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Abstract—In this paper, we show the relationship between scenario of coverage control, [14] proposes gradient aesce
two algorithms and optimization problems that are the subject  algorithms for optimal coverage, and [15] presents cowerag
of recent attention in the networking and control literature. control algorithms for groups of mobile sensors with lirdite

First, we obtain some results on averaging algorithms over int ti Al tt int out that ial
acyclic digraphs with fixed and controlled-switching topology. 219€ Interactions. Also, we want to point out that a specia

Second, we discuss continuous and discrete coverage controlKind of .directe.d graphs, namely acyclip digraphs, are pre-
laws. Further, we show how discrete coverage control laws can sented in the literature to describe the interactions ohesge

be cast as averaging algorithms defined over an appropriate in leader-following formation problems, e.g., [16], [1T18].
graph that we term the discrete Voronoi graph. The contributions of this paper are (i) the investigation
I. INTRODUCTION of the pr(_)per_ties of averaging algorithr_ns over acyclic di-
raphs with fixed and controlled-switching topologies, and
ﬁ the establishment of the connection between discrete
verage problems and averaging algorithms over acyclic
raphs. Regarding (i), our first contribution is a novel

Consensus and coverage control are two distinct proble
within the recent literature on multiagent coordinatiord an o
cooperative robotics. Roughly speaking, the objective oa(

the consensus problem |s_to analyse and design scala trix representation of the disagreement function aasedi

distributed gontrol Ia}\{vs 0 dr_lve the groups of agents ta@agr with a directed graph. Secondly, we prove that averaging ove
upon F:ertam quantities of interest. On thelother hand, t%n fixed acyclic graph drives the agents to an equilibrium
objective of the coverage control problem is to deploy th‘aetermined by the so-called “sinks” of the graph. Finally,

agents to get optimal sensing performance of an environmMept show that averaging over controlled-switching acyclic

of I'nt(talflesf.'t t h h q .digraphs also makes the agents converge to an equilibrium
| n 'the |(§ra urle, many researc ebrls avi_huse ."%‘;’effg'l] der suitable state-dependent switching signals. Reward
algorithms 1o Solve consensus problems. The spirit ot a i), we present multicenter locational optimization ftinos

eraging algorithms is to let the state of each agent evol fi continuous and discrete settings, and discuss distibut

according to the (weighted) average of the state of it ; —_ :
neighbors. Averaging algorithms has been studied both Eoverage control algorithms that optimize them. We discuss

Kbw consistent discretizations of continuous coveragé-pro
continuous time [1], [2], [3] and in discrete time [4], [3B]I 9o

. ) . . lems yield discrete coverage problems. Finally, we show
[t?]’ [71. 18], [9]. In .[1]’ averaging algorlthr_ns are mvegatec_i how discrete coverage control laws over the discrete Vdrono
via graph Laplacians [10] under a variety of assumption

%raph can be casted and analyzed as averaging algorithms

chludollnlg] fixed c?ndd' svzntdchln% cordn'mutmcc:ja.u?n t()F;.C)Ic’gf'lest)ver a set of controlled-switching acyclic digraphs. Vago
ime delays, and directed and undirected information flow, . 1=vions illustrate the results.

m [2], aTenes of cpnse?suiﬁroto?olg greg}resentetd,:mse The paper is organized as follows. Section Il introduces
€ reguiar averaging algorithms, 1o drive th€ agents e&gr, - el matrix representation of the disagreement fongti

;Jpo?hthe value of thi pﬁwgr me??r.]A i?_eorektlcal erlalnft'%wd then reviews the current results on consensus problems.
or the consensus behavior of the Vicsek model [11] 'Sve also present convergence results of averaging algo-

provided in [4], while [3] extends the results of [4] to therithms over acyclic digraphs with both fixed and controlled-

case of directed topology for both continuous and discret&v- ; ; ; ; ;
tch t I . Sect 1" ts | t I t
update schemes. The work [5] adopts a set-valued Lyapunm/I ching topologies. Section presen’s locationaliop

. 1zation functions in both continuous and discrete setting
approach to analyze the convergence properties of aver d then discusses appropriate coverage control laws. The
ing algorithms, which is generalized in [6] to the case o

time delays. Asynchronous averaging algorithms are studi ain result of the paper shows the relationship between
in [7]. The works [12], [13] survey the results available veraging over switching acyclic digraphs and discrete cov

for COnSensus problems using averaging alaorithms. In terage. Various simulations illustrate this result, andwsho
P 9 ging alg ' qﬁe consistent parallelism between the continuous and the
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z — 2T Bz. The mapf : X — Y and the set-valued map Next, we define reverse and mirror digraphs. Edte the
Jf+ X = Y associate to a point i a point inY and a set of reverse edges ¢f obtained by reversing the order of
subset ofY’, respectively. all the pairs in€. The reverse digraphof G, denotedd, is
Uu,€E, A), whereA = AT, Themirror digraph of G, denoted
A. Preliminaries on digraphs and disagreement functions ¢ is (7, £, A), where& = €U E and A = (A + AT)/2.

A weighted directed graphin short digraph G = Note thatZL(G) = Douw(G) — A(G) = Din(G) — A(G)".
(U,E,A) of order n consists of avertex set!d with n Given a digraphg of ordern, the disagreement function
elements, aredge set€ ¢ 2“*Y (recall that2¥ is the ®g:R"™ — R is defined by
collection of subsets aff), and aweighted adjacency matrix n
A with nonnegative entries.;;, i, € {1,...,n}. For dg(z) :% Z aij(z; — )2, @
simplicity, we takel/ = {1,...,n}. Fori,j € {1,...,n}, i1

Lhdeg: nct)%?”i':' zz.sngeolf:ng’??lyeIfgt_h(\a,vga;%g)alsssjae To the best of the authors’ knowledge, the following is a
a; =0forallie{1,....,n} anda;; =0 if (i,5) ¢ &, for novel res!.l!t. . . )
all i,j € {1,...,n} andi # j. When convenient, we will _Proposn!on 2.2 (Matrix representapon of dlsagreemgnt):
refer to the adjacency matrix & by A(G). Given a dlgraphg of order n, .the dlsagreement furjctlon
Let us now review some basic connectivity notions forg Rn_ - R_ 1S the quao_'“?‘t'c form associated with the
digraphs. Adirected pattin a digraph is an ordered sequence’YMMewric positive-semidefinite matrix
of vertices such that any two consecutive vertices in the 1 T
sequence are an edge of the digraph.cykle is a non- P(9) = §(D°Ut(g) + Din(9) — A(9) — A(9)")-
trivial directed path that starts and ends at the same vert . . .
A digraph isacyclicif it contains no directed cycles. A nodeei\?oreovgr,P(g) IS th? graph Laplacian ~0f the mirror graph
of a digraph isglobally reachableif it can be reached from 9. thatis,P(G) = L(G) = 5( L(9) + L(g))-
any other node by traversing a directed path. A digraph is Proof: Forz € R", we compute
strongly connectedf every node is globally reachable. 1
Remark 2.1:The previous definition of adjacency matrix z” P(G)z = §$T(Dout+ Din—A— A"z
follows the convention adopted in [1], whetg; > 0 <

(Z,]) € £. On the other hand, in [12blj >0< (],Z) S = 1( Z aijl’? + Z aijfE? -2 Z aijxi$j>
E. This difference arises from a different meaning of the 2 ij=1 ij=1 ii=1
direction of an edge. In [1], a directed eddej) € & 1 &

means node can 'see’ nodej, i.e., nodei can obtain, in = 5( Z aij(z} —l—x? — 2x;x;))

some way, information from nodg. We refer to this as i,j=1

the communicationinterpretation. In [12], a directed edge 1

(i,j) € £ means that the information of nodecan flow to =3 > aij(a; — 3:)? = g(2).

node j. We refer to this as theensinginterpretation. The i,j=1

difference leads to different statements of various resr Clearly P is symmetric. Sincebg(z) > 0 for all z € R™,

example, having a globally reachable node in the communfze deduceP(G) is positive semidefinite. Since
cation interpretation is equivalent to having a spannieg tr

in the sensing interpretation. ° 5 “ "1
The out-degreeand thein-degreeof node: are defined by, (D(9))ii = Z Qij = Z 5(%' + aji),
respectively, j=1 j=1

n n we haveD(G) = 1 (Dou(G) + Din(G)). Hence,
dou(?) = aij, din(i) = Qjj- . . .
" 72::1 " 32:21 L(G) = D(9) — A(9)

The out-degree matrixXDo(G) and the in-degree matrix = %(Dout(g) + Din(9)) — %(A(g) + A" = P©).
Din(G) are the diagonal matrices defined Bou(G)): =
dow(i) and (Din(G))is = din(i), respectively. The digrapi  The last inequality follows from the definitions of reverse

is balancedif Doyw(G) = Din(G). The graph Laplacianof — and mirror graphs. u
the digraphg is Remark 2.3:Note that in generalP(G) # L(G). How-
ever, if the digraphg is balanced, theDo(G) = Din(G),
L(G) = Dow(G) — A(9), and therefore,
i 1 1
or In components, @g(x) = 5" (Dou(G) + Din(9))z — 52" (A(G) + A(G) ")z
Z Wity j=1, = 2T Dou(G)x — 2T Az = 2T L(G)z.

Lij(G) = Q LTz o . .
i(6) k=1 ki This is the result usually presented in the literature on

— i, Jj# i undirected graphs. °



B. Averaging plus connectivity achieves consensus function o, the system (4) globally asymptotically

To each node € U/ of a digraphG, we associate a state solves theaverageconsensus problem.
z; € R, that obeys a first-order dynamics of the form Statement (i) is proved in [3, Section IlI]. Statement (ii)
is proved in [1, Section IX].
1’7:U77 ZE{L,TL}
We say that the nodes of a network have reachesihsensus C. Averaging protocol over a fixed acyclic digraph
if z; = «; foralli,j € {1,...,n}. Our objective is to design . .
control laws u that guarantee that consensus is achieved Here_ we charact_erlze th_e convergence propertles_ of the
starting from any initial condition, while:; depends only averaging _protocol In equation (3) ‘”?der different conmect
on the state of the node and of its neighbors irg, for ity properties than the ones statgd in Theorem 2.4, namely
i € {1,...,n}. In other words, the closed-loop system?SSUMIng that the given digraph is acyclic. _
asymptotically achieves consensus if, for anyc R”, one e start by reviewing some basic properties of acyclic
has thatz(t) — {a(1,...,1) | a € R} whent — +oo. If dlgraphs: Given an acyclic digrapfi, every vertex of in-
the valuea is the average of the initial state of thenodes, d€9reel is namedsource and every vertex of out-degrée
then we say the nodes have reachedrage-consensus is namedsink Every acyclic digraph has at least one source
We refer to the following linear control law, often used in@nd at least one sink. (Recall that sources and sinks can be
the literature on consensus (e.g., see [4], [7], [12]), & tHdgntlfled by fol!owmg any directed pgth on the dlgraph.)
averaging protocal Given an acyclic digraphg, we associate a nonnegative
N number to each vertex, calledkepth in the following way.
W — Za”(” ~ ). @) First, we define the depth of the sinks @fto be 0. Next,
! — AT we consider the acyclic digraph that results from erasiig th
] ] ! ) 0-depth vertices fron; and the in-edges towards them; the
With this control law, the closed-loop system is depth of the sinks of this new acyclic digraph are defined to
i(t) = —L(G)x(t). 3) be 1. The higher depth vertices are defined recursively. This
process is well-posed as any acyclic digraph has at least one
Next, we consider a family of digrapH€:, ..., G} With  sink. The depth of the digraph is the maximum depth of its
the same vertex s€ltl, ..., n}. A switching signalis a map  vertices. Fom, d € N, let S, 4 be the set of acyclic digraphs
o : Ry xR" —>.{1, . ..,n}. Given these objects, we canjith vertex set{1,...,n} and depthi.
define the following switched dynamical system Next, it is convenient to relabel the vertices of the
#(t) = —L(Gp)z(t), acyclic digraphG with depthd in the following way: (1)
k= o(t,z(t)). (4)  label the sinks froml to ng, whereng is the number of

hat th ‘ ol or th H bsinks; (2) label the vertices of depthfrom Zf;é n; +1
Note that the notion of solution for this system might not k=1 ; :
well-defined for arbitrary switching signals. The propesti i 2 j—0 "y + 1k, Whereny i the number of vertices of

: y 9 sl Propes depthk, for k € {1,...,d}. Note that vertices with the same
of the linear system (3) and the system (4) under tim P

dependent switching signals have been investigated in [;1[ epth may be labeled in arbitrary order. With this labeling,
[3]. [5]. [19]. Here, we review some of these properties irljie adjacency matri¥d(G) is lower-diagonal with vanishing

. agonal entries, and the Laplaci takes the form
the following two statements. 9 placidn)

Theorem 2.4 (Averaging over a digraph)et G be a di- 0 0 0

graph. The following statements hold: 1 4
i X . . o —as1 E i—1 ag; e 0
(i) System (3) asymptotically achieves consensus if and L(G) = / ;
only if G has a globally reachable node; 7@ 7a Z@;'fa _
(i) If G is strongly connected, then system (3) asymptot- ”1 e
ically achieves average-consensus if and only ifs or, alternatively,
balanced.
Statement (i) is proved in [19, Section 2]. Statement (ii) is
proved in [1, Section VII]. L(G) = Oni;no Ono XL(;L;LO) J ®)
Theorem 2.5 (Averaging over switching digraphgpt
{G1,...,Gn} be a family of digraphs with the same vertexwhere 0, is the k& x h matrix with vanishing entries,
set{l,...,n}, and leto : Ry — {1,...,n} be a piecewise L,; € R m0)*n0 gnd L,, € R ™0xn=n0_ Clearly, all
constant function. The following statements hold: eigenvalues ofL are non-negative and the zero eigenvalues

(i) System (4) asymptotically achieves consensus if the@e simple, as their corresponding Jordan blockslarel
exist infinitely many consecutive uniformly boundedmatrices.
time intervals such that the union of the switching Proposition 2.6 (Averaging over an acyclic digraph):
graphs across each interval has a globally reachablet G be an acyclic digraph of order with ny sinks,
node; assume its vertices are labeled according to their depth, an
(i) If each G;, i € {1,...,m}, is strongly connected and consider the dynamical systetin(t) = —L(G)x(t) defined
balanced, then for any arbitrary piecewise constarn (3). The following statements hold:



(i) The equilibrium set of (3) is the vector subspace /O\
6

ker L(G) = 4() 5
{(zs,me) € R™ X R"™"™ | we = —Lyy Loy as}. / \
(i) Each trajectoryz : R, — R™ of (3) exponentially O O O
converges to the equilibrium* defined recursively by 1 > 3

mi(10_)1, i€{1,...,no}, Fig. 1. For this digraph of depth, the Lie derivative of the disagreement
¥ = Zi:l aijx* ) function (1) along the averaging flow (3) is indefinite.
—_— i€{ng+1,...,n}

(i) If G has unit depth, then the disagreement functioR- Averaging protocol over switching acyclic digraphs
®g is monotonically decreasing along any trajectory Given a family of digraphslI’ = {Gi,...,G,,} with
of (3). vertex set{l,...,n}, the minimal disagreement function
Proof: Statement (i) is obvious. Statement (ii) follows®r : R™ — R is defined by

from the fact that- Ly, is Hurwitz and from the equilibrium

equality o (Z‘) = ke{rfun,m} (I)gk (J’J) (6)
i—1 izl izl We consider state-dependent switching signals R" —
0= Zaij(xj —x;) = Zaijxj - (Zaij)x? {1,...,m} with the property that
j=1 j=1 j=1

: : o(z) € argmin{®g, (z) | k € {1,...,m}},
Regarding statement (iii), when the depth @fis 1, the ) )
adjacency matrix and the out-degree matrix are equal tf)at is, at eachr € R", o(x) corresponds to the index of a

resnectively graph with minimal disagreement. Clearly, for any sugh
one hasbr(z) = ®g, , (z).
|:Ono><no Ono x (n—no) } { Ong xno Ono><(n—n0):| Proposition 2.8 (Averaging over acyclic digraphd)et
7L21 O(H_no)x(n_no) O(H/_’”O)X”O L22 ) T = {g17 .. >gm} C Sn,lv and leto : R* — {17 . 7m}

such thato(z) € argmin{®g, (x) | k& € {1,...,m}}.

whereL,; and Ly, are defined in (5). Therefore, we computeConsioler the discontinuous dynamical system

L(g):[o L L3, } i) = —L(Ga(t), for k=o(x(t),  (7)

(n—no)xno  O(n—ng)x(n—no)

R whose solutions are understood in the Filippov sense. The
whereL;; € R™0*™0_According to Proposition 2.2, we have following statements hold:

(i) The pointz* € R™ is an equilibrium for (7) if and

1 5 L[Ly, L3 : e
P(G) = 5(L(g) + L(g)) =51 2 only if there existsk* € {1,...,m} such that
_ x* € ker L(Gy~),
The evolution of®g along a trajectory of: : R, — R” k* = o(2”) (8)
of (3) is given by '
d (i) Each trajectoryz : R, — R of (7) converges to an
%(Qg(x(t))) = —2()T(L(G)T P(G) + P(G)L(G))x(t) _ equilibrium. o
R - (i) The minimum disagreement functioér is monoton-
= _x(t)T(l { Onaxno Lﬂ {Lll Lﬂ ically decreasing along any trajectory: R, — R”
N2 On—no)xno L22| |L21 Loz of (7).
1L LE | (000 xno O x (n—no) )x(t) Proof: Clearly, all configurations iR™ verifying (8)
2 |Loy  Loo Loy Loo are equilibria. To prove that there are no more equilibria,
= —2(O)TLG)TL(G)x(t) < 0. we reason along the lines of [20, Section 3.4.2]. From

Proposition 2.6(iii), we know that, for eache {1,...,m},
Note that® is strictly decreasing unless(t) € ker L(G), the evolution of the disagreement functidry, along the
i.e., the trajectory reaches an equilibrium. m flow i(t) = —L(Gr)z(t) is
Remarks 2.7: (i) If the digraph has a single sink, then ;4 " "
the convergence statement in part (i) of Proposition 2.6, (Pg, (2(1)) = —2(t)" (L(Gr)" P(Gk) + P(Gr)L(Gr))x(t)
is equivalent to part (i) of Theorem 2.4. _ (0T T
(i) The block decomposition ofL(G) holds only for =~z L(Ge)" L(Gr)(t) < 0.
digraphs with depth 1. Indeed, statement (iii) is nofThis is strictly negative unless(t) € ker L(Gy). Let k,l €
true for digraphs with depth larger than 1. The digrapH1,...,m}, and consider the switching surfag,;, = {z €
in Figure 1 is a counterexample. e R"| g (z) = Pg (z)}. If no sliding motion occurs o,



(i.e., trajectories of the system (7) cross the surfacen th at locationspy, .. .,p, € R? and that they move according
the function®r is continuous, and monotonically decreasingo
until an equilibrium of the form (8) is reached. If a sliding L
mode occurs orf}, ;, this is characterized by the following pi=ui, 1€{l,...,n} (10)
inequalities We denote byP the vector of positiongps,...,p,) €

. (R%)", Additionally, we define
P P
«"(L (gk) (P(Gx) — P(G1) Seoino = {(p1, -+ pn) € (R2)" | pi = p, for somei # j},

)
(P(Gk) — P(G1))L(Gk))z = 0, (9a) 4 forP ¢ 8 et (Vi(P)} denote th
T T ana, for coincy, WE € i ie{1,...,n} Gd€NOLe he
= (L ( )" (P(Gr) = P(Gr)) Voronoi partition generated by’; we illustrate this notion
+(P(G) = P(Gr))L(G))x = 0, ©b) in Figure 2 and refer to [21] for a comprehensive treatment

for z € Si,;. Let us then show tha®, is monotonically on Voronoi partitions.

decreasing along the corresponding Filippov solution. For
everya € (0,1), we have

2" ((@L(Gr) + (1 = ) L(G) " P(Go(x))
+ P(Go(a))(aL(Gr) + (1 — a)L(gz))T)x -

T T
ar (L(gk) P(Go() + P(gg(x))L(gk))Qj Fig. 2. The Voronoi partition of a rectangle in the plane. Wpidt the
+ (1 —a)z? (L(QZ)TP(QU(I)) + P(g,,(,:))L(gl))x < generator, ..., pn elevated from the plane for intuition’s sake.

e (L(Gr)" P(Gk) + P(Gr)L(Gk))x _ _ _ _
+(1-a)T (L(gz)TP(gz) n P(gl)L(gl))x, A. Continuous and discrete multi-center functions
In this section we present a class of locational optimizatio
where in the last inequality we have used (9). Note thaproblems in both continuous and discrete settings. It would
unlessz € ker L(Gr) Nker L(G;), the evolution of®, atz  be possible to provide a unified treatment using generalized
is strictly decreasing. The same reasoning can be done whiginctions and distributions, but we avoid it here for conere
the switching surface is defined by more than two indexes ifess’ sake.
{1,...,m}. Therefore, we conclude that there are no more Let Q be a convex polygon ifR? including its interior,
equilibria than the ones defined by (8), that the minimurand let¢ : R? — R be a bounded and measurable function
disagreement functiofr- is monotonically decreasing along whose support i€). Analogously, let{q;, ..., qx} C R? be
any trajectoryz : R — R™ of (7), and that every such a pointset and¢;, ..., ¢y} be positive weights associated
trajectory converges to an equilibrium, as claimed. B  to them. Given a non-increasing functigh: R, — R, we
Remarks 2.9: (i) Statement (ii) in this theorem is consider thecontinuousand discrete multi-center functions
weaker than statement (ii) in previous one in two waysH : (R?)" — R and Hgsere: (R?)™ — R defined by
first, we are not able to characterize the limit point as
a function of the initial state. Secondly, we require H(P)= | max f(llqg —pil)o(q)dg,
the depth 1 assumption, which is sufficient to ensure Q i€l
convergence, but possibly not necessary. It remains N
an open question to obtain necessary and sufficient ~ tdser(l’) = Zzef?a’(n} ¢3f(llgg —pill)-

conditions. . 7=l
(i) Although the statement (ii) is obtained only for di- Now we define
graphs of unit depth, this class of graphs is of interest n
in the forthcoming sections. . Sequia= {(P1,---,pn) € R*)" | lg —pill = lla — p|
for someg € {q1,...,qn} and for some # k}.

Il. DISCRETE COVERAGE CONTROL In other words, ifP ¢ Sequie, then no poinig; is equidistant

In this section, we first review the multi-center opti-to two or more robots. Note thaequiq is a set of measure
mization prob|em and the Corresponding coverage contréero because it is the union of the solutions of a finite number
algorithm proposed in [14]. We then study the multi-centePf algebraic equations. Using Voronoi partitions, Br ¢
optimization problem in discrete space and derive a discrecoinc, We may write
coverage control law. This leads to a geometric object dalle
the discrete Voronoi graph. Finally, we show that the discre Z/ f(llg = pil)¢(a)dg,
coverage control law is an averaging algorithm over a aertai
set of acyclic digraphs. Discrete locational optimization,,q forP ¢ (
problems are discussed in [21], [22], [23].

We will consider motion coordination problems for a n
group of robots described by first order integrators. In Haserd P) :Z Z ¢ f(llaj = pill)-
other words, we assume that robotic agents are placed i=1 g;eVi(P)

ScoincU Sequid) we ma.y Wl‘lte



Remark 3.1:The function f plays the role of a per- B. Continuous and discrete coverage control
formance function. If{py,...,p,} are the locations oh Based on the expressions obtained in the previous subsec-
sensors, and if events take place inside the environ@ent ijop, it is possible to design motion coordination algarith
with likelihood ¢, then f(|l¢ — pi[|) is the quality of service o the robotsp,, ..., p,. We call continuousand discrete
provided by sensor. It will therefore be of interest 0 o erage controthe problem maximizing the multi-center

find local maxima for’H_ and Hgserte These pres of optimal functionsH andHgyscr, respectively. The continuous problem
sensor placement spatial resource allocation problenthere s t,died in [14]. We simply impose that the locations

subject of a discipline called locational optimization [21 p1,....py follow a gradient ascent law. Formally, we set

[22], [14]. .
The following resultis discussed in [14] for the continuous ;. H(P), or s = korop Hdscrt(P% (11)
multi-center function. Ip; Ipi

Proposition 3.2 (Partial derivatives dff and Hascn): where kpop is @ positive gain. Note that these laws are dis-
Assumes is bounded and measurable.fifis differentiable, (jhted in the sense that each robot only needs information

then7{ is continuously differentiable o)™ \ Scoine: @nd,  ahout its Voronoi cell in order to compute its control.
for eachi € {1,...,n}, Proposition 3.3 (Coverage control; [14])For the closed-
OH loop systems induced by equation (11), the agents location
o /w(P) Opi fllg = pill)é(g)da. converges asymptotically to the set of critical points-obr

of Hysery respectively.

Additionally, if f is differentiable, therHyscr is differen-

tiable onQ™ \ (ScoincU Sequid), and, for eachi € {1,...,n}, C. Discretizing continuous settings
OHdscrt Py — 0 In this section we discuss the relationship between the
op; (P) = Z ¢j37,if(”qi = pill)- discretization of continuous locational optimization Ipiems
4 €Vi(P) and discrete locational optimization problems.

For particular choices of, the multi-center functions and ~ As before, letQ be a convex polygon ifR? including its
their partial derivatives may simplify. For examplefifzr) = interior, and letp : R> — R, be a bounded and measurable
—22, the partial derivative of the multi-center functidd  function whose support i§). We shall consider a sequence
reads (forP ¢ Scoinc) of pointsets{¢t, ... ,qf\’fk}kew C R? and of positive weights

OH {of..... oK, Yren. Accordingly, we can define a sequence
o, (P) = 2My,(p)(Cvi(p) — Pi); of discrete multi-center function$t),., for k¥ € N. The
! sequenceq”, ..., ¢~ c R? is densé in Q if, for all
where mass and the centroid 6f C Q are q qu da I, ren @
1
MW:/ ¢(q) dg, OW:M—/ a¢(q) dg. lim min{flq -zl | = € {aF,....qh, }} = 0.
w w Jw k—+o00
Additionally, the critical pointsP* of H have the property  Given a pointsetq, ..., qn, let V(q,...,qy) denote
that p; = Cy,(p~), for i € {1,...,n}; these are called the Voronoi partition it generates and define the associated
centroidal Voronoi configurationsAnalogously, if f(z) =  weights
—22, the discrete multi-center functioft{ysc: reads (for
’ . = . 12
P & (ScoincU Sequid)) b; /Vj(fh,m,qN) ¢(q)dgq (12)
. Proposition 3.4 (Consistent discretizationkssume that
P)=— lg; — pil? . ;
Haser P) ; Y;P ¢illa; = pill", f is continuous almost everywhere, that the sequence
=1 4eVi(P) {at,....d%, }ren C R?is dense inY, and that the sequence

and its gradient is of weights are defined according to (12). ThEHA .} ken
OHy converges pointwise té{, that is, for allP € Q" ,
Tﬁ”‘(p)zz > diley —pi) . X
pi q; Vi (P) kEToo Hdscrt(P) = H(P)
= 2(descrt)vj(P)((Cdscrt)vi(P) - pi)7
D. The relationship between discrete coverage and averag-

where . oL S
ing over switching acyclic digraphs
(Maser)v; (p) = Z 2 As above, let) be a convex polygon, lefpy,...,pn} C
q-fGW(’;) Q be the position of robots, and lefg,...,qv} C Q be
Cy Py = bid;. N fixed pomts in@. In what follows we adppt the standing
(Cascrdvi(p) (Muscr) v, (p) qEVZ:(P) T assumption thatP? does not take value iBeoincU Sequic
J 2
The critical pointsP* of Hgsct have the property thai; = 1This is equivalent to asking that the sequence Wasishing disper-
(Caser)v; (p+), for i € {1,...,n}. These are callediscrete sion the dispersion of a pointseflg:, ..., gy} in the compact se@ is

centroidal Voronoi configurations 960 se{a llg = =l

s dN }



We begin by defining a useful digraph and a useful set dfR?)"*" — R by

digraphs. N
The discrete Voronoi graptGgscri-vor IS the digraph with 7 _ 1 B 2
(n+ N) vertices{p1,...,Pn,q1,--.,qn}, With N directed 60 (D) z=pr, o prr ) 2 azﬁglaagllza &l

edges

N
1
. = _¢illa; — prip I,

i — il < llpm —q;ll,Vm e {1,..., , . .
Ips = a1l < lIpm = g5l ¥m €4 ni} because the weights,s, o, 3 € {1,...,n + N} of the di-

and with corresponding’ edge weights;, j € {1,...,N}. 9raphg, all vanish except fou, ;) ; = ¢;,j € {1,...,N}.
We illustrate this graph in Figure 3. We will denote the nodes We are now ready to state the main result of this section.
The proof of the following theorem is based on simple book-
keeping and is therefore omitted.

Theorem 3.6 (Discrete coverage control and averaging):
The following statements hold:

(i) The discrete multi-center functiohgsert With f(z) =
—22, and the minimum disagreement function (see (6))
over the set of digraph§;,, h € F(N,n), satisfy

Fig. 3. The discrete Voronoi graph ovarrobots and6é x 9 grid points. N

This illustration is to be compared with the Voronoi partitidlustrated in 1'H P — 1 .
Figure 2. The edges have top/down direction. —5Haser(P) = . min
2 2 = ie{l,...,n}

o5lla; — pill?

of Gascrtvor BY Z = (21, ..., znen) € (R%)"T, the weights 1 N )
by ang, for o, 8 € {1,...,n + N}, with the understanding 9 Zﬁbj”qj *ph*(j)H
that: =1
Der |fOé€{1 n} :(bgdscn.\/m<p17~--,pnth---qu)
o da—n; otherwise = hefgl(lj{,lm)‘bgh (P1s- - Pny G155 AN)-
and that the only non-vanishing weights arg; = ¢, when (i) The discrete coverage law, fof(z) = —2*, and the

averaging protocol (see (2)) over the discrete Voronoi
digraph satisfy, for € {1,...,n},

1 aHdscrt

B=n+j, forje{l,...,N}, and whena € {1,...,n}
corresponds to the robet, closest tog;. Note thatGyscrt-vor
is properly understood as a function &f, that is, as a

state-dependent graph. Sin¢e,,...,qn} C Q are fixed, (P) = Z ®i(q; — pi)

when we need to emphasize this dependence, we will simply 2 Opi 4 €Vi(P)
denote it aGyscri-vol P)- n+N
Let us now define a set of digraphs of which the dis- = Z aap(28 — 2a),
crete Voronoi graph is an example. L&t(N,n) be the B=1
set of functions from{1,..., N} to {1,...,n}. Roughl
{ } { n} ghty wherez, andaqg, o, 8 € {1,...,n+ N}, are nodes

speaking, a function irF'(N,n) assigns to each point;,
j € {l,...,N}, arobotp;, i € {1,...,n}. Givenh €
F(N,n), let G, be the digraph with(n + N) vertices
{p1,---,Pn,q1,-..,qn}, With N directed edges

and weights 0Ggscrt-vor-
(i) Any P* € Q™ \ (ScoincU Sequid) IS an equilibrium of
the discrete coverage control system wififx) = —22
if and only if Z* = (p},....05,q1,...,qn) IS @n
PR equilibrium of system (7) over the set of digrapfis,
{(ph(])vqj)}jé{l,...,N}u he F(N, n), that is:
and correspondingy edge weight®;, j € {1,..., N}. With
these notations, it holds th&@liscrtvol P) = Gpe(.,p) With
functionh* : {1,..., N} x Q" — {1,...,n} defined by

pf = (Cdscrt)w(P*)

< 7" € ker L(Gyscrtvo( Z7))

< Z"€kerL(Gy,) and h=h*(-,P").

h*(j, P) = argmin{{|q; — psl| | i € {1,...,n}}.

(iv) Given any initial position of robotsP, € Q™, the
evolution of the discrete coverage control system (11)
and the evolution of the averaging system (7) under the
switching signalo : Q™ — {G, | h € F(N,n)} de-
fined byo(P) = G- (.,p) are identical and, therefore,
the two systems will converge to the same equilibrium
placement of robots, as described in (iii).

Let us state a useful observation about these digraphs.
Lemma 3.5:The set of digraphsj,, h € F(N,n), is a
set of acyclic digraphs with unit depth, i.e., it is a subdet o

Sn+n,1 (see definition in Subsection 1I-C).

For h € F(N,n), let us study appropriate disagreement
functions for the digrapltj;,. We define the functiorg, :



E. Numerical simulations

To illustrate the performance of the discrete coverage lawi]
as stated in Proposition 3.3 and to illustrate the accurécy o
the discretization process, as analyzed in Proposition 3.4
we include some simulation results. The algorithms are
implemented invat | ab as a single centralized program. As 3]
expected, the simulations for the discrete coverage law arEa
computationally intensive with the increase in the resotut
of the grid. We illustrate the performance of the closedploo ]
systems in Figures 4, 5 and 6.

(5]
(6]
(7]
Fig. 4. Continuous coverage law f@2 agents on a convex polygonal
environment, with density functiof = exp(5.(—xz2 —?)) centered about  [8]
the gray point in the figure. The control gain in (11) Agrop = 1 for
all the vehicles. The left (respectively, right) figure ditates the initial
(respectively, final) locations and Voronoi partition. Tleentral figure
illustrates the gradient descent flow. Figure taken froni.[14 [l
[10]
(11]
[12]
[13]
(14]
[15]
[16]
Fig. 6. Simulation of discrete coverage law with 622 grid p&in
[17]

IV. CONCLUSIONS

We have studied averaging protocols over fixed ani®!
controlled-switching acyclic digraphs, and charactetiteir
asymptotic convergence properties. We have also discusdé¥
continuous and discrete multi-center locational optirtiiza
functions, and distributed control laws that optimize them
The main result of the paper shows how these two sets of
problems are intimately related: discrete coverage contr§9
laws are indeed averaging protocols over acyclic digraphga;
As a consequence of our analysis, it may be argued that
the coverage control problem and the consensus probli ]
are both special cases of a general class of distribut
optimization problems.

[23]
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