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1.1 Introduction

Sensor networks and multi-agent robotic systems have been receiving increas-
ing attention in recent times. This is due in no small part to the remarkable
advances made in recent years in the development of small, agile, relatively
inexpensive sensor nodes with mobile and networking capabilities. These sen-
sor nodes are envisioned to be the basic components of complex networks
intended to perform a wide variety of tasks. These include search and res-
cue, exploration, environmental monitoring, location-aware computing, and
the maintaining of structures. The potential advantages of employing arrays
of robotic sensors are numerous. For instance, certain tasks are difficult, if
not impossible, when performed by a single agent. Further, a group of agents
inherently provides robustness to failures of single agents or communication
links.

The existence of such motion-enabled sensing devices and the anticipated
development of still more advanced versions raise compelling questions. A par-
ticularly important issue is whether large numbers of such small autonomous
devices will be successfully deployed as a search team to cooperatively carry
out a prescribed task reliably, robustly and adaptively, without a centralized
controller and with limited communications among its members.

Motivated by these future scenarios, this paper focuses on algorithms for
visually-guided agents, i.e., mobile robotic agents with line-of-sight sens-
ing and communication capabilities, to solve a distributed version of the
Art Gallery Problem. In the remainder of the introduction, we describe
the problem in its original context, broadly highlight the characteristics of
visually-guided agents and reformulate the original problem with respect to
visually-guided agents.
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Art Gallery and Illumination Problems

The classic Art Gallery Problem, was introduced by Klee and first analyzed
by Chvátal, see [1, 2]. This combinatorial and geometric problem is stated as
follows:

Imagine placing guards inside an art gallery in the shape of a non-
convex polygon with n vertices: how many guards are required and
where should they be placed in order for each point in the gallery to
be visible by at least one guard?

The Art Gallery Theorem [1] states that ⌊n/3⌋ guards are sufficient and some-
times necessary to guard any polygon with n vertices. An elegant “triangu-
lation + coloring” proof was proposed by Fisk [3]. The proof is constructive,
i.e., it includes an efficient placement algorithm; an illustration is provided in
Figure 1.1.
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Fig. 1.1. Fisk’s Algorithm: 1: triangulate the polygon (see dashed lines). 2: three-
color the vertices so that each triangle has all three colors (possible because the
“dual graph” is a tree). 3: select the color with smallest cardinality and place guards
at the corresponding vertices (see the two guards in right picture).

Fisk’s solution is, however, centralized, that is, it assumes that a cen-
tral processor has global knowledge of the environment and that guards can
be placed in desired locations without accounting for sensor-based and/or
communication-based deployment.

Networks of visually-guided agents

Taking the Art Gallery Problem as a starting point, we consider a novel sce-
nario where the guards are robotic agents in a simple nonconvex environment
and are equipped with “line-of-sight” sensing and communication capabili-
ties. In other words, our version of the Art Gallery Problem is different from
its classic counterpart by the use of distributed feedback and communication
protocols, rather than open-loop centralized computation.

We consider agents moving in a nonconvex planar or spatial environ-
ment, and make the following assumptions: (A1) Each agent is equipped
with an “omnidirectional sensor.” By this we mean a device or combi-
nation of devices (omnidirectional cameras, range and proximity sensors)
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Inter-agent

communication graph

that sense distance to the environment boundaries
and to other agents within unobstructed lines of
sight; (A2) The agents do not know the entire en-
vironment and their positions in it; (A3) Depend-
ing on the problem at hand, the guards are also al-
lowed to exchange information with agents within
line-of-sight through an asynchronous communica-
tion channel with delays and packet losses. This
communication graph is depicted on the side; (A4)
The agents are assumed to evolve asynchronously,
i.e., a different sensing/communication/control schedule is allowed for each
agent; (A5) For simplicity’s sake, we model these agents as point masses with
first-order dynamics. Assumptions (A1) through (A5) characterize what we
refer to as visually-guided agents.

Illuminating art galleries via incremental partition and deployment

Combining the discussion in the earlier subsections, we obtain the following
version of the Art Gallery Problem: starting from arbitrary positions, how
should the agents move (and what should they communicate) in order to reach
final positions such that each point of the environment is visible to at least one
agent. This is what we refer to as the distributed art-gallery deployment
problem. Remarkably, the difficulty of this problem is inherently due to the
communication and sensing constraints: the agents are not given a map of the
environment and no central entity controls them.

The proposed algorithms allow for sensor-based, distributed, asynchronous
execution and guaranteed visibility is achieved when the number of agents is
at least ⌊n/2⌋. The algorithm is organized in three steps:

[Geometric Structure]: first, we show that any simple nonconvex polygon can
be partitioned into star-shaped polygons in an incremental distributed
way. This induces a graph, the vertex-induced tree, as follows: every star-
shaped polygon in the partition is a node and edges between nodes exist
only when the corresponding polygons are contiguous;

[Distributed Information Processing]: second, we design appropriate dis-
tributed algorithms to manage the geographic information obtained by
the network of agents. This entails deciding what information needs to be
stored by what agent and how it needs to be transmitted and updated;

[Local Navigation and Global Exploration]: third and final, we devise nav-
igation algorithms for two purposes: (i) to traverse edges of the vertex-
induced tree, i.e., to move individual agents between contiguous polygons,
and (ii) to explore and deploy a group of agents over the nodes of the
vertex-induced tree.

This combination of “geometric structure + information management + nav-
igation algorithms” is the key idea that allows individual agents to explore
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and traverse the nonconvex polygon only based on local sensing and commu-
nication. We refer to solutions of this form as incremental partition and
deployment algorithms.

The rest of the paper is organized as follows. In Section 1.2, we present
the literature related to our current work. Section 1.3 contains preliminaries
and notation. In Section 1.4, we present the algorithm details. Finally, we
conclude and talk about future directions of research in Section 1.5.

1.2 Related Work

The content of this paper is related to the works on map building and explo-
ration, deployment of robotic networks, illumination and geometric optimiza-
tion problems, and distributed algorithms. In the following, we cite the works
that are relevant, by subject or by the tools therein, to either the problem or
the approach in this paper or both.

Map building and exploration

The robotics literature is abound in works on map building and exploration of
unknown environments. However, the most relevant to the problem at hand
include topological exploration of graph-like environments by single and mul-
tiple robots. In [4], a single robot with a marker explores such an environment
via a depth-first linear time algorithm. While at a node of the graph, the robot
has the ability to identify the neighboring nodes, order them in a consistent
way, remember the last node visited and drop a marker to designate that a
given node has already been explored. Topological exploration with multiple
robots is the subject of [5]. Multiple robots, each equipped with a marker, ex-
plore the map independently. They communicate with robots located at the
same node. The robots start at the same node, plan partition of work and
rendezvous schedule (by exchanging messages), explore a portion of the envi-
ronment and return to a predetermined location where they merge their maps.
The process is repeated till the maps with each of the robots is isomorphic
with the the world map. Multi-robot exploration of an unknown environment
while reducing the odometry error has also been studied [6]. Here, explo-
ration proceeds via constructing partitions of the environment into triangles
or quadrilaterals, depending on whether the diameter of the environment is
large compared to the range of the sensor, and then moving along the dual
graph of the partition.

Deployment of robotic networks

Some related works on deployment include [7], where an incremental heuristic
for deployment is proposed, [8] where distributed algorithms for coverage con-
trol based on Voronoi partitions are designed, and [9], in which the relevance of
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random walk on graphs is discussed (the environment and its graphical repre-
sentation are assumed known a priori, and general strategies are evaluated via
Monte Carlo simulation). Coordinated deployment of multiple heterogeneous
robots has also been studied in [10]. Deployment locations are user-specified
after an initial map of the unknown environment has been built.

Illumination problems and geometric optimization

Illumination and art gallery problems are classic topics, e.g., see [11, 12, 13].
Coverage algorithms (for systems with binary, limited-range sensors) are sur-
veyed in [14]. Next-best-view problems are discussed in [15]. Geometric op-
timization is a vast and exciting avenue of current research, see for exam-
ple [16, 17]. Here, by geometric optimization, we mean an optimization prob-
lem induced by a collection of geometric objects. For example, in facility
location problems service sites are spatially allocated to fulfill a specified re-
quest [18, 19]. These approaches mainly rely on centralized computation for
a known static environment and are not applicable in a distributed, asyn-
chronous, adaptive setting.

Distributed algorithms

The study of distributed algorithms is concerned with providing mathematical
models, devising precise specifications for their behavior, and formally prov-
ing their correctness and complexity. Via an automata-theoretic approach,
the reference [20] treats distributed consensus, resource allocation, communi-
cation, and data consistency problems. Numerical distributed asynchronous
algorithms as networking algorithms, rate and flow control, and gradient de-
scent flows are discussed in [21]. All these references do not typically address
algorithms over ad-hoc dynamically changing networks. The recent work [22]
proposes a model of distributed robotic network.

In addition, the proposed work is related to visibility-based pursuit-evasion
problems, see [23, 24], although these works focus on single agents and not on
distributed policies for groups of agents.

The sensing and communication abilities of each agent is attuned to the
coordination problems at hand. The study of vision as a sensor in coordination
problems is in its infancy; beside our work described below, only few prelimi-
nary references are available [24, 25]. Vision and, more generally, sensor-based
coordination is instead a key interaction modality for animal networks.

1.3 Preliminaries and notation

We begin by introducing some basic notation. If p is a point in the polygon
Q, we let V (p) denote the set of visible points from p. A set S is star shaped if
there exists p ∈ S such that S ⊂ V (p); if S is star shaped, we let ker(S) be its
kernel, i.e., the set of points k ∈ S such that S ⊂ V (k). Finally, a diagonal of
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a polygon Q is a segment inside Q connecting two vertices of Q (and therefore
splitting Q into two polygons). A vertex of a polygon Q is nonconvex when
the internal angle is strictly greater than π.

We consider a group of robotic agents modeled as point masses, moving
in a simple nonconvex polygonal environment, Q. Each agent has a unique
identifier UID, say i. Let pi refer to the position of agent i. Each agent is
equipped with an omnidirectional line-of-sight range sensor. Thus, the agent
can sense its star-shaped visibility set V (pi). It can communicate with any
other agent within line-of-sight and less than a certain distance r. The quantity
r can be adjusted by the agent but is upper bounded, say by R > 0.

Each agent has access to some memory Mi. By memory, we refer to all
the necessary information that is not accessible via local sensing and commu-
nication. An agent i can broadcast its UID together with its memory contents
to all agents inside its communication region. Such a broadcast is denoted by
BROADCAST(i,Mi). It can also receive broadcasts from other agents. We
also assume that there is a bounded time delay, δ > 0, between a broadcast
and the corresponding reception.

Every agent i repeatedly performs the following sequence of actions begin-
ning at a time instant, say T i

l :

(i) send repeated BROADCAST(i,Mi) after δ time intervals, until it starts
moving;

(ii) LISTEN for a time interval equal to at least 2δ before processing the
information;

(iii) PROCESS the necessary information. Also continue to LISTEN during
this interval;

(iv) MOVE to a desired point.

T i

l
T i

l+1

LISTEN

PROCESS MOVE

BROADCAST(i,Mi) BROADCAST(i,Mi)

δ δ δ δ δ

≥ 2δ

Fig. 1.2. Sequence of actions for agent i beginning at time T i
l . Instantaneous

BROADCAST(i,Mi) events are represented by vertical pulses. The MOVE interval
might be empty if the agent does not move.The subsequent instant T i

l+1 is the time
when the agent stops performing the MOVE action and it is not predetermined.

Agent i, in the MOVE state, is capable of moving at any time t according
to the following discrete-time control system:
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pi(t + ∆t) = pi(t) + ui,

where the control is bounded in magnitude by 1. The control action depends on
time, on the memory Mi(t), and on the information obtained from communi-
cation and sensing. The subsequent wake-up instant T i

l+1 is the time when the
agent stops performing the MOVE action and it is not predetermined. This
model of visually-guided agents is similar in spirit to the partially asyn-
chronous network model described in [21].

Given this model, the goal is to design a provably correct discrete-time
algorithm which ensures that the agents converge to locations such that each
point of the environment is visible to at least one agent. This is the dis-
tributed art-gallery deployment problem for visually-guided agents.

1.4 Distributed Art Gallery Deployment Problem

In this section we detail the incremental partition and deployment al-
gorithms described in the introduction. We begin by describing a partition of
a given simply connected nonconvex environment into star-shaped polygons
and the graph that such a partition induces.

1.4.1 The vertex-induced partition and tree

Given a nonconvex polygon Q without holes and a vertex s of it, we compute
a list {P1, . . . , Pm} of star-shaped polygons composing a partition of Q and a
list {k1, . . . , km} of kernel points for each star-shaped polygon {P1, . . . , Pm}.
The computation of these quantities is discussed in the following algorithm
and is illustrated in Figure 1.3.

s

Q

(a)

s

Q

(b)

s

Q

k_2

(c)

s

Q

(d)
Q

s

(e)

Fig. 1.3. Computation of the vertex-induced partition and tree in 5 steps.

Vertex-Induced Partition and Tree Algorithm

1: set k1 = s, and collect all vertices of Q visible from k1 (see Fig. 1.3(a))
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2: let P1 be the polygon determined by these vertices (by definition k1 ∈
ker(P1)) (see Fig. 1.3(b))

3: identify the edges of P1 that are diagonals of Q; call them gaps. For all
gaps, place a new point, say k2, across the gap at a new vertex of Q such
that k2 sees the gap (see Fig. 1.3(c))

4: repeat last three steps for new point k2, until all gaps have been crossed
(see Fig. 1.3(d))

5: define edges starting from s going to all kernel points and crossing all
edges (see Fig. 1.3(e))

We refer to the list {P1, . . . , Pm} computed in the algorithm as the vertex-
induced partition. The algorithm computes not only the partition and a list
of kernel points, but also a collection of edges connecting the kernel points. In
other words, we also computed a directed graph, the vertex-induced tree,
denoted by GQ(s): the nodes of this directed graph are {k1, . . . , km} and an
edge exists between any two vertices ki, kj if and only if Pi ∩ Pj is a diagonal
of Q. Note that k1 = s; we refer to this node as the root of GQ(s). We now
state some important properties of the vertex-induced tree.

Proposition 1. Given a polygon Q without holes and a vertex s, the following
statements hold:

(i) the directed graph GQ(s) is a rooted tree;
(ii) the maximum number of nodes in the vertex-induced tree is less than or

equal to ⌊n
2 ⌋, where n is the number of vertices in Q.

Proof. The fact that GQ(s) is a tree is a consequence of the fact that Q has
no holes. Since s is designated as the root, GQ(s) is a rooted tree. This proves
statement (i). To prove statement (ii), notice the set of nodes of GQ(s) belong
to the vertices of Q. Also, by construction no two adjacent vertices of Q can
both belong to the node set {k1, · · · , km}. Since the number of vertices of Q
is n, it follows that number of nodes of GQ(s) is less than or equal to ⌊n

2 ⌋.

It is clear from the construction of the vertex-induced tree that, if we
design a distributed algorithm to place agents on each node of the tree, then
we will have solved the distributed art-gallery deployment problem.

Remark 1. If we can deploy the agents over the kernel points, then we will
have solved the art-gallery deployment problem requiring ⌊n/2⌋ agents in the
worst case, which is in general more than the ⌊n/3⌋ number required if the
entire environment were known a priori. This is not surprising considering
the weaker assumption of no global knowledge that we make while posing the
problem.
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Local node-to-node navigation algorithms

Note that by virtue of the constructions in the previous section, we have con-
verted the original problem into a graph “navigation and deployment” prob-
lem. We now describe algorithms to plan paths between neighboring nodes of
the vertex-induced tree. In a rooted tree, every neighbor of a node is either a
child or the parent. Therefore, we present two simple informal descriptions.

Move-to-Child Algorithm

1: compute the mid-point of the gap between the node and the child
2: go to the mid-point
3: compute the nearest vertex from which the entire gap is visible and which

is across the gap
4: go to that vertex

Move-to-Parent Algorithm

1: compute the mid-point of the gap between the node and the parent
2: go to the mid-point of the gap
3: from the mid-point, go to the vertex representing the parent node

Figure 1.4 shows paths between parents and children as computed by the
previous two algorithms. It is easy to see that navigation is very simple if
sufficient information is available to the agents. We address this aspect in the
next subsection.

s s

Fig. 1.4. Left figure: a vertex-induced tree and partition in a prototypical floor-plan.
Right figure: the planned paths between neighboring nodes.

1.4.2 Distributed information processing

From the previous discussion we know that the following information must
be available to an agent to properly navigate from node to node. If the node
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is executing the Move-to-Child Algorithm, then it needs to know what gap
to visit, i.e., what child to visit. If the node is executing the Move-to-Parent

Algorithm, then it needs to know where the parent node is located.
This geographic information is gathered and managed by the agents via

the following state transition laws and communication protocols. At this time,
we make full use of the computation, communication and sensing abilities of
visually-guided agents mentioned in Section 1.3.

(i) The memory content M of each agent is a quadruple of points in Q labeled
(pparent, plast, g1, g2). All four values are initialized to the initial location
of the agent. During any broadcast, these values are sent over together
with the agent’s UID.

During run time, M is updated to acquire and maintain the following mean-
ing: pparent is the parent kernel point to the current agent’s position, plast is
the last way point4 visited by the agent, and (g1, g2) is the diagonal shared
between the current cell and the parent cell, i.e., the gap toward the parent
node. This is accomplished as follows:

(ii) After an agent moves from a kernel point ki to a child kernel point kj

through a gap described by two vertices v′, v′′, its memory M is updated
as follows: pparent := ki, plast = kj and (g1, g2) := (v′, v′′).

(iii) After an agent moves from a kernel point kj to the parent kernel point
ki, its memory M is updated as follows: first, plast := w, where w is the
way point on the path between kj and ki, and second, the agent acquires
updated values of {pparent, g1, g2} by listening to the incoming message
with the highest UID.

Remark 2. At any time, at any occupied node, pparent corresponding to the
agent with the highest UID refers to the location of the parent of the current
node. Also, (g1, g2) refers to the gap between the current node and the parent
node. To see this, we argue as follows: Given any node ki of GQ(s) that is
occupied by one or more agents, let l be the highest UID among all agents.
Then, we claim that the last node visited by l is the parent of ki. We prove this
by contradiction. Let the last node visited by l be a child of ki. To visit that
child, it must have first visited ki. Then, by the Depth-First Navigation

Algorithm, it must have moved from ki because of the presence of an agent
with a UID greater than l. Therefore, the maximum UID at ki must be greater
than l which is a contradiction. Hence, the last node visited by l is the parent
of ki. Now according to (ii) above, the quantity pparent for l refers to the parent
of ki. Also, (g1, g2) refers to the gap between ki and its parent.

No common reference frame

In the description of the memory update laws, we have used a global reference
frame to refer to the contents of M. However, this assumption can be easily

4A way point is a mid-point of the gap between two nodes (Figure 1.4 right)
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relaxed by storing the variables in M in a different way. For example, instead
of storing the location of the parent node as a point pparent relative to some
global frame, the location of the parent can be stored as an integer dparent,
as shown in Figure 1.5. Note that such a representation does not depend on
the orientation of the reference frame of an agent. The location of the gap

6

7

ki

g1+g2

2

3

2

Q

kj

1

44

5

Fig. 1.5. Illustration of how the relative location of the parent of a node can be
stored without the use of a common reference frame. The polygon is the environ-
ment Q. The graph with the directed edges is the vertex-induced tree in Figure 1.3.
The node ki is the parent of kj and the point g1+g2

2
denoted by the white disc refers

to the mid-point of the gap between kj and ki. The shaded region is the set of all
points visible from g1+g2

2
on the side of the diagonal (g1, g2) not containing kj . The

vertices of Q in this visibility set are enumerated (1, · · · , 7) in counter-clockwise or-
der, the vertex 1 being one of the vertices {g1, g2}, say g1, and with g2 being the last
vertex in the ordering. The location of the parent can now be stored as dparent = 6.

(g1, g2) can be stored in a similar fashion. The point plast can be stored with
respect to the local reference frame. We do not store pparent and (g1, g2) in
terms of local coordinates since these variables may be used as updates by
other collocated robots. This would necessitate that the robots be aware of
the relative orientations of their local coordinate frames or, equivalently, be
equipped with compasses. By storing pparent and (g1, g2) according to the
scheme in Figure 1.5, the use of compasses is eliminated.

Remark 3. If the number of vertices of the environment visible from any point
of the environment is bounded, then the amount of memory required to store
pparent and (g1, g2) is also bounded. Also if the diameter of the environment
is bounded, then the memory required to store plast is bounded. Thus, un-
der the aforesaid assumptions, the memory M is constant irrespective of the
complexity of the environment.
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Depth-First Navigation Algorithm

All agents are initially located at root s

During each PROCESS action, each agent executes:

1: Find maximum UID received during the LISTEN action
2: If maximum received UID is less than its own UID
3: then stay at current kernel point
4: else

5: If there are no children of the present kernel point
6: then Move-to-Parent Algorithm towards pparent via {g1, g2}
7: else

8: Order the children in a suitable way
9: If plast in memory is the parent of the present node,

then Move-to-Child Algorithm towards the first child in the ordering
10: If the last node visited is a child that is not the last in the ordering,

then Move-to-Child Algorithm towards next child in the ordering
11: If (the last node visited is a child that is the last in the ordering) AND

(current node is not the root),
then Move-to-Parent Algorithm towards pparent via {g1, g2}

12: If (the last node visited is a child that is the last in the ordering) AND
(current node is the root),

then Move-to-Child Algorithm towards the first child in the ordering

Table 1.1. Depth-First Navigation Algorithm.

1.4.3 Global exploration and deployment algorithms

At this time, we have all the elements necessary to present a global naviga-
tion algorithm that leads the agents to deploy themselves over the nodes of
the vertex-induced tree. We term this algorithm Depth-First Navigation

Algorithm, see Table 1.1.
Note that the instruction 5: through 11: in Depth-First Navigation

Algorithm essentially amount to a depth-first graph search. Alternatively, it
is fairly easy to design randomized graph search algorithms, where the nodes
select their motion among equally likely children/parent decisions.

The following Figures 1.6 and 1.7 show the results of the simulations of the
depth-first search and randomized search algorithms respectively. The nodes
of the vertex-induced tree of the environment in the simulations are precisely
the locations where the agents in Figure 1.6 are located at the end of the
simulation. In Figure 1.7, there are more agents than the number of nodes
in the vertex-induced tree. Hence, the extra agents keep exploring the graph
without coming to rest.

1.4.4 Convergence and run time analysis

In this section, we provide the results on convergence of the algorithm and
we also characterize the time taken for the task to be completed. Given a
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Fig. 1.6. From left to right, evolution of a network implementing depth-first search.
The number of vertices of the environment is n = 46 and the number of agents is
N = 13 < ⌊ 46

3
⌋. Each point of the environment is visible at the end of the simulation.

Fig. 1.7. From left to right, evolution of a network implementing randomized search.
While the polygon is the same as above and therefore the vertex-induced tree still has
only 13 nodes, the number of agents is 15; after each node of the tree is populated,
the 2 extra agents continue to explore the vertex-induced tree.

polygon Q without holes and a vertex s, we define the following length: For
each edge (ki, kj) of GQ(s), let dedge(ki, kj) be the path length between ki and
kj . The length of the vertex-induced tree GQ(s) is defined by

Lvit(GQ(s)) =
∑

e∈ edges of GQ(s)

dedge(e).

With these notions we can state the next result.

Theorem 1 (Convergence and Run Time Analysis). Given a polygon
without holes Q, assume that N visually-guided agents begin their motion from
a vertex s of Q. Assume Q has n vertices and the vertex-induced tree GQ(s)
has m nodes. Assume also that there exists a bound λmax on the LISTEN
interval for any agent i. Then the following statements hold:

(i) In finite time t∗ there is at least one agent on min{m,N} nodes of GQ(s).
(ii) If N ≥ ⌊n/2⌋, then the art-gallery deployment problem is solved in finite

time by the Depth-First Navigation Algorithm.
(iii) assuming unit speed for any agent, the time taken for task completion, t∗,

obeys the following:
t∗ = Tmotion + Tnodes,

where Tmotion ≤ 2Lvit(GQ(s)) − min {dedge(e)| e ∈ edges of GQ(s)} and
Tnodes ≤ 2(m − 1)λmax.

Proof. We first prove statement (i). Let us first see that at any time t, any
agent is either at a node of GQ(s) or on the path between two nodes. Ac-
cording to the Depth-First Navigation Algorithm, an agent always moves
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according to either the Move-to-Child Algorithm or the Move-to-Parent

Algorithm. By the memory update laws in Section 1.4.2, during any PROCESS
interval, an agent at a node always has in its memory the location of the par-
ent node and the gap between the current node and its parent. Therefore, an
agent at a node always has enough information to compute the locations of
the parent and the children and, thus, always is either at a node of GQ(s) or
on the path between two nodes.

Now, from step 2 of Depth-First Navigation Algorithm, an agent stays
at a node unless there is an agent with a higher UID collocated at the same
node. It also follows that once a node is occupied by an agent, it continues to
be occupied by at least one agent for all future times. Therefore, the number
of occupied nodes is non-decreasing. Since the number of nodes are finite,
there exists a finite time τ1 such that for all time t ≥ τ1, exactly w nodes
are occupied. Also, the highest UID at any occupied node is non-decreasing.
Since the number of agents are finite, there exists a finite time τ2 such that
for all time t ≥ τ2, the highest UID at all w occupied nodes is constant. Now,
let τ ≥ max{τ1, τ2}. Now, if w ≥ N , then we are done. If w < N , then at any
time t ≥ τ , there are N − w agents that either belong to w occupied nodes
or belong to the paths between two nodes of GQ(s). Since the UID at any
occupied node is constant, this implies that the N − w agents are the ones
with the lowest UIDs. From the Depth-First Navigation Algorithm, each
of the N − w agents perform a depth-first search on GQ(s) spending at most
λmax time at any node. If w ≥ min{m,N}, then we are done. If w < N ≤ m,
there is at least one node that is unoccupied. Therefore, each of the N − w
agents will reach an unoccupied node of GQ(s) in finite time. Thus, the number
of occupied nodes increases which is a contradiction. Therefore, w ≥ N . If on
the other hand, w < m ≤ N , then again there is at least one node that is
unoccupied. By a similar argument as before, it follows that the number of
unoccupied nodes increases.

Statement (ii) follows from statement (i) and from Proposition 1 (ii) which
states that m ≤ ⌊n

2 ⌋ .
To prove statement (iii), let us assume that kl be the last node to be

occupied at time t∗. Clearly, kl has to be a leaf. Let the agent first occu-
pying kl be j. To travel from the root to any leaf via a depth-first search,
an agent traverses each edge at most twice except for the edge incident to
the leaf, which has to be traversed only once. Thus, agent j travels at most
(

∑

e∈ edges of GQ(s) 2dedge(e)
)

− min {dedge(e)| e ∈ edges of GQ(s)} distance.

Since the agent is assumed to move with unit speed, the time taken to travel
this distance, Tmotion, is 2Lvit(GQ(s)) − min {dedge(e)| e ∈ edges of GQ(s)}.
Also, while traveling from the root to kl, agent j stops at each of the remain-
ing m − 1 nodes at most twice. At each node, agent j spends at most λmax

time. Thus, the time spent at the nodes, Tnode, is 2(m − 1)λmax. The total
time, t∗ is equal to Tmotion + Tnode and the result follows.
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1.5 Conclusions

In this paper, we pose a distributed version of the classic Art Gallery Prob-
lem for mobile robotic agents. Under assumptions of line-of-sight communi-
cation and sensing on the agents, we design a provably correct Depth-First
Navigation Algorithm that solves the problem given that the agents are
initially collocated at a vertex of the environment. The algorithm is robust
to arbitrary but bounded communication delays. Under the assumptions of
bounded environment diameter and bounded number of vertices visible from
any point in the environment, the memory required by the agents is constant
irrespective of the environment complexity. An early version of this algorithm
appeared in [26].
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