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On synchronous robotic networks – Part I: Models,
tasks, and complexity

Sonia Mart́ınez Francesco Bullo Jorge Cortés Emilio Frazzoli

Abstract— This paper proposes a formal model for a network
of robotic agents that move and communicate. Building on con-
cepts from distributed computation, robotics and control theory,
we define notions of robotic network, control and communication
law, coordination task, and time and communication complexity.
We illustrate our model and compute the proposed complexity
measures in the example of a network of locally connected agents
on a circle that agree upon a direction of motion and pursue their
immediate neighbors.

I. I NTRODUCTION

Problem motivation: The study of networked mobile
systems presents new challenges that lie at the confluence
of communication, computing, and control. In this paper,
we consider the problem of designing joint communication
protocols and control algorithms for groups of agents with
controlled mobility. For such groups of agents, we define
the notion of communication and control law by extending
the classic notion of distributed algorithm in synchronous
networks. Decentralized control strategies are appealingfor
networks of robots because they can be scalable and they
provide robustness to vehicle and communication failures.

One of our key objectives is to develop a theory of time
and communication complexity for motion coordination al-
gorithms. Hopefully, our formal model will be suitable to
analyze objectively the performance of various coordination
algorithms. It is our contention that such a theory is required to
assess the complex trade-offs between computation, communi-
cation, and motion control or, in other words, to establish what
algorithms arescalableand implementable in large networks
of mobile autonomous agents. The need for modern models
of computation in wireless and sensor network applicationsis
discussed in the well-known reports [1], [2].

Literature review: The literature on multirobot systems
is very extensive. Examples include the survey in [3] and
the recent special issue [4] of the IEEE Transaction on
Robotics and Automation. Together with this literature our
starting points are the standard notions ofsynchronous and
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asynchronous networksin distributed [5], [6] and parallel [7]
computation,. This established body of knowledge on networks
is, however, not applicable to the robotic network setting
because of the agents’ mobility and the ensuing dynamic
communication topology.

An important contribution towards a network model of
mobile interacting robots is introduced in [8]. This model
consists of a group of identical “distributed anonymous mobile
robots” characterized as follows: no explicit communication
takes place between them, and at each time instant of an
“activation schedule,” each robot senses the relative position
of all other robots and moves according to a pre-specified
algorithm. A related model is presented in [9], where as
few capabilities as possible are assumed on the agents, with
the objective of understanding the limitations of multi-agent
networks. A brief survey of models, algorithms, and the
need for appropriate complexity notions is presented in [10].
Recently, a notion of communication complexity for control
and communication algorithms in multi-robot systems is ana-
lyzed in [11], see also [12]. The general modeling paradigms
discussed in [13], [14] do not take into account the specific
features of robotic networks. The time complexity of a class
of coordinated motion planning problems is computed in [15].
The convergence rate and communication overhead of two
cyclic pursuit algorithms is examined in [16].

Statement of contributions:A key contribution of this
paper is a model for robotic networks, which properly takes
into account some important dynamical, communication and
computational aspects of these systems. Our model is mean-
ingful and tractable, it describes feasible operations andtheir
costs, and it allows us to study tradeoffs in control and commu-
nication problems. We summarize our approach as follows. A
robotic networkis a group of robotic agents moving in space
and endowed with communication capabilities. The agents’
positions obey a differential equation and the communication
topology is a function of the agents’ relative positions. Each
agent repeatedly performs communication, computation and
physical motion in the following way. At predetermined time
instants, the agents exchange information according to the
communication graph and update their internal state. Between
successive communication instants, the agents move according
to a motion control law, computed as a function of the agent
location and of the internal state. In short, acontrol and com-
munication lawfor a robotic network consists of a message-
generation function (what do the agents communicate?), a
state-transition function (how do the agents update their in-
ternal state with the received information?), and a motion
control law (how do the agents move between communication
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rounds?). Thetime complexityof a control and communication
law (aimed at solving a given coordination task) is the mini-
mum number of communication rounds required by the agents
to achieve the task. We also provide similar definitions for
mean and total communication complexity. We show that our
notions of complexity satisfy a basic well-posedness property
that we refer to as “invariance under reschedulings.” To the
best of our knowledge, the proposal of studying the complexity
of coordination algorithms for synchronous robotic networks
under a comprehensive modeling framework presented here is
a novel contribution on its own.

Next, we illustrate the proposed framework with the exam-
ple of a network of agents moving on the unit circle under
the action of a novel agree-and-pursue control and commu-
nication law. Despite the apparent simplicity, this example is
remarkable in that it combines a leader election task (in the
internal states) with a uniform deployment task (in the agents
positions), i.e., it combines two of the most basic tasks in
distributed algorithms and cooperative control, respectively.
We prove that the agree-and-pursue law achieves consensus
on the agents’ direction of motion and equidistance between
the agents’ positions. Furthermore, we provide upper and
lower bounds on the time and total communication complexity
of the proposed law. These complexity estimates build on
known and novel results on the convergence rates of discrete-
time dynamical systems defined by tridiagonal Toeplitz and
circulant matrices presented in the appendix. The companion
paper [17] builds on this framework to establish complexity
estimates for motion coordination algorithms that achieve
rendezvous and deployment.

Organization: Section II presents a general approach to
the modeling of robotic networks by formally introducing
notions such as communication graph, control and commu-
nication law, and network evolution. Section III defines the
notions of task and of time and communication complexity. We
also study the invariance properties of the complexity notions
under rescheduling. Section IV provides bounds on the time
and communication complexity of the agree-and-pursue law.
We gather our conclusions in Section V. The appendix con-
tains the results on discrete-time dynamical systems defined
by tridiagonal Toeplitz and circulant matrices.

Notation: We letBooleSet = {true,false}. We let
∏

i∈{1,...,n} Si denote the Cartesian product of setsS1, . . . , Sn.
We let R>0 and R≥0 denote the strictly positive and non-
negative real numbers, respectively. We letN and N0 denote
the natural numbers and the non-negative integers, respec-
tively. For x ∈ R

d, we let ‖x‖2 and ‖x‖∞ denote the
Euclidean and the∞-norm of x, respectively (we also recall
‖x‖∞ ≤ ‖x‖2 ≤

√
d‖x‖∞). We define the vectors0 =

(0, . . . , 0) and1 = (1, . . . , 1) in R
d. For f, g : N → R, we say

that f ∈ O(g) (respectively,f ∈ Ω(g)) if there existn0 ∈ N

and c ∈ R>0 such that|f(n)| ≤ c|g(n)| for all n ≥ n0

(respectively,|f(n)| ≥ c|g(n)| for all n ≥ n0). If f ∈ O(g)
andf ∈ Ω(g), then we use the notationf ∈ Θ(g).

II. A FORMAL MODEL FOR SYNCHRONOUS ROBOTIC

NETWORKS

Here we introduce a notion of robotic network as a group
of robotic agents with the ability to move and communicate
according to a specified communication topology. Our model
is inspired by the synchronous network model in [5] and has
connections with the hybrid systems models in [13], [14].

A. The physical components of a robotic network

Here we introduce our basic definition of physical quantities
such as the agents and such as the ability of agents to
communicate. We begin by providing a basic model for how
each robotic agent moves in space. Acontrol systemis a tuple
(X,U,X0, f), where

(i) X is a differentiable manifold, called thestate space;
(ii) U is a subset ofRm containing0, called theinput space;
(iii) X0 is a subset ofX, called theset of allowable initial

states;
(iv) f : X × U → TX is a C∞-map with f(x, u) ∈ TxX

for all (x, u) ∈ X × U .
We refer tox ∈ X andu ∈ U as astateand aninput of the
control system, respectively. We will often consider control-
affine systems, i.e., control systems withf(x, u) = f0(x) +
∑m

a=1 fa(x)ua. In such a case, we representf as the ordered
family of C∞-vector fields(f0, f1, . . . , fm) on X.

Definition II.1 (Network of robotic agents) A network of
robotic agents(or robotic network) S is a tuple(I,A, Ecmm)
consisting of

(i) I = {1, . . . , n}, called the set of unique identifiers
(UIDs);

(ii) A = {A[i]}i∈I = {(X [i], U [i],X0
[i], f [i])}i∈I is a set of

control systems, called theset of physical agents;
(iii) Ecmm is a map from

∏

i∈I X [i] to the subsets ofI × I,
called thecommunication edge map.

If A[i] = (X,U,X0, f) for all i ∈ I, then the robotic network
is called uniform. •

Remarks II.2 (i) By convention, we let the superscript
[i] denote the variables and spaces corresponding to
the agent with unique identifieri; for instance,x[i] ∈
X [i] and x

[i]
0 ∈ X

[i]
0 denote the state and the initial

state of agentA[i], respectively. We refer tox =
(x[1], . . . , x[n]) ∈∏i∈I X [i] as astateof the network.

(ii) The mapEcmm models the topology of the communica-
tion service among the agents: at a network statex =
(x[1], . . . , x[n]), agentx[i] can send a message to agent
x[j] if the pair (i, j) is an edge inEcmm(x[1], . . . , x[n]).
Accordingly, we refer to(I, Ecmm(x[1], . . . , x[n])) as
the communication graphat x. When and what agents
communicate is discussed in Section II-B. Maps from
∏

i∈I X [i] to the subsets ofI × I are calledproximity
edge mapsand arise in wireless networks and computa-
tional geometry, e.g., see [18]. •

To make things concrete, let us present an example of
robotic network. LetS1 be the unit circle, and measure
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positions on S
1 counterclockwise from the positive hor-

izontal axis. For x, y ∈ S
1, we let dist(x, y) be the

geodesic distance betweenx and y defined bydist(x, y) =
min{distc(x, y),distcc(x, y)}, where distc(x, y) = (x −
y) (mod2π) anddistcc(x, y) = (y−x) (mod2π) are the path
lengths fromx to y traveling clockwise and counterclockwise,
respectively. Herex (mod2π) is the remainder of the division
of x by 2π.

Example II.3 (Locally-connected first-order agents on the
circle) For r ∈ R>0, consider the uniform robotic network
Scircle = (I,A, Er-disk) composed of identical agents of the
form (S1, R, S1, (0, e)). Here e is the vector field onS

1

describing unit-speed counterclockwise rotation. We define the
r-disk proximity edge mapEr-disk on the circle by setting
(i, j) ∈ Er-disk(θ

[1], . . . , θ[n]) if and only if i 6= j and

dist(θ[i], θ[j]) ≤ r . •

B. Control and communication laws for robotic networks

Here we present a discrete-time communication,
continuous-time motion model for the evolution of a
robotic network. In our model, the robotic agents evolve in
the physical domain in continuous-time and have the ability
to exchange information (position and other variables) at
discrete-time instants.

Definition II.4 (Control and communication law) LetS be
a robotic network. Acontrol and communication lawCC for
S consists of the sets:

(i) T = {tℓ}ℓ∈N0
⊂ R≥0, an increasing sequence of time

instants with no accumulation points, calledcommuni-
cation schedule;

(ii) L, a set containing thenull element, called thecom-
munication alphabet; elements ofL are calledmessages;

(iii) W [i], i ∈ I, sets of values of somelogic variablesw[i],
i ∈ I;

(iv) W
[i]
0 ⊆ W [i], i ∈ I, subsets ofallowable initial values

for the logic variables;

and of the maps:

(i) msg[i] : T×X [i]×W [i]×I → L, i ∈ I, calledmessage-
generation functions;

(ii) stf[i] : T×X [i] ×W [i] ×Ln → W [i], i ∈ I, called state-
transition functions;

(iii) ctl [i] : R≥0 × X [i] × X [i] × W [i] × Ln → U [i], i ∈ I,
called control functions.

If S is uniform and ifW [i] = W , msg[i] = msg, stf[i] = stf,
ctl[i] = ctl, for all i ∈ I, thenCC is said to beuniform and is
described by a tuple(T,L,W, {W [i]

0 }i∈I , msg, stf, ctl). •

We sometimes refer to a control and communication law
as a motion coordination algorithm. Roughly speaking, the
rationale behind Definition II.4 is the following: for alli ∈ I,
to the ith physical agent corresponds a logic process, labeled
i, that performs the following actions. First, at each time
instant tℓ ∈ T, the ith logic process sends to each of its
neighbors in the communication graph a message (possibly the

null message) computed by applying the message-generation
function to the current values ofx[i] andw[i]. After a negligible
period of time (therefore, still at time instanttℓ ∈ T), the ith
logic process updates the value of its logic variablesw[i] by
applying the state-transition function to the current value of
x[i] andw[i] and to the messages received at timetℓ. Between
communication instants, i.e., fort ∈ [tℓ, tℓ+1), the motion of
the ith agent is determined by applying the control function
to the current value ofx[i], the value ofx[i] at time tℓ, and
the current value ofw[i]. This idea is formalized as follows.

Definition II.5 (Evolution of a robotic network) Let S be
a robotic network andCC be a control and communication
law for S. The evolution of (S, CC) from initial conditions
x

[i]
0 ∈ X0

[i] and w
[i]
0 ∈ W

[i]
0 , i ∈ I, is the collection of curves

x[i] : [t0,+∞) → X [i] and w[i] : T → W [i], i ∈ I, satisfying

ẋ[i](t) = f
(

x[i](t), u[i](t)
)

,

u[i](t) = ctl[i]
(

t, x[i](t), x[i](⌊t⌋
T
), w[i](⌊t⌋

T
), y[i](⌊t⌋

T
)
)

,

where⌊t⌋
T

= max{tℓ ∈ T | tℓ < t}, and

w[i](tℓ) = stf[i](tℓ, x
[i](tℓ), w

[i](tℓ−1), y
[i](tℓ)) ,

with x[i](t0) = x
[i]
0 andw[i](t−1) = w

[i]
0 , i ∈ I. In the previous

equations, the curvey[i] : T → Ln (describing the messages
received by agenti) has componentsy[i]

j (tℓ), j ∈ I, given by

y
[i]
j (tℓ) = msg[j](tℓ, x

[j](tℓ), w
[j](tℓ−1), i)

if (i, j) ∈ Ecmm
(

x[1](tℓ), . . . , x
[n](tℓ)

)

, and y
[i]
j (tℓ) = null

otherwise. •

With slight abuse of notation, we lett 7→ (x(t), w(t))
denote the curvesx[i] andw[i], for i ∈ {1, . . . , n}.

Remark II.6 (Properties of control and communication
laws) A control and communication lawCC is:

(i) time-independent if all message-generation, state-
transition and control functions are time-independent;
in this caseCC can be described by maps of the form
msg[i] : X [i]×W [i]×I → L, stf[i] : X [i]×W [i]×Ln →
W [i], and ctl[i] : X [i] × X [i] × W [i] × Ln → U [i], for
i ∈ I;

(ii) static if W [i] is a singleton for all i ∈ I;
in this case CC can be described by a tuple
(T,L, {msg[i]}i∈I , {ctl[i]}i∈I), with msg[i] : T × X [i] ×
I → L, and ctl[i] : R≥0 × X [i] × X [i] × Ln → U [i], for
i ∈ I;

(iii) data-sampledif the control functions have the following
property: given a timet, a logic statew[i] ∈ W [i],
an array of messagesy[i] ∈ Ln, a current statex[i],
and a state at last sample timex

[i]
smpld, the control input

ctl[i](t, x[i], x
[i]
smpld, w

[i], y[i]) is independent ofx[i]. In
this case the control functions inCC can be described by
maps of the form ctl[i] : R≥0×X [i]×W [i]×Ln → U [i],
for i ∈ I. •

Remark II.7 (Idealized aspects of communication model)
We refer toCC as asynchronouscontrol and communication
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law because the communications between all agents takes
always place at the same time for all agents.

The setL is used to exchange information between two
robotic agents; the messagenull indicates no communica-
tion. We assume that the messages in the communication al-
phabetL allow us to encode logical expressions such astrue
andfalse, integers, and real numbers. A realistic assumption
on L would be to adopt a finite-precision representation for
integers and real numbers in the messages. Instead, in what
follows, we neglect any inaccuracies due to quantization.

In many uniform control and communication laws, the mes-
sages interchanged among the network agents are (quantized
representations of) the agents’ states and logic states. We
will identify the corresponding communication alphabet with
L = (X × W ) ∪ {null}; the message generation function
msgstd(t, x, w, j) = (x,w) is referred to as thestandard
message-generation function. •

Remark II.8 (Groups of robotic agents with relative-
position sensing)Although we focus on robots with com-
munication capabilities, at the cost of additional notation it
is possible to include sensors in our treatment. A control
and communication law can be implemented on a group of
robots that can sense each other’s relative position if the law
(1) is static and uniform, (2) relies on communicating only
the agents’ positions (e.g., the message-generation function
is the standard one), and (3) entails a control function that
only depends on relative positions (as opposed to absolute
positions). •

Remark II.9 (Congestion models)Two types of congestion
problems affect a robotic network. First,wireless transmissions
can interfere: nodei receives a message transmitted by nodej
only if all other neighbors ofi are silent, i.e., the transmission
medium is shared among the agents. As the density of agents
increases, so does wireless communication congestion. Forn
uniformly randomly placed nodes in a compact environment,
the maximum-throughput communication ranger(n) of each
node decreases [19] with the number of nodes; in ad-
dimensional environment the appropriate scaling law isr(n) ∈
Θ
(

d

√

log(n)/n
)

. This is referred to as the connectivity regime
in percolation theory and statistical mechanics. Second,agents
can collide: as the number of agents increases, so should the
area available for their motion or, vice-versa, their size should
shrink. In the approach proposed by [20] robots’ safety zones
decrease with decreasing robots’ speed. In other words, in ad-
dimensional environment, individual nodes of a large ensemble
have to move at a speed decreasing withn, and in particular,
at a speed proportional to1/ d

√
n. In summary, one way to

incorporate congestion effects into the robotic network model
is to assume that the parameters of the physical components
of the network depend upon the number of robots. •

C. The agree-and-pursue control and communication law

Here we present an example of a dynamic control and
communication law with the aim of illustrating the proposed
framework. The following coordination law is related to leader

election algorithms as studied in the distributed algorithms
literature, e.g., see [5] (more will be said about this analogy
in Remark IV.3), and to cyclic pursuit algorithms as studiedin
the control literature, e.g., see [21], [16]. Despite the apparent
simplicity, this example is remarkable in that it combines a
leader election task (in the logic variables) with a uniform
agent deployment task (in the state variables), arguably two of
the most basic tasks in distributed algorithms and cooperative
control, respectively. Another advantage of the agree-and-
pursue law is that its correctness and performance can be
characterized as we will show in Section IV.

We consider the uniform networkScircle of locally-connected
first-order agents inS1 introduced in Example II.3. We now
define the agree-and-pursue law, denoted byCCagr-pursuit, as
the uniform, time-independentand data-sampledlaw loosely
described as follows:

[Informal description] The logic variables are
drctn (the agent’s direction of motion) taking
values in{c,cc} (meaning clockwise and counter-
clockwise) andprior (the largest UID received by
the agent, initially set to the agent’s UID) taking
values in I. At each communication round, each
agent transmits its position and its logic variables.
Among the messages received from agents moving
towards its position, each agent picks the message
with the largest value ofprior. If this value
is larger than its own value, the agent resets its
logic variable with the selected message. Between
communication rounds, each agent moves in the
counterclockwise or clockwise direction depending
on whether its logic variabledrctn is cc or c.
For kprop ∈ ]0, 1

2 [, each agent moveskprop times
the distance to the immediately next neighbor in the
chosen direction, or, if no neighbors are detected,
kprop times the communication ranger.

Next, we define the law formally. Each agent has logic
variablesw = (w1, w2), wherew1 = drctn ∈ {cc,c}, with
arbitrary initial value, andw2 = prior ∈ I, with initial value
set equal to the agent’s identifieri. In other words, we define
W = {cc,c} × I, and we setW [i]

0 = {cc,c} × {i}. Each
agent i ∈ I operates with the standard message-generation
function, i.e., we setL = (S1 × W ) ∪ {null} and msg[i] =
msgstd, where msgstd(θ, w, j) = (θ, w). Define an ordering
in the logic setW by saying that(drctn1,prior1) >
(drctn2,prior2) if prior1 > prior2. Given a physical
stateθ ∈ S

1, a logic statew ∈ W and an array of messages
y ∈ Ln, the state-transition function is defined by

stf(θ, w, y) =

{

wmax, if wmax > w,

w, otherwise,

where

wmax = max{wrcvd ∈ W | (θrcvd, wrcvd) ∈ y such that

(distcc(θ, θrcvd) ≤ r and (wrcvd)1 = c) or

(distc(θ, θrcvd) ≤ r and (wrcvd)1 = cc)}.
For kprop ∈ R>0, given a logic statew ∈ W , an array of
messagesy ∈ Ln, and a state at last sample timeθsmpld, the
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data-sampled control function ctl(θsmpld, w, y) is

kpropmin({r} ∪ {distcc(θsmpld, θrcvd) | (θrcvd, wrcvd) ∈ y}),
if drctn = cc, and

−kpropmin({r} ∪ {distc(θsmpld, θrcvd) | (θrcvd, wrcvd) ∈ y}),
if drctn = c. An implementation of this control and
communication law is shown in Figure 1. As we will show
later, along the evolution, all agents agree upon a common
direction of motion and, after suitable time, they reach a
uniform distribution.

Fig. 1. The agree-and-pursue control and communication law inSection II-C
with N = 45, r = 2π/40, andkprop = 7/16. Disks and circles correspond
to agents moving counterclockwise and clockwise, respectively. The initial
positions and the initial directions of motion are randomly generated. The
five pictures depict the network state at times0, 9, 20, 100, 800.

III. C OORDINATION TASKS AND COMPLEXITY MEASURES

In this section we introduce concepts and tools useful to
analyze a control and communication law. We address the
following questions: What is a coordination task for a robotic
network? When does a control and communication law achieve
a task? And with what time and communication complexity?

A. Coordination tasks

Our first analysis step is to characterize the correctness
properties of a control and communication law. We do so
by defining the notion of task and of task achievement by
a robotic network.

Definition III.1 (Coordination task) Let S be a robotic net-
work and letW be a set.

(i) A coordination taskfor S is a map T :
∏

i∈I X [i] ×
Wn → BooleSet.

(ii) If W is a singleton, then the coordination task is
said to be static and can be described by a map
T :
∏

i∈I X [i] → BooleSet.

Additionally, letCC be a control and communication law forS.

(i) The lawCC is compatiblewith the taskT :
∏

i∈I X [i]×
Wn → BooleSet if its logic variables take values in
W, that is, if W [i] = W, for all i ∈ I.

(ii) The lawCC achievesthe taskT if it is compatible with
T and if, for all initial conditionsx

[i]
0 ∈ X

[i]
0 andw

[i]
0 ∈

W
[i]
0 , i ∈ I, the corresponding network evolutiont 7→

(x(t), w(t)) has the property that there existsT ∈ R>0

such thatT(x(t), w(t)) = true for all t ≥ T . •

Remark III.2 (Temporal logic) Loosely speaking, achieving
a task means obtaining and maintaining a specified pattern in
the agents’ positions or in their logic variables. In other words,
the task is achieved ifat some timeand for all subsequent

timesthe predicate evaluates to true along system trajectories.
It is possible to consider more general tasks through more
expressive predicates on trajectories. Such predicates can be
defined through various forms of temporal and propositional
logic, e.g., see [22]. •

Example III.3 (Direction-agreement and equidistance
tasks) Consider the uniform networkScircle of locally-
connected first-order agents inS1 and the agree-and-pursue
control and communication lawCCagr-pursuit with logic
variables taking values inW = {cc,c} × I. This
network and this law were introduced in Example II.3
and Example II-C, respectively. . There are two tasks
of interest. First, we define thedirection-agreement task
Tagrmnt: (S1)n ×Wn → BooleSet by Tagrmnt(θ, w) = true
if and only if

drctn[1] = · · · = drctn[n],

whereθ = (θ[1], . . . , θ[n]), w = (w[1], . . . , w[n]), andw[i] =
(drctn[i],prior[i]), i ∈ I. Second, forε ∈ R>0, we define
the staticequidistance taskTε-eqdstnc: (S1)n → BooleSet by
Tε-eqdstnc(θ) = true if and only if, for all i ∈ I,

∣

∣min
j 6=i

distc(θ
[i], θ[j]) − min

j 6=i
distcc(θ

[i], θ[j])
∣

∣ < ε.

In other words,Tε-eqdstnc is true when, for every agent, the
distance to the closest clockwise neighbor and to the closest
counterclockwise neighbor are approximately equal. •

B. Complexity notions for control and communication laws
and for coordination tasks

We are finally ready to define the key notions of time and
communication complexity. These notions describe the cost
that a certain control and communication law incurs while
completing a certain coordination task.

Definition III.4 (Time complexity) Let S be a robotic net-
work and letT be a coordination task forS. Let CC be a
control and communication law forS compatible withT.

(i) The (worst-case) time complexity to achieveT with CC
from (x0, w0) ∈

∏

i∈I X
[i]
0 ×∏i∈I W

[i]
0 is

TC(T, CC , x0, w0) = inf {ℓ |
T(x(tk), w(tk)) = true , for all k ≥ ℓ} ,

wheret 7→ (x(t), w(t)) is the evolution of(S, CC) from
the initial condition(x0, w0).

(ii) The (worst-case) time complexity to achieveT with
CC is

TC(T, CC) = sup
{

TC(T, CC , x0, w0) |

(x0, w0) ∈
∏

i∈I

X
[i]
0 ×

∏

i∈I

W
[i]
0

}

. •

The time complexity of a task can be also defined by taking
the infimum among all compatible laws that achieve it.

Next, we define the notions of mean and total communica-
tion complexities for an algorithm. We begin by discussing
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the cost of realizing one communication round. At each
communication round, each agent generates a certain number
of messages, destined to neighboring agents as defined by the
communication edge map. We indicate the set of all non-null
messages generated during one communication round with

M(t, x, w)={(i, j) ∈ Ecmm(x) | msg[i](t, x[i], w[i], j) 6= null}.
To compute the cost of delivering all such messages to the
intended recipients, we introduce the following function.

Definition III.5 (One-round cost) A functionCrnd: 2I×I →
R≥0 is a one-round cost functionif Crnd(∅) = 0, and S1 ⊂
S2 ⊂ I × I implies Crnd(S1) ≤ Crnd(S2). A one-round cost
functionCrnd is additiveif, for all S1, S2 ⊂ I × I, S1 ∩S2 = ∅
impliesCrnd(S1 ∪ S2) = Crnd(S1) + Crnd(S2). •

More specific detail about the communication cost depends
necessarily on the type of communication service (e.g., unidi-
rectional versus omnidirectional) available between the agents.
We postpone our discussion about specific functionsCrnd to
the next subsection.

Definition III.6 (Communication complexity) Let S be a
robotic network,CC be a control and communication law that
achieves the taskT, and Crnd be a one-round cost function.

(i) The (worst-case) mean communication complexityand
the (worst-case) total communication complexityto
achieve T with CC from (x0, w0) ∈ ∏

i∈I X
[i]
0 ×

∏

i∈I W
[i]
0 are, respectively,

MCC(T, CC , x0, w0) =
1

λ

λ−1
∑

ℓ=0

Crnd ◦M(tℓ, x(tℓ), w(tℓ)),

TCC(T, CC , x0, w0) =

λ−1
∑

ℓ=0

Crnd ◦M(tℓ, x(tℓ), w(tℓ)),

where λ = TC(CC , T, x0, w0) and t 7→ (x(t), w(t))
is the evolution of(S, CC) from the initial condition
(x0, w0). (Here MCC is defined only for(x0, w0) with
the property thatT(x0, w0) = false.)

(ii) The (worst-case) mean communication complexity
and the (worst-case) total communication complex-
ity to achieve T with CC are the supremum of
{MCC(T, CC , x0, w0) | (x0, w0) ∈ ∏

i∈I X
[i]
0 ×

∏

i∈I W
[i]
0 } and {TCC(T, CC , x0, w0) | (x0, w0) ∈

∏

i∈I X
[i]
0 ×∏i∈I W

[i]
0 }, respectively. •

Note that by (worst-case) mean communication complexity we
intend the worst-case over all initial conditions and the mean
over the time required to achieve the task.

Remark III.7 (Infinite-horizon mean communication com-
plexity) The mean communication complexityMCC measures
the average cost of the communication rounds required to
achieve a task over a finite time horizon; a similar statement
holds for the total communication complexityTCC. One
might be interested in a notion of mean communication
complexity required to maintain true the task for all times.

Accordingly, the infinite-horizon mean communication com-
plexity of CC from initial condition (x0, w0) is

IH-MCC(CC , x0, w0) = lim
λ→+∞

1

λ

λ
∑

ℓ=0

Crnd◦M(tℓ, x(tℓ), w(tℓ)) .

Note that a similar notion is presented in [11] for a different
robotic network model. •

Remark III.8 (Communication costs in unidirectional and
omnidirectional wireless channels)Here we discuss some
modeling aspects of the one-round communication cost func-
tion described in Definition III.5. Broadly speaking, it is
difficult to encompass with a single abstract model the cost
of all possible communication technologies. Inunidirectional
models of communication (e.g., wireless networks with uni-
directional antennas) messages are sent in a point-to-point
fashion. For this model, we make the simplified convention
that Crnd(M) is proportional to the number messages inM,
that is, Crnd(M) = c0 · cardinality(M), where c0 ∈ R>0

is the cost of sending a single message. This one-round cost
function is additive. This number is trivially upper bounded
by twice the number of edges of the complete graph, which
is n(n − 1). Therefore, we haveMCCunidir(T) ∈ O(n2).

In omnidirectionalmodels of communication (e.g., wireless
networks equipped with omnidirectional antennas), a single
transmission made by a node can be heard by several other
nodes simultaneously. For this model, we make the simplified
convention thatCrnd(M) is proportional to the number of
turns employed to complete a communication round without
interference between the agents (this choice is related to
the well-studied media access control problem in wireless
communications). This number is trivially upper bounded
by n. Therefore, we haveMCComnidir(T) ∈ O(n). •

C. Law rescheduling for driftless agents

In this section, we discuss the invariance properties of the
notions of time and communication complexity under the
reschedulingof a control and communication law. The idea
behind rescheduling is to “spread” the execution of the law
over time without affecting the trajectories described by the
robotic agents. Our objective is to formalize this idea and to
examine the effect on the notions of complexity introduced
earlier. For simplicity we consider the setting of static laws;
similar results can be obtained for the general setting.

Let S = (I,A, Ecmm) be a robotic network where each
physical agent is a driftless control system. LetCC =
(N0,L, {msg[i]}i∈I , {ctl[i]}i∈I) be a static control and com-
munication law. Next, we define a new control and commu-
nication law by modifyingCC ; to do so we introduce some
notation. Lets ∈ N, with s ≤ n, and letPI = {I0, . . . , Is−1}
be ans-partition of I, that is,I0, . . . , Is−1 ⊂ I are disjoint
and nonempty andI = ∪s−1

k=0Ik. For i ∈ I, define the message-
generation functions msg[i]

PI
: N0 × X [i] × I → L by

msg[i]PI
(tℓ, x, j) = msg[i](t⌊ℓ/s⌋, x, j), (1)

if i ∈ Ik and k = ℓ(mods), and msg[i]PI
(tℓ, x, j) = null

otherwise. According to this message-generation function,
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only the agents with unique identifier inIk will send messages
at time tℓ, with ℓ ∈ {k + as}a∈N0

. Equivalently, this can be
stated as follows: according to (1), the messages originally
sent at the time instanttℓ are now rescheduled to be sent at
the time instantstF (ℓ)−s+1, . . . , tF (ℓ), whereF : N0 → N0 is
defined byF (ℓ) = s(ℓ+1)− 1. Figure 2 illustrates this idea.

tF (ℓ)+1tF (ℓ)−s+1

. . .

tℓ tℓ+1

. . .

tF (ℓ)

Fig. 2. Under the rescheduling, the messages that are sent at the time
instant tℓ under the control and communication lawCC are rescheduled to
be sent over the time instantstF (ℓ)−s+1, . . . , tF (ℓ) under the control and
communication lawCC (s,PI ).

For i ∈ I, define the control functions ctl[i] : R≥0 × X [i] ×
X [i] × Ln → U [i] by

ctl[i]PI
(t, x, xsmpld, y)

=
tF−1(ℓ)+1 − tF−1(ℓ)

tℓ+1 − tℓ
· ctl[i] (hℓ(t), x, xsmpld, y) , (2)

if t ∈ [tℓ, tℓ+1] andℓ = −1(mods), and ctl[i]PI
(t, x, xsmpld, y) =

0 otherwise. HereF−1 : N0 → N0 is the inverse ofF , defined
by F−1(ℓ) = (ℓ + 1)/s − 1, and for ℓ = −1(mods), the
function hℓ : [tℓ, tℓ+1] → [tF−1(ℓ), tF−1(ℓ)+1] is the unique
linear map between the two time intervals. Roughly speaking,
the control law ctl[i]PI

makes the agenti wait for the time
intervals [tℓ, tℓ+1], with ℓ ∈ {as − 1}a∈N, to execute any
motion. Accordingly, the evolution of the robotic network
under the original lawCC during the time interval[tℓ, tℓ+1]
now takes place when all the corresponding messages have
been transmitted, i.e., along the time interval[tF (ℓ), tF (ℓ)+1].
The following definition summarizes this construction.

Definition III.9 (Rescheduling of control and commu-
nication laws) Let S = (I,A, Ecmm) be a robotic
network with driftless physical agents, and letCC =
(N0,L, {msg[i]}i∈I , {ctl[i]}i∈I) be a static control and com-
munication law. Lets ∈ N, with s ≤ n, and let PI be
an s-partition of I. The control and communication law
CC (s,PI) = (N0,L, {msg[i]PI

}i∈I , {ctl[i]PI
}i∈I) defined by equa-

tions (1) and (2) is called aPI -rescheduling ofCC . •

The following result shows that the total communication
complexity ofCC remains invariant under rescheduling.

Proposition III.10 (Invariance under rescheduling) With
the assumptions of Definition III.9, letT :

∏

i∈I X [i] →
BooleSet be a coordination task forS. Then, for all
x0 ∈∏i∈I X

[i]
0 ,

TC(T, CC (s,PI), x0) = s · TC(T, CC , x0) .

Moreover, ifCrnd is additive, then, for allx0 ∈∏i∈I X
[i]
0

MCC(T, CC (s,PI), x0) =
1

s
· MCC(T, CC , x0) ,

and, therefore,TCC(T, CC (s,PI), x0) = TCC(T, CC , x0), i.e.,
the total communication complexity ofCC is invariant under
rescheduling. •

Proof: Let t 7→ x(t) and t 7→ x̃(t) denote the network
evolutions starting fromx0 ∈ ∏

i∈I X
[i]
0 under CC and

CC (s,PI), respectively. From the definition of rescheduling, one
can verify that, for allk ∈ N0,

x̃[i](t) =

{

x̃[i](tF (k−1)+1), for t ∈ ⋃F (k)−1
ℓ=F (k−1)+1[tℓ, tℓ+1] ,

x[i](hF (k)(t)), for t ∈ [tF (k), tF (k)+1] .
(3)

By definition of TC(T, CC , x0), we haveT(x(tk)) = true,
for all k ≥ TC(T, CC , x0), and T(x(tTC(T,CC ,x0)−1)) =
false. Let us rewrite these equalities in terms of the trajecto-
ries of CC (s,PI). From equation (3), one can writex[i](tk) =

x[i](hF (k)(tF (k))) = x̃[i](tF (k)), for all i ∈ I and k ∈ N0.
Therefore, we have

T(x̃(tF (k))) = T(x(tk)) = true,

for all F (k) ≥ F (TC(T, CC , x0)), and

T(x̃(tF (TC(T,CC ,x0)−1))) = T(x(tTC(T,CC ,x0)−1)) = false,

where we have used the rescheduled message-generation
function in (1). Now, note that by equation (3),̃x[i](tℓ) =
x̃[i](tF (⌊ℓ/s⌋−1)+1), for all ℓ ∈ N0 and all i ∈ I. Therefore,
T(x̃(tF (TC(T,CC ,x0)−1)+1)) = T(x̃(tF (TC(T,CC ,x0)))) and we
can rewrite the previous identities as

T(x̃(tk)) = true,

for all k ≥ F (TC(T, CC , x0) − 1) + 1, and

T(x̃(tF (TC(T,CC ,x0)−1))) = false,

which imply thatTC(T, CC (s,PI), x0) = F (TC(T, CC , x0) −
1) + 1 = sTC(T, CC , x0). As for the mean communication
complexity, additivity ofCrnd implies

Crnd ◦M(tℓ, x(tℓ)) = Crnd ◦M(tF (ℓ)−s+1, x̃(tF (ℓ)−s+1))+

· · · + Crnd ◦M(tF (ℓ), x̃(tF (ℓ))),

where we have usedF (ℓ−1)+1 = F (ℓ)−s+1. We conclude
the proof by computing

λ1−1
∑

ℓ=0

Crnd ◦M(tℓ, x̃(tℓ)) =

F (λ2−1)
∑

ℓ=0

Crnd ◦M(tℓ, x̃(tℓ))

=

λ2−1
∑

ℓ=0

F (ℓ)
∑

k=F (ℓ)−s+1

Crnd ◦M(tk, x̃(tk))

=

λ2−1
∑

ℓ=0

Crnd ◦M(tℓ, x(tℓ)),

whereλ1 = TC(T, CC (s,PI), x0) andλ2 = TC(T, CC , x0).

Remark III.11 (Appropriate complexity notions for drift-
less agents)Given the results in the previous theorem, one
should be careful in choosing what notion of communication
complexity to evaluate control and communication laws. For
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driftless physical agents, rather than themean communica-
tion complexity MCC, one should really consider thetotal
communication complexityTCC, since the latter is invariant
with respect to rescheduling. Note that the notion of infinite-
horizon mean communication complexityIH-MCC defined
in Remark III.7 satisfies the same relationship asMCC, that
is, IH-MCC(CC (s,PI), x0) = 1

s IH-MCC(CC , x0) for any s-
partitionPI of I. •

IV. D IRECTION-AGREEMENT AND EQUIDISTANCE

As introduced in Examples II.3, II-C and III.3, consider the
uniform networkScircle of locally-connected first-order agents
in S

1, the agree-and-pursue control and communication law
CCagr-pursuit, and the two coordination tasksTagrmntandTε-eqdstnc.
The following result characterizes the complexity to achieve
these coordination tasks withCCagr-pursuit.

Motivated by Remark II.9, we model wireless communi-
cation congestion by assuming that the communication range
is a monotone non-increasing functionr : N → ]0, 2π[ of the
number of agentsn. It is convenient to define the function
n 7→ δ(n) = nr(n) − 2π that compares the sum of the
communication ranges of all the robots with the length of the
unit circle.

Theorem IV.1 (Time complexity of agree-and-pursue law)
In the limit asn → +∞ and ε → 0+, the networkScircle, the
law CCagr-pursuit, and the tasksTagrmnt and Tε-eqdstnc together
satisfy:

(i) TC(Tagrmnt, CCagr-pursuit) ∈ Θ(r(n)−1);
(ii) if δ(n) is lower bounded by a positive constant asn →

+∞, then

TC(Tε-eqdstnc, CCagr-pursuit) ∈ Ω(n2 log(nε)−1),

TC(Tε-eqdstnc, CCagr-pursuit) ∈ O(n2 log(nε−1)).

If δ(n) is lower bounded by a negative constant, then
CCagr-pursuit does not achieveTε-eqdstnc in general. •

Proof: In the following four STEPSwe prove the two
upper bounds and the two lower bounds.STEP 1:We start
by proving the upper bound in statement (i). We claim that
TC(Tagrmnt, CCagr-pursuit) ≤ 2π/(kpropr(n)), and we reason by
contradiction, i.e., we assume that there exists an initialcon-
dition which gives rise to an execution with time complexity
strictly larger than2π/(kpropr(n)). Without loss of generality,
assumedrctn[n](0) = c. For ℓ ≤ 2π/(kpropr(n)), define

k(ℓ) = argmin{distcc(θ
[n](0), θ[i](ℓ)) |

drctn[i](ℓ) = cc, i ∈ I}.
In other words, agentk(ℓ) is the agent moving counterclock-
wise that has smallest counterclockwise distance from the
initial position of agentn. Note that k(ℓ) is well-defined
since, by hypothesis of contradiction,Tagrmnt is false for
ℓ ≤ 2π/(kpropr(n)). According to the state-transition function
of CCagr-pursuit (cf. Section II-C), messages withdrctn =
cc can only travel counterclockwise, while messages with
drctn = c can only travel clockwise. Therefore, the position
of agentk(ℓ) at timeℓ can only belong to the counterclockwise

interval from the position of agentk(0) at time 0 to the
position of agentn at time0.

Let us examine how fast the message from agentn travels
clockwise. To this end, forℓ ≤ 2π/(kpropr(n)), define

j(ℓ) = argmax{distc(θ
[n](0), θ[i](ℓ)) |

prior[i](ℓ) = n, i ∈ I}.

In other words, agentj(ℓ) hasprior equal ton, is moving
clockwise, and is the agent furthest from the initial position of
agentn in the clockwise direction with these two properties.
Initially, j(0) = n. Additionally, for ℓ ≤ 2π/(kpropr(n)), we
claim that

distc(θ
[j(ℓ)](ℓ), θ[j(ℓ+1)](ℓ + 1)) ≥ kpropr(n).

This happens because either (1) there is no agent clockwise-
ahead ofθ[j(ℓ)](ℓ) within clockwise distancer and, therefore,
the claim is obvious, or (2) there are such agents. In case (2),
let m denote the agent whose clockwise distance to agentj(ℓ)
is maximal within the set of agents with clockwise distancer
from θ[j(ℓ)](ℓ). Then,

distc(θ
[j(ℓ)](ℓ), θ[j(ℓ+1)](ℓ + 1))

= distc(θ
[j(ℓ)](ℓ), θ[m](ℓ + 1))

= distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) + distc(θ

[m](ℓ), θ[m](ℓ + 1))

≥ distc(θ
[j(ℓ)](ℓ), θ[m](ℓ))

+ kprop
(

r − distc(θ
[j(ℓ)](ℓ), θ[m](ℓ))

)

= kpropr + (1 − kprop) distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) ≥ kpropr,

where the first inequality follows from the fact that at time
ℓ there can be no agent whose clockwise distance to agent
m is less than(r − distc(θ

[j(ℓ)](ℓ), θ[m](ℓ))). Therefore, af-
ter 2π/(kpropr(n)) communication rounds, the message with
prior = n has traveled the whole circle in the clockwise
direction, and must therefore have reached agentk(ℓ). This is
a contradiction.

STEP 2:We now prove the lower bound in statement (i).
If r(n) > π for all n, then 1/r(n) < 1/π, and the
upper bound readsTC(Tagrmnt, CCagr-pursuit) ∈ O(1). Obvi-
ously, the time complexity of any evolution with an initial
configuration wheredrctn[i](0) = cc for i ∈ {1, . . . , n −
1}, drctn[n](0) = c and Er-disk(θ

[1](0), . . . , θ[n](0)) is
the complete graph, is lower bounded by1. Therefore,
TC(Tagrmnt, CCagr-pursuit) ∈ Ω(1). If r(n) > π for all n, then
we concludeTC(Tagrmnt, CCagr-pursuit) ∈ Θ(r(n)−1). Assume
now thatr(n) ≤ π for sufficiently largen. Consider an initial
configuration wheredrctn[i](0) = cc for i ∈ {1, . . . , n−1},
drctn[n](0) = c, and the agents are placed as depicted in
Figure 3. Note that, after each communication round, agent1
has movedkpropr(n) in the counterclockwise direction, while
agentn has movedkpropr(n) in the clockwise direction. These
two agents keep moving at full speed towards each other until
they become neighbors at a time lower bounded by

2π − r(n)

2kpropr(n)
>

π

kpropr(n)
− 1.

We concludeTC(Tagrmnt, CCagr-pursuit) ∈ Ω(r(n)−1).
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N − 1

1

N

Fig. 3. Initial network configuration useful to establish the lower bound
of TC(Tagrmnt, CCagr-pursuit). We setdistc(θ[n−1](0), θ[n](0)) ∈ ]r, r + ε′[
anddistc(θ[1](0), θ[n−1](0)) ∈ ]0, ε′[, for someε′ > 0.

STEP 3:We now prove the upper bound in (ii). We begin
by noting that the lower bound onδ implies r(n)−1 ∈
O(n). Therefore, TC(Tagrmnt, CCagr-pursuit) belongs to O(n)
and is negligible as compared with the claimed upper bound
estimates forTC(Tε-eqdstnc, CCagr-pursuit). In what follows, we
therefore assume thatTagrmnt has been achieved and that,
without loss of generality, all agents are moving clockwise.
We now prove a fact regarding connectivity. At timeℓ ∈ N0,
let H(ℓ) be the union of all the empty “circular segments” of
length at leastr, that is, let

H(ℓ) = {x ∈ S
1 | min

i∈I
distc(x, θ[i](ℓ))

+ min
j∈I

distcc(x, θ[j](ℓ)) > r}.

In other words,H(ℓ) does not contain any point between two
agents separated by a distance less thanr, and each connected
component ofH(ℓ) has length at leastr. Let nH(ℓ) be the
number of connected components ofH(ℓ), if H(ℓ) is empty,
then we take the convention thatnH(ℓ) = 0. Clearly,nH(ℓ) ≤
n. We claim that, ifnH(ℓ) > 0, then t 7→ nH(ℓ + t) is non-
increasing. Letd(ℓ) < r be the distance between any two
consecutive agents at timeℓ. Because both agents move in the
same direction, a simple calculation shows that

d(ℓ + 1) ≤ d(ℓ) + kprop(r − d(ℓ)) = (1 − kprop)d(ℓ) + kpropr

< (1 − kprop)r + kpropr = r.

This means that the two agents remain within distancer and,
therefore connected, at the following time instant. Because
the number of connected components ofEr(θ

[1], . . . , θ[n])
does not increase, it follows that the number of connected
components ofH cannot increase. Next, we claim that, if
nH(ℓ) > 0, then there existst > ℓ such thatnH(t) <
nH(ℓ). By contradiction, assumenH(ℓ) = nH(t) for all
t > ℓ. Without loss of generality, let{1, . . . ,m} be a set of
agents with the properties thatdistcc

(

θ[i](ℓ), θ[i+1](ℓ)
)

≤ r,
for i ∈ {1, . . . ,m}, that θ[1](ℓ) and θ[m](ℓ) belong to the
boundary ofH(ℓ), and that there is no other set with the
same properties and more agents. (Note that this implies that
the agents1, . . . ,m are in counterclockwise order.) One can
show that, forτ ≥ ℓ,

θ[1](τ + 1) = θ[1](τ) − kpropr,

θ[i](τ + 1) = θ[i](τ) − kpropdistc(θ
[i](τ), θ[i−1](τ)),

for i ∈ {2, . . . ,m}. If we define d(τ) =
(

distcc(θ
[1](τ), θ[2](τ)), . . . , distcc(θ

[m−1](τ), θ[m](τ))
)

∈

R
m−1
>0 , then the previous equations can be rewritten as

d(τ + 1) = Tridm−1(kprop, 1 − kprop, 0) d(τ)

+ r[kprop, 0, · · · , 0]T ,

where the linear map(a, b, c) 7→ Tridm−1(a, b, c) ∈
R

(m−1)×(m−1) is defined in Appendix A. This is a discrete-
time affine time-invariant dynamical system with unique equi-
librium point r(1, . . . , 1). By Theorem A.3(ii) in Appendix A,
for η1 ∈ ]0, 1[, the solutionτ 7→ d(τ) to this system reaches
a ball of radiusη1 centered at the equilibrium point in time
O(m log m + log η−1

1 ). (Here we used the fact that the initial
condition of this system is bounded.) In turn, this implies
that τ 7→ ∑m

i=1 di(τ) is larger than(m − 1)(r − η1) in
time O(m log m + log η−1

1 ). We are now ready to find the
contradiction and show thatnH(τ) cannot remain equal to
nH(ℓ) for all time τ . After time O(m log m + log η−1

1 ) =
O(n log n + log η−1

1 ), we have:

2π ≥ nH(ℓ)r +

nH(ℓ)
∑

j=1

(r − η1)(mj − 1)

= nH(ℓ)r + (n − nH(ℓ))(r − η1) = nH(ℓ)η1 + n(r − η1).

Herem1, . . . ,mnH(ℓ) are the number of agents in each isolated
group, and each connected component ofH(ℓ) has length at
leastr. Now, takeη1 = (nr − 2π)n−1 = δ(n)n−1, and the
contradiction follows from

2π ≥ nH(ℓ)η1 + nr − nη1

= nH(ℓ)η1 + nr + 2π − nr = nH(ℓ)η1 + 2π.

In summary, this shows that the number of connected compo-
nents ofH decreases by one in timeO(n log n + log η−1

1 ) =
O(n log n + log(nδ−1(n))). Note thatδ being lower bounded
implies nδ−1(n) = O(n) and, therefore,O(n log n +
log(nδ−1(n))) = O(n log n). Iterating this argumentn times,
in time O(n2 log n) the setH will become empty. At that
time, the resulting network will obey the discrete-time linear
time-invariant dynamical system:

d(τ + 1) = Circn(kprop, 1 − kprop, 0) d(τ), (4)

where the linear map(a, b, c) 7→ Circn(a, b, c) ∈
R

n×n is defined in Appendix A. Here d(τ) =
(

distcc(θ
[1](τ), θ[2](τ)), . . . ,distcc(θ

[n](τ), θ[n+1](τ))
)

∈
R

n
>0, with the conventionθ[n+1] = θ[1]. By Theorem A.3(iii)

in Appendix A, in time O
(

n2 log ε−1
)

, the error 2-
norm satisfies the contraction inequality‖d(τ) − d∗

∥

∥

2
≤

ε‖d(0)−d∗‖2, for d∗ = 2π
n 1. We convert this inequality on2-

norms into an appropriate inequality on∞-norms as follows.
Note that‖d(0) − d∗‖∞ = maxi∈I |d[i](0) − d

[i]
∗ | ≤ 2π. For

η2 ∈ ]0, 1[ and forτ of ordern2 log η−1
2 ,

‖d(τ) − d∗‖∞ ≤ ‖d(τ) − d∗‖2 ≤ η2‖d(0) − d∗‖2

≤ η2

√
n‖d(0) − d∗‖∞ ≤ η22π

√
n.

This means that the desired configuration is achieved
for η22π

√
n = ε, that is, in time O(n2 log η−1

2 ) =
O(n2 log(nε−1)). In summary, the equidistance task is
achieved in timeO(n2 log(nε−1)).
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STEP 4: Finally, we prove the lower bound in (ii).
As before, TC(Tagrmnt, CCagr-pursuit) is negligible as
compared with the claimed lower bound estimate for
TC(Tε-eqdstnc, CCagr-pursuit) and, therefore, we assume
that Tagrmnt has been achieved. We consider an initial
configuration with the properties that (i) agents are
counterclockwise-ordered according to their unique identifier,
(ii) the set H is empty, and (iii) the inter-agent distances
d(0) =

(

distcc(θ
[1](0), θ[2](0)), . . . ,distcc(θ

[n](0), θ[1](0))
)

are given by

d(0) =
2π

n
1 +

π − ε′

n
(vn + vn),

where ε′ ∈ ]π, 0[ and wherevn is the eigenvector of
Circn(kprop, 1 − kprop, 0) corresponding to the eigenvalue
1 − kprop + kpropcos

(

2π
n

)

− kprop
√
−1 sin

(

2π
n

)

(see equa-
tion (A.7) in Appendix A). One can verify thatvn + vn =
2(1, cos(2π/n), . . . , cos((n−1)2π/n)) and that‖vn+vn‖2 =√

2n. In turn, this implies thatd(0) ∈ R
n
>0 and that‖d(0) −

2π
n 1‖2 ∈ O(1/

√
n). Takeη3 ∈ ]0, 1[. The argument described

in the proof of Theorem A.3(iii) leads to the following state-
ment: the2-norm of the difference betweent 7→ d(t) and the
desired configuration2π

n 1 decreases by a factorη3 in time of
ordern2 log η−1

3 . Given an initial error of orderO(1/
√

n) and
a final desired error of orderε, we setη3 = ε

√
n and obtain

the desired result that it takes time of ordern2 log(nε)−1 to
reduce the2-norm error, and therefore, the∞-norm error to
sizeε. This concludes the proof.

To conclude this section, we study the total communication
complexity of the agree-and-pursue control and communica-
tion law. We consider the case of a unidirectional communi-
cation model with one-round cost function depending linearly
on the cardinality of the communication graph.

Theorem IV.2 (Total communication complexity of agree-
and-pursue law) In the limit asn → +∞ and ε → 0+, the
networkScircle, the lawCCagr-pursuit, and the tasksTagrmnt and
Tε-eqdstnc together satisfy:

(i) if δ(n) ≥ π(1/kprop− 2) as n → +∞, then

TCCunidir(Tagrmnt, CCagr-pursuit) ∈ Θ(n2r(n)−1),

otherwise ifδ(n) ≤ π(1/kprop− 2) as n → +∞, then

TCCunidir(Tagrmnt, CCagr-pursuit) ∈ Ω(n3 + nr(n)−1),

TCCunidir(Tagrmnt, CCagr-pursuit) ∈ O(n2r(n)−1);

(ii) if δ(n) is lower bounded by a positive constant asn →
+∞, then

TCCunidir(Tε-eqdstnc, CCagr-pursuit)∈ Ω(n3δ(n) log(nε)−1),

TCCunidir(Tε-eqdstnc, CCagr-pursuit)∈ O(n4 log(nε−1)). •

Proof: The upper bounds in (i) and (ii) follow imme-
diately from the inequalityTCC(T, CC) ≤ MCC(T, CC) ·
TC(T, CC) and from the fact that the number of edges in
Er-disk is in O(n2). To prove the lower bounds we follow the
steps and notation in the proof of Theorem IV.1. Regarding
the lower bounds in (i), we examine the evolution of the
initial configuration depicted in Figure 3. FromSTEP 2: in

the proof of Theorem IV.1, recall that the time it takes agent1
to receive the message withprior = n is lower bounded by
π/(kpropr(n)) − 1. Our proof strategy is to lower bound the
number of edges in the graph until this event happens. Note
that, at initial time, there are(n− 1)2 edges in the communi-
cation graph of the network, and therefore,(n−1)2 messages
get transmitted. At the next communication round, agent1 has
movedkpropr(n) counterclockwise and, therefore, the number
of edges is lower bounded by(n−2)2. Iterating this reasoning,
we see that afteri < π/(kpropr(n)) communication rounds,
the number of edges is lower bounded by(n − i)2. Now, if
δ(n) > π(1/kprop− 2), thenn > π/kpropr(n)), and therefore,
the total communication complexity is lower bounded by

π

kpropr(n)
∑

i=1

(n − i)2 ∈ Ω(n2r(n)−1).

On the other hand, ifδ(n) < π(1/kprop − 2), then n <
π/kpropr(n)), and aftern time steps, we lower bound the
number of edges in the communication graph by the number
of edges in a chain of lengthn, that is,n − 1. Therefore, the
total communication complexity is lower bounded by

n
∑

i=1

(n − i)2 + (n − 1)
( π

kpropr(n)
− n

)

∈ Ω(n3 + nr(n)−1).

The two lower bounds match whenδ(n) = π(1/kprop− 2).
Regarding the lower bound in (ii), we consider first the case

whennH(0) = 0. In this case, the network obeys the discrete-
time linear time-invariant dynamical system (4). Considerthe
initial conditiond(0) that we adopted forSTEP 4:. We know it
takes time of ordern2 log(nε)−1 for the appropriate contrac-
tion property to hold. Atd(0), the maximal inter-agent distance
is (4π − ε′)/n and it decreases during the evolution. Because
each robot can communicate with any other robot within a
distancer(n), the number of agents within communication
range of a given agent is of orderr(n)n/(4π − ε′), that is, of
orderδ(n). From here we deduce that the total communication
complexity belongs toΩ(n3δ(n) log(nε)−1).

Remark IV.3 (Comparison with leader election) Let us
compare the agree-and-pursue control and communication
law with the classical Lann-Chang-Roberts (LCR) algorithm
for leader election (see [5, Chapter 3.3]). The leader election
task consists of electing a unique agent among all agents
in the network; it is therefore different from, but closely
related to, the coordination taskTagrmnt. The LCR algorithm
operates on a static network with the ring communication
topology, and achieves leader election with time and total
communication complexity, respectively,Θ(n) and Θ(n2).
The agree-and-pursue law operates on a robotic network with
the r(n)-disk communication topology, and achievesTagrmnt

with time and total communication complexity, respectively,
Θ(r(n)−1) and O(n2r(n)−1). If wireless communication
congestion is modeled byr(n) of order1/n as in Remark II.9,
then the two algorithms have identical time complexity and
the LCR algorithm has better communication complexity.
Note that computations on a possibly disconnected, dynamic
network are more complex than on a static ring topology.•
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V. CONCLUSIONS

We have introduced a formal model for the design and
analysis of coordination algorithms executed by networks of
robotic agents. In this framework motion coordination algo-
rithms are formalized as feedback control and communication
laws. Drawing analogies with the discipline of distributed
algorithms, we have defined two measures of complexity for
control and communication laws: the time and the communi-
cation complexity to achieve a specific task. We have defined
the notion of re-scheduling of a control and communication
law and analyzed the invariance of the proposed complexity
measures under this operation. These concepts and results
are illustrated in a network of locally connected agents on
the circle executing a novel “agree-and-pursue” coordination
algorithm that combines elements of the leader election and
cyclic pursuit problems.

The proposed notions allow us to compare the scalability
properties of different coordination algorithms with regards
to performance and communication costs. Numerous avenues
for future research appear open. An incomplete list include:
(i) modeling of asynchronous networks (see however [23],
[24], [9]); (ii) robustness analysis with respect to failures
in the agents (arrivals/departures) and in the communication
links (see however [18], [25], [26], [27]); (iii) probabilistic
versions of the complexity measures that capture, for in-
stance, the expected performance and cost of coordination
algorithms (see however [11]); (iv) quantization and delays
in the communication channels (see however [28] and the
literature on quantized control); and (v) parallel, sequential,
and hierarchical composition of control and communication
laws. On the algorithmic side, the companion paper [17] pro-
vides time-complexity estimates for coordination algorithms
that achieve rendezvous and deployment, and discusses other
open questions.
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APPENDIX A
TRIDIAGONAL TOEPLITZ AND CIRCULANT DYNAMICAL

SYSTEMS

This section presents some key facts about convergence
rates of discrete-time dynamical systems defined by certain
classes of Toeplitz matrices, see [29]. To the best of our
knowledge, the results presented below in Theorem A.3 on
tridiagonal Toeplitz matrices and in Theorem A.4 are novel
contributions. The results on stochastic circulant matrices
in Theorem A.3 are related to the literature on Markov
chains [30], see also the recent developments in [31], [32].
For n ≥ 2 anda, b, c ∈ R, define then × n Toeplitz matrices
Tridn(a, b, c) andCircn(a, b, c) by

Tridn(a, b, c) =















b c 0 . . . 0
a b c . . . 0
...

. ..
. . .

. ..
...

0 . . . a b c
0 . . . 0 a b















,

and

Circn(a, b, c)=Tridn(a, b, c) +















0 . . . . . . 0 a
0 . . . . . . 0 0
...

.. .
.. .

. . .
...

0 0 . . . 0 0
c 0 . . . 0 0















.

The matricesTridn(a, b, c) and Circn(a, b, c) are tridiagonal
and circulant, respectively, and only differ in their(1, n)
and (n, 1) entries. Note our convention thatC2(a, b, c) =
[

b a + c
a + c b

]

. The following results are discussed, for ex-

ample, in [29, Example 7.2.5 and Exercise 7.2.20].

Lemma A.1 (Eigenvalues of tridiagonal Toeplitz and cir-
culant matrices) For n ≥ 2 and a, b, c ∈ R, the following
statements hold:

(i) for ac 6= 0, the eigenvalues and eigenvectors of
Tridn(a, b, c) are, for i ∈ {1, . . . , n},

b + 2c

√

a

c
cos

(

iπ

n + 1

)

, and

[ (a

c

)1/2

sin

(

iπ

n + 1

)

, . . . ,
(a

c

)n/2

sin

(

niπ

n + 1

)

]T

;

(ii) the eigenvalues and eigenvectors ofCircn(a, b, c) are,
for ω = exp(2π

√
−1

n ) and for i ∈ {1, . . . , n},

b + (a + c) cos

(

i2π

n

)

+
√
−1(c − a) sin

(

i2π

n

)

, and

[

1, ωi, · · · , ω(n−1)i
]T

. •

Remarks A.2 (i) The set of eigenvalues ofTridn(a, b, c)
is contained in the real interval[b − 2

√
ac, b + 2

√
ac],

if ac ≥ 0, and in the interval in the complex plane
[b − 2

√
−1
√

|ac|, b + 2
√
−1
√

|ac|], if ac ≤ 0.
(ii) The set of eigenvalues ofCircn(a, b, c) is contained in

the ellipse on the complex plane with centerb, horizontal
axis 2|a + c| and vertical axis2|c − a|.

(iii) Recall from [29] that (1) a square matrix is normal if it
has a complete orthonormal set of eigenvectors, (2) cir-
culant matrices and real-symmetric matrices are normal,
and (3) if a normal matrix has eigenvalues{λ1, . . . , λn},
then its singular values are{|λ1|, . . . , |λn|}. •

We can now state the main result of this section.

Theorem A.3 (Tridiagonal Toeplitz and circulant dynam-
ical systems)Let n ≥ 2, ε ∈ ]0, 1[, and a, b, c ∈ R. Let
x : N0 → R

n and y : N0 → R
n be solutions to

x(ℓ + 1) = Tridn(a, b, c)x(ℓ),

y(ℓ + 1) = Circn(a, b, c) y(ℓ),

with initial conditionsx(0) = x0 and y(0) = y0, respectively.
The following statements hold:

(i) if a = c 6= 0 and |b|+2|a| = 1, thenlimℓ→+∞ x(ℓ) = 0,
and the maximum time required for‖x(ℓ)‖2 ≤ ε‖x0‖2

(over all initial conditionsx0 ∈ R
n) is Θ

(

n2 log ε−1
)

;
(ii) if a 6= 0, c = 0 and 0 < |b| < 1, then

limℓ→+∞ x(ℓ) = 0, and the maximum time required for
‖x(ℓ)‖2 ≤ ε‖x0‖2 (over all initial conditionsx0 ∈ R

n)
is O

(

n log n + log ε−1
)

;
(iii) if a ≥ 0, c ≥ 0, b > 0, and a + b + c = 1,

then limℓ→+∞ y(ℓ) = yave1, where yave = 1
n1

T y0,
and the maximum time required for‖y(ℓ) − yave1‖2 ≤
ε‖y0 − yave1‖2 (over all initial conditionsy0 ∈ R

n) is
Θ
(

n2 log ε−1
)

. •

Proof: Let us prove fact (i). We start by bounding from
above the eigenvalue with largest absolute value, that is, the
largest singular value, ofTridn(a, b, a)

max
i∈{1,...,n}

∣

∣

∣

∣

b + 2a cos

(

iπ

n + 1

)∣

∣

∣

∣

≤|b| + 2|a| max
i∈{1,...,n}

∣

∣

∣

∣

cos

(

iπ

n + 1

)∣

∣

∣

∣

≤|b| + 2|a| cos
( π

n + 1

)

.

Because cos( π
n+1 ) < 1 for any n ≥ 2, the matrix

Tridn(a, b, a) is stable. Additionally, forℓ > 0, we bound
from above the magnitude of the curvex as

‖x(ℓ)‖2 = ‖Tridn(a, b, a)ℓx0‖2

≤
(

|b| + 2|a| cos

(

π

n + 1

))ℓ

‖x0‖2.

In order to have‖x(ℓ)‖2 < ε‖x0‖2, it is sufficient that

ℓ log
(

|b| + 2|a| cos
(

π
n + 1

))

< log ε, that is

ℓ >
log ε−1

− log
(

|b| + 2|a| cos
(

π
n + 1

)) . (A.5)
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To show the upper bound, note that ast → 0 we have

− 1

log(1 − 2|a|(1 − cos t))
=

1

|a|t2 + O(1).

Now, assume without loss of generality thatab > 0 and
consider the eigenvalueb+2a cos( π

n+1 ) of Tridn(a, b, a). Note
that |b + 2a cos( π

n+1 )| = |b|+ 2|a| cos( π
n+1 ). (If ab < 0, then

consider the eigenvalueb + 2a cos( nπ
n+1 ).) For n > 2, define

the unit-length vector

vn =

√

2

n + 1

[

sin
π

n + 1
, · · · , sin

nπ

n + 1

]T

∈ R
n, (A.6)

and note that, by Lemma A.1(i),vn is an eigenvector
of Tridn(a, b, a) with eigenvalue b + 2a cos( π

n+1 ). Note
also that all components ofvn are positive. The tra-
jectory x with initial condition vn satisfies ‖x(ℓ)‖2 =
(

|b| + 2|a| cos
(

π
n+1

))ℓ

‖vn‖2 and, therefore, it will enter

B(0, ε‖vn‖2) only whenℓ satisfies (A.5). This completes the
proof of fact (i).

Next, we consider statement (ii). Clearly,Tridn(a, b, 0) is
stable. Forℓ > 0, we compute

Tridn(a, b, 0)ℓ = bℓ
(

In +
a

b
Tridn(1, 0, 0)

)ℓ

= bℓ
n−1
∑

j=0

ℓ!

j!(ℓ − j)!

(a

b

)j

Tridn(1, 0, 0)j

because of the nilpotency ofTridn(1, 0, 0). Now we can bound
from above the magnitude of the curvex as

‖x(ℓ)‖2 = ‖Tridn(a, b, 0)ℓx0‖2

≤ |b|ℓ
n−1
∑

j=0

ℓ!

j!(ℓ − j)!

(a

b

)j
∥

∥Tridn(1, 0, 0)jx0

∥

∥

2

≤ ea/bℓn−1 |b|ℓ ‖x0‖2.

Here we used ‖Tridn(1, 0, 0)jx0‖2 ≤ ‖x0‖2 and
max{ ℓ!

(ℓ−j)! | j ∈ {0, . . . , n − 1}} ≤ ℓn−1. Therefore, in

order to have‖x(ℓ)‖2 < ε‖x0‖2, it suffices thatlog(ea/b) +
(n − 1) log ℓ + ℓ log |b| ≤ log ε, that is

ℓ − n − 1

− log |b| log ℓ >
a
b − log ε

− log |b| .

A sufficient condition forℓ − α log ℓ > β, for α, β > 0, is
that ℓ ≥ 2β + 2α max{1, log α}. For, if ℓ ≥ 2α, then log ℓ is
bounded from above by the lineℓ/2α + log α. Furthermore,
the lineℓ/2α + log α is a lower bound for the line(ℓ− β)/α
if ℓ ≥ 2β + 2α log α. In summary, it is true that‖x(ℓ)‖2 ≤
ε‖x(0)‖2 whenever

ℓ ≥ 2
a
b − log ε

− log |b| + 2
n − 1

− log |b| max

{

1, log
n − 1

− log |b|

}

.

This completes the proof of fact (ii).
The proof of fact (iii) is similar to that of fact (i). We

analyze the singular values ofCircn(a, b, c). It is clear that
the eigenvalue corresponding toi = n is equal to1; this is the
largest singular value ofCircn(a, b, c) and the corresponding
eigenvector is1. In the orthogonal decomposition induced
by the eigenvectors ofCircn(a, b, c), the vectory0 has a

componentyave along the eigenvector1. The second largest
singular value is
∣

∣

∣

∣

1 − (a + c)
(

1 − cos
(2π

n

)

)

+
√
−1(c − a) sin

(

2π

n

)
∣

∣

∣

∣

.

Here | · | is the norm inC. Because of the assumptions on
a, b, c, the second largest singular value is strictly less than1.
For ℓ > 0, we bound the distance ofy(ℓ) from yave1 as

‖y(ℓ) − yave1‖2 = ‖Circn(a, b, c)ℓy0 − yave1‖2

= ‖Circn(a, b, c)ℓ
(

y0 − yave1
)

‖2

≤
∣

∣

∣

∣

1 − (a + c)
(

1 − cos
(2π

n

)

)

+
√
−1(c − a) sin

(

2π

n

)∣

∣

∣

∣

ℓ

· ‖y0 − yave1‖2.

This proves thatlimℓ→+∞ y(ℓ) = yave1. Also, for α = a +
c, β = c − a and ast → 0, we have

−1

log
(

(

1 − α(1 − cos t)
)2

+ β2 sin2 t
)

1
2

=
2

(α − β2)t2
+O(1).

Hereβ2 < α becausea, c ∈ ]0, 1[. From this, one deduces the
upper bound in (iii).

Now, consider the eigenvaluesλn = b + (a + c) cos
(

2π
n

)

+√
−1(c − a) sin

(

2π
n

)

andλn = b + (a + c) cos
(

(n−1)2π
n

)

+
√
−1(c−a) sin

(

(n−1)2π
n

)

of Circn(a, b, c), and its associated
eigenvectors (cf. Lemma A.1(ii))

vn =
[

1, ω, · · · , ωn−1
]T

∈ C
n,

vn =
[

1, ωn−1, · · · , ω
]T

∈ C
n. (A.7)

Note that the vectorvn + vn belongs toR
n. Moreover, its

componentyave along the eigenvector1 is 0. The trajectoryy
with initial condition vn + vn satisfies‖y(ℓ)‖2 = ‖λℓ

nvn +

λ
ℓ

nvn‖2 = |λn|ℓ‖vn + vn‖2 and, therefore, it will enter
B(0, ε‖vn + vn‖2) only when

ℓ >
− log ε−1

log
∣

∣

∣
1 − (a + c)

(

1 − cos
(

2π
n

)

)

+
√
−1(c − a) sin

(

2π
n

)

∣

∣

∣

.

This completes the proof of fact (iii).
Next, we extend these results to another interesting set of

matrices. Forn ≥ 2 anda, b ∈ R, define then×n augmented
tridiagonal matricesATrid+

n (a, b) andATrid−
n (a, b) by

ATrid±
n (a, b) = Tridn(a, b, a) ±















a 0 . . . . . . 0
0 0 . . . . . . 0
...

.. .
.. .

. . .
...

0 . . . . . . 0 0
0 . . . . . . 0 a















.

If we define

P+ =



















1 1 0 0 . . . 0
1 −1 1 0 . . . 0
1 0 −1 1 . . . 0
...

.. .
. . .

. ..
1 0 . . . 0 −1 1
1 0 . . . 0 0 −1



















,



14 ACCEPTED AS A REGULAR PAPER IN THE IEEE TRANSACTIONS ON AUTOMATICCONTROL

and

P− =



















1 1 0 0 . . . 0
−1 1 1 0 . . . 0
1 0 1 1 . . . 0
...

. ..
. . .

. ..
(−1)n−2 0 . . . 0 1 1
(−1)n−1 0 . . . 0 0 1



















,

then the following similarity transforms are satisfied:

ATrid±
n (a, b) = P±

[

b ± 2a 0
0 Tridn−1(a, b, a)

]

P−1
± . (A.8)

To analyze the convergence properties of the dynamical
systems determined byATrid+

n (a, b) and ATrid−
n (a, b), we

recall that 1T = (1, . . . , 1) ∈ R
n, and we define1− =

(1,−1, 1, . . . , (−1)n−2, (−1)n−1)T ∈ R
n.

Theorem A.4 (Augmented tridiagonal Toeplitz dynamical
systems)Let n ≥ 2, ε ∈ ]0, 1[, and a, b ∈ R with a 6= 0
and |b| + 2|a| = 1. Let x : N0 → R

n and z : N0 → R
n be

solutions to

x(ℓ + 1) = ATrid+
n (a, b)x(ℓ),

z(ℓ + 1) = ATrid−
n (a, b) z(ℓ),

with initial conditionsx(0) = x0 and z(0) = z0, respectively.
The following statements hold:

(i) limℓ→+∞
(

x(ℓ) − xave(ℓ)1
)

= 0, where xave(ℓ) =
( 1

n1
T x0)(b + 2a)ℓ, and the maximum time required for

‖x(ℓ)−xave(ℓ)1‖2 ≤ ε‖x0−xave(0)1‖2 (over all initial
conditionsx0 ∈ R

n) is Θ
(

n2 log ε−1
)

;
(ii) limℓ→+∞

(

z(ℓ) − zave(ℓ)1−
)

= 0, where zave(ℓ) =
( 1

n1
T
−z0)(b − 2a)ℓ, and the maximum time required for

‖z(ℓ) − zave(ℓ)1−‖2 ≤ ε‖z0 − zave(0)1−‖2 (over all
initial conditionsz0 ∈ R

n) is Θ
(

n2 log ε−1
)

. •

Proof: We prove fact (i) and observe that the proof of
fact (ii) is analogous. Consider the change of coordinates

x(ℓ) = P+

[

x′
ave(ℓ)
y(ℓ)

]

= x′
ave(ℓ)1 + P+

[

0
y(ℓ)

]

,

where x′
ave(ℓ) ∈ R and y(ℓ) ∈ R

n−1. A quick calculation
shows thatx′

ave(ℓ) = 1
n1

T x(ℓ), and the similarity transforma-
tion described in equation (A.8) implies

y(ℓ + 1) = Tridn−1(a, b, a) y(ℓ),

x′
ave(ℓ + 1) = (b + 2a)x′

ave(ℓ).

Therefore,xave = x′
ave. It is also clear that

x(ℓ + 1) − xave(ℓ + 1)1 = P+

[

0
y(ℓ + 1)

]

=

(

P+

[

0 0
0 Tridn−1(a, b, a)

]

P−1
+

)

(x(ℓ) − xave(ℓ)1).

Consider the matrix in parenthesis determining the trajectory
ℓ 7→ (x(ℓ) − xave(ℓ)1). This matrix is symmetric, its eigen-
values are0 and the eigenvalues ofTridn−1(a, b, a), and its
eigenvectors areP+(1, 0, . . . , 0) ∈ R

n and the eigenvectors of
Tridn−1(a, b, a), padded with an extra zero and premultiplied

by P+. These facts are sufficient to duplicate, step by step, the
proof of fact (i) in Theorem A.3. Therefore, fact (i) follows.

We conclude this appendix with some useful bounds whose
proof is straightforward.

Lemma A.5 Assumex ∈ R
n, y ∈ R

n−1 and z ∈ R
n−1

jointly satisfy

x = P+

[

0
y

]

, x = P−

[

0
z

]

.

Then 1
2‖x‖2 ≤ ‖y‖2 ≤ (n − 1)‖x‖2 and 1

2‖x‖2 ≤ ‖z‖2 ≤
(n − 1)‖x‖2. •


