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Abstract— This paper presents coordination algorithms for
mobile autonomous agents equipped with line-of-sight sensors
in a nonconvex polygon. The objective of the proposed algo-
rithms is to achieve rendezvous, that is, agreement over the
location of the agents in the network, using only information
from the line-of-sight sensors. Two key novel components of the
algorithms are the notions of locally-cliqueless visibility graph
and of convex continuous constraint set.

I. INTRODUCTION

Consider a group of robotic agents moving in a nonconvex
environment. For simplicity, we model the environment as a
simple polygon and the agents as point masses. We assume
that each member of the group is equipped with omnidi-
rectional line-of-sight sensors. By a line-of-sight sensor, we
mean any device or combination of devices that can be used
to determine, in its line-of-sight, (i) the position or state
of another agent, and (ii) the distance to the boundary of
environment. By omnidirectional, we mean that the field-
of-vision for the sensor is 2π radians. In what follows, we
shall use the terms visibility-based sensing and line-of-sight
sensing interchangeably. We assume that the algorithm reg-
ulating the agents’ motion is memoryless, i.e., we consider
static feedback laws. Given this model, the goal is to design
a provably correct discrete-time algorithm which ensures
that the agents converge to a common location within the
environment. See Figure 1 for a graphical description of
our objective. Ideally, we would want the algorithm to be
asynchronous but in this work we confine ourselves to the
synchronous case.

This work is motivated by the recent surge of interest
in the study of groups of mobile autonomous robots or
agents. The “multi-agent rendezvous” problem and the first
“circumcenter algorithm” have been introduced by Ando and
coworkers in [1]. The algorithm proposed in [1] has been
extended to various asynchronous strategies in [2], [3]. A
related algorithm, in which connectivity constraints are not
imposed, is proposed in [4].

One important difference between this paper and these
works, is that we consider visually-guided robots. In fact,
technical advancement in the fields of sensor technology and
mobile robotics have facilitated the implementation of these
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Fig. 1. Simulation results of the Circumcenter Algorithm described in
Section IV-C on a network of agents distributed in a polygon shaped like a
typical floor plan. The algorithm is run over the visibility graph Gvis,Q (see
Section III.

algorithms on real systems. Examples of panoramic depth
sensors relevant to the current work are (1) omnidirectional
cameras, e.g., see [5], and (2) laser scanners with accurate
distance measurements at high angular density. We conclude
our literature review by mentioning that the problem of
rendezvousing at a specified location for visually-guided
agents was first introduced in [6]. However, the solution
proposed was not distributed in the sense that each agent
required the knowledge of the locations of all other agents
in the network.

The contribution of this paper is threefold. First, we
develop a geometric framework which makes it possible
to apply recently developed results on convergence analysis
of nonlinear systems, e.g., the LaSalle Invariance Principle
for set-valued maps, on a network of visually-guided agents
in a nonconvex environment. More explicitly, we constrain
the motion of agents to sets that (i) ensure that the vis-
ibility between two agents are preserved, and (ii) change
continuously as a function of the position of the agents.
We call such sets convex continuous constraint sets and
characterize their properties. Second, based on a discussion
on visibility graphs, we define a new proximity graph, called
the locally-cliqueless visibility graph, which contains fewer
edges than the visibility graph and has the same connected
components as the visibility graph. This construction can be,
in general, useful for any problem where the connectivity of
the visibility graph is important and fewer constraints on the
agents, in terms of number of neighbors, is beneficial. Ex-
amples of such problems might include line-of-sight wireless
routing and consensus problems over line-of-sight wireless
communication networks. Third, we propose an algorithm
to solve the rendezvous problem and we provide a partial
convergence proof.

The paper is organized as follows. Section II discusses
the construction of the motion constraint sets. Section III
contains the results on the visibility graph. In Section IV,



we model the network under consideration, and propose the
algorithm for rendezvous and the corresponding convergence
analysis. Section V contains experimental results obtained
by simulating the algorithm on a computer. In the interest
of space, the proofs of only some results in Section II are
included here. The rest can be found in an extended technical
report at the first author’s website.

II. CONVEX CONTINUOUS CONSTRAINT SETS

In this section, we design motion constraint sets for
every pair of agents mutually visible to one another. By
constraining the motion, we aim to preserve the connectivity
of the network. In addition to this, we also require that these
sets change continuously as a function of the position of
the agents. As we shall see later in Section IV, this enables
us to apply the LaSalle Invariance Principle for set-valued
maps for the convergence analysis of the algorithm. We must
emphasize here that the construction proposed in this section
may be applied to any distributed algorithm for a network
of visually-guided agents in a nonconvex environment.

We begin by reviewing some notation for standard geo-
metric objects. For p ∈ R2, we let B(p, r) denote the closed
ball of radius r ∈ R+ centered at p, respectively. Here, we
let R+ and R+ denote the positive and the nonnegative real
numbers, respectively. For a bounded set X ⊂ R2, we let
co(X) denote the convex hull of X . For p, q ∈ R2, we let
]p, q[= {λp + (1 − λ)q | 0 < λ < 1} and [p, q] = co({p, q})
denote the open and closed segment with extreme points p
and q, respectively. For a closed convex set X ⊂ R2 and any
point q ∈ R2, let projX(q) denote the orthogonal projection
of q onto X . For a bounded set X ⊂ R2, we let CC(X)
denote the circumcenter of X , that is, the center of the
smallest-radius circle enclosing X . Note that the computation
of the circumcenter of a bounded set is a strictly convex
problem and in particular a quadratically constrained linear
program. Let |X| denote the cardinality of a finite set X in
R2.

We now introduce the notion of continuous set-valued
maps followed by an important result about the orthogonal
projection onto a convex set. For a discussion on set-valued
maps, see [7].

Definition II.1 Let X and Y be topological vector spaces
(real and Hausdorff). A set-valued map f : X → 2Y with
non-empty and compact values is continuous at a point x0 ∈
X if given any ε > 0, there exists a δ > 0 such that for all
x ∈ B(x0, δ), we have

f(x) ⊂
⋃

y∈f(x0)

B(y, ε) and f(x0) ⊂
⋃

y∈f(x)

B(y, ε)

The following lemma is straightforward to verify.

Lemma II.2 Let X and Y be topological vector spaces
(real and Hausdorff). Let X 3 x 7→ f(x) ⊂ 2Y be a set-
valued map with non-empty, convex and compact values that
is continuous . Let X 3 x 7→ g(x) ∈ Y be a continuous
singleton vector valued map. Then the map X 3 x 7→
projf(x) g(x) ∈ Y is continuous.

Now let us turn our attention to the polygonal environ-
ment. Let Q be a simple polygon, possibly nonconvex. We
say that a polygon is simple if the polygon vertices are the
only points in the plane common to two polygon edges and
every polygon vertex belongs to at most two polygon edges.
Such a polygon has a well defined interior and exterior. Note
that a simple polygon can contain holes. Let Q refer to the
set of all simple polygons. Let Ve(Q) = (v1, . . . , vn) be the
list of vertices of Q ordered counterclockwise. The interior
angle of a vertex v of Q is the angle formed inside Q by
the two edges of the boundary of Q incident at v. The point
v ∈ Ve(Q) is a reflex vertex if its interior angle is strictly
greater than π radians. Let Ver(Q) denote the list of reflex
vertices of Q ordered counterclockwise. On the other hand
a point v ∈ Ve(Q) is a convex vertex if its interior angle is
less than or equal to π radians.

A point q ∈ Q is visible from p ∈ Q if [p, q] ⊂ Q. The
visibility polygon S(p) ⊂ Q from a point p ∈ Q is the set of
points in Q visible from p. It is convenient to think of p 7→
S(p) as a map from Q to the set of polygons contained in Q.
It must be noted that the visibility polygon is not necessarily
a simple polygon.

Definition II.3 Let v be a reflex vertex of Q, and let w ∈
Ve(Q) be visible from v. The (v, w)-generalized inflection
segment I(v, w) is the set

I(v, w) = {q ∈ S(v) | q = λv + (1 − λ)w, λ ≥ 1}.

If w ∈ Ver(Q), then with a slight abuse of terms, we call
I(v, w) a bitangent of Q. A reflex vertex v of Q is an anchor
of p ∈ Q if it is visible from p and if {q ∈ S(v) | q =
λv + (1 − λ)p, λ > 1} is not empty.

In other words, a reflex vertex is an anchor of p if it occludes
a portion of the environment from p.

Lemma II.4 Let {Iα}α∈A be the set of bitangents of Q.
There exists a unique cover {Dβ}β∈B of Q where Dβ is a
connected component of Q \

⋃

α∈A Iα and Dβ denotes its
closure.

Figure 2 illustrates this partition for the given nonconvex
polygon.
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Fig. 2. Partition of Q by the set of bitangents.



Lemma II.5 The set-valued map p 7→ S(p) restricted to
Q \ {Ver(Q)

⋃

(∪α∈AIα)} is continuous.

Next we define and characterize certain useful convex sets.

Definition II.6 Given Q ∈ Q, let p, q ∈ Q have the property
that [p, q] ⊂ Q. Let v ∈ Ver(Q). Let e′v and e′′v be the edges
of Q determining v. Then we define the set Hv(p, q) ⊂ R2

as follows:
(i) if v /∈ [p, q], then Hv(p, q) is the half-plane with

the following properties: (a) the boundary of Hv(p, q)
contains v and is perpendicular to the line passing
through v and proj[p,q] v, and (b) p and q belong to
the interior of Hv(p, q);

(ii) if v = p with p 6= q, then Hv(p, q) is the half-
plane with the following properties: (a) the boundary
of Hv(p, q) contains v and is perpendicular to the line
passing through p and q, and (b) q belongs to the
interior of Hv(p, q) (Note: a similar definition holds
when we interchange p and q);

(iii) if v ∈]p, q[ with p 6= q, then Hv(p, q) is the half-
plane with the following properties: (a) the boundary
of Hv(p, q) contains the line passing through p and q,
and (b) the interior of Hv(p, q) intersected with e′v or
with e′′v is empty;

(iv) if v = p = q, then Hv(p, q) is the set H ′
v ∩H ′′

v . H ′
v

is a half-plane with the following properties: (a) the
boundary of H ′

v contains the edge e′v , and (b) the
interior of H ′

v intersected with e′′v is empty. We define
H ′′

v similarly with e′′v interchanged with e′v .

Figure 3 illustrates the various cases enumerated above.
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Fig. 3. Definition of the sets Hv(p, q)

Remark II.7 With the above definition, wherever defined,
Hv(p, q) is a closed and convex set containing p and q. Also,
note that if V is a convex and compact subset of Q, then
Hv(p, q) is well-defined everywhere in (V)2 and (p, q) 7→
Hv(p, q) is a set-valued map over the domain (V)2 with
range 2(R2).

Lemma II.8 Given any v ∈ Ver(Q) and a convex and
compact subset V of Q, the set-valued map (p, q) 7→
Hv(p, q)∩Q restricted to (V \ Ver(Q))2 is continuous.

Lemma II.9 Let V ⊂ Ver(Q) and V be a convex and
compact subset of Q. The following statements are true:

(i) the set-valued map (p, q) 7→
⋂

v∈V

S(p)∩Hv(p, q) re-

stricted to (V \ (Ver(Q)
⋃

(∪α∈AIα)))
2 is continuous,

and
(ii) the set-valued map p 7→

⋂

v∈V

S(p)∩Hv(p, p) restricted

to V \ (Ver(Q)
⋃

(∪α∈AIα)) is continuous.

Definition II.10 (Convex Continuous Constraint Sets)
Let p, q ∈ Q have the property that [p, q] ⊂ Q and let
IQ(p, q) = Ver(Q)∩S(p)∩S(q). The convex continuous
constraint set between p and q is

CQ(p, q) =
⋂

v∈IQ(p,q)

S(p)∩Hv(p, q).

Figure 4 illustrates the constraint set.

pi

pj

vk1

vk2

vk3
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Fig. 4. The figure on the left is an example of the constraint set CQ(p, q)
where IQ(p, q) = {vk1

, vk2
, vk3

}. The figure on the right is an example
of CQ(p, p) where IQ(p, p) = Ver(Q).

Theorem II.11 Let V ⊂ Q be convex and compact. For any
two points p, q ∈ V , the following statements are true:

(i) CQ(p, q) is convex,
(ii) CQ(p, q) = CQ(q, p), and

(iii) the set-valued map (p, q) 7→ CQ(p, p)∩CQ(p, q) re-
stricted to (V \ Ver(Q))2 is continuous.

Proof: We prove fact (i) by induction. Let us first
consider a polygon Q ∈ Q with |Ver(Q)| = 1. Let
Ver(Q) = {v}. It can be easily checked that CQ(p, q) is
convex. Now, let us assume that statement (i) is true for any
polygon Q such that |Ver(Q)| ≤ m. Now let us consider a
polygon Q′ with |Ver(Q

′)| = m + 1. Since [p, q] ⊂ V ⊂ Q,
there must exist a vertex vk1

∈ IQ′(p, q). Let us take the
polygon Hvk1

(p, q)∩S(p). Let us call it Q′′. Now,

CQ′(p, q) = S(p)∩Hvk1
(p, q)∩

⋂

v∈IQ′′ (p,q)

Hv(p, q)

∩
⋂

v∈IQ′′ (p,q)\{IQ′′ (p,q)∪{vk1
}}

Hv(p, q).



The first three terms can be written as Q′′ ∩CQ′′(p, q) which
is equal to CQ′′(p, q). It suffices to prove that CQ′′(p, q) is
convex since the last term in the expression of CQ′(p, q) is
an intersection of half-planes and represents a convex set.
Note that we can assume that Q′′ belongs to Q (If not, then
one can argue that p belongs to a bitangent and in that case
we can take vk1

as the nearer of the two vertices defining the
bitangent. If p belongs to more than one bitangent, then we
can keep on constructing the half-planes till the remaining
polygon is simple). Now |Ver(Q

′′)| ≤ m since every time
we draw a half-plane Hv(p, q), we remove a reflex vertex.
But then by our induction hypothesis, CQ′′(p, q) is convex.

To prove fact (ii), we first claim that CQ(p, q) ⊂ CQ(q, p).
Let x ∈ CQ(p, q). Then to prove the inclusion, it suffices
to show that x ∈ S(q). Now x and q belong to CQ(p, q)
which is convex. Therefore [x, q] ⊂ CQ(p, q) ⊂ Q, and hence
x ∈ S(q). The opposite inclusion can be proved identically.

We do not include the proof of fact (iii) here in the interest
of space.

III. THE LOCALLY-CLIQUELESS VISIBILITY GRAPH

In Section II we proposed the construction of motion
constraint sets to preserve the connectivity of the network.
The number of such constraints for an agent is the number of
the agents visible to it. It is intuitively clear that the lesser the
number of such constraints, the faster will be the convergence
of the algorithm. In this section we propose the notion of
the locally-cliqueless visibility graph which is a subgraph of
the visibility graph. In general it contains fewer number of
edges than the visibility graph but has the same number of
connected components. In addition we show that this graph
can be computed based on the information obtained only
from the visibility graph.

We begin by introducing some concepts regarding prox-
imity graphs for point sets in R2. We assume the reader is
familiar with the standard notions of graph theory. We recall
that a clique of a graph is a complete subgraph of it. A
maximal clique of an edge is a clique of the graph that (i)
contains the edge and (ii) is not a strict subgraph of any other
clique of the graph that also contains the edge.

Let us introduce some notation. Given a vector space V,
let F(V) be the collection of finite subsets of V. Accordingly,
F(R2) is the collection of finite point sets in R2; we shall
denote an element of F(R2) by P = {p1, . . . , pn} ⊂ R2,
where p1, . . . , pn are distinct points in R2. Let G(R2) be
the set of undirected graphs whose vertex set is an element
of F(R2).

A proximity graph function G : F(R2) → G(R2) asso-
ciates to a point set P an undirected graph with vertex set
P and edge set EG(P), where EG : F(R2) → F(R2 × R2)
has the property that EG(P) ⊆ P × P \ diag(P × P) for
any P . Here, diag(P × P) = {(p, p) ∈ P × P | p ∈ P}. In
other words, the edge set of a proximity graph depends on
the location of its vertices. General properties of proximity
graphs are defined in [8], [9]. Here, we define:

(i) a Euclidean Minimum Spanning Tree of a proxim-
ity graph G, denoted GEMST,G , assigns to each P a
minimum-length spanning tree of G(P) whose edge

(pi, pj) is assigned a length ‖pi − pj‖. If G(P) is
not connected, then GEMST,G(P ) is simply the union of
Euclidean Minimum Spanning Trees of its connected
components. For simplicity, when G is the complete
graph (P,P × P \ diag(P × P)), we denote the
Euclidean Minimum Spanning Tree by GEMST;

(ii) the visibility graph Gvis,Q, for Q ∈ Q, with (pi, pj) ∈
EGvis,Q(P) if the line segment [pi, pj ] ∈ Q;

(iii) the locally-cliqueless visibility graph Glc-vis,Q, for Q ∈
Q, with (pi, pj) ∈ EGlc-vis,Q(P) if (pi, pj) ∈ EGvis,Q(P)
and (pi, pj) belongs to a set EGEMST(P

′) for any maxi-
mal clique P ′ of the edge (pi, pj) in Gvis,Q.

Figure 5 contains some examples of proximity graphs in
a nonconvex polygon Q shaped like a typical floor plan. In
general, the inclusions in Theorem III.1(i) are strict. Figure 6
shows an example where GEMST,Gvis,Q ( Glc-vis,Q ( Gvis,Q.

Fig. 5. From left to right, visibility graph, the Euclidean Minimum
Spanning Tree for the five agents in the center, and the locally-cliqueless
visibility graph.

Fig. 6. From left to right, visibility graph, locally-cliqueless visibility graph
and Euclidean Minimum Spanning Tree of the visibility graph.

To each proximity graph function G, one can associate the
set of neighbors map NG : R2 × F(R2) → F(R2), defined
by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪ {p})}.

Typically, p is a point in P , but the definition is well-posed
for any p ∈ R2. Given p ∈ R2, it is convenient to define the
map NG,p : F(R2) → F(R2) by NG,p(P) = NG(p,P).

Let G1 and G2 be two proximity graph functions. We say
that G1 is spatially distributed over G2 if, for all p ∈ P ,

NG1,p(P) = NG1,p

(

NG2,p(P)
)

.

It is straightforward to deduce that if G1 is spatially dis-
tributed over G2, then G1 is a subgraph of G2, that is,
G1(P) ⊂ G2(P) for all P ∈ F(R2).



We say that two proximity graph functions G1 and G2 have
the same connected components if, for all point sets P , the
graphs G1(P) and G2(P) have the same number of connected
components consisting of the same vertices.

Theorem III.1 For Q ∈ Q, the following statements hold:
(i) GEMST,Gvis,Q ⊂ Glc-vis,Q ⊂ Gvis,Q;

(ii) Glc-vis,Q is spatially distributed over Gvis,Q;
(iii) Glc-vis,Q and Gvis,Q have the same connected compo-

nents.

Proof: The second inclusion in fact (i) is a direct
consequence of the definition of Glc-vis,Q. We prove now that
GEMST,Gvis,Q ⊂ Glc-vis,Q by contradiction. Let P ∈ F(Q) and
assume, without loss of generality, that Gvis,Q(P) is con-
nected (otherwise, the same reasoning carries over for each
connected component of Gvis,Q(P)). For simplicity, further
assume that the distances ‖pk −pl‖, k, l ∈ {1, . . . , n}, k 6= l
are all distinct. This ensures that there is a unique Euclidean
Minimum Spanning Tree of Gvis,Q(P). If this is not the case,
the same reasoning exposed here carries through for each Eu-
clidean Minimum Spanning Tree associated with Gvis,Q(P).
Let (pi, pj) ∈ EGEMST,Gvis,Q

(P) and (pi, pj) 6∈ EGlc-vis,Q(P).
Since necessarily (pi, pj) ∈ EGvis,Q(P), the latter implies
that there exists a maximal clique P ′ of the edge (pi, pj) in
Gvis,Q such that (pi, pj) 6∈ EGEMST(P

′). If we remove the edge
(pi, pj) from GEMST,Gvis,Q(P), the tree becomes disconnected
into two connected components T1 and T2, with pi ∈ T1

and pj ∈ T2. Now, there must exist an edge e ∈ EGEMST(P
′)

with one vertex in T1 and the other vertex in T2 and with
length strictly less than ‖pi−pj‖. To see this, let {e1, . . . , ed}
be the edges of GEMST(P ′) obtained in incremental order
by running Prim’s algorithm (e.g., see [10]) starting from
the vertex pi. Because pi is in T1 and pj is in T2, there
must exist at least an edge in {e1, . . . , ed} with one vertex
in T1 and the other vertex in T2. Let s ∈ {1, . . . , d} be
such that es is the first edge having one vertex in T1 and
another vertex in T2. Since (pi, pj) 6∈ EGEMST(P

′), according
to Prim’s algorithm, the length of es must be strictly less
than ‖pi − pj‖ (otherwise, the edge (pi, pj) will be part of
the Euclidean Minimum Spanning Tree of P ′). If we add
the edge es to the set of edges of T1 ∪ T2, the obtained
graph G is acyclic, connected and contains all the vertices
P , i.e., G is a spanning tree. Moreover, since the length of
es is strictly less than ‖pi − pj‖ and T1 and T2 are induced
subgraphs of GEMST,Gvis,Q(P), we conclude that G has shorter
length than GEMST,Gvis,Q(P), which is a contradiction. Fact (ii)
follows from noticing that, given (pi, pj) ∈ EGlc-vis,Q(P), both
agents i and j can compute the maximal cliques of the edge
(pi, pj) knowing the location of its neighbors in Gvis,Q. With
this information, each agent can decide if the edge (pi, pj)
belongs or not to Glc-vis,Q. Finally, fact (iii) is a consequence
of fact (i).

Remark III.2 It is a well known fact of combinatorial
optimization that finding the maximum clique of a graph
is an NP complete problem. However, for a given point set
P and a polygon Q, Glc-vis,Q(P) is easily computable by
exploiting the underlying structure of the visibility graph and

the Euclidean Minimum Spanning Tree. In fact, it can be
shown that for any point pi, NGlc-vis,Q,pi

(P) can be computed
via an O(m2) algorithm where m is the number of neighbors
of pi in Gvis,Q(P). The algorithm and the corresponding
proof will appear in future submissions.

IV. RENDEZVOUS VIA PROXIMITY GRAPHS

In this section we state the model, the control objective,
the motion coordination algorithm, and the properties of the
resulting closed-loop system.

A. A synchronous network of visually-guided agents

We begin by introducing the notions of visually-guided
agent and of synchronous network of visually-guided agents.
Let n be the number of agents in the network. Each agent
has the following sensing, computation, communication, and
motion control capabilities. The ith agent has a processor
with the ability of allocating continuous and discrete states
and performing operations on them. The ith agent occupies
a location pi ∈ Q, Q ∈ Q, and it is capable of moving at
any time m ∈ N, for any unit period of time, according to
the discrete-time control system

pi(m + 1) = pi(m) + ui. (1)

We assume that there is a maximum step size smax ∈ R+

common to all agents, that is, ‖ui‖ ≤ smax, for all i ∈
{1, . . . , n}. The sensing and communication model is the
following. Each agent is capable of measuring the relative
position of every other agent visible to it, i.e., within line-of-
sight. In addition to this, it can also sense the boundary of Q.
Note that as a consequence, the processor has the capability
to answer the query as to whether two agents visible to it
are mutually visible to one another.

B. The rendezvous motion coordination problem

We now state the control design problem for the network
of visually-guided agents. The rendezvous objective is to
achieve agreement over the location of the agents in the
network, that is, to steer each agent to a common location.
This objective is to be achieved with the limited information
flow described in the model above.

Typically, it will be impossible to solve the rendezvous
problem if the agents are placed in such a way that they
do not form a connected graph. Arguably, a good property
of any algorithm to rendezvous is that of maintaining some
form of connectivity between agents.

C. The Circumcenter Algorithm

Here is an informal description of what we shall refer to
as the Circumcenter Algorithm over a proximity graph G:

Each agent performs the following tasks: (i) it de-
tects its neighbors according to G; (ii) it computes
the circumcenter of the point set comprised of its
neighbors and of itself, and (iii) it moves toward
this circumcenter while maintaining connectivity
with its neighbors.

This algorithm is inspired by the one introduced in [1]. Let
us clarify which proximity graphs are allowable and how
connectivity is maintained. Firstly, we are allowed to design



motion coordination algorithms that are spatially distributed
over the visibility graph Gvis,Q, or more generally, over any
proximity graph G that is spatially distributed over Gvis,Q.
This is a direct consequence of our modeling assumption
that each agent can acquire the location of every other
agent visible to it. Secondly, we maintain connectivity by
restricting the allowable motion of each agent. In particular,
we will show that it suffices to restrict the motion of each
agent as follows. If agents pi and pj are neighbors in
the proximity graph G, then their subsequent positions are
required to belong to CQ(pi, pj) as defined in Theorem II.11.

If an agent pi has its neighbors at locations {q1, . . . , ql},
then define Mi = {q1, . . . , ql} ∪ {pi}. We define the
constraint set Cpi,Q(Mi) by

Cpi,Q(Mi) =
⋂

q∈Mi

CQ(pi, q).

The following remark informally describes what we have
accomplished by thus designing the constraint sets.

Remark IV.1 • Cpi,Q(Mi) is a convex subset of Q
containing pi. This follows from the definition of
Cpi,Q(Mi) and Theorem II.11 (i).

• If Mi ∩Ver(Q) is empty and the set of neighbors of
pi is fixed, then Cpi,Q(Mi) changes continuously as a
function of pi and of the positions of its neighbors.
This follows from the fact that for each pj ∈ Mi,
pi is constrained to remain in CQ(pi, pj) which is a
convex and compact subset of Q. The statement is then
a consequence of Theorem II.11 (iii) and the fact that
Cpi,Q(Mi) is an intersection of continuous maps.

With this, we are ready to formally describe the algorithm.

Name: Circumcenter Algorithm over G
Goal: Solve the rendezvous problem
Assumes: (i) smax ∈ R+ is maximum step size

(ii) Q ∈ Q
(iii) G is a spatially distributed proximity

graph over Gvis,Q

For i ∈ {1, . . . , n}, agent i executes the following at each
time instant in N:

1: acquire {q1, . . . , qk} := NGvis,Q,pi
(P)

2: compute Mi := NG,pi
({q1, . . . , qk}) ∪ {pi}

3: compute Xi := Cpi,Q(Mi)∩ co(Mi)

4: compute q∗i := projXi
(CC(Mi))

5: ui :=
min(smax,‖q∗

i −pi‖)
‖q∗

i
−pi‖

(q∗i − pi)

See Figure 7 for examples of the constraint sets Cpi,Q(Mi)
defined above.

In what follows we shall refer to the Circumcenter Algo-
rithm over the proximity graph G as the map TG : Qn → Qn.

D. Asymptotic correctness of the Circumcenter Algorithm

In what follows, P shall refer to tuples of elements in
R2 of the form (p1, . . . , pn). With a slight abuse of notation,

Fig. 7. Constraint sets Cpi,Q(Mi) generated by the algorithm encoded
as described in Section V

henceforth we shall use P interchangeably with a point set P
of the form {p1, . . . , pn}. Before proceeding to analyze the
convergence properties of the Circumcenter Algorithm, let
us first define a Lyapunov function. We define the function
Vdiam : Qn → R+, by

Vdiam(P ) = max{‖p − q‖ | p, q ∈ co(P )}.

We shall also require, at some times, to make the following
assumption on a sequence {Pm}m∈N∪{0} ⊂ Qn:
(A) There exists a compact set X ⊂ (Q \ Ver(Q)) such

that {Pm}m∈N∪{0} ⊂ Xn.
We are now ready to state the following convergence result.

Theorem IV.2 Let p1, . . . , pn be a network of visually-
guided agents in Q ∈ Q, with maximum step size smax ∈
R+. Assume that Q does not contain any holes, and that
the proximity graph G is spatially distributed over Gvis,Q
and has the same connected components as Gvis,Q. Given
P ∈ Qn, let PC refer to the locations of agents in any
connected component C of Gvis,Q(P ). Then, any trajectory
{Pm}m∈N∪{0} of TG has the following properties:

(i) if the locations of two agents belong to the same con-
nected component of Gvis,Q(Pk) for some k ∈ N∪{0},
then they remain in the same connected component of
Gvis,Q(Pm) for all m ≥ k,

(ii) co(Pm) ⊆ co(Pm−1), for all m ∈ N, and
(iii) if {Pm}m∈N∪{0} satisfies (A), then {Pm}m∈N∪{0} con-

verges to the largest weakly invariant set contained in

Xn ∩{P ∈ Qn | ∃P ′ ∈ TG(P ) such that

Vdiam(P ′
C) = Vdiam(PC) = aC

for all connected components C of Gvis,Q(P )},

for some constants aC ∈ R+.

Remark IV.3 For a network that has only one connected
component, extensive computer simulations (see Section V)
have shown that the network converges to a point of the
form (p∗, . . . , p∗) ∈ X n. The complete theoretical proof of



this observation is yet to be completed and will be included
in future submissions.

Before presenting the proof for Theorem IV.2, let us
introduce some useful results. The technical approach in
what follows is similar to the one in [9].

To a proximity graph function G that is spatially distributed
over Gvis,Q, and a configuration P ∈ Qn, one may associate
a graph GG(P ) = ({1, . . . , n}, E) by defining (i, j) ∈ E
if (pi, pj) is an edge of G(P ). Clearly, for each P ∈ Qn,
P (NGG(P )

(i)) is equal to the set of neighbors of pi with
respect to the graph G(P ).

Given an undirected graph G = ({1, . . . , n}, E), define
the Circumcenter Algorithm at Fixed Topology TG : Qn →
Qn whose ith component is

(TG)i(p1, . . . , pn) = (TG)i(p1, . . . , pn).

Lemma IV.4 For G = ({1, . . . , n}, E), the map TG : Qn →
Qn has the following properties:

(i) The map P 7→ TG(P ) restricted to (Q \ Ver(Q))n is
continuous, and

(ii) co(TG(P )) ⊆ co(P ), for P ∈ Qn.

Proof: Statement (i) is a consequence of Lemma II.2
and Theorem II.11 (iii). From the description of the algorithm
in Section IV-C, we have that (TG)i(P ) ∈ [pi, q

∗
i ]. Now q∗i ∈

Xi. Also pi ∈ Xi since pi ∈ Cpi,Q(Mi) (see Remark IV.1)
and trivially pi ∈ co(Mi). But Xi is convex since it is an
intersection of two convex sets. Hence, [pi, q

∗
i ] ⊂ Xi and in

particular (TG)i(P ) ⊂ Xi. The following chain of inclusions
is again trivially true: Xi ⊂ co(Mi) ⊂ co(P ). Thus, we
have that (TG)i(P ) ⊂ co(P ) for all i ∈ {1, . . . , n} and
hence co(TG(P )) ⊂ co(P ).

Given Q ∈ Q, define the Circumcenter Algorithm at All
Connected Topologies T : Qn → 2(Qn) by

T (P ) = {TG(P ) ∈ Qn | G = ({1, . . . , n}, E) is connected}.

Proposition IV.5 For Q ∈ Q, the map T : Qn → 2(Qn) has
the following properties:

(i) the map P 7→ T (P ) restricted to X , a compact subset
of (Q \ Ver(Q))n, is upper semicontinuous, and

(ii) co(T (P )) ⊆ co(P ), for P ∈ Qn.

Proof: We first prove statement (i). Since X is compact
and T is bounded on a neighborhood of X , then from [7]
[Page 66, Lemma 14] it suffices to prove that T is closed on
X . The proof now follows on the same lines as Proposition
4.3 (ii) in [9]. Statement (ii) follows from Lemma IV.4 (ii).

Now that we have analyzed the smoothness of algorithm
T , let us now study the properties of the Lyapunov function
Vdiam : Qn → R+.

Lemma IV.6 The function Vdiam : Qn → R+ has the
following properties:

(i) Vdiam is continuous, and is invariant under permuta-
tions of its arguments;

(ii) Vdiam(P ) = 0 if and only if P = (p1, . . . , pn) ∈ Qn is
such that pi = pj for all i, j ∈ {1, . . . , n};

(iii) Vdiam is non-increasing along T .

Proof: Facts (i) and (ii) are straightforward to verify.
Proposition IV.5 (ii) implies fact (iii).

We now present the asymptotic convergence properties of
the algorithm T . The proof of this relies on a discrete-time
LaSalle Invariance Principle for set-valued maps; see [9].

Lemma IV.7 Let Q ∈ Q. Assume that Q does not contain
any holes, and that the proximity graph G is spatially dis-
tributed over Gvis,Q and has the same connected components
as Gvis,Q. Then, any sequence {Pm}m∈N∪{0}, defined by
Pm+1 ∈ T (Pm) and satisfying Assumption (A), converges
to the largest weakly invariant set contained in X ∩{P ∈
Qn | ∃P ′ ∈ T (P ) such that Vdiam(P ′) = Vdiam(P ) = a}
where a ∈ R+.

Proof: From (A), we have that any sequence
{Pm}m∈N∪{0} belongs to X n. From Proposition IV.5, we
know that the algorithm T is upper semicontinuous on
Xn (with non-empty and compact values) and hence upper
semicontinuous on X n. We now use Vdiam : Qn → R+ as
a candidate Lyapunov function (see Lemma IV.6). Then the
result follows from LaSalle’s Invariance Principle.

We are now ready to state the proof of Theorem IV.2.
Proof of Theorem IV.2: We start by proving fact (i). Let
k ∈ N∪{0} and take C a connected component of Gvis,Q(Pk).
By assumption, G and Gvis,Q have the same connected
components, and therefore C is also a connected component
of G(Pk). By definition of TG , if agents i and j are neighbors
according to the graph G(Pk), then (pi)k+1, (pj)k+1 ∈
Cpi,Q(Mi). Since Cpi,Q(Mi) is a convex subset of Q which
in particular implies that [(pi)k+1, (pj)k+1] ⊂ Q, we have
that the agents in C remain connected in the visibility graph
at step k + 1, i.e., the agents in C are contained in the same
connected component of Gvis,Q(Pk+1).

Now, let P ′
k refer to the location of the agents in C for k ∈

N. Fact (ii) is an extension of the observation that co(P ′
k) ⊆

co(P ′
k−1) which in turn follows from Proposition IV.5 (ii).

Now, let us prove fact (iii). From (i), we deduce that the
number of vertices in each of the connected components of
G(Pm) is non-decreasing. Since there is a finite number of
agents, there must exist m0 such that the identity of the
agents in each connected component is fixed for all m ≥ m0

(i.e., no more agents are added to the connected component
afterward). Let C = {pi1 , . . . , piK

} be any of these connected
components. The result follows by noting that Lemma IV.7 is
applicable to the agents in C (since their evolution under TG

is one of the many possible evolutions under the algorithm
T , see the definition of T ).

E. A variant of the Circumcenter Algorithm

In Section IV-D, we conjecture that the Circumcenter
Algorithm solves the rendezvous problem for visually-guided
agents if the network evolves in a compact subset of Q \
Ver(Q). In what follows we describe an algorithm that we
conjecture guarantees convergence without this assumption.



Name: Modified Circumcenter Algorithm over G
Goal: Solve the rendezvous problem
Assumes: (i) smax ∈ R+ is maximum step size

(ii) Q ∈ Q
(iii) G is a spatially distributed proximity

graph over Gvis,Q with the property
that two agents at the same location
have identical sets of neighbors.

For i ∈ {1, . . . , n}, agent i executes the following at each
time instant in N:

1: acquire {q1, . . . , qk} := NGvis,Q,pi
(P)

2: compute Wi := {qj | qj = pi, j ∈ {1, . . . , n}}

3: compute Bi := (NG,pi
({q1, . . . , qk}) \Wi)

4: compute Mi := Bi ∪ {pi}

5: if Bi = {v}, for v ∈ Ver(Q), and pi /∈ Ver(Q) then
6: compute q∗i := v

7: else
8: compute Xi := Cpi,Q(Mi)∩ co(Mi)

9: compute q∗i := projXi
(CC(Mi))

10: end if
11: ui :=

min(smax,‖q∗
i −pi‖)

‖q∗
i
−pi‖

(q∗i − pi)

Remark IV.8 The graph Glc-vis,Q fulfills assumption (iii) in
the statement of the Modified Circumcenter Algorithm.

V. SIMULATION RESULTS

To conduct experiments, a simulation environment has
been developed in Matlab R©. The code is organized in
two layers. The lower layer consists of a library containing
routines to answer queries such as whether two points in a
two dimensional polygonal environment are visible to each
other. The higher layer utilizes these routines. The controller
which computes the goal for each agent at every time instant
is implemented in the higher layer. Note that other visibility
based algorithms for single or multiple agents can be easily
implemented within this framework. This can be done by
extracting the appropriate information using the low level
functions and implementing the desired controller.

Figures 1, 8 and 9 illustrate the performance of the
Circumcenter Algorithm in Section IV-C.

Initial position of the agents Final position of the agentsEvolution of the network

Fig. 8. Simulation results of the Circumcenter Algorithm on a network
of agents distributed in a spiral polygon. The locations of the agents, at all
times, do not belong to reflex vertices. However, at some instants, reflex
vertices are approached very closely. The algorithm is run over Gvis,Q.

Initial position of the agents Final position of the agentsEvolution of the network

Fig. 9. Simulation results of the Circumcenter Algorithm on a network
of agents distributed in a polygon shaped like a typical floor plan. The
algorithm is run over Glc-vis,Q.

VI. CONCLUSIONS

This paper focuses on the distributed control of syn-
chronous networks of visually-guided robotic agents. We
have defined some useful geometric quantities, such as
continuous constraint sets and generalized visibility graphs,
and studied circumcenter algorithms for rendezvous. We have
provided a partial convergence proof as well as successful
numerical simulations. Future work will involve completion
of the proofs of the results in this paper, as well as coordi-
nation algorithms for deployment and search.
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