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Abstract— This paper presents analysis and design results
for distributed consensus algorithms in multi-agent networks.
We consider arbitrary consensus functions of the initial state
of the network agents. Under mild smoothness assumptions,
we obtain necessary and sufficient conditions characterizing
any algorithm that asymptotically achieves consensus. This
characterization is the building block to obtain various design
results. We first identify a class of smooth functions for
which one can synthesize in a systematic way distributed
algorithms that achieve consensus. We apply this result to the
family of weighted power mean functions, and characterize the
exponential convergence properties of the resulting algorithms.
We conclude with two distributed algorithms that achieve,
respectively, max and min consensus in finite time.

I. I NTRODUCTION

Arguably, the ability to reach consensus, or agreement,
upon some (a priori unknown) quantity is critical for any
multi-agent system. Network coordination problems involv-
ing self-organization, formation pattern, distributed estima-
tion or parallel processing, to name a few, require indi-
vidual agents to agree on the identity of a leader, jointly
synchronize their operation, decide which specific patternto
form, balance the computational load or fuse consistently the
information gathered on some spatial process.

In this paper, we address the problem of designing
(continuous-time) coordination algorithms that make a net-
worked system asymptotically agree upon the value of a
desired arbitrary function of the initial state of the individual
agents. The motivation behind our approach is to make
available broadly applicable tools and systematic design
methodologies for coordination problems involving groups
of robotic agents and mobile sensor networks.

Literature review: Distributed consensus algorithms have
a long-standing tradition in computer science, e.g. [1]. Within
the literature on cooperative control and multi-agent systems,
recent years have witnessed the introduction of distributed
strategies that achieve various forms of agreement. This inter-
est is reflected in the recent surveys [2], [3]. A growing body
of work focuses in designing and analyzing algorithms that
make individual network agents agree upon the value of some
function of their initial states. These include average consen-
sus [4], [5], [6], average-max-min consensus [7], geometric-
mean consensus [8] and power-mean consensus [9]. In these
works, the state variables associated to the individual agents
do not necessarily correspond to physical variables, such
as spatial coordinates or velocities. Network coordination
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problems that focus, instead, on “spatial versions” of consen-
sus include rendezvous [10], [11], [12], [13], flocking [14],
[15], [16], [17] and cohesiveness [18], [19]. Applicationsof
consensus algorithms to data fusion problems and distributed
filtering include [20], [21], [22].

Statement of contributions: The contributions of this paper
pertain both analysis and design of cooperative strategiesfor
consensus. Regarding analysis, we identify a set of condi-
tions that completely characterize when a coordination algo-
rithm makes the network agents asymptotically agree upon
the value of an arbitrary function of their individual states (cf.
Theorem 4.3 and Corollary 4.4). This characterization holds
under mild assumptions on the smoothness properties of both
the consensus function and the coordination algorithm. We
then particularize this result to the setting of real analytic
consensus functions (cf. Proposition 4.6).

Regarding design, we identify a class of smooth consensus
functions for which one can synthesize in a systematic way
distributed coordination algorithms (cf. Proposition 5.1 and
Corollary 5.2). The property common to these functions is
that the computation of their gradients enjoys some special
distributed features. Building on this result, we characterize
the exponential rate of convergence of a class of distributed
algorithms that achieve weighted power mean consensus
originally introduced in [9] (cf. Proposition 5.4). The maxi-
mum and the minimum functions do not belong to the special
class of functions mentioned above. The last contribution
of the paper is the introduction of two distributed algo-
rithms that achieve max and min consensus in finite time
(cf. Proposition 5.5). The convergence proof relies on the
characterization obtained in Corollary 4.4 and tools from
nonsmooth stability analysis.

Organization: The paper is organized as follows. Sec-
tion II presents some preliminary notions on undirected
graphs, distributed maps and nonsmooth stability analysis.
Section III formally introduces the consensus problem we
are interested in solving. Section IV identifies necessary
and sufficient conditions for any coordination algorithm that
asymptotically achieves consensus. Section V investigates
the design of distributed coordination algorithms for consen-
sus, paying special attention to weighted power mean, max
and min consensus. Finally, we present our conclusions and
ideas for future research in Section VI.

Notation: Let N, R+ and R+ denote, respectively, the
set of natural numbers, the set of positive reals, and the
set of non-negative reals. LetiR : R → diag(Rn) ⊂ R

n

denote the natural inclusion, and1 denote the vector1 =
(1, . . . , 1) ∈ R

n. Given χ : V ⊂ R
d1 → R

d2 , d1, d2 ∈ N,
we denote Im(χ) = {χ(P ) ∈ R

d2 | P ∈ V}. Note



that Im(iR) = diag(Rn). For a continuous functionχ, its
extensionχe : V ⊂ R

d1 → R
d2 is defined asχe(P ) = χ(P )

for P ∈ V, and χe(P ) = limm→+∞ χ(Pm) for P ∈ ∂V
andV ∋ Pm → P . Given a positive semidefinite matrixA,
let ker(A) ⊂ R

n denote the eigenspace corresponding to the
eigenvalue0 (if A is positive definite, then we setker(A) =
{0}). Denote byπker(A) : R

n → ker(A) the orthogonal
projection ontoker(A). Let λ2(A) andλn(A) be the smallest
non-zero and greatest eigenvalue ofA, respectively, i.e.
λ2(A) = min{λ | λ > 0 and λ eigenvalue ofA} and
λn(A) = max{λ | λ eigenvalue ofA}. One can see that
for u ∈ R

n,

λ2(A) ‖u − πker(A)(u)‖2
2 ≤ uT Au

≤ λn(A) ‖u − πker(A)(u)‖2
2. (1)

For a setX, we denote byP(X) the collection of all subsets
of X, and by F(X) ⊂ P(X) the collection of all finite
subsets ofX. Finally, let sgn+, sgn−, sgn : R → R be

sgn+(x) =

{
0, x ≤ 0,

1, x > 0,
sgn−(x) =

{
0, x ≥ 0,

−1, x < 0,

and sgn(x) = sgn+(x) + sgn−(x).

II. PRELIMINARIES

In this section, we gather some definitions and tools
from algebraic graph theory, distributed maps and nonsmooth
stability analysis.

A. Graph Laplacians, disagreement functions and dis-
tributed maps

The graph Laplacian matrixL associated with an undi-
rected graphG = ({1, . . . , n}, E) (see, for instance, [23])
is defined asL = ∆ − A, where∆ is the degree matrix
and A is the adjacency matrix of the graph. The Laplacian
matrix has the following relevant properties: it is symmetric,
positive semidefinite and hasλ = 0 as an eigenvalue with
eigenvector1. More importantly, the graphG is connected
if and only if rank(L) = n − 1, i.e., if the eigenvalue0
has multiplicity one. This is the reason why the eigenvalue
λ2(L) = min{λ | λ > 0 andλ eigenvalue ofL} is termed
the algebraic connectivity of the graphG.

Let us associate a statepi ∈ R to each vertexi ∈
{1, . . . , n}. Two nodes are said toagree if and only if
pi = pj . A meaningful function that quantifies the group
disagreement in a network is the so-calleddisagreement
function or Laplacian potential ΦG : R

n → R+ associated
with G (see [4]), defined by

ΦG(p1, . . . , pn) =
1

2
PT LP =

1

2

∑

i<j
(i,j)∈E

(pj − pi)
2,

with P = (p1, . . . , pn) ∈ R
n. ClearlyΦG(p1, . . . , pn) = 0 if

and only if all neighboring nodes in the graphG agree. If the
graphG is connected, then all nodes in the graph agree and

a consensus is reached. The Laplacian potential is smooth,
and its gradient is given by

∂ΦG

∂pi

=
∑

j∈NG(i)

(pi − pj), i ∈ {1, . . . , n}. (2)

Next, we introduce the notion of distributed map over an
undirected graphG. Given two spacesX, Y , and a function
T : Xn → Y n, we say thatT is (1-hop) distributed over G
if there exist functionsT̃1, . . . , T̃n : X × F(X) → Y with

Ti(x1, . . . , xn) = T̃i(xi, {xj | j ∈ NG(i)}),
for all (x1, . . . , xn) ∈ X and all i ∈ {1, . . . , n}. Roughly
speaking, theith component of a distributed map overG can
be computed only with information about the state of node
i and its neighbors in the graphG. For example, from (2),
we deduce thatgrad(ΦG) : R

n → R
n is distributed over

G. This notion was introduced in [13] for the more general
class of proximity graphs.

B. Nonsmooth stability analysis

This section introduces differential equations with dis-
continuous right-hand sides and presents various nonsmooth
tools to analyze their stability properties. The presentation
follows the exposition in [24], [25].

For differential equations with discontinuous right-hand
sides we understand the solutions in terms of differential
inclusions following [26]. LetF : R

d → 2R
d

, d ∈ N, be a
set-valued map. Consider the differential inclusion

ẋ ∈ F (x) . (3)

A solution to this equation on an interval[t0, t1] ⊂ R is
defined as an absolutely continuous functionx : [t0, t1] →
R

d such thatẋ(t) ∈ F (x(t)) for almost allt ∈ [t0, t1]. Now,
consider the differential equation

ẋ(t) = X(x(t)) , (4)

whereX : R
d → R

d is measurable and essentially locally
bounded [26]. For eachx ∈ R

d, consider the set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(Bd(x, δ) \ S)} , (5)

where µ denotes the usual Lebesgue measure inR
d. A

Filippov solution of (4) on an interval[t0, t1] ⊂ R is defined
as a solution of the differential inclusion

ẋ ∈ K[X](x) . (6)

A setM is weakly invariant (respectivelystrongly invariant)
for (4) if for eachx0 ∈ M , M contains a maximal solution
(respectively all maximal solutions) of (4).

Let f : R
d → R be a locally Lipschitz function. From

Rademacher’s Theorem [27], we know that locally Lipschitz
functions are differentiable a.e. LetΩf ⊂ R

d denote the set
of points wheref fails to be differentiable. Thegeneralized
gradient of f at x ∈ R

d (cf. [27]) is defined by

∂f(x) = co
{

lim
i→+∞

df(xi) | xi → x , xi 6∈ S ∪ Ωf

}
,



whereS can be any set of zero measure. Note that iff is
continuously differentiable, then∂f(x) = {df(x)}.

Given a locally Lipschitz functionf , the set-valued Lie
derivative of f with respect to X at x (cf. [24], [25]) is

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that

ζ · v = a , ∀ζ ∈ ∂f(x)}.

If f is continuously differentiable atx andX is continuous
at x, thenL̃Xf(x) corresponds to the singleton{LXf(x)},
the usual Lie derivative off in the direction ofX at x. The
next result states that the set-valued Lie derivative allows
us to study the evolution of a function along the Filippov
solutions.

Theorem 2.1: Let x : [t0, t1] → R
d be a Filippov solution

of (4). Letf be a locally Lipschitz and regular function. Then
t 7→ f(x(t)) is absolutely continuous,d

dt

(
f(x(t))

)
exists a.e.

and d
dt

(f(x(t))) ∈ L̃Xf(x(t)) a.e.
The following result is a generalization of LaSalle princi-

ple for differential equations of the form (4) with nonsmooth
Lyapunov functions.

Theorem 2.2: (LaSalle Invariance Principle): Let f :
R

d → R be a locally Lipschitz and regular function. Let
x0 ∈ S ⊂ R

d, with S compact and strongly invariant for (4).
Assume that eithermax L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅ for
all x ∈ S. Let ZX,f = {x ∈ R

d | 0 ∈ L̃Xf(x)}. Then,
any solutionx : [t0,+∞) → R

d of (4) starting fromx0

converges to the largest weakly invariant setM contained in
ZX,f ∩ S. Moreover, if the setM is a finite collection of
points, then the limit of all solutions starting atx0 exists and
equals one of them.

The following result establishes one condition under which
convergence is attained in finite time.

Proposition 2.3: Under the same assumptions of Theo-
rem 2.2, further assume that there exists a neighborhoodU
of ZX,f ∩ S in S such thatmax L̃Xf < −ǫ < 0 a.e. on
U \ (ZX,f ∩ S). Then, any solutionx : [t0,+∞) → R

d

of (4) starting atx0 ∈ S reachesZX,f ∩ S in finite time.

III. PROBLEM STATEMENT

Let χ : V ⊂ R
n → R be a continuous function. Consider

a network of agents whose individual dynamics is given by

ṗi = ui, i ∈ {1, . . . , n}. (7)

We say that a coordination algorithmu : V ⊂ R
n →

R
n asymptotically achieves χ-consensus if u is essentially

locally bounded, and for any(p1(0), . . . , pn(0)) ∈ V, any
solution of the dynamics (7) starting at(p1(0), . . . , pn(0))
stays inV and verifies, for alli ∈ {1, . . . , n},

pi(t) −→ χ(p1(0), . . . , pn(0)), t → +∞.

Because the trajectories stay inV, for consistency, Im(iR ◦
χ) ⊂ V must hold. Note that we do not requireu to
be continuous. Ifu is discontinuous, then solutions are
understood in the Filippov sense [26]. We usually refer toχ
as theconsensus function.

Now, assume the network interconnection topology is
described by an undirected graphG = ({1, . . . , n}, E). Our
objective is to design coordination algorithms that verify, at
the same time,

(P.1): u is distributed overG, and
(P.2): u asymptotically achievesχ-consensus.

Property (P.1) guarantees that the control lawu is imple-
mentable over the network (7), and property (P.2) guarantees
that individual agents asymptotically agree on the value ofχ.

IV. N ECESSARY AND SUFFICIENT CONDITIONS FOR

χ-CONSENSUS

In this section, we obtain necessary and sufficient con-
ditions for any coordination algorithm that asymptotically
achieve consensus (i.e., satisfy property (P.2) in SectionIII).
We undertake this study as a necessary step previous to the
synthesis of coordination algorithms with properties (P.1) and
(P.2). The treatment of Section V builds on this discussion
to design distributed algorithms forχ-consensus.

We start by showing that the functionχ must be con-
stant along the trajectories of a coordination algorithm that
asymptotically achievesχ-consensus. The statement here is
a generalization to continuous functions of a result in [9].

Lemma 4.1: Let χ : V ⊂ R
n → R be a continuous

function. Assume Im(iR ◦χ) ⊂ V and letu : V ⊂ R
n → R

n

be a coordination algorithm asymptotically achievingχ-
consensus. Thenχ is constant along the trajectories of (7).

Proof: Let P0 ∈ V and consider a trajectoryR+ ∋
t 7→ P (t) of (7) that starts atP0. Sinceu asymptotically
achievesχ-consensus, thenP (t) → (χ(P0), . . . , χ(P0)). Let
t∗ ∈ R+. The curveR+ ∋ t 7→ P (t+ t∗) starts atP (t∗) ∈ V
and it is a trajectory of (7). Sinceu asymptotically achieves
χ-consensus, thenP (t + t∗) → (χ(P (t∗)), . . . , χ(P (t∗))).
SinceP (t) → (χ(P0), . . . , χ(P0)), we concludeχ(P (t∗)) =
χ(P0), i.e., χ is constant alongR+ ∋ t 7→ P (t).

The following result restricts the class of functionsχ for
which the consensus problem can be solved. The statement
here is a generalization to functions with arbitrary domains
of a result in [9].

Proposition 4.2: Let χ : V ⊂ R
n → R be a continuous

function. Assume Im(iR ◦ χ) ⊂ V and letu : V ⊂ R
n →

R
n be a coordination algorithm asymptotically achievingχ-

consensus. Thenχ ◦ iR|Im(χ) = IdR|Im(χ).
Proof: We reason by contradiction. Assume there

exists p ∈ Im(χ) such thatχ(p, . . . , p) 6= p (note that
(p, . . . , p) ∈ V because Im(iR ◦ χ) ⊂ V). Let ǫ =
|χ(p, . . . , p) − p| > 0. By continuity of χ, there exists
δ > 0 such that‖P − (p, . . . , p)‖ < δ implies |χ(P ) −
χ(p, . . . , p)| < ǫ. On the other hand, sincep ∈ Im(χ),
there existsP ∗ ∈ V \ {(p, . . . , p)} such thatχ(P ∗) = p.
By hypothesis,u asymptotically achievesχ-consensus. In
particular, this implies that the trajectoryR+ ∋ t 7→ P (t)
of (7) starting fromP (0) = P ∗ asymptotically converges
to (χ(P ∗), . . . , χ(P ∗)) = (p, . . . , p). For δ > 0 above,
there existsT > 0 such that‖P (t) − (p, . . . , p)‖ < δ
for t ≥ T , which implies that|χ(P (t)) − χ(p, . . . , p)| <



ǫ. By Lemma 4.1,χ(P (t)) = χ(P ∗) = p, and hence
|p−χ(p, . . . , p)| < ǫ, contradictingǫ = |χ(p, . . . , p)−p|.

The following result fully characterizes the situations
where χ-consensus can be asymptotically achieved by a
coordination algorithm.

Theorem 4.3: Let χ : V ⊂ R
n → R be continuous.

Assume thati−1
R

(V) = Im(χ) and Im(χe| diag(Rn)∩∂V ) ∩
Im(χ) = ∅. Let u : V ⊂ R

n → R
n be essentially locally

bounded such that the trajectories of (7) are bounded andV
is strongly invariant. Then,u guarantees thatχ-consensus is
asymptotically reached if and only if the following holds

(i) the trajectories of (7) converge todiag(Rn),
(ii) χ is constant along the trajectories of (7), and
(iii) χ ◦ iR|Im(χ) = IdR|Im(χ).

Proof: If u guarantees thatχ-consensus is asymptot-
ically reached, then (i) holds by definition, (ii) holds by
Lemma 4.1 and (iii) holds by Proposition 4.2. Now, assume
that (i)-(iii) hold, and let us prove thatu guarantees that
χ-consensus is asymptotically reached. LetP0 ∈ V and
consider a trajectoryR+ ∋ t 7→ P (t) of (7) starting at
P (0) = P0. Since the trajectory is bounded, itsω-limit
set, denotedΩ({P (t)}t∈R+

) ⊂ R
n, is non-empty, compact

and invariant. By (i),Ω({P (t)}t∈R+
) ⊂ diag(Rn). For

each(p, . . . , p) ∈ Ω({P (t)}t∈R+
), there exists a convergent

subsequence (that, for ease of notation, we also denote
by {P (t)}t∈R+

) such thatP (t) → (p, . . . , p). Note that
(p, . . . , p) ∈ V. Extending χ by continuity if necessary,
we haveχ(p, . . . , p) = limt→+∞ χ(P (t)). Now (ii) implies
that actually χ(p, . . . , p) = χ(P0). This, together with
Im(χe| diag(Rn)∩∂V )∩ Im(χ) = ∅, implies thatp ∈ i−1

R
(V) =

Im(χ). By (iii), we deducep = χ(p, . . . , p) = χ(P0). There-
fore, we have established thatΩ({P (t)}t∈R+

) = {χ(P0)1},
or, equivalently, that the trajectory{P (t)}t∈R+

converges to
χ(P0)1, as claimed.

The previous result takes a much simpler form when
the functionχ is defined over the whole spaceRn and is
surjective.

Corollary 4.4: Let χ : R
n → R be continuous and surjec-

tive. Let u : R
n → R

n be essentially locally bounded such
that the trajectories of (7) are bounded. Then,u guarantees
thatχ-consensus is asymptotically reached if and only if the
following holds

(i) the trajectories of (7) converge todiag(Rn),
(ii) χ is constant along the trajectories of (7), and
(iii) χ ◦ iR = IdR.

Theorem 4.3 and Corollary 4.4 are important both from
an analysis and a design viewpoint. From an analysis per-
spective, these results characterize under what circumstances
the network asymptotically achievesχ-consensus with a
coordination algorithm of the formu : V ⊂ R

n → R
n. From

a design perspective, these results establish a systematic
methodology to synthesize solutions to theχ-consensus
problem. Therefore, if faced with the task of analyzing the
correctness properties of a given coordination algorithm,
or the task of designing a new coordination algorithm to
achieveχ-consensus, one can just check that the consensus

function satisfies condition (iii) in Theorem 4.3, and that
the coordination algorithm satisfies conditions (i) and (ii)
in Theorem 4.3.

A. Real analytic consensus functions

In this section, we focus on our attention on real analytic
functionsχ : R

n → R. First, we show that condition (iii)
in Theorem 4.3 determines, up to first-order, the consensus
function χ.

Lemma 4.5: Let χ : R
n → R be real analytic. Assume

χ ◦ iR = IdR. Then, there existsw = (w1, . . . , wn) ∈ R
n

with
∑n

i=1 wi = 1 such that the first-order approximation
of χ is the weighted average mean function

∑
i=1n wi pi.

We refer to w as the first-order weight vector associated
to χ.

Proof: Let (p∗, . . . , p∗) ∈ diag(Rn). By definition,
there exists a neighborhoodU of (p∗, . . . , p∗) such that

χ(p1, . . . , pn) =
∑

k1,...,kn≥0

ak1,...,kn
(p1 − p∗)k1 . . . (pn − p∗)kn ,

for all (p1, . . . , pn) ∈ U , where

ak1,...,kn
=

1

k1! . . . kn!

∂k1+···+knχ

∂pk1

1 . . . ∂pkn
n

(p∗, . . . , p∗).

In particular, note thata0,...,0 = χ(p∗, . . . , p∗) = p∗. Now,
for any p ∈ iR

−1(U), we have

p = χ(p, . . . , p) =
∑

k1,...,kn≥0

ak1,...,kn
(p − p∗)k1 . . . (p − p∗)kn

= p∗ +
∑

k1,...,kn≥0
k1+···+kn≥1

ak1,...,kn
(p − p∗)k1+···+kn .

Since real analytic functions of one variable that are equalon
an open set must be necessarily identical on the intersection
of their domains of definition, see e.g. [28, Corollary 1.2.6],
we deduce

∑

k1,...,kn≥0
k1+···+kn=ℓ

ak1,...,kn
=

{
1, ℓ = 1,

0, ℓ ≥ 2.

Denoting for simplicityw1 = a1,0,...,0, . . . , wn = a0,0,...,1,
we get the following expression forχ on U ,

χ(p1, . . . , pn) =
n∑

i=1

wi pi+

∑

k1,...,kn≥0
k1+···+kn≥2

ak1,...,kn
(p1 − p∗)k1 . . . (pn − p∗)kn .

To conclude, let us establish that the weightsw1, . . . , wn

are independent of the selected point indiag(Rn) where the
series expansion ofχ is derived. We reason by contradiction.
Assume there existP ∗

1 , P ∗
2 ∈ diag(Rn), with corresponding

neighborhoodsU1 andU2, and different weights in the series
expansion. Consider the compact segment with extreme
points P ∗

1 and P ∗
2 . For each point in this segment, there

exists a neighborhood whereχ admits a convergent series
expansion. Since the segment is compact, there exist a



finite number of pairwise-intersecting neighborhoods whose
union contains the segment. Without loss of generality, we
can assume thatU1 and U2 belong to this finite family.
Using again [28, Corollary 1.2.6], it is not difficult to see
that any two points whose corresponding neighborhoods
intersect must have the same weights in the series expansion.
Therefore, the weights obtained throughout the segment are
constant, which contradicts the fact thatP ∗

1 and P ∗
2 have

different weights in their series expansion.
Next, given a connected undirected graphG, we show

that under some additional conditions, there always exist
a (generally non distributed) coordination algorithm that
asymptotically achieve consensus. In the forthcoming state-
ment, we denote byv/w ∈ R

n with v, w ∈ R
n, the vector

whoseith component isvi/wi, i ∈ {1, . . . , n}.
Proposition 4.6: Let χ : R

n → R be real analytic.
Assumeχ ◦ iR = IdR. Let w ∈ R

n
+ be the first-order weight

vector associated toχ, and assume(gradχ(P )−w) ·1 = 0,
for all P ∈ R

n. Let G be a connected undirected graph.
Then, the coordination algorithmu : R

n → R
n with ith

component,i ∈ {1, . . . , n}, given by

ui(P ) =
1

wi

∑

j∈NG(i)

(pj − pi) +
( 1

w
gradχ(P )

)T
LP, (8)

asymptotically achievesχ-consensus.
Proof: Our proof strategy is to check the conditions

of Corollary 4.4. Clearly,χ is continuous and surjective.
The mapu is differentiable. Condition (iii) is readily verified
by hypothesis. Condition (ii) is a consequence of following
simple computation

Luχ =

n∑

i=1

∂χ

∂pi

ui =

n∑

i=1

wiui +

n∑

i=1

( ∂χ

∂pi

− wi

)
ui

=
( 1

w
gradχ(P )

)T
LP −

n∑

i=1

( ∂χ

∂pi

− wi

) 1

wi

(LP )i = 0.

Finally, condition (i) follows from

LuΦG =
n∑

i=1

∂ΦG

∂pi

ui = −
n∑

i=1

1

wi

( ∑

j∈NG(i)

(pj − pi)
)2

≤ 0.

Using the connectedness ofG, it is not difficult to establish
thatLuΦG(P ) = 0 if and only if P ∈ diag(Rn). Therefore,
the trajectories of (8) converge todiag(Rn). Using this
property and the fact thatχ is analytic, one can also deduce
that the trajectories are bounded.

Remark 4.7: Note that the coordination algorithm (8) is,
in general, not distributed over the graphG, since each agent
needs to compute the term

(
1
w

gradχ(P )
)T

LP . In the next
section, we focus our attention on a special class of functions
that admit distributed coordination algorithms. •

V. D ISTRIBUTED COORDINATION ALGORITHMS FOR

χ-CONSENSUS

In this section, we identify particular conditions on the
consensus functionχ under which distributed coordination
algorithms that asymptotically achieve consensus can be
designed.

Proposition 5.1: Let χ : V ⊂ R
n → R be continuously

differentiable such thatχ ◦ iR|Im(χ) = IdR|Im(χ), i−1
R

(V) =
Im(χ) and Im(χe| diag(Rn)∩∂V ) ∩ Im(χ) = ∅. Let G be a
connected undirected graph, and letgradχ be distributed
over G, with all partial derivatives{ ∂χ

∂p1
, . . . , ∂χ

∂pn
} having

the same constant sign onV. Assume that the coordination
algorithmu : V ⊂ R

n → R
n,

ui =
1∣∣ ∂χ

∂pi

∣∣
∑

j∈NG(i)

(pj − pi), i ∈ {1, . . . , n} (9)

is essentially locally bounded and such thatV is strongly
invariant. Then,u is distributed overG and asymptotically
achievesχ-consensus.

Proof: Clearly, the mapu : V ⊂ R
n → R

n is
distributed overG. We prove thatu asymptotically achieves
χ-consensus by using Theorem 4.3. Let us first establish that
each trajectory of (9) belongs to some bounded and invariant
set. Consider themax : R

n → R function, max(P ) =
maxi∈{1,...,n}{pi}, and let us compute the set-valued Lie
derivative L̃u max. If a ∈ L̃u max, thena = u(P ) · ζ, for
all ζ ∈ ∂ max. The generalized gradient ofmax is

∂ max (P ) = co{ei | i ∈ {1, . . . , n} with pi = max(P )}.
If P ∈ diag(Rn), then u(P ) = 0, and thereforea = 0.
If P 6∈ diag(Rn), then using the fact thatG is connected,
there existsk ∈ {1, . . . , n} with pk = maxj∈{1,...,n}{pj}
such that

∑
j∈NG,k

(pj −pk) < 0. Consequently,uk(P ) < 0,
and a = u(P ) · ek < 0. Therefore, we conclude that either
L̃u max = ∅ or max L̃u max ≤ 0. Theorem 2.1 implies that
pi(t) ≤ max{p1(0), . . . , pn(0)}. A similar argument with
themin function shows thatmin{p1(0), . . . , pn(0)} ≤ pi(t).
Hence, any trajectory of (9) belongs to a bounded and
invariant set.

Let us study the evolution of the disagreement function
ΦG along the trajectories of the system

LuΦG =

n∑

i=1

∂ΦG

∂pi

ui = −
n∑

i=1

1∣∣ ∂χ
∂pi

∣∣
( ∑

j∈NG(i)

(pj − pi)
)2

≤ 0.

Using the connectedness ofG, it is not difficult to establish
that Zu,ΦG

= diag(Rn). Given that any trajectory of (9)
belongs to some bounded and invariant set, the LaSalle
Invariance Principle guarantees that all trajectories converge
to diag(Rn), i.e., condition (i) is satisfied. Condition (ii) is
easily verified since

Luχ =

n∑

i=1

∂χ

∂pi

ui =

n∑

i=1

sgn
( ∂χ

∂pi

)
·

∑

j∈NG(i)

(pj − pi)

= ±
n∑

i=1

∑

j∈NG(i)

(pj − pi) = 0.

Condition (iii) is verified by hypothesis, and this concludes
the result.

The next result extends the applicability of Proposition 5.1
to functionsχ whose gradient is not distributed over the in-
terconnection topology, but that admit a “distributing factor”
that makes it distributed. We formalize this idea as follows.



Corollary 5.2: Let χ : V ⊂ R
n → R be continuously

differentiable such thatχ ◦ iR|Im(χ) = IdR|Im(χ), i−1
R

(V) =
Im(χ) and Im(χe| diag(Rn)∩∂V ) ∩ Im(χ) = ∅. Let G be a
connected undirected graph. Assume there existf : V ⊂
R

n → R such thatf · gradχ is distributed overG, with all
partial derivatives{ ∂χ

∂p1
, . . . , ∂χ

∂pn
} having the same constant

sign onV. Assume that the coordination algorithmu : V ⊂
R

n → R
n,

ui =
1∣∣f ∂χ
∂pi

∣∣
∑

j∈NG(i)

(pj − pi), i ∈ {1, . . . , n} (10)

is essentially locally bounded and such thatV is strongly
invariant. Then,u is distributed overG and asymptotically
achievesχ-consensus.

Remark 5.3: Note that Proposition 5.1 and Corollary 5.2
generalize the main result in [9, Theorem 2] by broadening
the set of functions for which the consensus problem can be
solved. The result in [9] presents a class of distributed co-
ordination algorithms for functions that admit an expression
of the form

χ(p1, . . . , pn) = f
( n∑

i=1

g(pi)
)
, (11)

for some functionsf, g : R → R with g′(x) 6= 0 for all
x ∈ R. However, the set of functions to which Corollary 5.2
can be applied strictly contains this class of functions. Asan
example, consider the functionχ∗ : R

3
+ → R defined by

χ(p1, p2, p3) =
1

2
(
√

p1p2 +
√

p2p3).

This function does not fall into the category (11). This can be
see by contradiction. Assumingχ∗(p1, p2, p3) = f

(
g(p1) +

g(p2) + g(p3)
)
, for some appropriatef, g : R → R. Then,

∂χ∗

∂p2

/
∂χ∗

∂p1
= g′(p2)

/
g′(p1), i.e., the quotient only depends

on p1 andp2. However,
∂χ∗

∂p2

∂χ∗

∂p1

=
p3
√

p1 + p1
√

p3

p2
√

p3
,

which depends onp3, and therefore,χ∗ is not of the
form (11). On the other hand, the functionχ∗ : R

3
+ → R

verifies the hypotheses of Proposition 5.1, and is distributed
over the connected undirected graphG = ({1, 2, 3}, E), with
E = {(1, 2), (2, 3}. •
A. Distributed coordination algorithms for weighted power
mean consensus

In this section, we study distributed algorithms that asymp-
totically achieve weighted power mean consensus. This class
of algorithms was originally presented in [9]. Here, we
introduce them as a particular application of Corollary 5.2
the weighted power mean function. More importantly, we
characterize their exponential rate of convergence.

For w ∈ R
n
+ with

∑n
i=1 wi = 1 and r ∈ R \ {0}, the

weighted power mean χw,r : R
n
+ → R is defined by

χw,r(p1, . . . , pn) =
( n∑

i=1

wip
r
i

) 1
r .

For r ∈ {0,±∞}, the functionχw,r is defined by

χw,r(p1, . . . , pn) = lim
s→r

χw,s(p1, . . . , pn).

Alternatively, one has

χw,0(p1, . . . , pn) = pw1

1 . . . pwn
n ,

χw,+∞(p1, . . . , pn) = max{p1, . . . , pn},
χw,−∞(p1, . . . , pn) = min{p1, . . . , pn}.

Note that for specific values of the parameterr ∈ R
n ∪

{±∞}, the domain of definition ofχw,r can be larger than
R

n
+. For instance, the functionχw,1 is well-defined onRn.

The choicewi = 1
n

, i ∈ {1, . . . , n}, yields the usual
power mean function, that we simply denote byχr. Table I
summarizes some distinguished members of this class of
functions. The next result presents a class of coordination

χ−∞ Minimum
χ−1 Harmonic Mean
χ0 Geometric Mean
χ1 Arithmetic Mean or Average
χ2 Root-Mean-Square
χ∞ Maximum

TABLE I

SOME EXAMPLES OF POWER MEANS.

algorithms that asymptotically achieveχw,r-consensus, with
r ∈ R, exponentially fast.

Proposition 5.4: Let r ∈ R andw ∈ R
n
+ with

∑n
i=1 wi =

1. For any connected undirected graphG = ({1, . . . , n}, E),
the coordination algorithmuw,r : R

n
+ → R

n whose ith
component is given by

(uw,r)i(p1, . . . , pn) =
1

wi

p1−r
i

∑

j∈NG(i)

(pj − pi), (12)

is distributed overG and asymptotically achieves weighted
power mean-consensus with exponential rate of convergence
greater than or equal toc λ2

2(L)/λn(L), with

c =





max{p1(0), . . . , pn(0)}1−r, r > 1,

1, r = 1,

min{p1(0), . . . , pn(0)}1−r, r < 1.

Proof: Our proof strategy to assess the correctness
of uw,r is to verify that the conditions in Corollary 5.2
hold. Clearly, χw,r is continuously differentiable inV =
R

n
+, χw,r ◦ iR = IdR on R+, and Im(χw,r) = R+ =

iR
−1(Rn

+). Since diag(Rn) ∩ ∂R
n
+ = {0}, we also have

Im((χw,r)e| diag(Rn)∩∂V )∩ Im(χw,r) = ∅. The partial deriva-
tive of χw,r with respect topi, i ∈ {1, . . . , n}, is

∂χw,r

∂pi

= wi

( pi

χw,r(p1, . . . , pn)

)r−1

.

Clearly, onR
n
+, all partial derivatives are strictly positive.

Selectingf(p1, . . . , pn) = χw,r(p1, . . . , pn)r−1 in Corol-
lary 5.2, we see thatf · gradχw,r is distributed overG. The
coordination algorithm defined by (10) corresponds precisely
to uw,r. Moreover, from the fact thatχw,r is constant along



the trajectories, we deduce thatR
n
+ is strongly invariant. The

application of Corollary 5.2 yields the convergence result.
We conclude the proof by assessing the rate of conver-

gence of the trajectories of the system. Let[0,+∞) ∋ t 7→
P (t) = (p1(t), . . . , pn(t)) ∈ R

n
+ be a trajectory starting from

P (0) = P0 ∈ R
n
+. To this trajectory, we associate a curve

[0,+∞) ∋ t 7→ δ(t) ∈ R
n defined by

(p1(t), . . . , pn(t)) = χ1(p1(t), . . . , pn(t))1 + δ(t).

Note that1T · δ(t) = 0. Let us study the evolution ofδ(t).
For eachi ∈ {1, . . . , n},

δ̇i(t) = ṗi(t) −
d

dt

(
χ1(P (t))

)

=
1

wi

p1−r
i (t)

∑

j∈NG(i)

(δj(t) − δi(t)) −
d

dt

(
χ1(P (t))

)
.

Consider now the functiont → V (t) = 1
2δ(t)T Lδ(t).

Since G is connected, the eigenspace ofL corresponding
to the eigenvalue0 is ker(L) = span{1}. From (1) and
using the fact thatδ(t) is orthogonal to1, we deduce that
λ2(L)‖δ(t)‖2

2 ≤ V (t) ≤ λn(L)‖δ(t)‖2
2. The evolution of

this function is governed by

V̇ (t) = (Lδ(t))T · δ̇(t)

= −
n∑

i=1

1

wi

p1−r
i (t)

( ∑

j∈NG(i)

(δi(t) − δj(t))
)2

.

Now, taking into account that, fori ∈ {1, . . . , n}, one has
wi ≤ 1 andpi(t)

1−r ≥ c for all r ∈ R, we deduce

V̇ (t) ≤ −c
n∑

i=1

( ∑

j∈NG(i)

(δi(t) − δj(t))
)2

= −c ‖Lδ(t)‖2
2

≤ −c λ2
2(L) ‖δ(t)‖2

2 ≤ −2c
λ2

2(L)

λn(L)
V (t).

Therefore, we conclude

‖δ(t)‖2
2 ≤ 2

λ2(L)
V (t) ≤ 2

λ2(L)
V (0) exp

(
− 2c

λ2
2(L)

λn(L)
t
)
,

which implies the result.

B. Distributed coordination algorithms for max and min
consensus

In this section, we describe two distributed coordination
algorithms for max and min consensus. Since neither the
maximum nor the minimum are differentiable functions, we
cannot rely on Proposition 5.1 or Corollary 5.2. Instead, we
will build on the characterization obtained in Section IV.

Consider the dynamical systems

ṗi = sgn+

( ∑

j∈NG(i)

(pj − pi)
)
, (13a)

ṗi = sgn−

( ∑

j∈NG(i)

(pj − pi)
)
. (13b)

For ease of notation, we will refer to these flows byXsgn+

andXsgn
−

, respectively. Note that both right-hand sides are
discontinuous. We understand their solution in the Filippov

sense [26]. The following result characterizes the asymptotic
convergence properties of these systems.

Proposition 5.5: Let G = ({1, . . . , n}, E) be a connected
undirected graph. Then, the coordination algorithm (13a)
(respectively, the coordination algorithm (13b)) is distributed
over G and asymptotically achieves max consensus (respec-
tively, min consensus) in finite time.

Proof: Our proof strategy is to verify that the conditions
in Corollary 4.4 hold. We prove it for themax function
and the flow (13a), and leave to the reader the analogous
proof for themin function and the flow (13b). Clearly,max :
R

n → R, max(P ) = maxi∈{1,...,n}{pi}, is continuous and
surjective. Moreover,max(p, . . . , p) = p, so condition (iii)
in Corollary 4.4 is satisfied.

Let us show thatmax is preserved by the flow (13a) using
Theorem 2.1. We start by noting that the set-valued map
associated to (13a) is

K[Xsgn+
](P ) = {v ∈ R

n | vi ∈ [0, 1] if
∑

j∈NG(i)

(pj − pi) = 0,

vi = sgn+

( ∑

j∈NG(i)

(pj − pi)
)

otherwise}.

Let a ∈ L̃Xsgn+
max (P ). By definition, there existsv ∈

K[Xsgn+
](P ) with a = v · ζ, for all ζ ∈ ∂ max(P ). If

P ∈ diag(Rn), then∂ max(P ) = R
n, and, necessarilyv =

(0, . . . , 0). Therefore,a = 0. If P 6∈ diag(Rn), then using
the fact thatG is connected, there existsk ∈ {1, . . . , n} with
pk = maxi∈{1,...,n}{pi} such that

∑

i∈NG,k

(pi − pk) < 0.

Therefore,vk = 0. We deduce thena = v ·ek = 0. Note that
0 always belongs tõLXsgn+

max (P ). Finally, we conclude

L̃Xsgn+
max (P ) = {0}, and therefore, by Theorem 2.1,max

is constant along the trajectories of (13a), i.e., condition (ii)
in Corollary 4.4 is satisfied.

Let us see that the trajectories of (13a) converge to
diag(Rn). To do this, we rely on the nonsmooth LaSalle
Invariance Principle. Consider as candidate Lyapunov func-
tion V = −min. Reasoning in a similar way as before, one
can show that the set-valued Lie derivative is

L̃Xsgn+
(−min)(P ) =

{
{0}, P ∈ diag(Rn),

{−1}, P 6∈ diag(Rn).

Invoking Theorem 2.1, we deduce thatmin P (0) ≤ pi(t)
for all i ∈ {1, . . . , n}. Since themax function is conserved
along the trajectories, we deduce

min P (0) ≤ pi(t) ≤ max P (0) , i ∈ {1, . . . , n},
and therefore, the trajectories of (13a) are bounded. Note
that ZXsgn+

,−min = diag(Rn). The application of Theo-
rem 2.2 yields, in particular, that all trajectories of the system
converge todiag(Rn), which establishes condition (i) in
Corollary 4.4. The application of Proposition 2.3 withǫ = 1
implies that convergence is attained in finite time (actually,
in exactlymax(P0) − min(P0) units).



Remark 5.6: The class of coordination algorithmsu :
R

n → R
n proposed in [9] to asymptotically achieve min

consensus are of the following form

ui(P ) = h(pi, min
j∈NG(i)

pj), i ∈ {1, . . . , n}, (14)

with h : R×R → R verifying h(x, x) = 0 andh(x, y) < 0 if
x < y. However, it is easy to see that this class of algorithms
violates condition (i) in Theorem 4.3, and therefore, cannot
asymptotically achieve min consensus. Consider for instance
the functionh(x, y) = y − x. Any trajectory starting from a
configuration(p1, . . . , pn) ∈ R

n with somei ∈ {1, . . . , n}
such thatpi = minj=1,...,n pj , and pi < pj for all j 6=
i has ui(P ) > 0, and therefore, the value ofmin is not
preserved along it. A similar objection can be raised for the
max consensus case. •

VI. CONCLUSIONS

We have presented necessary and sufficient conditions
for any coordination algorithm that asymptotically achieves
consensus upon the value of an arbitrary function. Building
on this characterization, we have (i) explored the setting of
real analytic consensus functions; (ii) identified particular
conditions on the consensus function under which distributed
coordination algorithms can be automatically designed, (iii)
characterized the exponential convergence properties of a
class of distributed coordination algorithms that achieve
weighted power mean consensus, and (iv) introduced dis-
tributed coordination algorithms that achieve max and min
consensus in finite time.

Future work will proceed along three lines of research:
(i) the investigation of results similar to the ones obtained
here in the setting of networks with dynamically changing
interconnection topologies; (ii) the further developmentof
systematic methodologies to design distributed coordination
algorithms for general consensus functions; and (iii) the
application of the results to the synthesis of cooperative
strategies for distributed estimation, data processing and
fusion problems.
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tions. Birkhäuser Advanced Texts, Boston, MA: Birkhäuser Verlag,
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