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On synchronous robotic networks — Part |: Models,
tasks, and complexity

Sonia Marinez  Francesco Bullo Jorge Cest Emilio Frazzoli

Abstract— This paper proposes a formal model for a network ~asynchronous networka distributed [5], [6] and parallel [7]
of robotic agents that move and communicate. Building on con- computation,. This established body of knowledge on neksvor
cepts from distributed computation, robotics and control theoty, is, however, not applicable to the robotic network setting

we define notions of robotic network, control and communication b f th ts’ bilit d th . d -
law, coordination task, and time and communication complexity. P€CaUS€ OF the agenis: mobility and the ensuing dynamic

We illustrate our model and compute the proposed complexity Communication topology.
measures in the example of a network of locally connected agents An important contribution towards a network model of
on a circle that agree upon a direction of motion and pursue their mobile interacting robots is introduced in [8]. This model
immediate neighbors. consists of a group of identical “distributed anonymous iteob
robots” characterized as follows: no explicit communioati
takes place between them, and at each time instant of an
“activation schedule,” each robot senses the relativetiposi
Problem motivation: The study of networked mobile of all other robots and moves according to a pre-specified
systems presents new challenges that lie at the confluea@gorithm. A related model is presented in [9], where as
of communication, computing, and control. In this papefew capabilities as possible are assumed on the agents, with
we consider the problem of designing joint communicatiothe objective of understanding the limitations of multeat
protocols and control algorithms for groups of agents withetworks. A brief survey of models, algorithms, and the
controlled mobility. For such groups of agents, we defineeed for appropriate complexity notions is presented irj.[10
the notion of communication and control law by extendinRecently, a notion of communication complexity for control
the classic notion of distributed algorithm in synchronousnd communication algorithms in multi-robot systems is-ana
networks. Decentralized control strategies are appedbng lyzed in [11], see also [12]. The general modeling paradigms
networks of robots because they can be scalable and thiycussed in [13], [14] do not take into account the specific
provide robustness to vehicle and communication failures. features of robotic networks. The time complexity of a class
One of our key objectives is to develop a theory of timef coordinated motion planning problems is computed in [15]
and communication complexity for motion coordination alThe convergence rate and communication overhead of two
gorithms. Hopefully, our formal model will be suitable tocyclic pursuit algorithms is examined in [16].
analyze obijectively the performance of various coordorati Statement of contributionsA key contribution of this
algorithms. It is our contention that such a theory is reggiio  paper is a model for robotic networks, which properly takes
assess the complex trade-offs between computation, commuimto account some important dynamical, communication and
cation, and motion control or, in other words, to establistatv computational aspects of these systems. Our model is mean-
algorithms arescalableand implementable in large networksingful and tractable, it describes feasible operations thedt
of mobile autonomous agents. The need for modern modetssts, and it allows us to study tradeoffs in control and comm
of computation in wireless and sensor network applicatiensnication problems. We summarize our approach as follows. A
discussed in the well-known reports [1], [2]. robotic networkis a group of robotic agents moving in space
Literature review: The literature on multirobot systemsand endowed with communication capabilities. The agents’
is very extensive. Examples include the survey in [3] angbsitions obey a differential equation and the commurocati
the recent special issue [4] of the IEEE Transaction dopology is a function of the agents’ relative positionsclta
Robotics and Automation. Together with this literature ouagent repeatedly performs communication, computation and
starting points are the standard notionssghchronous and physical motion in the following way. At predetermined time
instants, the agents exchange information according to the
Submitted on Apr 29, 2005, revised version on June 25, 2008 diaft  communication graph and update their internal state. Batwe
April 1, 2007. An early version of this work appeared in theO20EEE . L . .
Conference on Decision and Control. successive communication instants, the agents move aegord
Sonia Marinez is with the Department of Mechanical and Aerospackd a motion control law, computed as a function of the agent
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ical Engineering, University of California, Santa Barha@alifornia 93106, munication lawfor a robotic network consists of a message-
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rounds?). Théime complexityf a control and communication  1l. A FORMAL MODEL FOR SYNCHRONOUS ROBOTIC

law (aimed at solving a given coordination task) is the mini- NETWORKS

mum number of communication rounds required by the agentsere we introduce a notion of robotic network as a group
to achieve the task. We also provide similar definitions fQ§ ropotic agents with the ability to move and communicate
mean and total communication complexity. We show that o@gcording to a specified communication topology. Our model
notions of complexity satisfy a basic well-posedness mmigpe is inspired by the synchronous network model in [5] and has

that we refer to as “invariance under reschedulings.” To th@nnections with the hybrid systems models in [13], [14].
best of our knowledge, the proposal of studying the comptexi

of coordination algorithms for synchronous robotic netysor A. The physical components of a robotic network

under a comprehensive modeling framework presented heré'is ] i o ] N
a novel contribution on its own. Here we introduce our basic definition of physical quartitie

such as the agents and such as the ability of agents to

Next, we illustrate the proposed framework with the exanfOmmunicate. We begin by providing a basic model for how
ple of a network of agents moving on the unit circle undetach robotic agent moves in spacecdntrol systenis a tuple
the action of a novel agree-and-pursue control and commie: Us Xo, f), where
nication law. Despite the apparent simplicity, this exaenisl (i) X is a differentiable manifold, called thetate space
remarkable in that it combines a leader election task (in théii) U is a subset oR™ containing0, called theinput space
internal states) with a uniform deployment task (in the agen (i) X, is a subset ofX, called theset of allowable initial
positions), i.e., it combines two of the most basic tasks in  states
distributed algorithms and cooperative control, respegti (V) f: X x U — TX is aC>-map with f(z,u) € T, X
We prove that the agree-and-pursue law achieves consensus for all (z,u) € X x U.
on the agents’ direction of motion and equidistance betwegve refer tox € X andu € U as astateand aninput of the
the agents’ positions. Furthermore, we provide upper agdntrol system, respectively. We will often consider cohtr
lower bounds on the time and total communication complexigffine systems, i.e., control systems withz, u) = fo(z) +
of the proposed law. These complexity estimates build 0N | f,(z)u,. In such a case, we represefhas the ordered
known and novel results on the convergence rates of discreftemily of C>°-vector fields(fo, f1,. .., fm) On X.
time dynamical systems defined by tridiagonal Toeplitz and
circulant matrices presented in the appendix. The companiDefinition 1.1 (Network of robotic agents) A network of
paper [17] builds on this framework to establish complexityobotic agentgor robotic networl S is a tuple (7, A, Ecmm)
estimates for motion coordination algorithms that achiev@nsisting of

rendezvous and deployment. () I = {1,...,n}, called theset of unique identifiers
(UIDs); 4 . . o
Organization: Section Il presents a general approach to(i) A = {AYier = {(x1, UWXOvaM.)}ieI is a set of
the modeling of robotic networks by formally introducing control systems, called treet of physical agents

notions such as communication graph, control and comm(i) Eemm is @ map from[[;, X1 to the subsets of x I,
nication law, and network evolution. Section Il defines the ~_Ccalled thecommunication edge map

notions of task and of time and communication complexity. Wé Al = (X, U, Xo, f) for all i € I, then the robotic network
also study the invariance properties of the complexityorsti is called uniform. .
under rescheduling. Section IV provides bounds on the time

and communication complexity of the agree-and-pursue lagemarks 1.2 (i) By convention, we let the superscript
We gather our conclusions in Section V. The appendix con- [i] denote the variables and spaces corresponding to
tains the results on discrete-time dynamical systems dkfine  the agent with uni[ci1]ue identifies; for instance,z!"! e

by tridiagonal Toeplitz and circulant matrices. XUl and «) € X' denote the state and the initial
state of agentAlll, respectively. We refer tax =
(.. 2y e [T, X as astateof the network.

Notation: We letBool eSet = {true,fal se}. We let
[Tic1,....ny Si denote the Cartesian product of séis. ..., S.,.
We 1et R<o and R>( denote the strictly positive and non-

(i) The map Ecmm models the topology of the communica-
tion service among the agents: at a network state

, , (M, ... z["), agentzl can send a message to agent
negative real numbers, respectively. We letand N, denote 271 if the pair (i, j) is an edge iNEgmm(z!Y, . .., 2[").
the natural numbers and the non-negative integers, respec- Accordingly, we refer to(I, Egum(z!V, ..., 2[")) as

tively. For z € RY, we let ||| and ||z||. denote the
Euclidean and theo-norm of z, respectively (we also recall
2o < llzlla < Vd||lz|ls). We define the vector® —=
(0,...,0)and1 = (1,...,1) inR%. For f,g: N — R, we say
that f € O(g) (respectively,f € Q(g)) if there existnyg € N
and ¢ € Ry such that|f(n)| < c|g(n)| for all n > ng
(respectively,|f(n)| > c|g(n)| for all n > ng). If f € O(g) To make things concrete, let us present an example of
and f € Q(g), then we use the notatiofi€ O(g). robotic network. LetS! be the unit circle, and measure

the communication grapfat z. When and what agents
communicate is discussed in Section II-B. Maps from
[Lic; X! to the subsets of x I are calledproximity
edge mapsind arise in wireless networks and computa-
tional geometry, e.g., see [18]. °
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positions onS* counterclockwise from the positive hor-nul | message) computed by applying the message-generation
izontal axis. Forz,y € S!, we let dist(z,y) be the function tothe current values af! andwl”. After a negligible
geodesic distance betweenand y defined bydist(xz,y) = period of time (therefore, still at time instant € T), the ith
min{distc (x,y), distcc (z,4)}, where distc(z,y) = (= — logic process updates the value of its logic variahlé$ by

y) (mod2r) anddistcc (z,y) = (y — «) (mod27) are the path applying the state-transition function to the current eabf
lengths fromz to y traveling clockwise and counterclockwise;zl"! andw!” and to the messages received at timeBetween
respectively. Here: (mod2r) is the remainder of the division communication instants, i.e., fare [ty,t,41), the motion of
of = by 2. the ith agent is determined by applying the control function

to the current value ofl, the value ofz!? at time¢,, and

Example 11.3 (Locally-connected first-order agents on the the current value ofvll. This idea is formalized as follows.
circle) For r € R+, consider the uniform robotic network
Scircle = (I, A, E,qisk) composed of identical agents of theDefinition 11.5 (Evolution of a robotic network) Let S be
form (S',R,S',(0,e)). Here e is the vector field onS' @ robotic network and’C be a control and communication
describing unit- speed counterclockwise rotation. We @etfiie Iaw for S. The evolution of (S,CC) from initial conditions
r-disk proximity edge mapF,_q4isk on the circle by setting xo € X, andw” € Wé], i e 1, is the collection of curves
(i,7) € Ergisk(0™, ..., 0 if and only if i # j and zll: [to +00) — XU andwli: T — wlil, i e I, satisfying

dist(01, 911y < 1. o () = fla M), U[l]())v
U[Z (t) = et (¢, 2t (2), 2P (L] ), (Lt)p), 4T (L8] ),

B. Control and communication laws for robotic networks \yhere |t]p = max{t; € T | t; < t}, and
Here we present a discrete-time communication, [i — esfli] [il [i] [l

continuous-time motion model for the evolution of a W (te) = St (te, 27 (te), W (te-1), 4 (E0))

robotic network. In our model, the robotic agents evolve iith +(i (#y) = 2! andwl!(t_,) = wl, i € I. In the previous

the physical domain in continuous-time and have the ablll%ua“ons the curvgm T — L7 (descrlblng the messages

to exchange information (position and other variables) @&icejved by ageni) has componentgj (tz) j € I, given by

discrete-time instants.
yi(te) = msd?) (te, 2V (), wl (t0-1), 1)

if (i,5) € Eomm(z(te),...,2"(t,)), and gl (t,) = nul 1
otherwise. °

Definition 11.4 (Control and communication law) LetS be
a robotic network. Acontrol and communication la@C for
S consists of the sets:
() T = {te}een, C R>p, an increasing sequence of time With slight abuse of notation, we let — (z(t),w(t))
instants with no accumulation points, calledmmuni- denote the curves!! andw!®, for i € {1,...,n}.
cation schedute
(i) L, a set containing theul | element, called theom- Remark I.6 (Properties of control and communication
munication alphabetlements of are calledmessages laws) A control and communication la@(C is:

(i) Wlil, i€ I, sets of values of somegic variableswl”, (i) time-independentif all message-generation, state-
. iGHI: . o transition and control functions are time-independent;
(iv) Wy" € Wll, i e I, subsets ofallowable initial values in this caseCC can be described by maps of the form
for the logic variables; msd?: X1 x Wil x 1 — £, stf?): x1i x wlil x U’
and of the maps: wlil and ctl): x1 x x1i x W’] x L — Ul for
(i) msg?: Tx XU x Wl xT - £,iel, calledmessage- €1 o _
generation functions (i) static if Wl is a singleton for alli < I,
(ii) st T x X Wil x £ — Wl i e I, called state- in this case CC can be described by a tuple
iti - (T, £, {msd" }ic, {ctlT}ic ), with msd?l: T x X”
transition functions ze]I i€l
(iii) ctl [l Reo x X1 x X1 x wlil x gn — ylil 4 ¢ 1, I — £, and cti?: R>q X XU % Xl £r — gl for
called control functions iel;

(i) data-sampledf the control functions have the following
property: given a timef, a logic statew!! e Wi,
an array of messageg’ € L", a current stater!’,
and a state at last sample timéLpld, the control input

We sometimes refer to a control and communication law ¢t (t,I[Z‘],zgrllplww[ﬂ,y[ﬂ) is independent of:ll. In

If S is uniform and ifWl = W, msd? = msg st = stf,
ctll’) = ctl, for all i € I, thenCC is said to beuniform and is
described by a tupl€T, £, W, {W(g’] }ier, msg stf, ctl). °

as amotion coordination algorithmRoughly speaking, the this case the control functions {fC can be described by
rationale behind Definition I1.4 is the following: for alle I, maps of the form cti: R>q x X0 x Wil x £ — yli,
to thesth physical agent corresponds a logic process, labeled for ; € I. °

i, that performs the following actions. First, at each time
instantt, € T, the ith logic process sends to each of itfkemark 1.7 (Idealized aspects of communication model)
neighbors in the communication graph a message (possibly We refer toCC as asynchronousontrol and communication
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law because the communications between all agents takésction algorithms as studied in the distributed algaomih
always place at the same time for all agents. literature, e.g., see [5] (more will be said about this aggwlo
The setL is used to exchange information between twm Remark 1V.3), and to cyclic pursuit algorithms as studied
robotic agents; the messagell | indicates no communica- the control literature, e.g., see [21], [16]. Despite thpaapnt
tion. We assume that the messages in the communicationsanplicity, this example is remarkable in that it combines a
phabetl allow us to encode logical expressions such ese leader election task (in the logic variables) with a uniform
andf al se, integers, and real numbers. A realistic assumpti@gent deployment task (in the state variables), arguatwyotfiv
on £ would be to adopt a finite-precision representation fahe most basic tasks in distributed algorithms and cooperat
integers and real numbers in the messages. Instead, in wdwitrol, respectively. Another advantage of the agree-and
follows, we neglect any inaccuracies due to quantization. pursue law is that its correctness and performance can be
In many uniform control and communication laws, the mesharacterized as we will show in Section IV.
sages interchanged among the network agents are (quantizéd/e consider the uniform netwot;e Of locally-connected
representations of) the agents’ states and logic states. fivet-order agents ir§' introduced in Example 11.3. We now
will identify the corresponding communication alphabethwi define the agree-and-pursue law, denotedCB¥g-pursuic 8S
L = (X x W)U {nul | }; the message generation functiorthe uniform, time-independerand data-sampledaw loosely

msqu(t, ©,w,j) = (x,w) is referred to as thestandard described as follows:

message-generation function . [Informal description] The logic variables are
drctn (the agent's direction of motion) taking

Remark 1.8 (Groups of robotic agents with relative- values in{c,cc} (meaning clockwise and counter-

position sensing)Although we focus on robots with com- clockwise) andor i or (the largest UID received by

munication capabilities, at the cost of additional notatib the agent, initially set to the agent's UID) taking

is possible to include sensors in our treatment. A control values inI. At each communication round, each
and communication law can be implemented on a group of agent transmits its position and its logic variables.
robots that can sense each other’s relative position if dhe | Among the messages received from agents moving
(1) is static and uniform, (2) relies on communicating only  towards its position, each agent picks the message
the agents’ positions (e.g., the message-generationidunct with the largest value ofpri or. If this value

is the standard one), and (3) entails a control function that is larger than its own value, the agent resets its
only depends on relative positions (as opposed to absolute logic variable with the selected message. Between

positions). ° communication rounds, each agent moves in the
counterclockwise or clockwise direction depending

Remark 11.9 (Congestion models) Two types of congestion on whether its logic variablelrctn is cc or c.

problems affect a robotic network. Firstireless transmissions For kpop € 10, 3], each agent movesp, times

can interfere nodei receives a message transmitted by npde  the distance to the immediately next neighbor in the

only if all other neighbors of are silent, i.e., the transmission ~ chosen direction, or, if no neighbors are detected,
medium is shared among the agents. As the density of agents kprop times the communication range

increases, so does wireless communication congestion. FoNext, we define the law formally. Each agent has logic
uniformly randomly placed nodes in a compact environmentariablesw = (w;, ws), wherew; = drctn € {cc,c}, with

the maximum-throughput communication range) of each arbitrary initial value, andv, = pri or € I, with initial value
node decreases [19] with the number of nodes; ini-a set equal to the agent’s identifierin other words, we define
dimensional environment the appropriate scaling lan(is € W = {cc,c} x I, and we setWéZ] = {cc,c} x {i}. Each
O({/log(n)/n). This is referred to as the connectivity regimeagenti € I operates with the standard message-generation
in percolation theory and statistical mechanics. Secagents function, i.e., we sefl = (S! x W) U {nul | } and msg! =

can collide as the number of agents increases, so should tmsg,, where msg,(0,w,j) = (0, w). Define an ordering
area available for their motion or, vice-versa, their sizewsd in the logic setWW by saying that(drctny,prior;) >
shrink. In the approach proposed by [20] robots’ safety songdr ct no, pri or,) if pri or, > pri or,. Given a physical
decrease with decreasing robots’ speed. In other wordsdin astated € S', a logic statew € W and an array of messages
dimensional environment, individual nodes of a large efdem y € £™, the state-transition function is defined by

have to move at a speed decreasing wittand in particular,

at a speed proportional to//n. In summary, one way to stf(6, w, y) = Wmax, )
incorporate congestion effects into the robotic networldeio w, otherwise
is to assume that the parameters of the physical componggkre

of the network depend upon the number of robots. °

if wWmax > w,

Wmax = max{wrcvd S W | (ercvd, 'I,Urcvd) S Yy SUCh tha.t
(distec (6, breva) < r and (wrevg)1 =C) O
(distc (0, Oreva) < r and (wreyg)1 = €C) 1}

C. The agree-and-pursue control and communication law

Here we present an example of a dynamic control and
communication law with the aim of illustrating the proposeéor kpop € Rso, given a logic statew € W, an array of
framework. The following coordination law is related todea messageg < L£", and a state at last sample tirfignpi, the
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data-sampled control function @mpia, w, y) is timesthe predicate evaluates to true along system trajectories.
It is possible to consider more general tasks through more
expressive predicates on trajectories. Such predicatedea

defined through various forms of temporal and propositional

logic, e.g., see [22]. °

kpropmin({r} U {diStcc (esmplda arcvd) | (arcvda wrcvd) € y})a
if drctn=-cc, and

—kpropmin({r} ) {diStc (esmpld7 ercvd) | (ercvda wrcvd) € y})7

if drctn = c. An implementation of this control and Example Ill.3 (Direction-agreement and equidistance
communication law is shown in Figure 1. As we will showasks) Consider the uniform networkScircie Of locally-
later, along the evolution, all agents agree upon a comme@nnected first-order agents #t and the agree-and-pursue
direction of motion and, after suitable time, they reach eontrol and communication laWCCagr-pursuit With logic
uniform distribution. variables taking values inW = {cc,c} x I. This
network and this law were introduced in Example 11.3
and Example I1I-C, respectively. There are two tasks
of interest. First, we define thelirection-agreement task
Tagrmnt: (S')™ x W™ — Bool eSet by Tagmn(f, w) =t rue

if and only if

drctn = ... =drctnl,

LD, w = (w o wl), andwl! =
(drctnld priorll), i e I. Second, for € R+, we define
the staticequidistance tasH: eqasing (S')" — Bool eSet by
Te-eqdstndd) = true if and only if, for all i € I,

Fig. 1. The agree-and-pursue control and communication leeation |1-C
with N = 45, r = 27/40, and kprop = 7/16. Disks and circles correspond
to agents moving counterclockwise and clockwise, respagtivihe initial wheref = (9[1], .
positions and the initial directions of motion are randomiyemted. The
five pictures depict the network state at tinte9, 20, 100, 800.

[1l. COORDINATION TASKS AND COMPLEXITY MEASURES

In this section we introduce concepts and tools useful to i
analyze a control and communication law. We address tH Other words,7c.eqasinciS true when, for every agent, the
following questions: What is a coordination task for a robotidiStance to the closest clockwise neighbor and to the doses
network? When does a control and communication law achig¥@unterclockwise neighbor are approximately equal. e
a task? And with what time and communication complexity?
B. Complexity notions for control and communication laws
and for coordination tasks

| min diste (0, 09 — min distcc (01, 61))| < e.
J#i JAi

A. Coordination tasks

Our first analysis step is to characterize the correctnessVe are finally ready to define the key notions of time and
properties of a control and communication law. We do @mmunication Comp|EXity. These notions describe the cost
by defining the notion of task and of task achievement gfat a certain control and communication law incurs while

a robotic network.

completing a certain coordination task.

Definition 111.1 (Coordination task) LetS be a robotic net- Definition 111.4 (Time complexity) Let S be a robotic net-

work and letVV be a set.

(i) A coordination taskfor S is a map7: [[,.; X! x

W" — Bool eSet .

(i) If W is a singleton, then the coordination task is

work and let7 be a coordination task foS. Let CC be a

control and communication law faf compatible with7-

() The(worst-case) time complexity to achieZewith CC
from (zo,wo) € [1,c; X([f] X [Ties W(gz] is

said to be static and can be described by a map

T: [L,c; X" — Bool eSet.

Additionally, letCC be a control and communication law f&t

TC(7,CC, x0,wo) = inf {£ |
T(x(ty),w(ty)) =true, forall k > ¢},

(i) The lawCC is compatiblewith the taskZ: [T, ., X x
W™ — Bool eSet if its logic variables take values in
W, that is, if Wl =W, for all i € I.

(i) The lawCC achieveshe taskT if it is compatible with
T and if, for all initial conditionsz! € X! andw{’ e
Wé’], 1 € I, the corresponding network evolutign—
(z(t),w(t)) has the property that there exisis€ R+
such that7(z(t),w(t)) =true forall t > T. °

wheret — (z(t),w(t)) is the evolution of S,CC) from
the initial condition (z, wo).

(i) The (worst-case) time complexity to achievE with
CCis

TC(7,CC) = sup {TC(T,CC,xo,wO) |

(xo,wo) € HX&Z] X HW(?]}. o

el el
Remark 111.2 (Temporal logic) Loosely speaking, achieving The time complexity of a task can be also defined by taking
a task means obtaining and maintaining a specified patterrtfie infimum among all compatible laws that achieve it.
the agents’ positions or in their logic variables. In otherds, Next, we define the notions of mean and total communica-
the task is achieved it some timeand for all subsequent tion complexities for an algorithm. We begin by discussing
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the cost of realizing one communication round. At eachccordingly, the infinite-horizon mean communication com-

communication round, each agent generates a certain numtlexity of CC from initial condition (¢, wo) is

of messages, destined to neighboring agents as defined by the N

communication edge map. We indicate thg set of all nO”'_”@ﬂI—MCC(CC,xO,wO) = lim 1 ZCmeM(te,x(tg),UJ(tz)).

messages generated during one communication round with A—oo A —o

Mt z,w)={(i,5) € Eemm(x) | msd? (¢, z11, wll, j) £ nul | } Note that a similar notion is presented in [11] for a differen
robotic network model. °

To compute the cost of delivering all such messages to the

intended recipients, we introduce the following function.  Remark 1.8 (Communication costs in unidirectional and
omnidirectional wireless channels)Here we discuss some

Definition 111.5 (One-round cost) A functionC,4: 2%/ —  modeling aspects of the one-round communication cost func-

R>( is a one-round cost functioif C,4(?#) = 0, and S; C tion described in Definition 11.5. Broadly speaking, it is

S C I x I implies C;,q(S1) < Cpng(S2). A one-round cost difficult to encompass with a single abstract model the cost

functionC,,4 is additiveif, for all 51, So € I x I, S1NSy =0 of all possible communication technologies.Unidirectional

implies C,,,4(S1 U S2) = Cg(S1) + Cing(S2). e models of communication (e.g., wireless networks with uni-

. ) o directional antennas) messages are sent in a point-ta-poin
More specific detail about the communication cost dependsion. For this model, we make the simplified convention

necessarily on the type of communication service (e.gdiuni g, o+ C,ng(M) is proportional to the number messagesiy
rectional versus omnidirectional) available between thengs. 4t is Crg(M) = co - cardinality(M), wherecy € Rag
1 rni - 1

We postpone our discussion about specific functiong t0 s the cost of sending a single message. This one-round cost
the next subsection. function is additive. This number is trivially upper bouide
L o . by twice the number of edges of the complete graph, which
Definition 111.6 (Communication complexity) Let S be a is n(n — 1). Therefore, we havdICCyuniai(7) € O(n?).
robotic network,CC be a control and communication law that |, omnidirectionalmodels of communication (e.g., wireless
achieves the task{, and C;,q be a one-round cost function. petworks equipped with omnidirectional antennas), a singl
() The (worst-case) mean communication complexdtyd transmission made by a node can be heard by several other
the (worst-case) total communication complexitp nodes simultaneously. For this model, we make the simplified
achieve T with CC from (o, wy) € [[,c; X5 x  convention thatC,,4(M) is proportional to the number of
[Licr W(Ei] are, respectively, turns employed to complete a communication round without
interference between the agents (this choice is related to

A—1 . . . .
1 the well-studied media access control problem in wireless
MEC(T,CC, o, wo) _X/—o Crng © M(te, 2(te), w(te), communications). This number is trivially upper bounded
N by n. Therefore, we hav@ICCqmpiair(7) € O(n). °
TCC(ZCCaIOawO) = CmeM(tg,I(tg),’w(te)),

s C. Law rescheduling for driftless agents

where A\ = TC(CC, T, zo,wo) and ¢ — (x(t), w(t)) In this section, we discuss the invariance properties of the
notions of time and communication complexity under the
reschedulingof a control and communication law. The idea
the property thatZ(zo, wo) = f al se.) behinql rescheduling is _to “spread’_’ the _execution_ of the law
(i) The (worst-case) mean communication complexit)‘?ver .tlme without aﬁeqtmg_ thg traJectorlgs des_cr!bed bg t
and the (worst-case) total communication complex-rObOt'.C agents. Our objective is to formalize th!s |(_jea and t
ity to achieve 7 with CC are the supremum of examine the.effe'ct' on the not_|ons of complexny mtroduced
(MCC(T,CCz0,w0) | (z0,w0) € [L X(gi] « e.arl'|er. For simplicity we cpnsuder the setting of stgtlwska
0 WM} and {TCC(T.CC, x0,w0) | (1;[ wy) € similar results can be obtained for the general setting.
iel oi] 1 » v 20, Wo 0, %0 Let S = (I, A, Ecmm) be a robotic network where each
[Licr Xo° x ;s Wo''}, respectively. ® physical agent is a driftless control system. L&f =

Note that by (worst-case) mean communication complexity v@lﬁﬁé é‘t{ig]r?%i\}\je&’;;ﬂ[jv}eieé ()a ﬁ?]i 2 it:\}\i/ccg(r)]?rtgl)laigdcggan;u-
intend the worst-case over all initial conditions and theame ' ’

. ! . nication law by modifyingCC; to do so we introduce some
over the time required to achieve the task. notation. Lets € N, with s < n, and letP; — {Iy, ... I, 1}
be ans-partition of I, that is, Iy,...,I,_; C I are disjoint
and nonempty and = US;})Ik. Fori € I, define the message-
ggneration functions msg: Ny x XU x 17— £ by

~

is the evolution of(S,CC) from the initial condition
(x0,wp). (Here MCC is defined only forxg, wp) with

Remark 111.7 (Infinite-horizon mean communication com-
plexity) The mean communication complexityCC measures
the average cost of the communication rounds required
achieve a task over a finite tl_me_horlzon, a s_|m|Iar statement msd;]I (t,z, ) = msdzl (tLejs]> T2 )5 1)
holds for the total communication complexity CC. One .

might be interested in a notion of mean communicatiof i € I, and £ = ¢(mods), and msa,]l(tz,gaj) = nul |
complexity required to maintain true the task for all timestherwise. According to this message-generation fungtion
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only the agents with unique identifier iip will send messages and, therefore TCC(7,CC , p,), z0) = TCC(7,CC, x0), i.€
at timet,, with ¢ € {k + as}q.en,. Equivalently, this can be the total communication complexity 6€ is invariant under

stated as follows: according to (1), the messages originatescheduling. °
sent at the time instarty are now rescheduled to be sent at _
the time iNStants ()1, .- -, tp(s), Where F: Ng — Ny is Proof: Lett +— xz(t) andt — &(t) denote the network

defined byF(¢) = s(+1) — 1. Figure 2 illustrates this idea. €volutions starting fromzo € J[,c; X X§! under c¢ and
CCs,p,), respectively. From the definition of rescheduling, one

,,,,,,,,,,,,,,, 4_‘7 can verify that, for allk € Ny,
! ~ i F(k)—1
N j‘m (t) _ {;E[ ](tF(k—1)+1)7 fort¢ e U/ (F) [ 1)+1[tg,tg+1] s
|

e (hpay (), fort € [truystrg 1) -

' By definition of TC/(7,CC, z0), we haveT(xz(t;)) = tr ue,
Fig. 2. Under the rescheduling, the messages that are seheainte for all k& > TC(7,CC,x), and T(l"(tTC(ch@o)—l)) =
instant¢, under the control and communication 1&¥¢ are rescheduled to f g| se. Let us rewrite these equalities in terms of the trajecto-
b t the time instants py_ o1 q,...,¢ der th trol and . . 0
be sent over Ieamlcmcilrfl? $(0)—s+1 F(¢) Under the control an ries of CC, p,). From equation (3), one can write'l (1)) =
C(,'M(hp(k)(tp(k))) = I[l](tF ) foralli € I andk € Np.
For iel, define the control functions &t: R> x X1 x Therefore, we have
x L™ — Ul by T(Z(tpm)) = T(x(tr)) =true,
ctlld (¢, 2, 2ompia. y) for all F(k) > F(TC(T,CC,x)), and

tp-1 —tp—1 ) N
= OO ol (hy(t), x, wsmpay) . (2) T(E(trreTec.so-1)) = T@(trerec.s-1) = f al se,

let1 — U
where we have used the rescheduled message-generation
function in (1). Now, note that by equation (3§ (t,) =
il (¢ _ , for all ¢ € Ny and alli € I. Therefore,
by F~1(¢) = (¢ +1)/s — 1, and for¢ = —1(mods), the f,f F(Le/s) -0 +1) oy ' q

, : . (#(tp(ro(rec,an-1)+1)) = T(Z(tr(re(Tec.a0))) @nd we
function h: [te,tera] — [tp-1(0),tr-1(0)1a] s the unique on evprite the previous identities as
linear map between the two time intervals. Roughly speaking

the control law cf,ﬁ] makes the agent wait for the time T(Z(ty)) =true,
intervals [tg, tey1], with £ € {as — 1}4en, 10 execute any
motion. Accordingly, the evolution of the robotic networlj orall k > F(TC(T,CC, xo) — 1) +1, and

under the original lanCC during the time ir_lterva[tg,tgH] T(2(tp(re(T.ec,z0)-1))) = f al se,

now takes place when all the corresponding messages have

been transmitted, i.e., along the time inter{tal ), tp(s)1,].  Which imply that TC(7,CC s p,), 20) = F(TC(T,CC, xo) —
The following definition summarizes this construction. 1) +1 = sTC(7,CC,x0). As for the mean communication

complexity, additivity ofC,,q implies
Definition 111.9 (Rescheduling of control and commu- -
nication |aWS)( Let § = ’ (I, A, Ecnm) be a robotic Cing © M(te; 2(t0) = Cma © M(Er (o) -1, () —s1))+

network with driftless physical agents, and I€C = o+ Crng 0 M(tp(e), T(tp(e))),

(No, £,{msg"}ier, {ctl}ics) be a static control and com- yhere we have useH({—1)+1 = F(¢{)—s+1. We conclude
munication law. Lets € N, with s < n, and letP; be e proof by computing

an s-partition of 7. The control and communication law

if ¢ € [te, tey1]) @andl = —1(mods), and cti,i]l (t, 2, Tsmpid, ¥) =
0 otherwise. Heré"~!: Ny — Ny is the inverse of’, defined

CC o py) = (No, £,{msg) Yier, (et Jicr) defined by equa- = FQa7h)
tions (1) and (2) is called aP;-rescheduling of’C. . D Crngo M(te, Z(te)) = Y Cpago M(ts, &(tr))
=0 =0
The following result shows that the total communication Aa—1  F(£)
complexity of CC remains invariant under rescheduling. = Z Z Cing© M(t, Z(t))
(=0 k=F({)—s+1
Proposition 111.10 (Invariance under rescheduling) With Aa—1
the assumptions of Definition 111.9, leT: J[,.; Xl — = Z Crpg o M((te, x(ty)),
Bool eSet t[J? a coordination task forS. Then, for all £=0
o € [Lier Xo' where), = TC(T,CC s p,), 7o) and Ay = TC(T,CC, zo). W

TC(’T7 CC(S7’])I),1’O) =S TC(Z CC, xo) .
, Remark 111.11 (Appropriate complexity notions for drift-
Moreover, ifC,,q is additive, then, for allrg € T];c; X, less agents)Given the results in the previous theorem, one
1 should be careful in choosing what notion of communication
MCC(T,CC (s, py), w0) = - MOC(T,CC, 20) complexity to evaluate control and communication laws. For
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driftless physical agents, rather than theean communica- interval from the position of agenk(0) at time 0 to the
tion complexity MCC, one should really consider thietal position of agent: at time 0.
communication complexitff'CC, since the latter is invariant Let us examine how fast the message from agetravels
with respect to rescheduling. Note that the notion of indnit clockwise. To this end, fof < 27/ (kpropr(n)), define
horizon mean communication complexityi-MCC defined ) ) ,
in Remark 111.7 satisfies the same relationshiphd€'C, that §(0) = argmax{disto (61"1(0),67(0)) |
is, IH-MCC(CC 5 p,), m0) = L IH-MCC(CC, o) for any s- prior () =n,ieI}.
partition P; of 1. ) ) )

In other words, ageni(¢) haspri or equal ton, is moving

clockwise, and is the agent furthest from the initial positof

agentn in the clockwise direction with these two properties.

As introduced in Examples 11.3, II-C and I.II.3, consider th‘?nitially, j(0) = n. Additionally, for £ < 27/ (kpropr(n)), We
uniform networkScircie Of locally-connected first-order agentsyjaim that

in S', the agree-and-pursue control and communication law _ _
CCagr-pursuit @nd the two coordination tas@symnand7:-eqdste diste (0V 1 (£), 0V (0 4+ 1)) > Epropr(n).

The following result characterizes the complexity to aetie _ . . . .
o : _ This happens because either (1) there is no agent clockwise-
these coordination tasks WitlCagr-pursuit head ol () (7) within clockwise dist d. theref
Motivated by Remark 11.9, we model wireless communi& eal ov é ?W' n czocthW|se IS ancr;ev an ,t elre ore, 5
cation congestion by assuming that the communication ran| & Claim IS obvious, or (2) there are such agents. In case @)
tm denote the agent whose clockwise distance to agéint

is @ monotone non-increasing function N — ]0, 27| of the . . I ) : .
number of agents.. It is convenient to define the function'S maximal within the set of agents with clockwise distance
' from 9U(Ol(¢). Then,

n +— d6(n) = nr(n) — 2w that compares the sum of the

IV. DIRECTION-AGREEMENT AND EQUIDISTANCE

communication ranges of all the robots with the length of theist (91/(9](¢), gi¢+D] (¢ 4 1))
unit circle. — dist (g[j(g)] ), glm] (t+1)
Theorem IV.1 (Time complexity of agree-and-pursue law) = diste (VD1 (0), 0™ (£)) + distc (0™ (€), 0™ (¢ + 1))
In the limit asn — +oo ande — 07, the networkSgircie, the > distc (69 D)(¢), 0lm (0))
La;‘/;/isiyc:agr—pursun and the ta-Skgtcagrmnt and Te—equtnc tOgether + kprop(T _ distc (e[j(é)] (f), H[m] (3)))
(I) TC(IZ’jlgrmnt: Ccagr—pursuia c @(r(n)_l); = k/’prop’l’ + (1 — kprop) distc (Q[J(f)] (ﬁ), 0[’%] (f)) > kpropry
(if) if 6(n) is lower bounded by a positive constantias- \ here the first inequality follows from the fact that at time
+oo, then ¢ there can be no agent whose clockwise distance to agent
TC(7:-eqastne CCagrpursuid € 22 log(ne) ™), m is less than(r — diste (09U (£),01™1(¢))). Therefore, af-
TC(T-eqtsins CCagrpursad € O(n? log(ne™)). ter 27 /(kpropr(n)) communication rounds, the message with

prior = n has traveled the whole circle in the clockwise
If (n) is lower bounded by a negative constant, thedirection, and must therefore have reached agéfit This is
CCagr-pursuitdoes not achiev@;.eqdsincin general. e a contradiction.

) STEP 2:We now prove the lower bound in statement (i).
Proof: In the following four STEPSwe prove the two ¢ r(n) >  for all n, then 1/r(n) < 1/x, and the

upper b_ounds and the two Io_wer boundi;'l.'E_P 1:We s_tart upper bound readd'C(Zagmns Clagrpursu) € O(1). Obvi-
by proving the upper bound in statement (i). We claim thafi,g)y the time complexity of any evolution with an initial
TC(Zagmnt CCagr-pursu) < 27/ (Kpropr(n)), @nd we reason by ¢qnfiguration wheredr ct nll(0) = cc fori e {1,...,n —
cprltradlc_t|on, i.e,, we assume that t.here .eX|s_ts an irncoal 1}, dret nlnl (0) = ¢ and Er—disk(em 0),... . 6ln] (0)) is
dlt[on which gives rise to an execgtlon with time complgxn)fhe complete graph,
strictly larger tP?rﬁw/(kpmpr(n)). Without loss of generallty, TC(Tagimns Cagrpursu) € (1) If #(n) > = for all n, then
assumedr ct n'™(0) = c. For ¢ < 27/ (kpropr(n)), define we concludeTC(Tagmns Clagrpursu) € O(r(n)~1). Assume

k(¢) = argmin{distcc (61")(0), 011 (0)) | now thatr(n) < = for sufficiently largen. Consider an initial

q gy — e configuration wherer ct nll(0) = cc fori € {1,...,n—1},
retn®(f) =cc,iel}. drct n[”](o) = ¢, and the agents are placed as depicted in

In other words, agent(¢) is the agent moving counterclock-Figure 3. Note that, after each communication round, agent
wise that has smallest counterclockwise distance from thas movedkpopr(n) in the counterclockwise direction, while
initial position of agentn. Note thatk(¢) is well-defined agentn has movedsyopr(n) in the clockwise direction. These
since, by hypothesis of contradictiofagmn: is f al se for two agents keep moving at full speed towards each other until
¢ < 27/ (kpropr(n)). According to the state-transition functionthey become neighbors at a time lower bounded by
of CCagr-pursuit (cf. Section 1I-C), messages wittrctn = 2 — r(n)
cc can only travel counterclockwise, while messages with
dr ct n = c can only travel clockwise. Therefore, the position
of agentk(¢) at time/ can only belong to the counterclockwiseéWe conclud€T' C(Zagrmns CCagr-pursui) € Qr(n)~1).

is lower bounded Ky Therefore,

T .

2kpropr(n) Kpropr(n)
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Fig. 3. Initial network configuration useful to establishetfower bound
of TC(Tagrmns CCagr-pursui)- We setdiste (01" ~11(0), 0171 (0)) € r,r + &'
anddistc (0[11(0), 8l"=11(0)) € ]0,&’[, for somee’ > 0.

STEP 3:We now prove the upper bound in (ii). We begiqhat .

by noting that the lower bound od implies r(n)~! €

and is negligible as compared with the claimed upper boupg{
estimates forTC(7-.eqdstne CCagr-pursuip- IN What follows, we o(
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Rm—l

Iy ", then the previous equations can be rewritten as

d(T + ].) = ’:[‘]:'idf,nfl(kprop7 1-— kprop7 0) d(T)

+T[kpr0p7 07 Tty O]Ta

where the linear map(a,b,c) +— Trid,,_1(a,b,c) €
R(m—1x(m=1) is defined in Appendix A. This is a discrete-
time affine time-invariant dynamical system with uniqueiequ
librium pointr(1,...,1). By Theorem A.3(ii) in Appendix A,
for n; € ]0, 1], the solutionT — d(7) to this system reaches
a ball of radiusrn; centered at the equilibrium point in time
O(mlogm +logn; ). (Here we used the fact that the initial
condition of this system is bounded.) In turn, this implies
S dq(r) is larger than(m — 1)(r — n1) in
time O(mlogm + logn;'). We are now ready to find the
contradiction and show thaiy(7) cannot remain equal to
(¢) for all time 7. After time O(mlogm + logn; ')
nlogn +logn; '), we have:

therefore assume thel,gmne has been achieved and that,

without loss of generality, all agents are moving clockwise

n (€)

We now prove a fact regarding connectivity. At tirfiee Ny, 27 = ng(O)r + Y (r—m)(m; — 1)

let H(¢) be the union of all the empty “circular segments” of

length at least, that is, let
H({)={zeS"| min distc (z, 011 (£))
1€

+ min distec (z, 091(¢)) > r}.
jel

nu(O)r + (n—np(0)(r —m) = nu(O)m +n(r —m).

Herem,, ..., m,, ) are the number of agents in each isolated
group, and each connected componenfidf) has length at
leastr. Now, taken; = (nr — 27)n~! = §(n)n~1, and the
contradiction follows from

In other words,H (¢) does not contain any point between two

agents separated by a distance less thamd each connected

component ofH (¢) has length at least. Let ny(¢) be the
number of connected components@f¢), if H({) is empty,
then we take the convention thaf; (¢) = 0. Clearly,ng (¢) <
n. We claim that, ifng(¢) > 0, thent — ng (¢ +t) is non-

2w > ng(O)m + nr —nm
=ng)n +nr+ 27 —nr =ng(l)n + 2.

In summary, this shows that the number of connected compo-
nents of H decreases by one in tin@(nlogn + logn; ')

increasing. Letd(¢) < r be the distance between any twd)(nlogn +log(né~'(n))). Note thats being lower bounded

consecutive agents at tilieBecause both agents move in thénplies né—!(n)

same direction, a simple calculation shows that
d(€ +1) < d(£) + kprop(r — d(£)) = (1 — kprop)d(£) + Kpropr
< (1 = Eprop)r + kpropr = 1.

This means that the two agents remain within distanead,

O(n) and, therefore,O(nlogn +

log(nd=t(n))) = O(nlogn). Iterating this argument times,
in time O(n?logn) the setH will become empty. At that
time, the resulting network will obey the discrete-timeekam
time-invariant dynamical system:

d(t + 1) = Circy, (kprop, 1 — kprop, 0) d(7), (4)

therefore connected, at the following time instant. Beeaus

the number of connected components if(dl!, ... "1y where the linear map(a,b,c) +— Circ,(a,b,c) €
does not increase, it follows that the number of connectéd *" is defined in  Appendix A. Hered(r) =
components ofH cannot increase. Next, we claim that, if( distec(01"(7),012(7)), ..., distec (0"(7), 0"T(7))) €

ng(¢) > 0, then there exists > ¢ such thatngy(t) <
ny(¢). By contradiction, assumey (¢) ny(t) for all
t > ¢. Without loss of generality, lef1,...,m} be a set of
agents with the properties thatstcc (61 (¢),00+1(¢)) < r,
for i € {1,...,m}, that 9!"(¢) and 6™l (¢) belong to the

RZ,, with the conventiorg("+1l = 9lll. By Theorem A.3(iii)
in Appendix A, in time O(n®loge™!), the error 2-
norm satisfies the contraction inequalifyl(t) — d.|, <
e||d(0) —d. |2, for d. = 2Z1. We convert this inequality op-
norms into an appropriate inequality en-norms as follows.

boundary of H(¢), and that there is no other set with thNote that||d(0) — d. |« = max;e; |dl1(0) — dgf]l < 2. For
same properties and more agents. (Note that this impligs tha € ]0, 1[ and forr of ordern?logn; ',

the agentsl, ..., m are in counterclockwise order.) One can

show that, forr > ¢,
O (7 + 1) = 01 (7) — Kpropr,
Ol (7 + 1) = 011 (7) — Epropdiste (01 (1), 0171 (7)),

,m}. If we define d(r
, distec (0= 1(7), 00m (7))

for ¢ € {2

(distes (811(r), 02/ (7)), .. E

1d(7) = dulloo < [ld() = dull2 < n2[|d(0) — dull2
< 12v/n[|d(0) — dil[cc < 1227/

This means that the desired configuration is achieved
for me2my/n e, that is, in time O(n?logn, ')
O(n?log(ne1)). In summary, the equidistance task is
achieved in timeO(n? log(ne~1)).
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STEP 4: Finally, we prove the lower bound in (ii). the proof of Theorem IV.1, recall that the time it takes agent
As Dbefore, TC(Zagimn: CCagrpursu) 1S negligible as to receive the message wilri or = n is lower bounded by
compared with the claimed lower bound estimate far/(kpopr(n)) — 1. Our proof strategy is to lower bound the
TC(Zz-eqdstne CCagr-pursuy~ and,  therefore, we assumenumber of edges in the graph until this event happens. Note
that Zagmne has been achieved. We consider an initighat, at initial time, there arén — 1)? edges in the communi-
configuration with the properties that (i) agents areation graph of the network, and therefofe,— 1)? messages
counterclockwise-ordered according to their unique ifient get transmitted. At the next communication round, agelmhs
(i) the set H is empty, and (iii) the inter-agent distancesnovedkyopr(n) counterclockwise and, therefore, the number
d(0) = (distec(011(0),011(0)), ..., distec (017(0),611(0)))  of edges is lower bounded kfy—2)>. Iterating this reasoning,
are given by we see that aftef < 7/(kpropr(n)) communication rounds,

/ the number of edges is lower bounded by — i)%. Now, if
(Vi + V), §(n) > m(1/kprop — 2), thenn > 7 /kpropr(n)), and therefore,
the total communication complexity is lower bounded by

2T T™—€

a(0) = =

where ¢/ € ]r,0[ and wherev, is the eigenvector of B
Circy, (kprop, 1 — kprop, 0) corresponding to the eigenvalue Fpropr (n) > ) .
1 — kprop + kpropcos (22) — kpropy/—1Lsin (2%) (see equa- > (n—i)?* €Qn’r(n)™h).
tion (A.7) in Appendix A). One can verify that,, + v,, = =1
2(1, cos(2m/n), ..., cos((n—1)2r/n)) and that|v,+V, |2 = On the other hand, i¥(n) < 7(1/kpop — 2), thenn <
V2n. In turn, this implies that/(0) € R?, and that||d(0) — /kpogr(n)), and aftern time steps, we lower bound the
271|l; € O(1/y/n). Takens € ]0,1[. The argument describednumber of edges in the communication graph by the number
in the proof of Theorem A.3(iii) leads to the following state of edges in a chain of length, that is,n — 1. Therefore, the
ment: the2-norm of the difference between— d(t) and the total communication complexity is lower bounded by
desired configuratior?rgl decreases by a factgg in time of =«
ordern?logn; . Given an initial error of orde©(1/,/n) and Z(n -2+ (n— 1)(L
a final desired error of order, we setn; = e,/n and obtain =1 Fpropr'(12)
the desired result that it takes time of ordetlog(ne) ™' t0  The two lower bounds match wheitn) = 7(1/kprop — 2).
reduce the2-norm error, and therefore, the-norm error to  Regarding the lower bound in (i), we consider first the case
sizee. This concludes the proof. B \whenny(0) = 0. In this case, the network obeys the discrete-

To conclude this section, we study the total communicatiQfine linear time-invariant dynamical system (4). Consither
complexity of the agree-and-pursue control and communiGgitial conditiond(0) that we adopted foBTEP 4: We know it
tion law. We consider the case of a unidirectional communiakes time of ordern? log(ne)~! for the appropriate contrac-
cation model with one-round cost function depending liheartion property to hold. At/(0), the maximal inter-agent distance
on the cardinality of the communication graph. is (4 —¢’)/n and it decreases during the evolution. Because

each robot can communicate with any other robot within a

Theorem V.2 (Total communication complexity of agree- distancer(n), the number of agents within communication
and-pursue law) In the limit asn — +o0 ande — 0%, the  range of a given agent is of ordefn)n/(4m — ¢'), that is, of
network Scirce, the 1aw CCagr-pursuit and the taskagmntand  orderd(n). From here we deduce that the total communication
T--eqdsinctogether satisfy: complexity belongs td2(n35(n) log(ne)~"). [

(i) if 6(n) > 7(1/kprop— 2) asn — +oo, then

- n) € Q(n® + nr(n)~b).

) . Remark V.3 (Comparison with leader election) Let  us
TCClunidir (Zagrmns CCagr-pursui € O(n=r(n)™"), compare the agree-and-pursue control and communication
otherwise if5(n) < m(1/kprop — 2) @Sn — +oo, then law with the classical Lann-Chang-Roberts (LCR) algorithm
for leader election (see [5, Chapter 3.3]). The leader ielect
TCCunidir (Tagmns CCagrpursu) € 2(n® +nr(n)™"),  task consists of electing a unique agent among all agents
TCCunidir(Tagrmnt CCagr-pursuy € O(nr(n)~1); in the network; it is therefore different from, but closely
o ) o related to, the coordination taskgmn: The LCR algorithm
(ii) if 6(n) is lower bounded by a positive constantrias-  gherates on a static network with the ring communication
+oo, then topology, and achieves leader election with time and total
TCCunidir(Ts-equtneCcagr-pursuiaE Q(njé(n) log(ne)fl), communication complexity, reSpeCtivelﬁ(n) ahd @(n2). .
TCComiaie (7 cc e Ot log(ne=1). o The agree_-and-pursue_ IaV\_/ operates on a robot|c_ network with
unidir “e-eqdstne -%-agr-pursui & : the r(n)-disk communication topology, and achiev&gmnt
Proof: The upper bounds in (i) and (i) follow imme-With time and total communication complexity, respectyel
diately from the inequalityTCC(7,CC) < MCC(T,cc) - ©O(r(n)~') and O(n?*r(n)~'). If wireless communication
TC(7,CC) and from the fact that the number of edges ifongestion is modeled by(n) of order1/n as in Remark 1.9,
E,disk i in O(n2). To prove the lower bounds we follow thethen the two algorithms have identical time complexity and
steps and notation in the proof of Theorem IV.1. Regardifje LCR algorithm has better communication complexity.
the lower bounds in (i), we examine the evolution of th&lote that computations on a possibly disconnected, dynamic
initial configuration depicted in Figure 3. Fro®TEP 2:in Nhetwork are more complex than on a static ring topology.
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V. CONCLUSIONS

(6]

We have introduced a formal model for the design and
analysis of coordination algorithms executed by networks d’]
robotic agents. In this framework motion coordination algo (8]
rithms are formalized as feedback control and communikatio
laws. Drawing analogies with the discipline of distributed

algorithms, we have defined two measures of complexity fop

control and communication laws: the time and the communi-

cation complexity to achieve a specific task. We have defin8d]

the notion of re-scheduling of a control and communication
law and analyzed the invariance of the proposed complexity
measures under this operation. These concepts and results2001, vol. 2234, pp. 110-115.

are illustrated in a network of locally connected agents ol
the circle executing a novel “agree-and-pursue” cooréinat
algorithm that combines elements of the leader election and son, Eds., vol. 7.

cyclic pursuit problems.
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APPENDIXA
TRIDIAGONAL TOEPLITZ AND CIRCULANT DYNAMICAL
SYSTEMS

This section presents some key facts about convergence
rates of discrete-time dynamical systems defined by certain
classes of Toeplitz matrices, see [29]. To the best of our

Remarks A.2

(i) The set of eigenvalues ofrid, (a, b, c)
is contained in the real intervéb — 2./ac, b + 2/ac],
if ac > 0, and in the interval in the complex plane

b —2v/=1+/]ac],b + 2¢/=1+/]ac]], if ac < 0.

(i) The set of eigenvalues dfirc,(a,b,c) is contained in

the ellipse on the complex plane with cenighorizontal
axis 2|a + c| and vertical axi®|c — al.

(i) Recall from [29] that (1) a square matrix is normal if it

has a complete orthonormal set of eigenvectors, (2) cir-
culant matrices and real-symmetric matrices are normal,
and (3) if a normal matrix has eigenvalugs, ..., A\, },
then its singular values arg\:|, ..., [\,|}. o

knowledge, the results presented below in Theorem A.3 ONMWe can now state the main result of this section.

tridiagonal Toeplitz matrices and in Theorem A.4 are novel

contributions. The results on stochastic circulant meffic Theorem A.3 (Tridiagonal Toeplitz and circulant dynam-
in Theorem A.3 are related to the literature on Markoja| systems)Let n > 2, = € |0,1[, and a,b,c € R. Let

chains [30], see also the recent developments in [31], [32]. N, — R" andy: Ny — R” be solutions to
Forn > 2 anda, b, c € R, define then x n Toeplitz matrices

Trid, (a, b, ¢) and Circ, (a, b, ¢) by

b ¢ 0 0
a b c ... 0
Trid,(a,b,c) = | - . . i,
0 a b ¢
0 0 b
and

0 0 a
0 0 0
Circy(a,b,c)=Trid, (a,b,c) + |1 . . - @
o 0 ... 0 O
c O ... 0 O

The matricesTrid,,(a, b, ¢) and Circ,,(a, b, c) are tridiagonal
and circulant, respectively, and only differ in thet,n)
and (n,1) entries. Note our convention thats(a,b,¢) =

b a+c

a+c b
ample, in [29, Example 7.2.5 and Exercise 7.2.20].

Lemma A.1 (Eigenvalues of tridiagonal Toeplitz and cir-
culant matrices) For n > 2 and a,b,c € R, the following
statements hold:

(i) for ac # 0, the eigenvalues and eigenvectors
Trid,(a,b,c) are, fori € {1,...,n},

b+ 20\/Ecos (m) , and
c n+1
T nim

[(2)"an (7)o (&) S0 (25) )"

(i) the eigenvalues and eigenvectors @ic, (a,b,c) are,
for w = exp(%T‘/jl) and fori € {1,...,n},

b+ (a+ c)cos (m) ++v—=1(c— a)sin <227r> , and
n n

w(n—l)i}T. o

[1’ wl’, e

0Igecause cos(5y)

z(0+ 1) = Trid, (a, b, ¢) z(¢),
y(£ + 1) = Circy(a, b, ) y(¢),

with initial conditionsz(0) = zo and y(0) = yo, respectively.
The following statements hold:

() ifa=c+# 0and|b|+2|a| =1, thenlim,—, o x(£) = 0,
and the maximum time required f@r:(¢)||2 < e||zo]|2
(over all initial conditionszy € R™) is ©(n*loge™);
if a # 0, ¢ = 0and 0 < b < 1, then
limy_, 4o 2(¢) = 0, and the maximum time required for
[lz(0)]|2 < ellxol|2 (over all initial conditionsz, € R™)
is O(nlogn +loge™);
fa >0,¢c>0b>0 anda +b+c = 1,
then limy ., oo ¥(£) = Yavel, Where yae = %1Ty01
and the maximum time required fQg(¢) — yavel ||z <
e|lyo — yavelll2 (over all initial conditionsy, € R™) is
@(n2 logs’l). °

(ii)

(iii)

Proof: Let us prove fact (i). We start by bounding from

. The following results are discussed, for exabove the eigenvalue with largest absolute value, thahes, t

largest singular value, dfrid,,(a,b, a)

b+ 2a cos <z7r)‘
n+1
cos [ —— <|b] + 2|a| cos (L>
n+1 n+1

< 1 for any n > 2, the matrix
Trid,(a,b,a) is stable. Additionally, for¢ > 0, we bound
from above the magnitude of the curweas

|z(0)]l2 = || Trid (a, b, a) zo||2

l
T
< (b 2 _— .
< <| | + 2|a| cos <n+1)) llzoll2

In order to have|z(¢)|2 < efzoll2, it is sufficient that

llog (|b\ + 2|al cos (nL—l—l)) < loge, that is

max
ie{l,...,n}

<|b| 4+ 2|a] max
ie{l,...,n}

loge!

- —log (|b| + 2|a| cos (ni 1))

(A.5)
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To show the upper bound, note thattas> 0 we have componenty,e along the eigenvectot. The second largest
1 1 singular value is

— = O(1).

a1 20l (1 —eos)) e~ (oot (1 eos (1)) + VTl - psin (2T

Now, assume without loss of generality thet > 0 and n

consider the elgenvalwema cos(;y) of Trid,,(a,b,a). Note Here | - | is the norm inC. Because of the assumptions on
that [b + 2a cos(;.57)| = [b] + 2|al cos(nH) (If ab <0, then a,b,c, the second largest singular value is strictly less than
consider the e|genvalubz+ 2a cos(-2%-).) Forn > 2, define For ¢ > 0, we bound the distance of(¢) from yavl as

the unit-length vector

n+1
[9(€) = yavel |2 = || Circn (a, b, ¢) 4o — yavel ||
T .
v, = 2 {sin L’ oo, sin nm } cR", (A.6) = || Clrcn(avb7 C)é(yo - yave1)||2
n+1 n+1 n—+1
. . . 27 27

and note that, by Lemma A.l()y, is an eigenvector = ’1 —(a+ C)(l — Cos (;)) +V—=1(c—a)sin ( - )
of Trid,(a,b,a) with eigenvalueb + 2a cos( Note

n+1)

also that all components of, are positive. The tra-  Mlyo = yavel -
jectory = with initial condition v,, satisfies|z(¢)||z = This proves thalim;_ .. y(¢) = yavel. Also, for o« = a +
0
|b] 4 2|al cos <n+1 |v,|l> and, therefore, it will enter ¢:0 = ¢ —aand ast — 0, we have
B(0,||vall2) iny when/ satisfies (A.5). This completes the -1 — = @ —2ﬂ2)t2 +0(1).
proof of fact (i). _ ) .  log <(1 — a(l - cos t))2 4 32 sin? t) 3
Next, we consider statement (ii). Clearlyrid,,(a,b,0) is
stable. For/ > 0, we compute Here 3% < a becausey, ¢ € |0, 1[. From this, one deduces the
a ¢ upper bound in (iii).
Trid,, (a,b,0)" = b* (In + 5 Tridn (1,0, 0)) Now, consider the eigenvalues, = b+ (a + ¢) cos (2%) +
n—1 0 V=1(c —a)sin (2%) and A, = b + (a + c) cos (M> +

ot N j
=0 JZ::O J1 =) (b) Trida(1,0,0) V—1(c—a)sin (rmi)%) of Circy,(a, b, ¢), and its associated
C

. eigenvectors (cf. Lemma A.1(ii))
because of the nilpotency @tid,, (1,0, 0). Now we can bound

T
from above the magnitude of the curweas Vv, = {1, w, w”fl} e Cn,

|z(0)]|2 = H"ﬁrid (a, b, 0)%0”2 Vi = {1, Wt wr e C". (A7)
< |bf* Z ( ) || Trid,(1,0,0)zo[,  Note that the vectow,, + ¥, belongs toR". Moreover, its

componenty,e along the eigenvectat is 0. The trajectoryy

< ea/bgn U1b) 2] 2. with initial condition v,, + ¥,, satisfies||y(¢)||2 = ||\, v, +
XfLVnHQ = M)V + a2 and, therefore, it will enter

Here we wused | Trid,(1,0,0)7zgl2 <  |lagll2 and B(
max{z s | j € {0,...,n — 1}} < ¢, Therefore, in

0,¢||vy, + ¥V, |l2) only when

- -1
order to have||z(0)||2 < &||zol|2, it suffices thatlog(e®/?) + ¢ > loge .
(n—1)logt + ¢log |b| < loge, that is log‘l— a+c)(1—cos( ))"‘\/7(0_“)5111(27”)
 n—1 log f > 7 —loge This completes the proof of fact (jii). [ |
—log |b| & —log |b| - Next, we extend these results to another interesting set of

A sufficient condition forl — alog?¢ > 3, for a, 5 > 0, is m_aj[rices. For Z 2 andq,lie R, define thgz_x n augmented
that ¢ > 26 + 2a max{1,loga}. For, if £ > 2a, thenlog/ is tridiagonal matricesATrid; (a,b) and ATrid,, (a,b) by
bounded from above by the ling'2a + log . Furthermore, a 0 ... ... 0

the line¢/2a + log « is a lower bound for the liné/ — 3)/«a 0 0 ... ... 0

if £> 203+ 2aloga. In summary, it is true thalz(f)ll2 < ATvidE (a, b) = Trid,(a, b, a) = :
e||z(0)||2 whenever

o
=
o

(> Qb 1og€+2 n—1 max{l,log n—1 } 0 0 a
—log|b] " —log|b| — log |b] If we define

This completes the proof of fact (ii). 1 1 0 0 ... 0]

The proof of fact (iii) is similar to that of fact (i). We 1 -1 1 0 ... 0
analyze the singular values €firc,(a,b,c). It is clear that 1 0 -1 1 ... 0
the eigenvalue correspondingie- n is equal tol; this is the P o=, ) ) ) )
largest singular value ofirc,,(a,b,c) and the corresponding : o
eigenvector isl. In the orthogonal decomposition induced 10 ... 0 -1 1
by the eigenvectors ofirc,(a,b,c), the vectory, has a Lo ... 0 0 -—1]
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and by P,. These facts are sufficient to duplicate, step by step, the
T 1 0 0 07 proof of fact (i) in Theorem A.3. Therefore, fact (i) follows
-1 1 1 0 0 _ o u
1 0o 1 1 0 We conclude this appendix with some useful bounds whose
P = proof is straightforward.
(—1)"7? o ... 0 1 1 Lemma A.5 Assumez € R", y € R*"! and z € R"!
-~ 0 ... 0 0 1] jointly satisfy
then the following similarity transforms are satisfied: 0
x =Py [ } , z=P_ [
b+ 2a 0 )

ATridE (a,b) = Py Pl (A8)

0 Trid,—1(a, b, a)
To analyze the convergence properties of the dynamidal — 1)|z||2-
systems determined byTrid,! (a,b) and ATrid,, (a,b), we

recall that1? = (1,...,1) € R", and we definel_ =

(13 -1, ]-7 LR (71)7172’ (71)”‘71)71 eR™

Theorem A.4 (Augmented tridiagonal Toeplitz dynamical
systems)Let n > 2, ¢ € ]0,1], and a,b € R with a # 0
and |b| + 2|a| = 1. Letz: Ny — R™ and z: N; — R” be
solutions to

x(0+1) = ATrid (a,b) z(¢),
z(0 + 1) = ATrid,, (a,b) z(¢),

with initial conditionsz(0) = z¢ and z(0) = zo, respectively.
The following statements hold:
(i) limg_ oo (:c(é) — xa\,e(é)l) = 0, where za¢f) =
(21720) (b + 2a)*, and the maximum time required for
[|2(€) — xave(£) 1|2 < el|zo — zave(0)1||2 (over all initial
conditionsz, € R") is ©(n?loge™1);
(i) limgioo (2(0) — zae(f)1-) = 0, where zae(l) =
(217 2)(b — 2a)*, and the maximum time required for
15(0) = Zave1_[l2 < ]2 — Zavel0)1_ > (over all
initial conditions zy € R™) is ©(n?loge™!). .

Proof: We prove fact (i) and observe that the proof of
fact (ii) is analogous. Consider the change of coordinates

o) = P [ "ot = atr 2 | ) |

where z1,,(¢) € R andy(¢) € R*~1. A quick calculation
shows thatr},q(¢) = 217 z(¢), and the similarity transforma-
tion described in equation (A.8) implies

y(£+ 1) = Trid,—1(a, b, a) y(£),
x;ve(g +1)=(b+ 2a)xgve(€)'
Therefore,xave = 2 It is also clear that

:L'(€+ 1) — l‘ave(g‘i’ 1)1 = P+ |:y(€(‘)i‘ 1):|

= <P+ |:8 Tridn_?(a, b, a):| P+1> (x(g) — mave(f)l).

Consider the matrix in parenthesis determining the trajgct
0 — (x(f) — zave(f)1). This matrix is symmetric, its eigen-
values ared and the eigenvalues dfrid,,—1(a,b,a), and its
eigenvectors aré, (1,0,...,0) € R™ and the eigenvectors of
Trid,,—1(a, b, a), padded with an extra zero and premultiplied

Thengllzf2 < [lyll2 < (n —1)|lz[l2 and 3ljz[l2 < [|z]2 <



