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Abstract— Adopting a tutorial approach, this paper surveys
some control and systems theory problems that have recently
gained interest in the context of multi-vehicle and sensor
networks. By means of illustrative examples, we discuss some
challenges in modeling of robotic networks, motion coordination
algorithms, sensing and estimation tasks, and complexity of
distributed algorithms.

I. INTRODUCTION

Motion coordination is an extraordinary phenomenon in
biological systems, such as schools of fish (see Fig. 1), as
well as a remarkable tool for man-made groups of robotic
vehicles and active sensors. Even though each individual
agent has no global knowledge of the system, complex
coordinated behaviors emerge from local interactions.

The objective of this paper is to present, in a tutorial spirit,
some sample problems and solutions in the emerging disci-
pline of motion coordination for robotic sensor networks.
The key idea is that spatially-distributed sensing tasks, such
as surveillance, search and monitoring, can be performed
efficiently by robotic networks of sensors.

We begin by discussing models of robotic networks, i.e.,
groups of agents that can sense, communicate and take local
control actions. We present basic notions of coordination
tasks and time complexity in an attempt to provide a unifying
modeling language for robotic networks. Next, we survey the
state of the art on motion coordination by presenting some
results on the design of coordination primitives, i.e., basic
coordination skills for specific tasks such as deployment
or pursuit. Remarkably, the problem of deploying a group
of agents to form an arbitrary pattern using distributed
decision-making and limited communication is in general
an open problem. We emphasize here that the scope of the
tools described in this paper is not limited to the problems
mentioned within but can be applied to other tasks of similar
nature. Indeed such an approach will be useful in the case
where the same network of simple mobile agents is required
to perform a variety of different motion coordination tasks.

A third focus of this paper is the use of controlled mobility
in target and boundary tracking problems. Indeed, interesting
and well-motivated coordination problems arise from prac-
tical applications where the robotic network is required to
track mobile targets or to estimate environmental boundaries,
as those exhibited by gas diffusion, heat radiation, or fluid
spills. (A third problem is that of estimating environmental
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fields such as deterministic functions of the environment,
e.g., concentration of a pollutant in a lake, and probabilistic
maps representing likelihood of events taking place in the
environment, e.g., occupancy maps. We will not talk much
about this subject.) By means of some example scenarios,
we illustrate how to characterize optimal sensor placement
or motion patterns, design distributed sensing schemes, and
integrate them with motion coordination algorithms.

Fig. 1. Geese flying in formation (source: U.S. Fish & Wildlife Service
http://www.fws.gov/midwest/swanlake) and a school of fish (location: IEEE
CDC 2004 at Paradise Island, Bahamas).

Our examples only begin to shed light onto a large set
of challenging control problems in which node mobility,
communication, computation, and sensing aspects are jointly
considered.

The paper is organized as follows. In Section 2, we discuss
some models of multi-agent networks. In Section 3, we
illustrate some interesting algorithms for basic tasks such as
deployment and rendezvous. In Section 4, we focus on the
use of mobility in tracking moving targets and boundaries.
In all sections we present various sample networks, com-
munication graphs, coordination tasks and algorithms; often
we carefully discuss the information flow between agents,
i.e., what information each agent is required to possess.
Additionally, in each section we highlight some potentially
interesting open problems.

II. ROBOTIC NETWORKS AND COMPLEXITY

The global behavior of a robotic network can be seen as
the sum of the local actions taken by its members. Each
robot in the network can sense its immediate environment,
communicate with its neighbors, process the information
gathered and move according to it. The integrated capabilities
together determine the behavior of each agent, which in turn
impacts the overall collective response. This makes a robotic
network a very versatile system and also a very complex
one due to the confluence of processing, communication and
sensing aspects.

In order to understand the trade-offs between performance,
reliability of algorithms and their costs (energy, time, com-
munication, etc), it seems appropriate to propose a common



modeling framework where the execution of different coordi-
nation algorithms can be appropriately formalized, analyzed
and compared.

Since this is an important topic, we briefly present in this
section some of the concepts that we think should be present
in such a model. We do not attempt here to present this model
in its full generality, but rather give a flavor of this research
avenue. For a more detailed discussion, we refer the reader
to [1]. Other models proposed elsewhere in a similar spirit
include [2], [3], [4].

We consider uniform networks of robotic agents (or robotic
networks) defined by a tuple S = (I,A, Ecmm) consisting of

(i) I = {1, . . . , N}; a set of unique identifiers (UIDs);
(ii) A = {A[i]}i∈I , with A[i] = (X,U,X0, f) (Here, X

is the state space, U is the input space, X0 is the set
of allowable initial states and f is a C∞ map with
domain X × U ), a set of identical control systems;
this set is called the set of physical agents;

(iii) Ecmm a map from
∏

i∈I X to the subsets of I × I \
diag(I×I); this map is called the communication edge
map.

The existence of an edge between two nodes in Ecomm is
equivalent to the ability of the corresponding two agents to
exchange messages.

Next, a (synchronous, dynamic) control and communica-
tion law for S consists of the sets:

(i) T = {t`}`∈N0
⊂ R̄+, an increasing sequence of time

instants, called communication schedule;
(ii) L, a set containing the null element, called the

communication language; elements of L are called
messages;

(iii) W , sets of values of some logic variables w[i] ∈ W ,
i ∈ I . These sets correspond to the capability of agents
to allocate additional variables and store sensor or
communication data;

(iv) W0 ⊆ W , subsets of allowable initial values;
and the maps:

(i) msg : T × X × W × I → L, i ∈ I , called message-
generation function;

(ii) stf : T×W×LN → W , called state-transition function;
(iii) ctl : R̄+ × X × X × W × LN → U , called control

function.
By means of a control and communication law, each agent

performs the following sequence or cycle of actions. At each
instant t` ∈ T, agent i sends to agent j a message computed
by applying the message-generation function to the current
values of t`, x[i] and w[i]. After a negligible period of time
(therefore, still at t` ∈ T), agent i resets the value of its logic
variables w[i] by applying the state-transition function to the
current value of w[i], and to the messages y[i](t`) received at
t`. Between communication instants, i.e., for t ∈ [t`, t`+1),
agent i applies a control action computed by applying the
control function to x[i](t`), the current values of x[i] and
w[i], and to the messages y[i](t`) received at t`.

Let us present some brief comments. In our present
definition, all agents are identical and implement the same
algorithm; in this sense the control and communication law
is called uniform (or anonymous). If W = W0 = ∅, then the

control and communication law is static (or memoryless) and
no state-transition function is defined. It is also possible for a
law to be time-independent if the three relevant maps do not
depend on time. In most uniform control and communication
laws, the messages interchanged among the network agents
are (quantized representations of) the agents’ states. In what
follows we focus on the static time-independent case.

In order to analyze the performance of a motion co-
ordination algorithm, we need to establish the notion of
coordination task, and of task achievement by a robotic
network. A (static) coordination task for a network S will be
a map T :

∏

i∈I X [i] → {true,false}. Additionally, let
CC be a motion coordination algorithm for S. We say that CC
achieves the task T if for all initial conditions x

[i]
0 ∈ X0, the

corresponding network evolution t 7→ x(t) has the property
that there exists T ∈ R+ such that T(x(t)) = true for all
t ≥ T .

In some situations achieving a task efficiently means
stabilizing the system. In other situations efficiency might
be measured by required communication/control energy or
by speed of completion. For the latter, we can establish the
following notions of time complexity.

(i) The time complexity to achieve T with CC from x0 ∈
∏

i∈I X
[i]
0 is

TC(T, CC , x0) = inf {` |

T(x(tk)) = true , ∀k ≥ `} ,

where t 7→ (x(t)) is the evolution of (S, CC) from x0.
(ii) The time complexity to achieve T with CC is

TC(T, CC) = sup
{

TC(T, CC , x0) | x0 ∈
∏

i∈I

X
[i]
0

}

.

(iii) The time complexity of T is

TC(T)=inf {TC(T, CC)| CC achieves T} .

Another important notion is that of communication com-
plexity, that, roughly speaking represents the overall number
of messages exchanged to complete a coordination task. In
the following sections, we will describe certain coordination
algorithms, some of which have been cast into this modeling
framework and their complexity properties analyzed; see [1].
In the interest of space and to preserve the tutorial flavor of
the paper, we will not model the algorithms in this framework
here but will only provide an informal description of them.
We will, however, state their complexity properties whenever
possible.

III. MOTION COORDINATION

Loosely speaking, by a motion coordination problem we
mean any task where the network objective can be captured
by the final spatial configuration of its agents and/or of
their velocity vectors. Key problems include flocking [5],
foraging [6], [7], rendezvous [8], [9], cyclic pursuit [10],
coverage [11], [12], cooperative search [13], and formation
control [14], [15]. Heuristic approaches to the design of
emerging behaviors have been investigated within the liter-
ature on behavior-based robotics; see [16], [17], [18], [19].



Lately there been a systematic effort to design scalable and
efficient algorithms; see [5], [11], [9].

Our method of approaching motion coordination prob-
lems exploits their inherent geometric [20], [21], graph-
theoretical [22], and optimization [23] structure. The sensing
capabilities of the agents are captured through geometric
models; the information flow/neighborhood relationship of
the agents is represented by appropriate graphs; and the
network objective is characterized via appropriate utility
functions. Algorithms are then designed via gradient/greedy
methods. We illustrate our approach by discussing two basic
types of problems: deployment and rendezvous.

A. Deployment problems

First, we consider the area-coverage deployment prob-
lem in a convex polygonal environment. The objective is
to maximize the area within close range of the mobile
nodes. This models a scenario in which the nodes take
local measurements. Assume that certain regions in the
environment are more important than others and describe this
by a density function φ. Our recent work [11], [24] shows
how this problems leads to the coverage performance metric
H(p1, . . . , pN ) =

∑N
i=1

∫

Vi

f(‖q − pi‖)φ(q)dq. Here pi is
the position of the ith node, f measures the performance
of an individual sensor, and {V1, . . . , VN} is the Voronoi
partition of the nodes {p1, . . . , pN}. If we assume that each
node obeys a first order dynamical behavior, then a simple
gradient scheme can be easily implemented in a spatially-
distributed manner. Because the closed-loop system is a
gradient flow for the cost function H, performance is locally,
continuously optimized. Fig. 2 illustrates the performance
of this coordination algorithm. As a special case, when the
environment is a segment and φ = 1, the time complexity of
the algorithm can be shown to be O(N 3 log(Nε−1)) where
ε is a threshold value below which we consider the task
accomplished; see [1].

Fig. 2. Area-coverage deployment for 16 agents on a convex polygonal
environment. The shaded region represents the density function φ. The left
(respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the gradient ascent flow.

Second, we consider the problem of deploying to maximize
the likelihood of detecting a source. For example, consider
devices equipped with acoustic sensors attempting to detect a
sound-source (or similarly, antennas detecting RF signals, or
chemical sensors localizing a pollutant source). For a variety
of criteria, when the source emits a known signal and the
noise is Gaussian, we know that (1) the optimal detection
algorithm involves a matched filter, (2) detection perfor-
mance is a function of signal-to-noise-ratio, and, in turn, (3)
signal-to-noise ratio is inversely proportional to the sensor-
source distance. How do we deploy the nodes and maximize
the detection probability? We design a motion coordination

algorithm to maximize detection likelihood as follows: each
node moves toward the circumcenter 1 of its Voronoi cell.
Our work [25] shows that (1) the detection likelihood is
inversely proportional to the circumradius of each node’s
Voronoi cell, and (2) if the nodes follow this algorithm,
then the detection likelihood increases monotonically as a
function of time; see Fig. 3. (This algorithm is designed
for the detection problem; source localization/tracking is
discussed in the next section.)

Fig. 3. The nodes solve a maximum-likelihood-detection deployment; the
figure depicts the nodes final position and the circumcircles for each node.

Third, we consider a visibility-based deployment of nodes
in a planar non-convex polygonal environment. Here, the
coverage objective is to deploy the ad hoc network in such
a way as to obtain complete visibility of the environment.
This coverage problem is a distributed feedback version of
the so-called “art gallery problem” which is a classic topic in
computational geometry [26], [27]. Let us now describe an
algorithm for this type of deployment. At every time instant,
each node pi computes a dominance region as the set of
points for which pi is either the only visible node or the
closest visible node; pi then moves toward the furthest vertex
in its dominance region. The performance of this algorithm
is, at this time, known only via simulations on a class of
floor plan environments; e.g., see Fig. 4.

Fig. 4. The nodes solve the visibility deployment problem for a nonconvex
polygonal environment shaped as a typical floor-plan.

B. Rendezvous problems

In the context of motion coordination, the rendezvous
objective is to achieve agreement over the location of the
agents, that is, to steer each agent to a common location.
We consider two scenarios which differ in the agents’
sensing/communication capabilities and the environment to
which the agents belong. Let P = {p1, . . . , pN} represent
the set of locations of the agents.

Let us first consider the problem of rendezvous for agents
equipped with range-limited sensors. In this case, each agent

1The circumcircle of a polygon is the smallest circle enclosing the
polygon; circumradius and circumcenter are radius and center of the
circumcircle, respectively.



is capable of sensing in a closed disk of bounded radius and
belongs to the unbounded space R

d of arbitrary dimension d.
This is described by the r-disk graph, Gdisk(r), in which two
agents are neighbors if and only if the Euclidean distance
between them is less than or equal to r. For a complete
discussion of this problem, see [28].
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Fig. 5. The r-disk and Relative Neighborhood (GRN(r)) graphs in R
3 for a

configuration of 25 agents with coordinates uniformly randomly generated
within the cube [−7, 7]× [−7, 7]× [−7, 7]. The parameter r is taken equal
to 4. See [28] for a discussion on proximity graphs.

Second, we consider visually-guided agents. Here the
agents are assumed to belong to a nonconvex simple polygo-
nal environment Q. Each agent can sense within line-of sight
any other agent as well as sense the distance to the boundary
of the environment. The relationship between the agents can
be characterized by the visibility graph, Gvis,Q. Two agents
are neighbors if they are mutually visible to each other. In
this case, we also assume that the evolution of the network
occurs in a compact subset of the environment not containing
the reflex vertices; see [29] for a complete discussion.

Fig. 6. From left to right, visibility graph and the locally-cliqueless
visibility graph. The locally-cliqueless visibility graph is spatially distributed
over the visibility graph (see [29]).

In both scenarios, it is impossible to solve the rendezvous
problem with distributed information if the agents are placed
in such a way that they do not form a connected com-
munication or sensing graph. Arguably, a good property of
any algorithm for rendezvous is that of maintaining some
form of connectivity between agents, which in turn imposes
constraints on the motion of the agents. Motion constraints
that maintain connectivity are designed in [8], [29] and
exploit the geometric properties of proximity graphs. For
example, it understood now that motion constraints need not
be imposed between any pair of neighbors and that instead it
is sufficient to impose constraints according to certain sparse
proximity graphs. For the disk graph scenario, an appropriate

graph is the so-called Relative Neighborhood graph depicted
in Fig. 5.

We are now ready to outline an algorithm that solves
the problems for both communication scenarios. The agents
execute what we shall refer to as the Circumcenter Algo-
rithm; here is an informal description. Each agent iteratively
performs the following tasks:

1: detects its neighbors according to G
2: computes the circumcenter of the point set comprised of

its neighbors and of itself
3: moves toward this circumcenter while maintaining con-

nectivity with its neighbors.
Fig. 7 and 8 illustrate the performance of the Circumcenter

Algorithm for the first and second scenario, respectively. One
can prove that, under technical conditions, the algorithm does
achieve the rendezvous task in both scenarios. Additionally,
when d = 1, it can be shown that the time complexity of the
rendezvous task using the Circumcenter Algorithm is Θ(N);
see [1].
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Fig. 7. Evolution (in light gray) of the Circumcenter Algorithm from two
viewpoints. The initial configuration of the network is as in Fig. 5.

Initial position of the agents Final position of the agentsEvolution of the network

Fig. 8. Simulation results of the Circumcenter Algorithm on a network of
agents distributed in a spiral polygon. The algorithm is run over Gvis,Q.

In this section, we have provided examples of certain
motion coordination tasks and outlined approaches to solving
the problems. However, many open research questions still
remain unanswered. One such problem is that of achieving
arbitrary patterns. The problem of deploying and controlling
visually-guided agents is another problem where a deeper
understanding is needed. Apart from motion coordination,
another class of interesting problems for sensor networks is
that of localizing and estimating moving targets and fields.
We shall try to illustrate some of these problems in the
following section.



IV. TARGET AND BOUNDARY TRACKING

The subject of this section is the design of algorithms that
exploit controlled mobility to efficiently localize moving tar-
gets (or sources) and boundaries, and to efficiently estimate
environmental fields (here we mean both functions of the
environment, e.g., concentration of a pollutant in a lake, and
probabilistic maps representing likelihood of events taking
place in the environment, e.g., occupancy maps). Practical
solutions to these estimation problems would play an impor-
tant role in many scientific and public safety applications.

A possible approach to exploiting controlled mobility is
based on a next-best-view paradigm. The key idea is to
design greedy policies that move the network nodes in such
a way as to maximize the information that the nodes will
gather with subsequent measurements. Put into a broader
perspective, an integrated algorithm entails an estimation
filter and a motion coordination algorithm that takes the
network agents to optimal sensor positions. Accordingly, a
fundamental objective of this approach is to characterize
optimal sensor placements or optimal sensor motion patterns
for various estimation problems.

The literature on (static) sensor networks performing
various estimation tasks is vast and we only mention the
two survey papers [30], [31] that are somehow related to
our approach. From a robotic viewpoint, an incomplete list
of works on active target tracking for controlled-mobility
networks includes [32] and [33]. Related to our next-best-
view and optimal sensor placement approach is the literature
on optimum experimental design. Here the references [34],
[35] show how to define appropriate “sensitivity perfor-
mance measure” for optimal sensor placement; see also
[36]. Boundary estimation has been recently studied in the
context of static sensor fields; e.g., see [37], [38], [39], [40].
Researchers in mobile robotics have explored alternative
approaches for boundary estimation. In [41] Bertozzi et al.
present a set of collective motion mechanisms based on
energy-minimizing curves or “snakes” from image process-
ing. Other related references include the gradient climbing
algorithms in [42].

A. Target tracking

In this section we present an example approach to tar-
get tracking. For this problem, an appropriate sensitivity
performance measure in 2D and 3D environments is the
determinant of the Fisher Information Matrix (FIM). The
determinant measures [43] the information produced by a
set of measurements in estimating a set of unknown pa-
rameters; its inverse, called the Cramer-Rao-Lower-Bound,
characterizes the best achievable estimation error covariance.
Under the assumptions of Gaussian independent noise, a
2D environment, and a stationary sound-source, the global
maxima of the FIM determinant correspond to an optimal
pattern in which the sensors are uniformly placed in circular
fashion around the target. We use this information to im-
prove the performance of a Kalman filter-based algorithm
for target localization. In short, we implement a motion
coordination algorithm that steers the mobile sensor network
to an optimal deployment; we do not detail this algorithm
here, but note that it is related to the ones presented in the
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Fig. 9. Comparison of target localization algorithm for static and
controlled mobile sensors. The left figure compares the estimation
errors and the right figure shows the estimated target trajectories.
The lower error and the more accurate “figure-eight” trajectory are
achieved by the controlled mobile sensors. The mobile sensors move
along the boundary of the environment which in this case is a circle
as seen in the figure on the right.

previous section. A schematic description of the algorithm
is as follows. Each agent iteratively performs the following
tasks:

1: measures target location and shares new measurement
with neighbors

2: computes new estimate of target location
3: moves according to motion algorithm (based on target

estimate and neighbors’ positions).

Fig. 9, taken from [33], illustrates how this integrated
motion/sensing/estimation algorithms lead to improved per-
formance of an extended Kalman filter in a target tracking
scenario where the target moves along a “figure-eight” pat-
tern.

B. Boundary estimation

Here we consider a boundary estimation problem. The
objective is to select a boundary interpolation technique and
to deploy the sensors in such a way as to construct the best
boundary estimate. In other words, we define a cost function
quantifying an estimation error and then design a motion
coordination algorithm that minimizes it. The details are as
follows. Assume that the unknown set Q is the planar subset
where a certain environmental quantity, e.g., heat or chemical
concentration, is above a given threshold. The objective is to
estimate the boundary ∂Q by means of an array of sensors
able to locally detect ∂Q and to move towards and along
it. Let us consider the following basic task: how to place
the robots along ∂Q in such a way that the polygon, whose
vertices are the robots’ positions, is a good approximation
of Q. To simplify the following discussion, we assume that
Q is convex. Therefore, our optimal estimation problem is
equivalent to finding the “best” N -vertices polytope inscribed
inside Q that best approximates Q according to some metric.
This setup is interesting also because polygonal approxima-
tions of planar convex bodies is a well-studied subject, e.g.,
see the surveys [44], [45], [46]. It is known, for example,
that the distance between the convex body Q and its best
(as measured according to various metrics) inner polygonal
approximation belongs to O( 1

N2 ).
Let us formalize one of these error formulations. Once the

robots reach the boundary we order them in counterclockwise
order {p1, . . . , pN}; for convenience, we set p0 = pN and
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Fig. 10. Gradient flow maximizing inner approximating polygon
for N = 8.

pN+1 = p1. Among the possible choices of metric we
consider H(g, gI) :=

∫ b

a
‖g(t) − gI(t)‖dt, where g and gI

are parametric representations of the boundary of Q and of
the interpolating lines between any two nodes, respectively.
We regard H as a cost function that we minimize through a
motion coordination algorithm. It turns out that H is the area
of the convex set Q minus its inner approximating polygon.
Thus

min
p1,...,pN∈∂Q

H(g, gI)

= A(Q) − max
p1,...,pN∈∂Q

A(co(p1, . . . , pN )), (1)

where A is area function, and co is the convex hull of
its arguments. Since co(p1, . . . , pN ) is a subset of Q, we
know that H is always non-negative. The area of the
polygon co(p1, . . . , pN ) is easily expressed as a function
of position of the vertices, that is, A(co(p1, . . . , pN )) =
1
2

∑N
k=1(xkyk+1 − xk+1yk), where pk = (xk, yk). To max-

imize H we consider the following gradient flow:

ṗi = projT∂Q

(

∂A(co(p1, . . . , pN ))

∂pi

)

=
1

2
projT∂Q

(

yi+1 − yi−1

xi−1 − xi+1

)

,

where projT∂Q is the orthogonal projection onto the tangent
contour T∂Q. (A nonsmooth gradient flow can be designed
to handle nonsmooth contours.) Note that, in order to im-
plement this gradient flow, every agent has only knowledge
of the positions of its immediate clockwise and counter-
clockwise neighbors and of the gradient of the contour at
its position; as for the target tracking problem, this informa-
tion requirements can be formalized using proximity graph
models as in the previous sections. By design, the gradient
flow is guaranteed to lead the robots to the set of critical
configurations of H; it turns out that H is not a strictly
concave and it possesses multiple critical points.2 Fig. 10
illustrates the gradient flow performance.

In this section, we have discussed two types of problems
related to target tracking and localization for mobile sensor
networks. However, numerous open questions still remain
unanswered. For example, there is a need for appropriate
”sensitivity performance measures” for next-best-view algo-
rithms in target, boundary and function estimation. Also, the

2If Q is a regular N -polygon, then two equilibrium configurations of the
area-maximization gradient flow consist of the N nodes placed either at the
vertices or at the edges’ midpoints of Q.

study of different sensor models, e.g., sensors with limited
footprint, is another interesting area of research. Finally, in
the problem of localization of a target that we considered in
this paper, the agents require global knowledge of the target
estimate. Solving the problem with local estimates of the
target position is another challenging problem.

V. CONCLUSIONS
This paper attempts to survey some control problems

related to collective motion and estimation for sensor net-
works. Specifically, we have talked about deployment and
rendezvous as examples of motion coordination tasks and
target tracking and boundary estimation as examples of
localization/estimation tasks. We have outlined possible ways
to approach these problems and also mentioned some new
directions of work in this area.

Acknowledgments: This material is based upon work
supported in part by ONR YIP Award N00014-03-1-0512,
NSF SENSORS Award IIS-0330008, and DARPA/AFOSR
MURI Award F49620-02-1-0325.

REFERENCES

[1] S. Martı́nez, F. Bullo, J. Cortés, and E. Frazzoli, “Synchronous
robotic networks and complexity of control and communica-
tion laws,” Jan. 2005. Preprint. Available electronically at
http://xxx.arxiv.org/math.OC/0501499.

[2] I. Suzuki and M. Yamashita, “Distributed anonymous mobile robots:
Formation of geometric patterns,” SIAM Journal on Computing,
vol. 28, no. 4, pp. 1347–1363, 1999.

[3] N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan
Kaufmann Publishers, 1997.

[4] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, “Hard tasks
for weak robots: The role of common knowledge in pattern formation
by autonomous mobile robots,” in ISAAC 1999, 10th International
Symposium on Algorithm and Computation (Chennai, India) (A. Ag-
garwal and C. P. Rangan, eds.), vol. 1741 of Lecture Notes in Computer
Science, pp. 93–102, New York: Springer Verlag, 1999.

[5] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[6] K. M. Passino, Biomimicry for Optimization, Control, and Automation.
New York: Springer Verlag, 2004.

[7] Y. Liu and K. M. Passino, “Stable social foraging swarms in a noisy
environment,” IEEE Transactions on Automatic Control, vol. 49, no. 1,
pp. 30–44, 2004.

[8] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed mem-
oryless point convergence algorithm for mobile robots with limited
visibility,” IEEE Transactions on Robotics and Automation, vol. 15,
no. 5, pp. 818–828, 1999.

[9] J. Lin, A. S. Morse, and B. D. O. Anderson, “The multi-agent
rendezvous problem,” in IEEE Conf. on Decision and Control, (Maui,
Hawaii), pp. 1508–1513, Dec. 2003.

[10] J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of
vehicles in cyclic pursuit,” IEEE Transactions on Automatic Control,
vol. 49, no. 11, pp. 1963– 1974, 2004.

[11] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.
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[35] D. Uciński, Optimal Measurement Methods for Distributed Parameter
System Identification. Boca Raton, FL: CRC Press, 2004.

[36] T. H. Chung, V. Gupta, J. W. Burdick, and R. M. Murray, “On a
decentralized active sensing strategy using mobile sensor platforms in
a network,” in IEEE Conf. on Decision and Control, (Paradise Island,
Bahamas), pp. 1914–1919, 2004.

[37] K. K. Chintalapudi and R. Govindan, “Localized edge detection in
sensor fields,” Ad-hoc Networks, vol. 1, no. 2-3, pp. 273–291, 2003.

[38] J. Liu, P. Cheung, L. Guibas, and F. Zhao, “A dual-space approach to
tracking and sensor management in wireless sensor networks,” in ACM
International Workshop on Wireless Sensor Networks and Applications
Workshop, (Atlanta, GA), pp. 131–139, Mar. 2002.

[39] R. Nowak and U. Mitra, “Boundary estimation in sensor networks:
Theory and methods,” in International Workshop on Information
Processing in Sensor Networks (IPSN), (Palo Alto, CA), pp. 80–95,
Apr. 2003.

[40] K. Dantu and G. S. Sukhatme, “Contour detection using actuated
sensor networks,” in ACM Conf. Embedded Networked Sensor Systems
(SenSys), (Los Angeles, CA), Nov. 2003.

[41] D. Marthaler and A. L. Bertozzi, “Tracking environmental level sets
with autonomous vehicles,” in Proc. of the Conference on Cooperative
Control and Optimization, (Gainesville, Florida), Dec. 2002.
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