁ(got)é%(%)}

In this section, we present algorithms to solve a relaxe
additional assumptions we make here are that the agents h

the same. We also assume here that the environment has
holes. Note that by virtue of the construction in Section IV

induced tree to a neighboring node, we have converted t

original problem into a graph exploration problem. MOVE
1) Exploring the vertex-induced treén this section, we %1 switch mOVG-dSeCiSiOB\[
g . . . casest ay: Stay atN}
design algorithms for multiple agents to cover the nodes ofg" 2 " " Lo o bu f er - ui d; = 0: buf f er - message; = 0;

the vertex-induced tree under the assumption that all agent
are initially located at the root of the tree. We present tw

algorithms to solve the problem. It must be noted that the

dror eachi € {1,...,n}, the following are executed at according to

. T, schedule in Section Il between any two wake up instants:
version of the visibility-based deployment problem. Thegpeak Y P

AVE€ BROADCAST; (4, M, (t))

memory and that the initial positions of all the agents arg.ISTEN

rio RECEIVE; (j, M, (t — 7)), where0 < 7 < §
2: Appendj to buf f er - ui d;

. 3: AppendM;(t — 7) to buf f er-nenory;
and the methods to navigate between one node of the vertegROCpgSS 3t=) Y

N&: run Depth-first search or Randomized search

0 4:

5: end switch

run MOVE-TO-CHILD(M, (t))
caset o- parent : buf f er-ui d; = 0; buf f er- nessage; =
@; run MOVE-TO-PARENT(M; (1))

algorithms we specify here may not be optimal in term

of performance measures such as required time. Our aim

is mainly to give a solution that is guaranteed to solve

We now present a standard depth-first algorithm to dis-

the visibility-based deployment problem. Performanceess tripute the agents on the nodes of the vertex-induced tree.

will be the subject of future research.
In Section Il, we had talked about the communication
region and the memory of an agent. Now, we specify what

these are for the problem under consideration. For eacht agen

i, we associate the following:

(i) The communication region specified b§(p;)
S(p;) N By, (r), wherer = min{R,  min{|p; —
vll, v € S(pi)}}, if p; € Ve(Q).

(i) The list M;(t) where each element is a pointe Q.
In the algorithms that we present later, the maximum
number of required elements in the list is four. We let
M, (t), refer to thekth element of the list.

(iii) The list buf f er - ui d; whose elements are natural

numbers.

The list buf f er - menor y, whose elements are lists

of the type M.

Let us first try to formally write the sequence of tasks
performed by any agent in between two wake-up instants.

(iv)

First, we give an informal description of the algorithm.

Each agent performs the following tasks whenever
the depth-first search routine is called: (i) Find
the maximum UID among all agents which have
communicated with it during the last units of
time; (i) If this UID is less than its own UID,
then stay else move; (iii) If the decision is to move
and there are no children of the present node, then
move to parent; (iv) If the decision is to move and
there is at least one child, then order the children
in a suitable way. If the last node visited is the
parent of the present node, then move to first child
in the ordering. Otherwise, if the last node visited
is a child that is not the last in the ordering,then
move to the child that comes next in the ordering.
Otherwise, if the last node visited is a child that is
the last in the ordering, move to the parent node.

We formally describe the depth-first search routine in

The algorithm is described in Table lll. Note that in theTable IV. Before presenting the correctness proof of this
algorithm, we invoke two routines (i) depth-first search analgorithm, let us present a randomized search routine. We
(i) randomized search which we describe later. For théirst provide an informal description of the algorithm.

present, we only inform the reader that they are decision
making routines to execute the MOVE state.

The following lemma characterizes the set of agents whose

messages are present in the buffer of any given agent.

Lemma 5.3:For any agenti at any time ¢, if
buf fer-uid; # 0, thenp;(t) € Ng(s) and there exists
7; With 0 < 7; < § such thatp;(t — 7;) = p;(¢) for all
j € buf fer-uid,.

Each agent performs the following tasks whenever
the depth-first search routine is called: (i) Find
the maximum UID among all agents which have
communicated with it during the last units of
time; (ii) If this UID is less than its own UID,
then stay else move; (iii) If the decision is to move
then choose one node from its children and parents
randomly and move towards it.



TABLE IV
DEPTH-FIRST SEARCH

(i) pi(t) € No(s), saypi(t) = No(s)k;
(i) M;(t — 7)1 represents the location of the parent of
No(s)k, say Ng(s);, wherel = max({j | j €

%: _lf:lmzp;éjlje buf f er-ui d;} buf f er - ui d;}.1);

.| < 7 then - i 58)s

3 ';jet.?m: stay @iy My(t—m)3, Mi(t—m)4] = NQ(S)k ﬂ./\/Q(S)j, where

4:endi L is as defined above;

5 M) = Mi(t — 1)k fOFkE{1,3,4} . ! .

6: if |M;(t)| = 2 then (iv) M;(t)2 € No(s)k HNQ(s)j whereN(s); is the last

;1 IComputeX =V(pi, Q) node ofGg(s) occupied by agent

. else . . .

3 oo < Vi 00 05100 o3 S analys ard e conpiyis see

cenal ’

11: Compute the list of gaps of excluding [M;(t)s, Mi(t)al.|  described in Section V-B. We also give an upper bound on
say {,[”21,,”1'1] [”Z;c/ W dsucg that th? 'I'(St of vertices he time complexity of the completion of the task. Before
piy v 07y vl ) s ordered counter-clockuwise. presenting these results, let us state an important oligerva

12:if k=0 or (M;(t)2 € [v;, ,vf; | and|M;(¢)| > 2) then i '_ ’ :

13: return: t o- par ent Lemma 5.5:Given a simple polygonal environmer)

1‘5‘} e'Sﬁ/t . without holes, consider a network of visually guided agents

16 if /\/(1 )é) gl[Mi(t)S Mz(t)4] then initially located ats € Ve(Q)) exploring the vertex-induced

17: Mi(t)s = v s Mi(t)a = tree Go(s) by executing either algorithmiyss or Ars. Then

igf elsl?/\/l (s € [0 o | then given any nodeNy(s), of Go(s), if at any timet the_re

20: Mi(t)s :v}m’ “’/Lvt (1)1 = exists agent such thatp;(t) = Ng(s)k, then at any time

51 endif it it tr/1> t, there e;:ists agent, such thatp,(t') = Ng(s), with

22:  end if the property thay > 7.

gif enrdeﬁ;‘m: to-child In other words, the number of occupied nodes is nondecreas-

- ing. We are now ready to state the main results of this paper.
TABLE V Theorem 5.6:Given a simple polygorQ without holes,
RANDOMIZED SEARCH let py(T}) = ... = pn(T) = s € Ve(Q), represent the
initial positions of an asynchronous network &f visually-

Ll =max{j|j € buffer-uid} guided agents as described in Section Il. Let the behavior

2:if L <1 then of the agents be governed by the algoritbigs. Then the

3:  return: stay

4 end if following are true:

> #"‘l/\(j)’(@tﬁ M (t’;;n”)k for k€ {1,3,4} (i) there exists a finite time* after which there is at least

7. ComputeX = V(pi, Q) one agent omuin{|Ng(s)|, N} nodes ofGy(s);

8: else (i) if N > [5], then the visibility-based deployment

10 g oPuteX = V(pi, @p; (Mi(t)s, Mi(t)4)) problem is solved in finite time;

11: Compute the list of gaps of say{[v] ,v/'],...,[v], v} ]} such (iii) if there exist bounds Amax and pmax such that
that the list of verticegp;, v} , v}/ , ..., v} v}, }|s ordered countet- Al < Amax and p; < pmax for all i €

. %ockwise. _ o {1,...,N} and! € NU {0}, thent* < Zmotion +

: ener?[toe ia])random number, say(uniformly distributed over the Trodes Where Tootion < 9 Lroward(9Q () +Loackward G (5)) _
interval . i v

13 Leta € [%’ LH) wherem € {0, ...,k — 1} min{ Lpackward G (5)) Ll€{17~..,‘NQ(S)—1|}} and 7?1odes <

L[] S I M0 e 2(Amax + pmae) ([N (5) — 1)), whereu s the speed

16: else with which the agents move;

1 Mt =pi . Proof: We first prove fact (i). Before beginning with the

ig: i:ttuﬁﬁ)ﬂ; ”Crﬁl’lAJ”(t)“ = Yim proof, let us define atationary agenti, to be any agent such

20: end if that pi(t) = No(s)g for all t > ¢/ Whergt’ is some finite

time instant andc € {1,...,|Ng(s)|}. It is easy to see that
Q

unless an agent is stationary, it performs a depth-firstchear

A formal description of the randomized-search routine isn Gg(s). Hence, an agent that is not stationary visits all the
given in Table V. In what follows we shall refer to the nodes ofG(s) in finite time. It is clear from steps (2)-(4) of
asynchronous algorithm in Table 11l together with the depththe depth-first search routine, that no two agents at the same
first search routine in Table IV bylgss. Also we shall used,s  node can be stationary. Hence the number of such agents is
to refer to the asynchronous algorithm in Table Il togetheless or equal tenin{|Ng(s)|, N'}. If however, this number is
with the depth-first search routine in Table V. The followingstrictly less thammin{|Ng(s)|, N'}, it means that the number
lemma captures the fact that in the algorithigs and A;s,  of stationary agents is strictly less thah Hence at least one
there is always enough information to successfully executsgent is not stationary. Also, it means that at least one node
the depth-first and randomized searches. of Gg(s) is not occupied by any agent. This is because if

Lemma 5.4:For any agent, let p;(t) represent the posi- all nodes were occupied then from Lemma 5.5, there would
tion of the agent at any timee 7%, sayt = T7. Then the always be an agent on every node and then in finite time there
following statements are true: would be a stationary agent on that node. But since there is



one agent that is not stationary, it would reach the empty ﬂl JL &

node ofGq(s) in finite time through depth-first search. This |j—H |_,JJ J

is a contradiction. j j j o
Fact () and Lemma 4.5 together imply thathf > %], T :H Tjr‘ T" 'ﬂ

then at timet*, the number of occupied nodes will be .

ING(s)]. Fact (ii) then follows trivially.

We do not include the proof of fact (iii) here in the interest ﬂ'.' J_L .J_L
of space. ]
Theorem 5.7:Given a simple polygor@ without holes, j j j
let py(T2) = ... = pn(TN) = s € Ve(Q), be the initial T ﬂ T 'ﬂ T ﬂ

positions of an asynchronous network 8f visually-guided
agents as described in Section Il. Then in finite time with
high probability, the algorithrmd,s solves the visibility-based Fig. 7. From left to right and top to bottom, evolution of a netk
deployment problem. implementing the algorithrdyss; see Table IV. The number of vertices of
Proof: We only provide a sketch of the proof of the the environment is: = 46 and the number of agents I§ = 13 < L%J.

theorem here. The randomized search algorithm is SimilglaCh point of the environment is visible at the end of the sitmra
to a random walk on a tree. An agent performing a randorm

walk on a tree visits each of the nodes of the tree in finite i, ’J_ﬂi < J_L J lJ_L EH*
time with high probability. Note that a random walk on a j i? . j
graph can also be modeled as a Markov chain. If there ar .

now multiple agents performing random walks on the same T ﬂ T :H . T

tree independently, then again with high probability eath o

the agents is going to visit the all the nodes of the tree in ﬂ' & &

finite time. Following on these lines, it can then be deduced

that every empty node of vertex-induced tree is going to bei?

visited by an agent in finite time with high probability.m T ﬂ jT ':H j T ':H
C. Simulations

In this section we present simulation results for the al-
gorithms described in the previous section. The algorithnfSg. 8.  From left to right and top to bottom, evolution of a netw

; ; ; i« implementing the algorithmd,s; see Table V. The number of vertices of
have been implemented IWATLAB. The environment is the environment is, — 46 and the number of agents — 15 < | 46 |. The

chosen to represent a typical floor plan. See Figure 1 for thgrtex-induced tree hak3 nodes, so the extra agents continue to explore
environmentQ, and the vertex-induced tr@?(s) wheres the vertex-induced tree. Each point of the environment iblesat the end

is as shown in the figure. of the simulation.

Figures 7 and 8 show the results of the simulations of
the algorithmsAys;s and A5 respectively. The nodes of the direction is to investigate the algorithms for robustness t
vertex-induced tree of the environment in the simulationagent arrivals and departures.
are precisely the locations where the agents in Figure 7
are located at the end of the simulation. In Figure 8, there
are more agents than the number of nodes in the vertdtl T. C. Shermer, “Recent results in art gallerie?EE Proceedings

. . vol. 80, no. 9, pp. 1384-1399, 1992.
induced tree. Hence, the extra agents keep explorlng tm V. Chvatal, “A combinatorial theorem in plane geometrygurnal of
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cover the nodes of this tree. The algorithms presented $n thi ' ’

paper are guaranteed to solve the visibility-based depgoym
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located at the same point. Possible extensions of this work

include the design of algorithms that are guaranteed to work

even if the agents do not start at the same location. Another



