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Abstract

This paper presents analysis and design results for distributed consensus algorithms in multi-agent networks. We consider
continuous consensus functions of the initial state of the network agents. Under mild smoothness assumptions, we obtain
necessary and sufficient conditions characterizing any algorithm that asymptotically achieves consensus. This characterization
is the building block to obtain various design results for networks with weighted, directed interconnection topologies. We
first identify a class of smooth functions for which one can synthesize in a systematic way distributed algorithms that
achieve consensus. We apply this result to the family of weighted power mean functions, and characterize the exponential
convergence properties of the resulting algorithms. We establish the validity of these results for scenarios with switching
interconnection topologies. Finally, we conclude with two discontinuous distributed algorithms that achieve, respectively, max
and min consensus in finite time.
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1 Introduction

Arguably, the ability to reach consensus, or agreement,
upon some (a priori unknown) quantity is critical for any
multi-agent system. Network coordination problems in-
volving self-organization, formation pattern, distributed
estimation, or parallel processing, to name a few, require
individual agents to agree on the identity of a leader,
jointly synchronize their operation, decide which specific
pattern to form, balance the computational load, or fuse
the information gathered on some spatial process.

In this paper, we address the problem of designing
(continuous-time) coordination algorithms that make
a networked system asymptotically agree upon the
value of a desired function of the initial state of the
individual agents. The emphasis on general continu-
ous functions is motivated by data fusion problems. In
spatially-distributed scenarios, mobile sensor networks
can implement the results developed here to compute,
for instance, sample statistical moments of arbitrary
order, weighted-least squares estimates of noisy signals,
or posterior probabilities for multi-hypothesis testing
via the product of conditional independent probabili-
ties. The network topology is modeled by a weighted,
directed graph. In practical scenarios, the network
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topology might be directed because of packet losses, ob-
stacles in the environment, or interference, and weighted
because of agents with different bandwidth capabili-
ties or varying signal strengths in particular network
configurations.

Literature review. Distributed consensus algorithms
have a long-standing tradition in computer science,
e.g., [20]. Agreement under limited communication is
also an established topic of research in network games,
e.g., [11]. Within the literature on cooperative control
and multi-agent systems, recent years have witnessed the
introduction of distributed strategies that achieve vari-
ous forms of agreement. This interest is reflected in the
recent surveys [23, 27]. A growing body of work focuses
in algorithms that make individual network agents agree
upon the value of some function of their initial states.
These include average consensus [25, 26, 30], average-
max-min consensus [8], geometric-mean consensus [24],
and power-mean consensus [3]. The state variables as-
sociated to the individual agents might be, for instance,
sensor measurements of some signal or spatial process,
or probability distributions about the likelihood of some
event, and do not necessarily correspond to physical
variables, such as spatial coordinates or velocities. Co-
ordination problems that focus, instead, on “spatial
versions” of consensus include rendezvous [1, 9, 18, 19],
flocking [4, 14, 21, 22], and synchronization [15, 29].

Preprint submitted to Automatica 16 July 2007



Applications of consensus algorithms to data fusion
problems and distributed filtering include [28, 31].

Statement of contributions. The contributions of
this paper pertain both analysis and design of cooper-
ative strategies for consensus. Regarding analysis, we
identify (cf. Theorem 8 and Corollary 9) a set of condi-
tions that characterize when a coordination algorithm
makes the network agents asymptotically agree upon
the value of a function of their individual states. This
characterization holds under mild assumptions on the
smoothness of the consensus function and the coordi-
nation algorithm, and constrains the class of allowable
weighted digraphs for distributed coordination algo-
rithms to be weakly connected and weight-balanced.
This turns out to have remarkable implications on
the connectivity properties of the directed graph (cf.
Propositions 1 and 2): for instance, a digraph with unit
weights must be Eulerian, i.e., it must have a cycle that
visits all the graph edges exactly once.

Regarding design, we identify (cf. Proposition 10 and
Corollary 11) a class of smooth consensus functions for
which one can synthesize in a systematic way distributed
coordination algorithms over weighted directed graphs.
The property common to these functions is that the
computation of their gradients enjoys some special dis-
tributed features. Building on this result, we character-
ize (cf. Proposition 14) the exponential rate of conver-
gence of a class of distributed algorithms that achieve
weighted power mean consensus, originally introduced
in [3] for undirected graphs. We also establish the valid-
ity of these results for scenarios with switching intercon-
nection topologies (cf. Corollary 12 and Remark 16). The
maximum and the minimum functions do not belong to
the special class of functions mentioned above. The last
contribution of the paper is the introduction of two dis-
continuous distributed algorithms that achieve max and
min consensus in finite time (cf. Proposition 17).

Organization. Section 2 presents some preliminary
notions on graph theory, distributed maps, and nons-
mooth stability analysis. Section 3 formally introduces
the consensus problem of interest. Section 4 identi-
fies, under some conditions on the desired function,
necessary and sufficient conditions for any coordina-
tion algorithm that asymptotically achieves consensus.
Section 5 investigates the design of distributed coordi-
nation algorithms, paying special attention to weighted
power mean, max, and min consensus. Finally, Section 6
presents our conclusions.

Notation. Let Z, Z>0, Z≥0, R, R>0 and R≥0 denote,
respectively, the set of integer, positive integer, non-
negative integer, real, positive real, and non-negative
real numbers. For a set X, P(X) denotes the collec-
tion of all subsets of X and IdX : X → X denotes the
identity map, IdX(x) = x, for x ∈ X. Let diag(Rn) =
{(p, . . . , p) ∈ R

n | p ∈ R}. Let iR : R → diag(Rn)
denote the natural inclusion, and 1 denote the vector
1 = (1, . . . , 1) ∈ R

n. Given χ : V ⊂ R
d1 → R

d2 ,
where V is an open and connected set, let Im(χ) =

{χ(P ) ∈ R
d2 | P ∈ V} denote the range of χ. Note that

Im(iR) = diag(Rn). Let ∂V and V denote the bound-
ary and the closure of V, respectively. For a continu-
ous function χ, its extension χe : V ⊂ R

d1 → R
d2 is

defined as χe(P ) = χ(P ) for P ∈ V, and χe(P ) =
limm→+∞ χ(Pm) for P ∈ ∂V and V ∋ Pm → P . For a
matrix A ∈ R

n×n, we denote by ker(A) ⊂ R
n its ker-

nel and by Sym(A) = 1
2 (A + AT ) its symmetric part.

Note that A and Sym(A) define the same quadratic
form. For a positive semidefinite symmetric matrix A,
let πker(A) : R

n → ker(A) be the orthogonal projec-
tion. Let λ2(A) be the smallest non-zero eigenvalue of A,
λ2(A) = min{λ | λ > 0, λ eigenvalue of A}. For u ∈ R

n,

λ2(A) ‖u − πker(A)(u)‖2
2 ≤ uT Au. (1)

2 Preliminary developments

This section presents tools from graph theory, dis-
tributed maps, and nonsmooth stability analysis.

2.1 Weighted digraphs

A directed graph (or digraph) G = (V, E) of order n con-
sists of a vertex set V with n elements, and an edge set
E ⊂ V × V. For simplicity, we take V = {1, . . . , n}. A
digraph is undirected if (j, i) ∈ E anytime (i, j) ∈ E . In
a digraph G with an edge (i, j) ∈ E , i is called an in-
neighbor of j, and j is called an out-neighbor of i. We
let Nin(i) and Nout(i) denote the sets of in-neighbors
and out-neighbors of i, respectively. The in-degree and
out-degree of i are the cardinality of Nin(i) and Nout(i),
respectively. A digraph is topologically balanced if each
vertex has the same in- and out-degrees.

A weighted digraph is a triplet G = (V, E ,A) where (V, E)
is a digraph and where A is an n × n weighted adja-
cency matrix with the following properties: for i, j ∈
{1, . . . , n}, the entry aij > 0 if (i, j) is an edge of G, and
aij = 0 otherwise. In other words, the scalars aij are a
set of weights for the edges of G. A weighted digraph is
undirected if aij = aji for all i, j ∈ {1, . . . , n}. When
convenient, we write A(G) to make clear the explicit de-
pendence on the graph. Note that a digraph G = (V, E)
can be naturally thought of as a weighted digraph by
defining the weighted adjacency matrix A with nonneg-
ative entries aij , i, j ∈ {1, . . . , n} given by aij = 1 if (i, j)
is an edge of G, and aij = 0 otherwise. Reciprocally, one
can define the unweighted version of a weighted digraph
(V, E ,A) by simply considering the digraph (V, E).

In a weighted digraph, the weighted out-degree and the
weighted in-degree of vertex i are defined by, respectively,

dout(i) =

n∑

j=1

aij and din(i) =

n∑

j=1

aji.

The weighted out-degree matrix Dout(G) and the
weighted in-degree matrix Din(G) are the diago-
nal matrices defined by (Dout(G))ii = dout(i) and
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(Din(G))ii = din(i), respectively. The digraph G is
weight-balanced if Dout(G) = Din(G). The graph Lapla-
cian of the weighted digraph G is

L(G) = Dout(G) −A(G).

Note that L(G)1 = 0, and that G is undirected iff L(G)
is symmetric. For undirected graphs, the Laplacian
is a symmetric, positive semidefinite matrix. Weight-
balanced digraphs can be characterized in terms of the
Laplacian matrix: G is weight-balanced iff 1T L(G) = 0
iff Sym(L(G)) is positive semi-definite.

2.2 Graph connectivity notions

Let us review some basic connectivity notions. A di-
rected path in a digraph is an ordered sequence of ver-
tices such that any two consecutive vertices are an edge
of the digraph. A cycle in a digraph is a non-trivial di-
rected path that starts and ends at the same vertex.
An undirected path in a digraph is an ordered sequence
of vertices such that any two consecutive vertices are
connected by an edge of the digraph. A node of a di-
graph is globally reachable if it can be reached from any
other node by traversing a directed path. A digraph is
weakly connected if every pair of nodes are connected by
an undirected path. For a weight-balanced digraph G,
one can show that G is weakly connected if and only if
ker(Sym(L(G))) = span{1}. A digraph is strongly con-
nected if every pair of nodes are connected by a directed
path. Note that a digraph is strongly connected if and
only if every node is globally reachable. A digraph is
strongly semiconnected if the existence of a directed path
from a vertex i to a vertex j implies the existence of a di-
rected path from j to i. Strongly semiconnected digraphs
might not be weakly connected. However, strongly semi-
connected digraphs that are also weakly connected must
be strongly connected. For undirected graphs, the no-
tions of weakly connected and strongly connected are
equivalent, and we will simply refer to connected undi-
rected graphs.

An Euler tour of a digraph G is a cycle that visits all
edges of the digraph exactly once. A digraph is Eulerian
if it has an Euler tour, see Figure 1(a). Clearly, weakly
connected Eulerian graphs are strongly connected. The
following result characterizes the family of Eulerian
graphs, e.g., see [6, Theorem 4.6].

Proposition 1 (Topologically balanced digraph)
Let G be a weakly connected digraph. Then, G is topolog-
ically balanced iff G is Eulerian.

In general, weight-balanced digraphs are not Eulerian,
see Figure 1(b) and (c). Instead, weight-balanced di-
graphs are characterized as follows.

Proposition 2 (Weight-balanced digraph) Given
a digraph G = (V, E), there exists a weight-balanced
digraph (V, E ,A) iff G is strongly semiconnected.

This proposition is a generalization of [13, Theorem 2],
which establishes the same result for the case when all

1 1 1
(a)

1 2 1 1
(b)

2 11 1
1 11

(c)

Fig. 1. Plot (a) shows an Eulerian graph. Plots (b) and (c)
show weight-balanced digraphs that are not Eulerian.

weights are positive integer numbers, i.e., A ∈ Z
n×n
≥0 .

The proof of Proposition 2 is given in Appendix 7.

2.3 Disagreement

Given a weighted digraph G of order n, let us associate
a state pi ∈ R to each vertex i ∈ {1, . . . , n}. Two nodes
are said to agree iff pi = pj . A meaningful function that
quantifies the group disagreement in a network is the
disagreement function ΦG : R

n → R≥0,

ΦG(P ) =
1

2

n∑

i,j=1

aij(pj − pi)
2, (2)

with P = (p1, . . . , pn) ∈ R
n. The disagreement func-

tion ΦG is smooth. Clearly ΦG(P ) = 0 iff all neighboring
nodes in the graph G agree. If the digraph G is weakly
connected, then all nodes in the graph agree. Note that
for weight-balanced digraphs, ΦG(P ) = PT L(G)P , for
all P ∈ R

n, and the gradient of ΦG is grad(ΦG) =
2PT Sym(L(G)).

2.4 Distributed maps over digraphs

The notion of spatially-distributed map was intro-
duced in [9] for the class of (undirected) proximity
graphs. Here, we introduce the notion of distributed
map over a digraph G. Given two sets X, Y , a function
T : Xn → Y n is out-distributed over G if there exist
functions T̃1, . . . , T̃n : X × P(X) → Y such that

Ti(x1, . . . , xn) = T̃i(xi, {xj | j ∈ Nout(i)}),

for all (x1, . . . , xn) ∈ Xn and all i ∈ {1, . . . , n}. Roughly
speaking, the ith component of a distributed map over G
can be computed only with information about the state
of node i and its out-neighbors in the digraph G. The
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notion of in-distributed map over G can be defined anal-
ogously. If G is undirected, then we simply say that T
is distributed over G. In this paper, we have chosen to
present our results for out-distributed maps, but anal-
ogous results can be also presented for in-distributed
maps.

Remark 3 (Sensing versus communication capa-
bilities) It is natural to associate the notion of out-
distributed maps with networks whose agents have sens-
ing capabilities, and the notion of in-distributed maps
with networks whose agents have communication capa-
bilities. In the sensing scenario, the existence of an edge
(i, j) ∈ E has the interpretation that agent i is able to
sense the state of agent j. In the communication scenario,
the existence of an edge (i, j) ∈ E has the interpretation
that agent i is able to send information to agent j. •

2.5 Nonsmooth stability analysis

This section introduces differential equations with dis-
continuous right-hand sides and presents various non-
smooth tools to analyze their stability properties. The
presentation follows the exposition in [2]. For differen-
tial equations with discontinuous right-hand sides we
understand the solutions in terms of differential inclu-
sions following [10]. Let F : R

d → P(Rd), d ∈ Z>0, be a
set-valued map. Consider the differential inclusion

ẋ ∈ F (x). (3)

A solution to this equation on an interval [t0, t1] ⊂ R

is defined as an absolutely continuous function x :
[t0, t1] → R

d such that ẋ(t) ∈ F (x(t)) for almost all
t ∈ [t0, t1]. Now, consider the differential equation

ẋ(t) = X(x(t)), (4)

where X : R
d → R

d is measurable and essentially locally
bounded [10]. For each x ∈ R

d, consider the set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(B(x, δ) \ S)}, (5)

where µ denotes the Lebesgue measure in R
d, co(A) de-

notes the convex closure of the set A, and B(x, δ) is the
ball of center x and radius δ in R

d. A Filippov solution
of (4) on an interval [t0, t1] ⊂ R is defined as a solution
of the differential inclusion

ẋ ∈ K[X](x). (6)

A set M is weakly invariant (respectively strongly invari-
ant) for (4) if for each x0 ∈ M , M contains a maximal
solution (respectively all maximal solutions) of (4).

Let f : R
d → R be a locally Lipschitz function. From

Rademacher’s Theorem [7], locally Lipschitz functions
are differentiable a.e. Let Ωf ⊂ R

d denote the set of

points where f fails to be differentiable. The generalized
gradient of f at x ∈ R

d (cf. [7]) is defined by

∂f(x) = co
{

lim
i→+∞

df(xi) | xi → x , xi 6∈ S ∪ Ωf

}
,

where S can be any set of zero measure. Note that if f
is continuously differentiable, then ∂f(x) = {df(x)}.

Given a locally Lipschitz function f , the set-valued Lie
derivative of f with respect to X at x is

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that

ζ · v = a , ∀ζ ∈ ∂f(x)}.

The set-valued Lie derivative allows us to study the evo-
lution of a function along the Filippov solutions. The
reader is referred to [7] for the notion of regularity.

Theorem 4 (Evolution along Filippov solutions)
Let x : [t0, t1] → R

d be a Filippov solution of (4).
Let f be a locally Lipschitz and regular function. Then
d
dt

(
f(x(t))

)
exists a.e. and d

dt
(f(x(t))) ∈ L̃Xf(x(t)) a.e.

The following result is a generalization of LaSalle prin-
ciple for discontinuous differential equations with nons-
mooth Lyapunov functions.

Theorem 5 (LaSalle Invariance Principle) Let f :
R

d → R be a locally Lipschitz and regular function.
Let x0 ∈ S ⊂ R

d, with S compact and strongly invari-

ant for (4). Assume that either max L̃Xf(x) ≤ 0 or

L̃Xf(x) = ∅ for all x ∈ S. Let ZX,f = {x ∈ R
d | 0 ∈

L̃Xf(x)}. Then, any solution x : [t0,+∞) → R
d of (4)

starting from x0 converges to the largest weakly invariant
set M contained in ZX,f ∩ S.

3 Problem statement

Let χ : V ⊂ R
n → R be continuous. Consider a network

of agents whose individual dynamics is given by

ṗi = ui, i ∈ {1, . . . , n}. (7)

We say that a coordination algorithm u : V ⊂ R
n → R

n

asymptotically achieves χ-consensus if u is essentially
locally bounded, and for any (p1(0), . . . , pn(0)) ∈
V, any solution of the dynamics (7) starting at
(p1(0), . . . , pn(0)) stays in V and verifies, for all
i ∈ {1, . . . , n},

pi(t) −→ χ(p1(0), . . . , pn(0)), t → +∞.

Because the trajectories stay in V, for consistency,
Im(iR ◦ χ) ⊂ V must hold. Note that we do not require
u to be continuous. If u is discontinuous, then solutions
are understood in the Filippov sense (cf. Section 2.5).
We usually refer to χ as the consensus function.

Now, assume the network interconnection topology is
described by a weighted digraph G. Our objective is to
design coordination algorithms that verify,
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(P.1): u is out-distributed over G, and
(P.2): u asymptotically achieves χ-consensus.

Property (P.1) guarantees that the control law u is im-
plementable over the network (7), and property (P.2)
guarantees that individual agents asymptotically agree
on the value of χ.

4 Necessary and sufficient conditions for χ-
consensus

In this section, we obtain, under some conditions on the
desired function, necessary and sufficient conditions for
any coordination algorithm that asymptotically achieve
consensus (i.e., satisfies property (P.2) in Section 3).
We undertake this study as a necessary step previous to
the synthesis of coordination algorithms with properties
(P.1) and (P.2). Section 5 builds on this discussion to
design distributed algorithms for χ-consensus.

We start by showing that the function χ must be con-
stant along the trajectories of a coordination algorithm
that asymptotically achieves χ-consensus. The state-
ment here is a generalization to continuous functions of
a result in [3].

Lemma 6 (χ is preserved) Let χ : V ⊂ R
n → R be

a continuous function. Assume Im(iR ◦ χ) ⊂ V and let
u : V ⊂ R

n → R
n be a coordination algorithm asymptot-

ically achieving χ-consensus. Then χ is constant along
the trajectories of (7).

PROOF. Let P0 ∈ V and consider a trajectory R≥0 ∋
t 7→ P (t) of (7) that starts at P0. Since u asymptotically
achieves χ-consensus, then P (t) → (χ(P0), . . . , χ(P0)).
Let t∗ ∈ R>0. The curve R≥0 ∋ t 7→ P (t + t∗)
starts at P (t∗) ∈ V and it is a trajectory of (7).
Since u asymptotically achieves χ-consensus, then
P (t + t∗) → (χ(P (t∗)), . . . , χ(P (t∗))). Since P (t) →
(χ(P0), . . . , χ(P0)), we conclude χ(P (t∗)) = χ(P0), i.e.,
χ is constant along R≥0 ∋ t 7→ P (t). •

The following result restricts the class of functions χ for
which the consensus problem can be solved. The state-
ment here is a generalization to functions with arbitrary
domains of a result in [3].

Proposition 7 (χ is the identity on the diagonal)
Let χ : V ⊂ R

n → R be a continuous function. Assume
Im(iR ◦ χ) ⊂ V and let u : V ⊂ R

n → R
n be a coordi-

nation algorithm asymptotically achieving χ-consensus.
Then χ ◦ iR| Im(χ) = IdR| Im(χ).

PROOF. We reason by contradiction. Assume there
exists p ∈ Im(χ) such that χ(p, . . . , p) 6= p (note
that (p, . . . , p) ∈ V because Im(iR ◦ χ) ⊂ V). Let
ǫ = |χ(p, . . . , p) − p| > 0. By continuity of χ, there
exists δ > 0 such that ‖P − (p, . . . , p)‖ < δ im-
plies |χ(P ) − χ(p, . . . , p)| < ǫ. On the other hand,
since p ∈ Im(χ), there exists P ∗ ∈ V \ {(p, . . . , p)}
such that χ(P ∗) = p. By hypothesis, u asymptoti-
cally achieves χ-consensus. In particular, this implies

that the trajectory R≥0 ∋ t 7→ P (t) of (7) start-
ing from P (0) = P ∗ asymptotically converges to
(χ(P ∗), . . . , χ(P ∗)) = (p, . . . , p). For δ > 0 above, there
exists T > 0 such that ‖P (t) − (p, . . . , p)‖ < δ for
t ≥ T , which implies that |χ(P (t)) − χ(p, . . . , p)| < ǫ.
By Lemma 6, χ(P (t)) = χ(P ∗) = p, and hence
|p−χ(p, . . . , p)| < ǫ, contradicting ǫ = |χ(p, . . . , p)−p|.•

The following novel result characterizes when χ-
consensus can be asymptotically achieved by showing
that asymptotic convergence towards the set diag(Rn)
together with the necessary conditions in Lemma 6 and
Proposition 7 are indeed sufficient for consensus.

Theorem 8 (Necessary and sufficient conditions
for χ-consensus. I) Let χ : V ⊂ R

n → R be continuous.
Assume that i−1

R
(V) = Im(χ) and Im(χe| diag(Rn)∩∂V) ∩

Im(χ) = ∅. Let u : V ⊂ R
n → R

n be essentially locally
bounded such that the trajectories of (7) are bounded
and V is strongly invariant. Then, u guarantees that χ-
consensus is asymptotically reached iff the following holds

(i) the trajectories of (7) converge to diag(Rn),
(ii) χ is constant along the trajectories of (7), and
(iii) χ ◦ iR| Im(χ) = IdR| Im(χ).

PROOF. If u guarantees that χ-consensus is asymptot-
ically reached, then (i) holds by definition, (ii) holds by
Lemma 6 and (iii) holds by Proposition 7. Now, assume
that (i)-(iii) hold, and let us prove that u guarantees that
χ-consensus is asymptotically reached. Let P0 ∈ V and
consider a trajectory R≥0 ∋ t 7→ P (t) of (7) starting at
P (0) = P0. Since the trajectory is bounded, its ω-limit
set, denoted Ω({P (t)}t∈R≥0

) ⊂ R
n, is non-empty, com-

pact and invariant. By (i), Ω({P (t)}t∈R≥0
) ⊂ diag(Rn).

For each (p, . . . , p) ∈ Ω({P (t)}t∈R≥0
), there exists a con-

vergent subsequence (that, for ease of notation, we also
denote by {P (t)}t∈R≥0

) such that P (t) → (p, . . . , p).

Note that (p, . . . , p) ∈ V. Extending χ by continuity if
necessary, we have χ(p, . . . , p) = limt→+∞ χ(P (t)). Now
(ii) implies χ(p, . . . , p) = χ(P0). This, together with
Im(χe| diag(Rn)∩∂V ) ∩ Im(χ) = ∅, implies p ∈ i−1

R
(V) =

Im(χ). By (iii), we deduce p = χ(p, . . . , p) = χ(P0).
Therefore, Ω({P (t)}t∈R≥0

) = {χ(P0)1}, or, equiva-
lently, the trajectory {P (t)}t∈R≥0

converges to χ(P0)1.•

The previous result takes a much simpler form when χ
is defined over the whole space R

n and is surjective.

Corollary 9 (Necessary and sufficient conditions
for χ-consensus. II) Let χ : R

n → R be continuous
and surjective. Let u : R

n → R
n be essentially locally

bounded such that the trajectories of (7) are bounded.
Then, u guarantees that χ-consensus is asymptotically
reached iff the following holds

(i) the trajectories of (7) converge to diag(Rn),
(ii) χ is constant along the trajectories of (7), and
(iii) χ ◦ iR = IdR.
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Theorem 8 and Corollary 9 are important both from
an analysis and a design viewpoint. From an analysis
perspective, these results characterize when the network
asymptotically achieves χ-consensus with a coordina-
tion algorithm of the form u : V ⊂ R

n → R
n. From a

design perspective, these results establish a systematic
methodology to synthesize solutions to the χ-consensus
problem.

5 Distributed algorithms for χ-consensus

Here, we identify particular conditions on the function
χ under which distributed coordination algorithms that
asymptotically achieve consensus can be designed.

Proposition 10 (Design of distributed algo-
rithms. I) Let χ : V ⊂ R

n → R be continuously differen-
tiable such that χ◦iR| Im(χ) = IdR| Im(χ), i−1

R
(V) = Im(χ)

and Im(χe| diag(Rn)∩∂V ) ∩ Im(χ) = ∅. Let G be a weakly
connected, weight-balanced digraph, and let gradχ
be out-distributed over G, with all partial derivatives
{ ∂χ

∂p1
, . . . , ∂χ

∂pn

} having the same constant sign on V.

Assume the coordination algorithm u : V ⊂ R
n → R

n,

ui =
1∣∣ ∂χ

∂pi

∣∣

n∑

j=1

aij(pj − pi), i ∈ {1, . . . , n} (8)

is essentially locally bounded and such that V is strongly
invariant. Then, u is out-distributed over G and asymp-
totically achieves χ-consensus.

PROOF. Clearly, the map u : V ⊂ R
n → R

n is out-
distributed over G since aij 6= 0 iff j ∈ Nout(i). We prove
that u asymptotically achieves χ-consensus using The-
orem 8. Let us first establish that each trajectory of (8)
belongs to some bounded and invariant set. Consider the
max : R

n → R function, max(P ) = maxi∈{1,...,n}{pi},
and let us compute the set-valued Lie derivative

L̃u(max). If a ∈ L̃u(max), then a = u(P ) · ζ, for all
ζ ∈ ∂ max. The generalized gradient of max is

∂ max (P ) = co{ei | i ∈ {1, . . . , n} with pi = max(P )}.

By hypothesis, G is weakly connected. From Proposi-
tion 2, G is strongly semiconnected. These two prop-
erties imply that G is actually strongly connected.
If P ∈ diag(Rn), then u(P ) = 0, and therefore
a = 0. If P 6∈ diag(Rn), then using the fact that G is
strongly connected, there exists k ∈ {1, . . . , n} with
pk = maxj∈{1,...,n}{pj} such that

∑n
j=1 akj(pj−pk) < 0.

Consequently, uk(P ) < 0, and a = u(P ) · ek < 0.

Therefore, we conclude that either L̃u(max) = ∅ or

max L̃u(max) ≤ 0. Theorem 4 implies that pi(t) ≤
max{p1(0), . . . , pn(0)}. A similar argument with the
min function shows that min{p1(0), . . . , pn(0)} ≤ pi(t).
Hence, any trajectory of (8) belongs to a bounded and
invariant set. Moreover, this argument guarantees that
Zu,max = diag(Rn). Given that any trajectory of (8)

belongs to some bounded and invariant set, the applica-
tion of Theorem 5 implies that all trajectories converge
to diag(Rn), i.e., (i) in Theorem 8 is satisfied. (ii) in
Theorem 8 is easily verified since

Luχ =
n∑

i=1

∂χ

∂pi

ui =
n∑

i=1

sgn
( ∂χ

∂pi

)
·

n∑

j=1

aij(pj − pi)

= ±
n∑

i=1

n∑

j=1

aij(pj − pi) = ∓1 · L(G) = 0,

where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0
and sgn(0) = 0. The last equality follows from G being
weight-balanced. Finally, (iii) in Theorem 8 is verified
by hypothesis. •

The next result extends the applicability of Proposi-
tion 10 to functions χ whose gradient is not distributed
over the interconnection topology, but admit a “dis-
tributing factor” that makes it distributed.

Corollary 11 (Design of distributed algorithms.
II) Let χ : V ⊂ R

n → R be continuously differentiable
such that χ ◦ iR| Im(χ) = IdR| Im(χ), i−1

R
(V) = Im(χ)

and Im(χe| diag(Rn)∩∂V ) ∩ Im(χ) = ∅. Let G be a weakly
connected, weight-balanced digraph. Assume there exist
f : V ⊂ R

n → R such that f · gradχ is out-distributed
over G, with all partial derivatives { ∂χ

∂p1
, . . . , ∂χ

∂pn

} having

the same constant sign on V. Assume that the coordina-
tion algorithm u : V ⊂ R

n → R
n,

ui =
1∣∣f ∂χ
∂pi

∣∣

n∑

j=1

aij(pj − pi), i ∈ {1, . . . , n} (9)

is essentially locally bounded and such that V is strongly
invariant. Then, u is distributed over G and asymptoti-
cally achieves χ-consensus.

Note that Proposition 10 and Corollary 11 generalize [3,
Theorem 2] by broadening the set of graphs and the
set of functions for which the consensus problem can be
solved.

5.1 Networks with switching interconnection topologies

The previous discussion can be extended to the sce-
nario of networks with switching topologies. Note
that, by Proposition 2, weakly connected, weight-
balanced digraphs are strongly connected. There-
fore, the unweighted versions of the (infinite) set of
weakly connected, weight-balanced digraphs give rise
to the (finite) set of strongly connected digraphs. Let
Γ = {G1, . . . ,Gm} be a finite collection of weakly con-
nected, weight-balanced digraphs of orden n. A switch-
ing signal σ is a map σ : R≥0 → {1, . . . ,m}. For each
time t ∈ R≥0, the switching signal σ establishes the
network graph Gσ(t) ∈ Γ. Now, consider a network of
agents subject to the switching topology defined by σ
and executing, at time t, the algorithm u(Gσ(t)) in (8)
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corresponding to Gσ(t). In other words, consider the
switching system

ṗi(t) = ui(Gσ(t)), i ∈ {1, . . . , n}. (10)

We call σ feasible if there exist solutions of (10) starting
from any initial condition. For instance, piecewise con-
stant signals are feasible. Noting that max : R

n → R is
a common Lyapunov function for (10), one can establish
the next result.

Corollary 12 (Switching topologies) Let χ : V ⊂
R

n → R be continuously differentiable such that
χ ◦ iR| Im(χ) = IdR| Im(χ), i−1

R
(V) = Im(χ) and

Im(χe| diag(Rn)∩∂V ) ∩ Im(χ) = ∅. Let Γ = {G1, . . . ,Gm}
be a finite collection of weakly connected, weight-balanced
digraphs of orden n. Assume that

(i) gradχ is out-distributed over Gk, for k ∈ {1, . . . ,m};

(ii) all partial derivatives { ∂χ
∂p1

, . . . , ∂χ
∂pn

} have the same

constant sign on V;
(iii) the coordination algorithm u(Gk) : V ⊂ R

n → R
n

defined in (8) associated with Gk is essentially locally
bounded and such that V is strongly invariant.

Then, the switching system (10) asymptotically achieves
χ-consensus for any feasible signal σ : R≥0 →
{1, . . . ,m}.

Similar convergence results can also be established for fi-
nite collection of weight-balanced digraphs whose union
is weakly connected by restricting the set of allowable
switching signals, as in [21]. We leave this for the reader.

5.2 Weighted power mean consensus

In this section, we study distributed algorithms that
asymptotically achieve weighted power mean consensus.
This class of algorithms was originally presented in [3]
for undirected graphs. Here, we introduce them for the
more general setup of weighted digraphs as a particular
application of Corollary 11 to the weighted power mean
function. More importantly, we characterize their expo-
nential rate of convergence.

For w ∈ R
n
>0 with

∑n
i=1 wi = 1 and r ∈ R \ {0}, the

weighted power mean χw,r : R
n
>0 → R is (cf. [5])

χw,r(p1, . . . , pn) =
( n∑

i=1

wip
r
i

) 1
r

.

For r ∈ {0,±∞}, the function χw,r is defined by

χw,r(p1, . . . , pn) = lim
s→r

χw,s(p1, . . . , pn).

Alternatively, for r = 0, χw,0(p1, . . . , pn) = pw1

1 . . . pwn

n ,
for r = +∞, χw,+∞(p1, . . . , pn) = max{p1, . . . , pn}, and
for r = −∞, χw,−∞(p1, . . . , pn) = min{p1, . . . , pn}. Ta-
ble 1 summarizes some distinguished members of this
class of functions.

Note that for specific values of the parameter r ∈ R
n ∪

{±∞}, the domain of definition of χw,r can be larger

χw,−∞ Minimum

χw,−1 Harmonic Mean

χw,0 Geometric Mean

χw,1 Arithmetic Mean

χw,2 Root-Mean-Square

χw,∞ Maximum

Table 1
Examples of weighted power means. This family of functions
includes the sample raw statistical moments of any order.

than R
n
>0. For instance, the function χw,1 is well-defined

on R
n. The choice wi = 1

n
, i ∈ {1, . . . , n}, yields the

usual power mean function, that we simply denote χr.

Before presenting the main result of this section, we
need to introduce a powerful pair of inequalities concern-
ing differences of weighted power means. The following
beautiful result is a particular case of [12, Corollary 2.2].

Proposition 13 (Differences of power means) Let
r ∈ R and w ∈ R

n
>0 with

∑n
i=1 wi = 1. For any

P = (p1, . . . , pn) ∈ R
n
>0, one has

1

2
min

{ 1

min{pi}1−r
,

1

max{pi}1−r

}
χ2

w,2

(
P − χw,1(P )1

)

≤
χr+1

w,r+1(P ) − χr+1
w,r (P )

r + 1
≤

1

2
max

{ 1

min{pi}1−r
,

1

max{pi}1−r

}
χ2

w,2

(
P − χw,1(P )1

)
.

Here, when r = −1, the inequalities hold by setting
(χ0

w,0(P ) − χ0
w,−1(P ))/0 = ln(χw,0(P )/χw,−1(P )).

We are now ready to present a class of coordination
algorithms that asymptotically achieve χw,r-consensus,
r ∈ R, exponentially fast.

Proposition 14 (Weighted power mean consensus)
Let r ∈ R and w ∈ R

n
>0 with

∑n
i=1 wi = 1. For any

weakly connected, weight-balanced digraph G, consider
the coordination algorithm uw,r : R

n
>0 → R

n with ith
component

(uw,r)i(p1, . . . , pn) =
1

wi

p1−r
i

n∑

j=1

aij(pj − pi). (11)

Then, R
n
>0 is strongly invariant for (11), and uw,r is out-

distributed over G and asymptotically achieves weighted
power mean-consensus with exponential rate of conver-
gence greater than or equal to

c
λ2(Sym(L(G)))

nmax{w1, . . . , wn}
,
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with

c =





max{p1(0), . . . , pn(0)}1−r, if r > 1,

1, if r = 1,

min{p1(0), . . . , pn(0)}1−r, if r < 1.

PROOF. Our proof strategy to assess the correctness
of uw,r is to verify that the conditions in Corollary 11
hold. Clearly, χw,r is continuously differentiable in
V = R

n
+, χw,r ◦ iR = IdR on R>0, and Im(χw,r) = R>0 =

iR
−1(Rn

>0). Since diag(Rn) ∩ ∂R
n
+ = {0}, we also have

Im((χw,r)e| diag(Rn)∩∂V ) ∩ Im(χw,r) = ∅. The partial
derivative of χw,r with respect to pi, i ∈ {1, . . . , n}, is

∂χw,r

∂pi

= wi

( pi

χw,r(p1, . . . , pn)

)r−1

.

Clearly, on R
n
+, all partial derivatives are strictly pos-

itive. Selecting f(p1, . . . , pn) = χw,r(p1, . . . , pn)r−1 in
Corollary 11, we see that f · gradχw,r is out-distributed
over G. The coordination algorithm defined by (9) cor-
responds precisely to uw,r. Moreover, from the fact that
χw,r is constant along the trajectories, we deduce that
R

n
+ is strongly invariant. The application of Corollary 11

yields the convergence result.

We conclude the proof by assessing the rate of con-
vergence of the trajectories of the system. Let R≥0 ∋
t 7→ P (t) = (p1(t), . . . , pn(t)) ∈ R

n
>0 be a trajectory

starting from P (0) = P0 ∈ R
n
>0. Consider the function

V : R≥0 → R≥0 defined by

V (t) =
χr+1

w,r+1(P (t)) − χr+1
w,r (P (t))

r + 1
.

For r = −1, we define V instead by

V (t) = ln
( χw,0(P (t))

χw,−1(P (t))

)
.

Two things are worth noticing concerning this func-
tion: V takes non-negative values, and V vanishes iff
P (t) ∈ diag(Rn). Both facts are a consequence of the
power means inequality [5], that asserts that χw,r(P ) ≥
χw,s(P ) for r > s and any P ∈ R

n
>0, with the equality

holding iff P ∈ diag(Rn).

Let us examine the evolution of V . Note that the coor-
dination algorithm (11) preserves the function χw,r by
design. Therefore, we have

dV

dt
(t) = −

n∑

i=1

wip
r
i (t)

1

wi

p1−r
i (t)(L(G)P (t))i

= −P (t)T L(G)P (t)

≤ −λ2(Sym(L(G))) ‖P (t) − χ1(P (t))1‖2
2

≤ −
λ2(Sym(L(G)))

nmax{wi}
χ2

w,2

(
P (t) − χw,1(P (t))1

)
.

In the first inequality, we have used (1) for Sym(L(G))
(since G is weakly connected and weight-balanced, then
ker(Sym(L(G))) = span{1}). In the second inequality,
we have used the fact that, for any P ∈ R

n
>0, n‖P −

χ1(P )‖2
2 ≥ ‖P − χw,1(P )‖2

2 and

min{wi}‖P − χw,1(P )1‖2
2 ≤ χ2

w,2

(
P − χw,1(P )1

)

≤ max{wi}‖P − χw,1(P )1‖2
2. (12)

Now, we are ready to use the second inequality in Propo-
sition 13 to deduce that

dV

dt
(t) ≤ −

λ2(Sym(L(G)))

nmax{wi}
·

2min
{

min{pi(t)}
1−r,max{pi(t)}

1−r
}
V (t).

Using the fact that min{pi(0)} ≤ min{pi(t)} ≤
max{pi(t)} ≤ max{pi(0)} for all t ∈ R≥0, we conclude

dV

dt
(t) ≤ −2 c

λ2(Sym(L(G)))

nmax{wi}
V (t),

where c is as defined in the statement of the proposition.
Therefore, we have

V (t) ≤ V (0) exp
(
− 2 c

λ2(Sym(L(G)))

nmax{wi}
t
)
.

Using (12) and the first inequality in Proposition 13, we
deduce

‖P (t) − χw,1(P (t))1‖2
2 ≤

2

min{wi}
max

{
min{pi(t)}

1−r,max{pi(t)}
1−r

}
V (t) ≤

2d

min{wi}
V (0) exp

(
− 2 c

λ2(Sym(L(G)))

nmax{wi}
t
)
≤

max{wi}

min{wi}
·

d

c
‖P (0) − χw,1(P (0))1‖2

2 exp
(
− 2 c

λ2(Sym(L(G)))

nmax{wi}
t
)
,

where in the second inequality, we have introduced

d =





min{p1(0), . . . , pn(0)}1−r, if r > 1,

1, if r = 1,

max{p1(0), . . . , pn(0)}1−r, if r < 1.

Finally,

‖P (t) − χw,1(P (t))1‖2 ≤

√
d

c

max{wi}

min{wi}
·

‖P (0) − χw,1(P (0))1‖2 exp
(
− c

λ2(Sym(L(G)))

nmax{wi}
t
)
,

as claimed. •
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Fig. 2. A network executing the distributed algorithm (11) asymptotically achieves power mean-consensus (top) with expo-
nential rate of convergence (bottom). In these executions, the network topology is as in Figure 1(c), and the agents’ initial
state is chosen randomly.

Figure 2 illustrates the evolution of the distributed co-
ordination algorithm (11) for various power mean func-
tions.

Remark 15 (Input-to-state stability) Note that
Proposition 14 implies that the coordination algo-
rithm (11) enjoys some strong robustness properties: for
instance, in scenarios where the network is subject to
external disturbances affecting the execution of (11), the
exponential rate of convergence implies that the system
is input-to-state stable, see e.g., [16, Lemma 4.6]. •

Remark 16 (Networks with switching intercon-
nection topologies revisited) Let Γ be a finite collec-
tion of weakly connected, weight-balanced digraphs. Then,
building on the proof of Proposition 14, one can show
that the switching system consisting of coordination algo-
rithms (11) associated with digraphs in Γ asymptotically
achieves weighted power mean consensus with exponen-
tial rate of convergence greater than or equal to

c
minG∈Γ{Sym(λ2(L(G)))}

nmax{w1, . . . , wn}
. •

5.3 Max and min consensus

Here, we describe two distributed coordination algo-
rithms for max and min consensus. Since neither the
maximum nor the minimum are differentiable functions,
we cannot rely on Proposition 10 or Corollary 11. In-
stead, we use the characterization obtained in Section 4.
Consider the dynamical systems

ṗi = sgn+

( n∑

j=1

aij(pj − pi)
)
, (13a)

ṗi = sgn−

( n∑

j=1

aij(pj − pi)
)
, (13b)

where sgn+, sgn− : R → R are defined by sgn+(x) = 0
if x ≤ 0 and sgn+(x) = 1 if x > 0; and sgn−(x) = 0 if
x ≥ 0 and sgn−(x) = −1 if x < 0.

For ease of notation, we will refer to these flows by Xsgn+

and Xsgn−
, respectively. Note that both right-hand sides

are discontinuous. We understand their solution in the
Filippov sense [10]. The following result characterizes
the asymptotic convergence properties of these systems.

Proposition 17 (Max and min consensus) Let G
be a strongly connected weighted digraph. Then, the
coordination algorithm (13a) (respectively, the coordi-
nation algorithm (13b)) is out-distributed over G and
asymptotically achieves max consensus (respectively,
min consensus) in finite time.

PROOF. Our proof strategy is to verify that the con-
ditions in Corollary 9 hold. We prove it for the max
function and the flow (13a), and leave to the reader the
analogous proof for the min function and the flow (13b).
Clearly, max : R

n → R, max(P ) = maxi∈{1,...,n}{pi}, is
continuous and surjective. Moreover, max(p, . . . , p) = p,
so condition (iii) in Corollary 9 is satisfied.

Next, we show that max is preserved by the flow (13a).
The set-valued map associated to (13a) is

K[Xsgn+
](P ) = {v ∈ R

n | vi ∈ [0, 1] if
n∑

j=1

aij(pj − pi) = 0,

vi = sgn+

( n∑

j=1

aij(pj − pi)
)
, otherwise}.

Let a ∈ L̃Xsgn+
max (P ). By definition, there exists v ∈

K[Xsgn+
](P ) with a = v · ζ, for all ζ ∈ ∂ max(P ). If

P ∈ diag(Rn), then ∂ max(P ) = R
n, and, necessarily

v = (0, . . . , 0). Therefore, a = 0. If P 6∈ diag(Rn), then
using the fact that G is strongly connected, there exists
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k ∈ {1, . . . , n} with pk = maxi∈{1,...,n}{pi} such that

n∑

i=1

aki(pi − pk) < 0.

Therefore, vk = 0, and a = v · ek = 0. Note that
0 always belongs to L̃Xsgn+

max (P ). We conclude

L̃Xsgn+
max (P ) = {0}, and therefore, by Theorem 4,

max is constant along the trajectories of (13a), i.e.,
condition (ii) in Corollary 9 is satisfied.

Let us see that the trajectories of (13a) converge to
diag(Rn). Consider as candidate Lyapunov function V =
−min. Reasoning similarly as above, one can show

L̃Xsgn+
(−min)(P ) =

{
{0}, P ∈ diag(Rn),

{−1}, P 6∈ diag(Rn).

Invoking Theorem 4, we deduce that minP (0) ≤ pi(t)
for all i ∈ {1, . . . , n}. Since the max function is conserved
along the trajectories, we deduce

min P (0) ≤ pi(t) ≤ max P (0) , i ∈ {1, . . . , n},

and therefore, the trajectories of (13a) are bounded.
Note that ZXsgn+

,−min = diag(Rn). Theorem 5 now

yields that all system trajectories converge to diag(Rn),
which establishes condition (i) in Corollary 9. The appli-
cation of [8, Proposition 4] with ǫ = 1 implies that con-
vergence is attained in max(P0) − min(P0) time units.•

6 Conclusions

We have presented necessary and sufficient conditions for
any coordination algorithm that asymptotically achieves
consensus upon the value of a general continuous func-
tion. Building on this characterization, and considering
coordination algorithms over weighted digraphs, we have
identified particular conditions on the consensus func-
tion under which distributed algorithms can be auto-
matically designed, characterized the exponential con-
vergence properties of a class of distributed coordination
algorithms that achieve weighted power mean consensus,
and introduced distributed coordination algorithms that
achieve max and min consensus in finite time. We have
also established the validity of the results for networks
with dynamically changing interconnection topologies

Future work will investigate similar results for discrete-
time coordination algorithms, characterize the class of
functions whose gradient is out-distributed, examine the
connection of the results with network games, analyze
the robustness of the proposed algorithms against noise
and time delays, and explore the application of the re-
sults of the paper to the synthesis of cooperative strate-
gies for distributed estimation and fusion problems.
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7 Appendix: proof of Proposition 2

Let G = (V, E) be a digraph of order n. The implica-
tion from right to left is proven in [13, Theorem 2]. If G
is strongly semiconnected, then there exists an integer-
valued A ∈ Z

n×n
≥0 such that (V, E ,A) is weight-balanced.

Let us prove the implication from left to right. Assume
there exists a weight-balanced digraph (V, E ,A) and let
us show that G must be strongly semiconnected. By def-

inition, A ∈ R
n×n
≥0 . Let m be the number of edges of G,

and consider the incidence matrix B = (bij) ∈ R
n×m

with entries bij = +1, if ej = (i, ∗); bij = −1 if ej =
(∗, i); and bij = 0, otherwise.

The fact that (V, E ,A) is weight-balanced can alterna-
tively be expressed by saying that the linear system

Bw = 0 (14)

admits a solution of the form w∗ ∈ R
m
>0. Our proof strat-

egy is to show that if this is true, then the linear sys-
tem (14) must also admit a solution of the form w ∈ Z

m
>0.

By [13, Theorem 2], this would imply that G is strongly
semiconnected. After performing Gaussian elimination
(see e.g., [17]) in (14), let ℓ and m − ℓ be the number of
leading and free variables, respectively. Without loss of
generality, assume that w1, . . . , wℓ are the leading vari-
ables, and wℓ+1, . . . , wm are the free variables. Then,

wk =
m∑

s=ℓ+1

cksws, k ∈ {1, . . . , ℓ},

with cks ∈ Z. Take any constant α ∈ R>0 verifying that

α >
maxk∈{1,...,ℓ}

∑m
s=ℓ+1 |cks|

mink∈{1,...,ℓ} w∗
k

> 0,

and consider the solution w′ ∈ Z
m determined by the

free variables
⌊
αw∗

ℓ+1

⌋
, . . . , ⌊αw∗

m⌋ ∈ Z>0, i.e.,

w′
k =

m∑

s=ℓ+1

cks ⌊αw∗
s⌋ , k ∈ {1, . . . , ℓ},

w′
s = ⌊αw∗

s⌋ , s ∈ {ℓ + 1, . . . ,m}.

Note that, for all k ∈ {1, . . . , ℓ}, one has

w′
k = αw∗

k −
m∑

s=ℓ+1

cks{αw∗
s} >

α min
k∈{1,...,ℓ}

w∗
k − max

k∈{1,...,ℓ}

m∑

s=ℓ+1

|cks| > 0,

and therefore, there exists w′ ∈ Z
m
>0 solving (14), which

concludes the proof. •
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